
Zementis Predictive Analytics

Solutions Guide

10.7.0.2

Zementis Predictive Analytics

Solutions Guide

Software AG

Copyright © 2004 - 2016 Zementis Inc.

Copyright © 2016 - 2020 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/

or its subsidiaries and/or its affiliates and/or their licensors.

This document applies to Zementis Server 10.7.0.2 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or Software

AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be

trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at http://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product documentation,

located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or restrictions, please

refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party license restrictions, please

refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG Products / Copyright and Trademark

Notices of Software AG Products". These documents are part of the product documentation, located at http://softwareag.com/licenses/ and/or

in the root installation directory of the licensed product(s).

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

Page iii

Table of Contents

1. Introduction ... 1

1.1. Decision Solutions Overview ... 1

2. Predictive Models .. 3

2.1. Predictive Model Building Process ... 7

2.2. Deploy and Test Predictive Models .. 9

2.2.1. Deploying Models ... 9

2.2.2. Testing Models ... 10

2.3. Data Scoring and Classification ... 11

2.4. Model Metrics ... 12

2.5. Other Data Sources .. 13

3. Custom Resources .. 15

3.1. Custom PMML Functions .. 15

3.1.1. Create Custom PMML Functions ... 15

3.1.2. Use Custom PMML Functions ... 17

3.1.3. Non-Deterministic Functions .. 18

3.2. External Lookup Tables ... 19

3.2.1. Create Lookup Tables in Excel ... 19

3.2.2. Use Lookup Tables in PMML .. 21

3.3. External Training Data Tables .. 22

3.4. Using Binary Data Type .. 22

3.4.1. Using Default binary Type .. 23

3.4.2. Using Buffered binary Type .. 25

3.5. Deploy Resources ... 26

3.5.1. Deleting Resources .. 27

3.6. Supporting Python scripts in PMML .. 28

3.6.1. Define a Function with python script in PMML ... 28

3.6.2. Use python script function from PMML .. 31

4. Extensions API ... 33

4.1. Using the Zementis Server Extensions API .. 33

4.1.1. Custom Function .. 33

4.1.2. Lookup Table ... 34

4.1.3. Asset Repository .. 35

4.1.4. Logging Store .. 36

4.2. Overview of code examples ... 37

Page iv

4.3. Deployment of Zementis Server Extensions .. 38

5. REST API ... 39

5.1. General Notes .. 39

5.1.1. URI .. 39

5.1.2. Request ... 41

5.1.3. Response ... 41

5.1.4. Errors .. 41

5.1.5. Authorization .. 43

5.2. API ... 44

5.2.1. JSON Objects .. 44

5.2.2. Operations on Models .. 50

5.2.2.1. List Available Models ... 50

5.2.2.2. Get Model Information ... 51

5.2.2.3. Get Model Source ... 52

5.2.2.4. Get Model Serialized Source .. 53

5.2.2.5. Get Model Metrics Information .. 53

5.2.2.6. Upload New Model .. 54

5.2.2.7. Upload New Model with PUT ... 56

5.2.2.8. Activate an existing Model with PUT ... 57

5.2.2.9. Deactivate an existing Model with PUT ... 58

5.2.2.10. Remove Model .. 59

5.2.2.11. Remove All Models .. 59

5.2.3. Apply model ... 60

5.2.3.1. Apply Model to Single Record .. 60

5.2.3.2. Apply Model to Single Record and Explain Result .. 61

5.2.3.3. Apply Model to Multiple Records or Apply Model to Single Binary Data 63

5.2.3.4. Asynchronously Apply Model to Multiple Records ... 65

5.2.4. Operations on Resources ... 66

5.2.4.1. List Available Resources .. 66

5.2.4.2. Get Resource Information .. 67

5.2.4.3. Get Resource File ... 68

5.2.4.4. Upload New Resource File ... 69

5.2.4.5. Upload New Resource File with PUT .. 70

5.2.4.6. Remove Resource File .. 71

5.2.4.7. Remove All Resource Files .. 72

5.2.5. Operations on License .. 72

5.2.5.1. Get License Properties .. 72

Page v

5.2.5.2. Upload a new license file ... 73

Page vi

List of Figures

1.1. Decision Solution .. 2

2.1. Model Ensemble ... 5

2.2. Predictive Modeling Process .. 6

2.3. Predictive Models in the Zementis Console .. 10

2.4. Memory Metrics and Prediction Metrics of Classification Model .. 13

2.5. Memory Metrics and Prediction Metrics of Regression Model ... 13

3.1. Custom PMML Function Example .. 16

3.2. Example Using a Custom Function in PMML .. 18

3.3. Custom PMML Function Example .. 18

3.4. Lookup Table Example .. 19

3.5. Sample Excel Lookup Table .. 20

3.6. A LookupTable with two inputs and one output ... 21

3.7. Binary DataType Example ... 23

3.8. Custom Function of Binary Data Example .. 24

3.9. Example Using Custom Function of Binary Data in PMML ... 25

3.10. Binary (Buffered) DataType Example ... 25

3.11. Custom Function of Buffered Binary Data Example ... 26

3.12. Example Using Custom Function of Buffered Binary Data in PMML .. 26

3.13. Resource Files in the Zementis Console .. 27

3.14. Resource dependency exception in the Zementis Console ... 27

3.15. Data Type Conversion Example ... 28

3.16. Custom Python Script Example .. 30

3.17. Custom Python Script in Base64 Encoded Format .. 31

3.18. Using python script function in PMML .. 32

4.1. Dependencies for Custom Functions .. 34

4.2. Dependencies for Lookup Table .. 35

4.3. Dependencies for Asset Repository ... 36

4.4. Dependencies for Logging Repository .. 37

5.1. Interactive REST API Documentation ... 40

Page vii

List of Tables

2.1. Sample Predictive Models ... 8

2.2. Directory Structure of Sample Models .. 9

3.1. PMML and Java types in Zementis Server ... 16

3.2. Data Type Mapping ... 28

3.3. Purpose of each attribute in Extension element .. 29

4.1. Directory structure of code examples ... 37

5.1. Typical Zementis REST Error Responses ... 42

5.2. Zementis REST Permissions ... 43

Page viii

List of Examples

5.1. Zementis REST Error Response .. 42

5.2. Zementis REST Errors Object ... 45

5.3. Zementis REST Models Object .. 45

5.4. Zementis REST ModelInfo Object .. 46

5.5. Zementis REST Field Object ... 47

5.6. Zementis REST MetricsInfo Object .. 47

5.7. Zementis REST Record Object .. 48

5.8. Zementis REST Record Object .. 48

5.9. Zementis REST Result Object ... 49

5.10. Zementis REST ResourceInfo Object ... 49

5.11. Zementis REST Resources Object ... 50

5.12. Zementis REST List Models .. 50

5.13. Zementis REST Get Model Information .. 51

5.14. Zementis REST Get Model Source .. 52

5.15. Zementis REST Get Model Serialized .. 53

5.16. Zementis REST Get Model Metrics .. 54

5.17. Zementis REST Upload New Model with POST .. 55

5.18. Zementis REST Upload New Model with PUT .. 56

5.19. Zementis REST Activate an existing Model .. 57

5.20. Zementis REST Deactivate an existing Model ... 58

5.21. Zementis REST Remove Model ... 59

5.22. Zementis REST Remove All Models .. 60

5.23. Zementis REST Apply Model to Single Record .. 61

5.24. Zementis REST Apply Model to Single Record and Explain Result .. 61

5.25. Zementis REST Apply Model to Multiple Records .. 63

5.26. Zementis REST Apply Model to Single Binary Record .. 64

5.27. Zementis REST Asynchronously Apply Model to Multiple Records .. 65

5.28. Zementis REST List Resources ... 66

5.29. Zementis REST Get Resource Information ... 67

5.30. Zementis REST Get Resource File .. 68

5.31. Zementis REST Upload New Resource File with POST ... 69

5.32. Zementis REST Upload New Resource File with PUT ... 70

5.33. Zementis REST Remove Resource File ... 71

5.34. Zementis REST Remove All Resource Files ... 72

Page ix

5.35. Zementis REST Get License ... 73

5.36. Zementis REST Post License .. 73

Page 1

Chapter 1. Introduction
Zementis Server enables the agile deployment and integration of predictive decision services. It allows organizations

to convert predictive models into operational services without requiring any additional custom coding by the infor-

mation technology (IT) organization. Zementis Server ensures model integrity, optimizes performance and powers

scaling as necessary.

This document serves as a guide for creating decision solutions using Zementis Server. It describes how Zementis

Server components are used to verify and execute your advanced analytics either in real-time (against in-flight data)

or batch mode (against data at rest). This guide also explains how the different Zementis Server components are

combined to offer a powerful scoring framework.

It is important to note that Zementis Server leverages the Predictive Model Markup Language (PMML) standard.

PMML handles data pre-processing and post-processing as well as the predictive model itself. In this way, the entire

predictive workflow can be implemented in PMML.

Note

In respect of considerations concerning EU General Data Protection Regulation (GDPR), our product stores

personal information in shape of a user ID for the purpose of logging in. The user ID can be created, modified

and removed as described in the Zementis Server Deployment Guide. As the input data might contain

sensitive personal information, please anonymize any such data to ensure that the processing of personal

data is in accordance with the GDPR.

1.1. Decision Solutions Overview

Zementis Server allows data-driven insight and expert knowledge to be combined into a single and powerful decision

strategy through the use of PMML. Whereas expert knowledge encapsulates the logic used by experts to solve

problems, data-driven knowledge is based on the ability to automatically recognize patterns in data not obvious to

the expert eye. These two different types of knowledge are represented by two powerful technologies: Business

Rules and Predictive Analytics. By bringing together both technologies, Zementis Server offers the best combination

of control and flexibility for orchestrating critical day-to-day business decisions.

During the process of building a predictive model, there is usually quite a bit of data analysis and data pre-processing

that need to take place. This is done to prepare the raw historical data so that it is suitable for model building and/

or to combine and transform different data fields so that they create feature detectors that offer a richer predictive

power than the input fields they were derived from. More often than not, such features entail looking at the data from

a descriptive point of view as to explain it. For example, a feature detector may be defined as an aggregate value

Page 2

of an input field containing the transaction amount as part of a credit card transaction. If this feature detector is the

average transaction amount for the last month or week, the predictive model can use this information to generate a

prediction that takes into account the delta between the current amount and the average past amount. The average

amount for the last month is a typical case of descriptive analytics which tries to answer what happened in the past.

Descriptive features are extremely important since when fed into a predictive model, they transform the nature of the

information itself, allowing a model to answer what will happen next. Through PMML, Zementis Server is capable of

capturing this process entirely. It also takes it a step further, by including prescriptive analytics into the mix, which

is implemented by a series of post-processing steps expressed via the use of business rules.

Prescriptive analytics takes advantage of the outputs generated by a predictive technique by transforming them

into business decisions. As depicted in Figure 1.1 the process of integrating descriptive, predictive and prescriptive

analytics into a single solution is easy and straightforward with PMML and Zementis Server.

Figure 1.1. Decision Solution

With Zementis Server, the power of predictive analytics is made available to any other application in your enterprise

via web services. Without further configuration or customization, a predictive model is exposed as a web service

and seamlessly participates in the overall business process flow.

Zementis Server is the first technology solution that enables an enterprise to score data from any source in batch

or real-time while combining the power of descriptive, predictive and prescriptive analytics by leveraging a well-

supported open industry standard. By using Zementis Server and PMML both the human resource and technology

requirement to deploy these powerful analytics is drastically reduced. At the same time, pace of deployment is

increased and model integrity and quality is improved.

In this guide, we start by describing the process of building and testing a predictive model in Chapter 2. This is

followed by a description of custom resources in Chapter 3. Chapter 4 gives an overview of the Zementis Server

Java Extensions API. Finally, an extensive description of the web service capabilities is provided in Chapter 5.

Page 3

Chapter 2. Predictive Models

The conversation around Big Data for both technologists and businesses has become pervasive. The challenge

many enterprises and teams face is how to deliver measurable value from Big Data initiatives. By enabling rapid

deployment from the Data Scientist's desktop to the operational IT environment, Zementis Server and PMML provide

a standards-based methodology and process through which value from Big Data initiatives can be gained, quantified

and demonstrated.

The predictive model building process begins by working with and developing a deep understanding of historical data

which is mined for feature detectors. These are in turn used to build the predictive models. While a time consuming

and laborious process, this provides the foundation for creating value from Big Data.

Building models is only the first step to realizing the benefits of predictive analytics. The second and final step is to

actually use them within the overall business flow and processes. In other words, the models need to move from

the data scientist's desktop into the enterprise operational IT environment where they can be used for scoring new

data and drive business decisions.

Deployment of predictive models into the IT operational environment is all but straightforward. It can take as long

as the data analysis phase itself or even longer and consume a significant amount of resources. It is not uncommon

that by the time models are finally deployed, they are already stale and require to be refreshed with newer (historical)

data reflecting a changing market.

Zementis Server makes deployment and use of complex predictive models trivial. Zementis Server has been de-

signed from the ground up to consume, execute, optimize and scale Predictive Models that have been saved in

PMML. PMML is the standard for moving predictive models between applications and, as a consequence, is sup-

ported by the leading technology companies including IBM, Microsoft, Oracle, SAP, SAS and Software AG to name

a few. PMML is developed by the Data Mining Group (DMG), an independent vendor led consortium that develops

data mining standards.

PMML is a very mature standard. Its latest version, PMML 4.4, was released in August 2016. Given that different

data mining tools may support different versions of PMML, Zementis Server incorporates proprietary IP developed

by Software AG that converts any older version of PMML (versions 2.0, 2.1, 3.0, 3.1, 3.2, 4.0, 4.1, 4.2 and 4.3)

into version 4.4. This converter also checks the code for any syntactic and semantic problems and corrects known

issues found in the PMML code of certain model building tools automatically.

PMML 4.4 incorporates many new elements into the standard, including elements for representing Time Series

Analysis (including SpectralAnalysis, ARIMA and SeasonalTrendDecomposition) and Anomaly Detection models.

http://dmg.org

Page 4

Note

PMML 4.2 changed the way the target field is referred to in the mining schema element. In PMML 4.2,

the target field is simply referred to as "target" while in previous versions of PMML, it was referred to as

"predicted". This change avoids any confusion related to the target field which is used to train a model and

the true predicted field which is output by a model after scoring. As a consequence, Zementis Server also

changed the way it treats predicted fields. If a PMML file is missing the output element, Zementis Server will

add it to the file and will name the predicted output field "predictedValue" if no target field name is specified

in the model's mining schema. If however, the target field is given, Zementis Server will name the predicted

output field "predictedValue_X" where X is the name of the target field as specified in the mining schema.

Zementis Server will not add any output fields to a PMML file if it already has an output element.

If you would like to learn more about PMML, we highly recommend that you visit the Software AG web site for

a list of resources. We also recommend the book PMML in Action (2nd Edition): Unleashing the Power of Open

Standards for Data Mining and Predictive Analytics by Alex Guazzelli, Wen-Ching Lin, and Tridivesh Jena, which is

available for purchase on Amazon.com. "PMML in Action" gives an introduction to PMML as well as a PMML-based

description of all the predictive modeling techniques supported by Zementis Server.

Software AG also offers a two-day on-site training course in PMML which is usually enough training for data scientists

to become highly productive in using PMML. No pre-requisites for this course are required to be effective.

Zementis Server supports an extensive collection of statistical and data mining algorithms. These are:

• Anomaly Detection Models (Isolation Forest and One-Class SVM)

• Association Rules Models (Rectangular or Transactional format)

• Clustering Models (Distribution-Based, Center-Based, and 2-Step Clustering)

• Decision Trees (for classification and regression) together with multiple missing value handling strategies

(Default Child, Last Prediction, Null Prediction, Weighted Confidence, Aggregate Nodes)

• Deep Neural Networks (MobileNet, VGGNet, ResNet, RetinaNet)

• K-Nearest Neighbors (for regression, classification and clustering)

• Naive Bayes Classifiers (with continuous or categorical inputs)

• Neural Networks (Back-Propagation, Radial-Basis Function, and Neural-Gas)

• Regression Models (Linear, Polynomial, and Logistic) and General Regression Models (General Linear, Or-

dinal Multinomial, Generalized Linear, Cox)

https://www.softwareag.com/corporate/products/az/zementis/default.html
https://www.amazon.com/PMML-Action-2nd-Unleashing-Predictive/dp/1470003244/
https://www.amazon.com/PMML-Action-2nd-Unleashing-Predictive/dp/1470003244/

Page 5

• Ruleset Models (Each rule contains a predicate and a predicted class value)

• Support Vector Machines (for regression and multi-class and binary classification)

• Scorecards (point allocation for categorical, continuous, and complex attributes as well as support for reason

codes)

• Time Series Models (Univariate Seasonal and Non-Seasonal ARIMA with computation of confidence intervals

for non-seasonal models, Multi-variate State Space Models with computation of confidence intervals, Support

for multi-step output in JSON format)

• Multiple models (model ensemble, segmentation, chaining, composition and cascade), including Random

Forest Models and Stochastic Boosting Models

Zementis Server also implements the definition of a data dictionary, missing and invalid values handling, outlier

treatment, as well as a myriad of functions for data pre- and post-processing, including: text mining, value mapping,

discretization, normalization, scaling, logical and arithmetic operators, conditional logic, built-in functions, business

decisions and thresholds.

Due to the highly publicized Netflix prize and the many tools that now make it easier for data scientists to develop

a solution containing multiple models, model ensembles are now being used to build many predictive solutions. As

depicted in Figure 2.1, in a model ensemble, every model is executed and the overall result or output is a combination

of the partial results obtained from each model.

Figure 2.1. Model Ensemble

http://www.netflixprize.com/

Page 6

PMML is capable of representing not only a model ensemble but also model composition, segmentation, chaining

and cascade. The same is true for Zementis Server, which consumes and executes PMML files containing multiple

models. With Zementis Server and PMML, after a model is built, export it as (or convert it to) PMML, upload it to

Zementis Server, and start scoring right away.

Zementis Server makes the task of verifying a model extremely easy. After a model gets uploaded in Zementis

Server, a test data file containing the expected results can be uploaded so that the necessary validation can be

performed, before the model is actually used to score new data. When presented with a scored data file, Zementis

Server will automatically operate in score-matching test mode. In this mode, Zementis Server will compare expected

scores against computed scores for each data record and warn the user if any mismatches are found.

The overall process of model building, using a commercial or open-source data mining tool as well as model de-

ployment, verification, and execution is depicted in Figure 2.2. In the next sections, we elaborate on each phase

of this process in more detail.

Figure 2.2. Predictive Modeling Process

Page 7

2.1. Predictive Model Building Process

The process of creating predictive models starts by defining a clear business goal that needs to be achieved. This

is followed by the data analysis phase in which the data scientist mines historical data looking for all the pieces

deemed necessary for model building. Data is usually processed and feature detectors are created before a pre-

dictive algorithm such as a neural network is trained. Data analysis, model building and model validation is usually

performed within the scientist's desktop through the use of an array of tools and scripts. Today, the leading statistical

packages are able to export models in PMML, the language recognized by Zementis Server. Examples of such

statistical packages are IBM SPSS, SAS, R, and KNIME. For a more comprehensive list of tools that support the

PMML standard, check the Powered by PMML on the Data Mining Group (DMG) web site.

Besides this guide and as part of the overall documentation for Zementis Server, a number of sample models

represented in PMML format are also available for inspection and use. Our sample models provide the PMML files

listed in Table 2.1. These models were obtained from a variety of datasets, including the Iris, Heart, Audit and

Diabetes datasets. We use three of the sample models built with the Iris dataset to showcase the power of web

services through a series of examples. These are featured in the code shown in Chapter 5.

The Iris classification problem is one of the most famous data mining problems and datasets. It involves determining

the class of an Iris plant given the length and width of its sepal and petal. Possible classes are: setosa, virginica,

and versicolor. The models built with the Iris dataset not only predict the class with the highest probability, but

also output the probabilities for each of the three classes. For more on the Iris dataset and for further information

on the Heart Disease dataset, please refer to Bache, K. and Lichman, M. (2013). UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

The Audit dataset is supplied as part of the R Rattle package - http://rattle.togaware.com (it is also available for

download as a CSV file from http://rattle.togaware.com/audit.csv). The Audit data set is an artificial dataset consist-

ing of fictional clients who have been audited, perhaps for tax refund compliance. For each case an outcome is

recorded (whether the taxpayer's claims had to be adjusted or not) and any amount of adjustment that resulted is

also recorded.

The Diabetes dataset consists of ten physiological variables (age, sex, weight, blood pressure ...) measure on 442

patients, and an indication of disease progression after one year. The goal is to predict disease progression from the

given physiological variables. For more information on the Diabetes dataset, please refer to Scikit-learn: Machine

Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

http://www.spss.com/
http://www.sas.com/
http://www.r-project.org/
http://www.knime.org/
http://www.dmg.org/products.html
http://dmg.org

Page 8

Table 2.1. Sample Predictive Models

File Name Description

HeartDisease_MS_

Classification.pmml

A multiple model implementing model segmentation and used to predict the

likelihood of a person developing a heart disease. It contains three different

models: a linear regression model, a decision tree and a neural network

model. Each predictive model is executed depending on the value of an input

field.

TaxAudit_SVM.pmml A predictive model composed of a support vector machine used to predict

compliance issues with tax returns and the consequent need for them to be

audited.

CustomerChurn_NN.pmml A predictive model composed of a neural network model used to predict the

likelihood of churn, based on attrition, for a company's customer base. This

model also defines thresholds and business rules as part of the model's post-

processing for implementing a business strategy to mitigate the risk of churn.

Diabetes_RF.pmml A predictive model composed of a random forest model used to predict di-

abetes progression for a group of patients. This predictive model is an ex-

ample of multiple models being used to implement a random forest model

(model ensemble).

ECommerceFraud_NN.pmml A predictive model composed of a neural network model used to predict

the likelihood of fraud for e-commerce transactions. This model requires

the use of custom functions for some of its data pre-processing, which are

made available through the file "custom.jar". It also requires a lookup table,

which can be found in the "customerStateMappingTable.xls" file. Both files

are available as custom resource files (see Table 2.2 for information on how

to locate these files).

Transformations.pmml This file contains a series of data pre-processing steps. It illustrates how

PMML, in conjunction with Zementis Server, can be used solely for data ma-

nipulation. The results obtained from a PMML file containing transformations

can then be used for training a predictive model.

Iris_NN.pmml A neural network model used to predict the class of Iris flower. This model

is used to illustrate the use of web services.

Iris_MLR.pmml A multinomial logistic regression used to predict the class of Iris flower. This

model is used to illustrate the use of web services.

Page 9

File Name Description

Iris_CT.pmml A CART decision tree used to predict the class of Iris flower. This model is

used to illustrate the use of web services.

All sample files described here are available to download from the Zementis Console Help page. In there you will

find a link to a compressed file in ZIP format. When uncompressed, this file reveals a number of directories which

contain the sample files. Table 2.2 describes how the sample files are organized.

Table 2.2. Directory Structure of Sample Models

Directory Contents

models Predictive models (PMML) files: contains the PMML files for all the sample

solutions.

resources Custom resource files: contains custom functions (JAR file) and a lookup

table for model "ECommerceFraud_NN.pmml". Upload these resource files

in Zementis Server before uploading the PMML model file.

data Scored data files: contains the scored data files in CSV format for mod-

el execution for all the sample predictive models. Score a data file in Ze-

mentis Server against its respective model in order to perform the score

matching test. Each data file is named according to its respective PMML

file. In this case, if the PMML file is "Diabetes_RF.pmml", the data file is

"Diabetes_RF.csv".

rest-client Source and build files for sample Java client to Zementis REST API.

2.2. Deploy and Test Predictive Models

Once your models are built and expressed in PMML, it is extremely easy to deploy them in Zementis Server. Man-

aging and deploying models can be accomplished through the use of the Zementis Console.

2.2.1. Deploying Models

Models are deployed in Zementis Server by uploading them directly in the Zementis Console. Although a data min-

ing tool may export an older version of PMML, Zementis Server will automatically perform comprehensive syntactic

and semantic checks, correct known issues and convert your PMML file to version 4.4 when the Enable valida-

tion and correction on PMML file(s) checkbox is checked. By default, the Enable validation and

correction on PMML file(s) checkbox is checked. Unchecking the checkbox will improve upload time, but

Page 10

this is only recommended for annotated PMML files that are generated after being processed by Zementis Server.

The annotated PMML file for a model can be downloaded by clicking the middle icon in the "Download" column of

the corresponding model name. The yellow shield indicates potential issues with a PMML file that may need to be

reviewed. The detailed warning messages are available in the annotated PMML file as comments at the top of the

PMML file. The corresponding model is fully functional and more often than not, these warnings are not relevant to

the scoring process. However, a review of these messages is highly recommended as, in some cases, they may

have an impact on the scoring process. The green shield indicates that the PMML file was uploaded without any

warnings or errors. For security vulnerability mitigation, the model name of uploaded model may be replaced with

safe characters when the value of modelName attribute in PMML file(s) contains special or reserved characters.

Tip

If the PMML file is large, such as the Random Forest model, we recommend compressing the file using ZIP/

GZIP before uploading. This will reduce the upload time dramatically.

If you had previously uploaded models into Zementis Server, those models would be listed in the Zementis Console

Predictive Models page. Figure 2.3 shows the Zementis Console after uploading the sample predictive models

described in Table 2.1.

Figure 2.3. Predictive Models in the Zementis Console

For more information on how to upload your models through the Zementis Console, see the Help page.

2.2.2. Testing Models

Given that models are built with different tools, you need to make sure that both Zementis Server and the model

development environment produce exactly the same results during scoring.

Page 11

Zementis Server provides an integrated testing process to make sure your model was represented accurately,

uploaded correctly, and works as expected. This is also done through the Zementis Console which allows for a

model verification data file to be uploaded for score matching. This file should be in Comma Separated Values

(CSV) format containing one record per line (for more information on how to format your CSV file for scoring, please

refer to the Zementis support forum). Each record should have values for all the input variables along with at least

one of the output variables. The values for the output variables serve as the expected predicted values. Zementis

Server will compute new predicted values and compare them to the expected ones. If all the values match, the

model is considered production-ready, i.e. ready for scoring. If not, Zementis Server offers execution trace details

to facilitate trouble shooting.

The sample predictive models (Table 2.1) provide CSV files that can be used for testing their respective PMML

files. For more information on how to test models, see the Zementis Console Help page or the Zementis support

forum on model verification.

PMML also offers a "ModelVerification" element for similar testing purposes. In this way, verification records are part

of the PMML file itself. Given that Zementis Server supports this element, there is more than one way to test models.

For more information on this specific PMML element, please refer to the Data Mining Group (DMG) web site or to

the book PMML in Action (2nd Edition): Unleashing the Power of Open Standards for Data Mining and Predictive

Analytics by Alex Guazzelli, Wen-Ching Lin, and Tridivesh Jena, which is available for purchase on Amazon.com.

2.3. Data Scoring and Classification

Bulk scoring in batch mode can be easily performed through the Zementis Console, using the same process as for

model testing. First, select the target model and then upload a data file in CSV format. The only difference between

this process and the score-matching test is that in the present case, the predicted field and its expected scores are

not part of the data file. Zementis Server will process the uploaded file and return a new file with your original data

expanded with an extra column containing the predicted variable and the scores/results for each row. For more

details on how to format your data file for batch scoring in Zementis Server, please refer to the Zementis support

forum on data formatting.

Tip

If the data file is large, Software AG suggests compressing the file in ZIP format before uploading. This

reduces the upload time dramatically. In this case, Zementis Server also returns a compressed file contain-

ing the results.

Real-time scoring allows other applications to get and use predictions on demand from anywhere in your enterprise.

With Zementis Server this can be achieved through standard web service calls. Details on using web services can

be found in Chapter 5.

https://support.zementis.com/entries/21194393-Formatting-your-data-file-for-batch-scoring-in-ADAPA
https://support.zementis.com/entries/21207918-verifying-your-model-in-adapa-did-it-upload-correctly
https://support.zementis.com/entries/21207918-verifying-your-model-in-adapa-did-it-upload-correctly
http://dmg.org
https://www.amazon.com/PMML-Action-2nd-Unleashing-Predictive/dp/1470003244/
https://www.amazon.com/PMML-Action-2nd-Unleashing-Predictive/dp/1470003244/
https://support.zementis.com/entries/21194393-Formatting-your-data-file-for-batch-scoring-in-ADAPA
https://support.zementis.com/entries/21194393-Formatting-your-data-file-for-batch-scoring-in-ADAPA

Page 12

2.4. Model Metrics

The Model Metrics feature describes Memory Metrics and Prediction Metrics for the selected model.

Clicking on the model name from the Zementis Console displays a pop-up window with model metrics for the re-

spective model. Memory metrics information of a model is displayed only if the Zementis Java Agent is configured

and the Prediction Metrics information will be displayed only when the scoring is applied at least once. Please refer

to the Deployment Guide for configuring the Zementis Java Agent.

Memory Metrics provides the information about the memory footprint of the model on the server and its related

attributes like used memory, free memory and total memory of the application. The same information is represented

as a vertical Bar Chart.

Prediction Metrics provides a scoring result summary for the models. Prediction Metrics of a classification model

displays the predicted categories and its respective counts as a Pie Chart. Prediction Metrics of a regression model

displays the Five Point Summary of predicted values i.e., Minimum, FirstQuartile, Median, ThirdQuartile and Max-

imum values as a Box Plot.

With the fresh deployment of Zementis Server the Prediction Metrics is empty and it will be displayed only if scoring

is applied. Prediction Metrics of a model will be reset when the model is deleted, deactivated or if the server is

restarted. Also the Prediction Metrics information that shows up is always the cumulative result with the past scoring

of the model.

Note

Currently the Prediction Metrics feature is supported only for classification and regression models. Please

refer to the Deployment Guide for configuring Model Metrics.

Page 13

Figure 2.4. Memory Metrics and Prediction Metrics of Classification Model

Figure 2.5. Memory Metrics and Prediction Metrics of Regression Model

2.5. Other Data Sources

Zementis Server also supports applying predictive models to a wide variety of data sources, such as images, audio

files, videos, binary feeds or even text files as input data. In Zementis Server, with binary input definition and proper

Page 14

custom functions which convert unstructured data into structured data, the data type of the input source in the

deployed model could be in any format for analytics process. Details on how to apply models to binary data source

can be found in Section 3.4.

Page 15

Chapter 3. Custom Resources

Predictive models may require external resources such as custom functions, look-up tables or training data tables.

Files containing such resources can be uploaded in Zementis Server using the Zementis Console. Note, such

resources should be uploaded before any models that depend on them. Also, deleting a resource file will remove all

the resources contained in it from Zementis Server. In this case, first the model that is dependent on the resource

should be deleted.

3.1. Custom PMML Functions

Zementis Server provides a facility to create and use custom PMML functions. This capability enables, for example,

the implementation of intricate calculations that cannot be easily described in PMML, functions that access external

systems to retrieve necessary data, or even specialized algorithms not supported by PMML. One class of functions

that can be easily implemented using custom functions which are aggregations over a period of time or window of

transactions. Aggregations are used to obtain, for example, the count, average, maximum and minimum for a set of

records. One example is to use custom functions to obtain the average transaction amount for a certain account for

the last 30 days. The predictive model ECommerceFraud_NN.pmml, provided as part of the sample models, uses

several custom functions to compute the average transaction amount as well as the transaction velocity for a period

of time. This model is described in Table 2.1

Zementis Server currently supports custom functions written in Java. Once created and made available to Zementis

Server, custom functions are used the same way as the built-in ones. The steps to achieve this are explained in

the following sections.

3.1.1. Create Custom PMML Functions

Custom functions are implemented as static methods of Java classes. For a method to be recognized as a custom

PMML function, the containing class needs to be annotated with the Zementis Server specific @PMMLFunctions

annotation. In addition, the types of the method parameters as well as its return type must be compatible with the

PMML data types. An example of such a function is shown in Figure 3.1.

Page 16

Figure 3.1. Custom PMML Function Example

package com.company.udf;

import com.zementis.stereotype.PMMLFunctions;

@PMMLFunctions(namespace = "company")
class CustomFunctions {

 public static Long factorial(Long n) {
 if (n == null) {
 return null;
 } else if (n < 0) {
 throw new IllegalArgumentException();
 } else if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
 }

}

In this example, the class RecursiveFunctions has been annotated with the @PMMLFunctions annotation. This

annotation informs Zementis Server that the class contains methods which may be used as PMML functions. The

parameter namespace defines a namespace for the functions defined in this class. Namespaces prevent conflicts

between function names. Within PMML, the namespace is used as a prefix for the name of the custom function.

For example, the PMML name of the function implemented by the Java method factorial in Figure 3.1 would

be company:factorial.

The namespace does not have to be unique for each class. Multiple classes may specify the same namespace. This

would allow, for example, creating the notion of a function library where functions spread across multiple class files

are grouped under one namespace. In this scenario, extra care needs to be taken so that there are no ambiguities

between function names located in different classes.

Within each annotated class, only methods that are declared as public and static can be used as PMML

functions. In addition, a method should accept parameters and return values compatible with the PMML data types.

Table 3.1 provides the Java primitive types and classes that correspond to the different PMML data types.

Table 3.1. PMML and Java types in Zementis Server

PMML Data Type Java Primitive Type Java Class

boolean boolean java.lang.Boolean

date org.joda.time.LocalDate

dateTime org.joda.time.DateTime

double double java.lang.Double

Page 17

PMML Data Type Java Primitive Type Java Class

float float java.lang.Float

integer long java.lang.Long

string java.lang.String

time org.joda.time.LocalTime

binary java.io.InputStream

binary (buffered) byte[] byte[]

The method return type must be one of the Java types listed in the table. Note that methods declared as void

cannot be used as PMML functions. The types of the parameters must be either among those listed in the ta-

ble or among one of their super-classes or super-interfaces (java.lang.Object, java.lang.Comparable, or

java.lang.Number). Finally, methods can also declare variable number of parameters (varargs).

Important

Make sure these methods are thread-safe as Zementis Server may need to execute these methods con-

currently in different threads.

Caution

The custom functions are packaged into a JAR file and loaded dynamically at runtime. This could result in

serious security risks which can lead to system compromise. Even though uploading the custom function

JARs require Administrative privileges (adapa-admin role), it is highly recommended that users upload

only trusted JARs.

3.1.2. Use Custom PMML Functions

To make custom functions available to Zementis Server, compile the corresponding classes into a JAR file and

upload it using the Zementis Console. To compile a class using the @PMMLFunctions annotation, include the

adapa-api-10.7.0.2.jar file in the classpath. This file is included in the Zementis Server distribution package

as well as the provided package of sample files.

Once deployed, custom functions can be used exactly like the built-in functions within Apply transformations. Please

make sure you use the fully qualified name of the custom function, i.e. prefix the function name with the appropri-

ate namespace. The PMML fragment in Figure 3.2 contains a simple example that uses the function defined in

Figure 3.1.

Page 18

Figure 3.2. Example Using a Custom Function in PMML

<DerivedField name="field2" optype="continuous" dataType="integer">
 <Apply function="company:factorial">
 <FieldRef field="field1"/>
 </Apply>
</DerivedField>

3.1.3. Non-Deterministic Functions

When processing PMML models, Zementis Server performs certain performance optimizations which assume that

functions are deterministic, i.e. when presented with the same input values they always return the same result.

However, this may not be the case for all functions. For example, the result of a function may depend on the current

time and date. Another example might be a call to an external source that retrieves information that is being modified

by other systems.

With Zementis Server, a custom function may be declared as non-deterministic by annotating the corresponding

implementation Java method with the @NonDeterministicFunction annotation. Note that this annotation marks

a method, and not the containing class. This means a class implementing multiple functions may contain a combi-

nation of deterministic and non-deterministic functions.

The following is an example of a non-deterministic function which provides the current time value for a specific a

time zone.

Figure 3.3. Custom PMML Function Example

package com.company.udf;

import com.zementis.stereotype.PMMLFunctions;
import com.zementis.stereotype.NonDeterministicFunction;
import org.joda.time.DateTime;
import org.joda.time.DateTimeZone;

@PMMLFunctions(namespace = "company")
class CustomFunctions {

 @NonDeterministicFunction
 public static DateTime dateTimeAtZome(String timeZone) {
 if (timeZone == null) {
 return null;
 }
 return new DateTime(DateTimeZone.forID(timeZone));
 }

}

Page 19

3.2. External Lookup Tables

Predictive models can sometimes require the use of lookup tables. If relatively small and static, these tables can

be easily embedded within the PMML file itself. However, if they are fairly large and/or they are modified frequently,

it is more practical to create and manage them separately. Zementis Server supports external lookup tables and

their seamless integration with predictive models.

As an example of a simple lookup table, suppose a model makes use of a country's GDP (Gross Domestic Product).

That requires the ability to look up the GDP by country name. Such a simple lookup table is shown in Figure 3.4.

Given an input country, say Taiwan, the row in the lookup table which has Taiwan in its first column maps it to a

GDP of 576.20. Being an example, we show only a few mappings; in reality, we can imagine similar cases with

hundreds and even thousands of mappings.

Figure 3.4. Lookup Table Example

The predictive model ECommerceFraud_NN.pmml, provided as part of the sample models, uses a lookup table to

retrieve the number of points for each US state. This model is described in Table 2.1

3.2.1. Create Lookup Tables in Excel

Zementis Server supports lookup tables implemented in Excel files. In this section, we describe the structure of such

tables. In general, a lookup table has one or more input variables and an output variable. The intended functionality

is that any set input values can be looked up to retrieve the corresponding output value, if one is found. Figure 3.5

shows a slightly expanded version of the previous example. Here, we have two input variables, Country and

State. The output variable is GDP.

Page 20

Figure 3.5. Sample Excel Lookup Table

A single Excel file may contain one or more lookup tables. However, only one lookup table is allowed per work-

sheet. Multiple tables should be arranged in separate worksheets. Within a worksheet, the beginning of a lookup

table is identified by the keyword LookupTable. The name of the table should appear in the cell right next to this

keyword (GDPTable in this example). The definitions of the input and output variables start in the cell right below

the LookupTable keyword. Variables must be listed one per row, with the output variable listed last. For each

variable, provide the usage (input or output), the name and the data type. The variable names must be unique.

The allowed types of data are Integer, Long, Double, Float, Boolean and String, corresponding to the Java

primitive types. In this example, the first row defines an input variable called Country which is of type String. The

next row defines an input variable State, again of type String. Finally, the output variable is called GDP which

is of type Double.

The data area of the lookup table starts right below the output variable definition. In the simple form shown here, this

area consists of one column per variable. The first is the header row, where the name of the corresponding variable

is listed. All the following rows contain combinations of input and output values. Each row represents a mapping from

the input values to the output value. Note that empty cells are allowed. For an input variable, an empty cell represents

any value. For an output variable, an empty cell represents no value (or a null value). A fully empty row, i.e., a

row with empty cells for all the variables marks the end of the table. Anything below a fully empty row is ignored.

Page 21

Duplicate mappings are not allowed. However, with empty cells representing any value, overlapping mappings are

possible (and allowed). To illustrate this, please consider the overlapping mapping in last two rows of the example

in Figure 3.5. The second to last row implies that if the country is USA and the state is CA then the GDP is 557.37.

However, the last row implies that if the country is USA, the GDP is 11750.00 no matter what the state is. In the

presence of overlapping mappings, the tighter mapping, i.e. the mapping with more matching input values, prevails.

In the current example, this means that the a GDP lookup for CA will result in 557.37 and a GDP lookup for any

other state will be 11,750.00

In some cases, it is desirable to arrange some mapping as a cross tab. Such an example is shown in Figure 3.6 where

the probability of child obesity can be looked up by child age and group. The probabilities for all the combinations

of four child groups (Rural Girls, Urban Girls, Rural Boys, and Urban Boys) and six different ages (10 through 15)

are presented.

Figure 3.6. A LookupTable with two inputs and one output

The structure of a cross tab lookup table is similar to the previous one. The only difference is that the values for one

or more of the input variables are listed horizontally above the header of the data area, as opposed to vertically. Note

that not all input variables can be listed horizontally. At least one must be listed vertically. In addition, the header

cell containing the name of the output variable must span all the data columns. Similarly to the previous case, the

boundaries of the lookup table are identified by the first fully empty row and the first fully empty column.

Our sample solution provides a lookup table in the Excel file borrowerStateMappingTable.xls. This table is

used by the demo PMML model for fixed rate loans.

3.2.2. Use Lookup Tables in PMML

In PMML, lookup tables can be used within MapValues transformations and the TableLocator mechanism. In the

following sample PMML snippet, the lookup table ChildObesity is used to retrieve the appropriate child obesity

probability.

Page 22

<LocalTransformations>
 <DerivedField name="obesityProbability" dataType="double" optype="continuous">
 <MapValues outputColumn="Probability" defaultValue="0.5" mapMissingTo="0">
 <FieldColumnPair column="Age" field="childAge" />
 <FieldColumnPair column="Group" field="childGroup" />
 <TableLocator>
 <Extension extender="ADAPA" name="TABLE_NAME" value="ChildObesity" />
 </TableLocator>
 </MapValues>
 </DerivedField>
</LocalTransformations>

The table used in the mapping is identified in the Extension element. The value attribute of this element contains

the name of the lookup table to use. The rest of the structure details what fields of the model (childAge, child-

Group, and childObesity) correspond to what columns (Age, Group, and Probability) of the lookup table.

3.3. External Training Data Tables

Some algorithms (e.g. K Nearest Neighbor) expect a table of training data as part of the model. This table can be

included in the PMML document, or loaded as an external resource in CSV format. The format of the external table

is identical to the one of the test data offered in the samples directory. This file should be in CSV format containing

one record per line (for more information on how to format your CSV file, please refer to the Zementis support

forum). Each record should have values for all the input variables along with the predicted values.

 <TrainingInstances>
 <InstanceFields>
 <InstanceField field="Sepal.Length" column="Sepal.Length"/>
 <InstanceField field="Sepal.Width" column="Sepal.Width"/>
 <InstanceField field="Petal.Length" column="Petal.Length"/>
 <InstanceField field="Petal.Width" column="Petal.Width"/>
 <InstanceField field="Species" column="Species"/>
 </InstanceFields>
 <TableLocator>
 <Extension extender="ADAPA" name="TRAINING_INSTANCES_NAME" value="Iris_KNN.csv" />
 </TableLocator>
 </TrainingInstances>

The table is identified in the Extension element. The value attribute of this element contains the name of the training

data table to use including the file ending. The InstanceFields element details one to one correspondence

between the field of the model and the column of the table.

3.4. Using Binary Data Type

Some predictive models use binary data as input for generating predictions. Zementis Server supports applying

models to binary data by utilizing an external custom function which transforms unstructured data into the format

expected by the model. Given proper binary input definition and appropriate custom function deployed in Zementis

Server, the binary input data can be seamlessly integrated into the prediction process. This section shows how to

https://support.zementis.com/entries/21194393-Formatting-your-data-file-for-batch-scoring-in-ADAPA
https://support.zementis.com/entries/21194393-Formatting-your-data-file-for-batch-scoring-in-ADAPA

Page 23

define a binary input in PMML using DeepNetwork model as an example and how to create the corresponding

custom function that processes the provided binary input data. This sample is also packaged with the distribution:

adapa-app-10.7.0.2.zip/adapa-sampels/resources/custom-functions-deepnetwork.

3.4.1. Using Default binary Type

Figure 3.7 shows an example of how to define binary input type. This can be done by setting the data type as

binary in the <DataField> element. The binary input data, input_image in this case, can be sent to Zemen-

tis Server by providng the contents of the corresponding file. Zementis Server will process the contents of the file

as a single binary input record. It is recommended to provide MIME type in mimeType attribute, for example

mimeType="image/png". Zementis Server will do the data format verification before starting the prediction pro-

cess in order to avoid data type mismatch.

Figure 3.7. Binary DataType Example

<DataDictionary numberOfFields="2">
 <DataField name="input_image" optype="categorical" dataType="binary" mimeType="image/png"/>
 <DataField name="predictions" optype="categorical" dataType="string">
 <Value value="predicted_category_a"/>
 <Value value="predicted_category_b"/>
 <Value value="predicted_category_c"/>
 </DataField>
</DataDictionary>

Here are the steps to create a corresponding custom function:

• Implement a custom function as static method of Java class.

• Annotate it with Zementis Server specific @PMMLFunctions annotation.

• Specify the type of the method parameter as java.io.InputStream.

The custom function shown in Figure 3.8 processes the incoming input_image and returns the Base64 encoded

String representing the pixel values of the image.

Page 24

Figure 3.8. Custom Function of Binary Data Example

package com.zementis.udf;

import java.awt.image.BufferedImage;
import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import javax.imageio.ImageIO;
import org.apache.commons.codec.binary.Base64;
import com.zementis.stereotype.PMMLFunctions;

@PMMLFunctions(namespace = "myCustomFunction")
public class CustomFunctions {
 public static String getBase64String(InputStream inputStream) throws IOException {
 // read image from inputstream
 BufferedImage bufferedImage = ImageIO.read(inputStream);
 float[] array = preprocess(bufferedImage);
 return encodeFloatArrayToBase64String(array);
 }

 private static String encodeFloatArrayToBase64String(float[] array) {
 int float32Length = 4;
 byte[] floatByteArray = new byte[array.length * float32Length];
 for (int i = 0; i < array.length; i++) {
 byte[] thisFloatArray =

 ByteBuffer.allocate(float32Length).order(ByteOrder.LITTLE_ENDIAN).putFloat(array[i]).array();
 for (int j = 0; j < thisFloatArray.length; j++) {
 floatByteArray[float32Length * i + j] = thisFloatArray[j];
 }
 }
 return "data:float32;base64," + new String(Base64.encodeBase64(floatByteArray));
 }

 private static float[] preprocess(BufferedImage bufferedImage) {
 int height = bufferedImage.getHeight();
 int width = bufferedImage.getWidth();
 int channel = 3;
 float[] floatRGBArray = new float[height * width * channel];
 int counter = 0;
 for (int i = 0; i < height; i++) {
 for (int j = 0; j < width; j++) {
 // read
 int pixel = bufferedImage.getRGB(j, i);
 int red = (pixel >> 16) & 0xFF;
 int green = (pixel >> 8) & 0xFF;
 int blue = pixel & 0xFF;

 // pre-process and write
 float r = (red / 127.5f) - 1.0f;
 floatRGBArray[counter++] = r;

 float g = (green / 127.5f) - 1.0f;
 floatRGBArray[counter++] = g;

 float b = (blue / 127.5f) - 1.0f;
 floatRGBArray[counter++] = b;
 }
 }
 return floatRGBArray;
 }
}

Page 25

Once the custom function in Figure 3.8 is compiled and deployed, myCustomFunction:getBase64String can

be used exactly like a built-in function within Apply transformations. The PMML fragment in Figure 3.9 contains a

simple example that uses the function defined in Figure 3.8.

Figure 3.9. Example Using Custom Function of Binary Data in PMML

<DeepNetwork modelName="DeepNetwork Sample" functionName="classification" numberOfLayers="2">
 ...
 <LocalTransformations>
 <DerivedField name="input_base64String" optype="categorical" dataType="string">
 <Apply function="myCustomFunction:getBase64String">
 <FieldRef field="input_image"/>
 </Apply>
 </DerivedField>
 </LocalTransformations>
 <NetworkLayer layerType="Input" layerId="layer_1" connectionLayerId="na"
 inputFieldName="input_base64String">
 <LayerParameters inputDimension="(2, 2, 3)" outputDimension="(2, 2, 3)"/>
 </NetworkLayer>
 ...
</DeepNetwork>

3.4.2. Using Buffered binary Type

Zementis Server provides two ways to manage binary input data. The provided binary data can be processed

either as a java.io.InputStream object or a byte[]. The data types are listed in Table 3.1. By default Zementis

Server processes binary input data as java.io.InputStream. This means the provided input will be read only

once. If binary input data needs to be read more than once, set BINARY_BUFFERED as true in <Extension>

element as shown in PMML fragment in Figure 3.10.

Figure 3.10. Binary (Buffered) DataType Example

<DataDictionary numberOfFields="2">
 <DataField name="input_image" optype="categorical" dataType="binary" mimeType="image/png">
 <Extension extender="ADAPA" name="BINARY_BUFFERED" value="true" />
 </DataField>
 <DataField name="predictions" optype="categorical" dataType="string">
 <Value value="predicted_category_a"/>
 <Value value="predicted_category_b"/>
 <Value value="predicted_category_c"/>
 </DataField>
</DataDictionary>

Here are the steps to create a corresponding custom function:

• Implement a custom function as static method of Java class.

• Annotate it with Zementis Server specific @PMMLFunctions annotation.

• Specify the type of the method parameter as byte[].

Page 26

Figure 3.11. Custom Function of Buffered Binary Data Example

package com.zementis.udf;

import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import javax.imageio.ImageIO;
import com.zementis.stereotype.PMMLFunctions;

@PMMLFunctions(namespace = "myCustomFunction")
public class CustomFunctions {

 public static String getBase64String(byte[] byteArray) {
 BufferedImage bufferedImage = ImageIO.read(new ByteArrayInputStream(byteArray));
 float[] array = preprocess(bufferedImage);
 return encodeFloatArrayToBase64String(array);
 }

 private static float[] preprocess(BufferedImage bufferedImage) {
 ...
 return floatRGBArray;
 }

 private static String encodeFloatArrayToBase64String(float[] array) {
 ...
 return base64encodedString;
 }
}

Once the custom function in Figure 3.11 is compiled and deployed, myCustomFunction:getBase64String can

be used exactly like a built-in function within Apply transformations. The PMML fragment in Figure 3.12 contains

a simple example that uses the function defined in Figure 3.11.

Figure 3.12. Example Using Custom Function of Buffered Binary Data in PMML

<DeepNetwork modelName="DeepNetwork Sample" functionName="classification" numberOfLayers="2">
 ...
 <LocalTransformations>
 <DerivedField name="input_base64String" optype="categorical" dataType="string">
 <Apply function="myCustomFunction:getBase64String">
 <FieldRef field="input_image"/>
 </Apply>
 </DerivedField>
 </LocalTransformations>
 <NetworkLayer layerType="Input" layerId="layer_1" connectionLayerId="na"
 inputFieldName="input_base64String">
 <LayerParameters inputDimension="(2, 2, 3)" outputDimension="(2, 2, 3)"/>
 </NetworkLayer>
 ...
</DeepNetwork>

3.5. Deploy Resources

Custom PMML functions or lookup tables are deployed in Zementis Server by simply uploading them directly in

the Zementis Console.

Page 27

If you have previously uploaded any resource files into Zementis Server, these are shown in the Zementis Console

as a list. Figure 3.13 shows the Zementis Console after the uploading of the lookup table and custom functions (JAR

file) used by predictive model ECommerceFraud_NN.pmml (for more details on this sample mode, see Table 2.1).

Figure 3.13. Resource Files in the Zementis Console

3.5.1. Deleting Resources

When deleting a resource file which is a downstream dependency of one of the models from the models list, you must

first delete the model and then delete the resource. Figure 3.14 shows the Zementis Console when an exception

is thrown.

Figure 3.14. Resource dependency exception in the Zementis Console

Page 28

3.6. Supporting Python scripts in PMML

Zementis Server currently supports custom functions written in Java. Once created and made available to Zementis

Server, custom functions are used the same way as the built-in ones. As an alternative, the same functionality can

also be achieved by embedding python scripts in PMML. This approach eliminates the dependency on external

resources by capturing the pre-processing transformation steps as python code embedded within the PMML file.

3.6.1. Define a Function with python script in PMML

Custom functions can be defined as a python script in PMML. For a Python script to be identified as a custom

function script by zementis, it has to be defined as an Extension within the Apply element of DefineFunction

element. An example of such a script is shown in Figure 3.16

The name attribute of the Apply element needs to be defined as python and the script has to be enclosed within

the Extension element of Apply element by defining the Extension attributes appropriately.

Python script can be represented in clear text with proper indentation as shown in Figure 3.16 . It can also be

represented in Base64 encoded text as shown in Figure 3.17 to avoid whitespace issues.

The python script has to be defined in the form of a python function by accepting required input as function param-

eters.

The function parameters are passed as string data types from zementis and they have to be converted into their

respective python data types using python built-in functions. An example of type conversion is shown in Figure 3.15.

Please refer Table 3.2 for the data type mapping.

Figure 3.15. Data Type Conversion Example

<DefineFunction name="customFunc" optype="continuous" dataType="double">
 <ParameterField name="transactionAmount" dataType="double" />
 <Apply function="python">
 <Extension extender="ADAPA" name="avgPerDay" value="double">
 def avgPerDay(transactionAmount):
 amount=float(transactionAmount)/30;
 return amount;
 </Extension>
 <FieldRef field="transactionAmount" />
 </Apply>
</DefineFunction>

Table 3.2. Data Type Mapping

PMML Type Python Type

integer integer Example:int(paramValue)

Page 29

PMML Type Python Type

float, double float Example:float(paramValue)

string, binary No conversion is required.

Note
The python script can be auto-generated into the PMML using Nyoka PMML exporter API. Please refer to

Nyoka for details.

Table 3.3. Purpose of each attribute in Extension element

Attribute Name Usage

extender Value of this attribute should be ADAPA.

name The value of this attribute should be as

same as the script function name. Refer

Figure 3.16, getBase64EnocdedString is the

main function and the same name is provided

for the name attribute.

value The value of this attribute is the return

data type value from the script function.

For example: string or integer or float or

double.

https://github.com/nyoka-pmml/nyoka/

Page 30

Figure 3.16. Custom Python Script Example

<DefineFunction name="pythonCustomFunc" optype="categorical" dataType="string">
 <ParameterField name="image" dataType="binary"/>
 <Apply function="python">
 <Extension extender="ADAPA" name="getBase64EncodedString" value="string">
def from_floatArray(floatArray, nlPos = 0):
 if sys.version_info >= (3,0):
 if nlPos > 0:
 result = ""
 nl = nlPos
 fArray = array('f')
 for i in range(0, len(floatArray)):
 fArray.append(floatArray[i])
 nl -= 1
 if le(n1,0):
 result += str(base64.standard_b64encode(fArray), 'utf-8') + "\n"
 nl = nlPos
 fArray = array('f')
 result += str(base64.standard_b64encode(fArray), 'utf-8')
 return result
 else:
 result = ""
 fArray = array('f')
 for i in range(0, len(floatArray)):
 fArray.append(floatArray[i])
 result += str(base64.standard_b64encode(fArray), 'utf-8')
 return result
 else:
 if nlPos > 0:
 result = ""
 nl = nlPos
 fArray = array('f')
 for i in range(0, len(floatArray)):
 fArray.append(floatArray[i])
 nl -= 1
 if le(n1,0):
 result += base64.standard_b64encode(fArray) + "\n"
 nl = nlPos
 fArray = array('f')
 result += base64.standard_b64encode(fArray)
 return result
 else:
 result = ""
 fArray = array('f')
 for i in range(0, len(floatArray)):
 fArray.append(floatArray[i])
 result += base64.standard_b64encode(fArray)
 return result
def getBase64EncodedString(input):
 from PIL import Image
 with Image.open(input) as img:
 width, height = img.size
 pix=img.load()
 x=list(img.getdata())
 pixels = list()
 for t in x:
 R,G,B=t
 for pix in [R, G, B]:
 pixels.append(pix / 127.5 - 1.0)

 myarray = np.asarray(pixels)
 return from_floatArray(myarray)
 </Extension>
 <FieldRef field="image"/>
 </Apply>
</DefineFunction>

Page 31

Figure 3.17. Custom Python Script in Base64 Encoded Format

<DefineFunction name="customFunc" optype="categorical" dataType="string">
 <ParameterField name="image" dataType="binary"/>
 <Apply function="python">
 <Extension extender="ADAPA" name="getBase64EncodedString" value="string">
 ZGVmIGZyb21fZmxvYXRBcnJheShmbG9hdEFycmF5LCBubFBvcyA9IDApOg0KICAgICIiImNvbnZlcnRzIHRoZSBmbG9
 dEFycmF5IGludG8gYSBiYXNlNjQgc3RyaW5nOyBubFBvczogaW5zZXJ0cyBcbiBhZnRlciBubFBvcyBmbG9hdHMgaWYg
 Z2l2ZW4gIiIiDQogICAgaW1wb3J0IHN5cw0KICAgIGZyb20gYXJyYXkgaW1wb3J0IGFycmF5DQogICAgaW1wb3J0IGJh
 c2U2NA0KICAgIGlmIHN5cy52ZXJzaW9uX2luZm8gPj0gKDMsMCk6DQogICAgICAgIGlmIG5sUG9zID4gMDoNCiAgICAg
 ICAgICAgIHJlc3VsdCA9ICIiDQogICAgICAgICAgICBubCA9IG5sUG9zDQogICAgICAgICAgICBmQXJyYXkgPSBhcnJh
 eSgnZicpDQogICAgICAgICAgICBmb3IgaSBpbiByYW5nZSgwLCBsZW4oZmxvYXRBcnJheSkpOg0KICAgICAgICAgICAg
 ICAgIGZBcnJheS5hcHBlbmQoZmxvYXRBcnJheVtpXSkNCiAgICAgICAgICAgICAgICBubCAtPSAxDQogICAgICAgICAg
 ICAgICAgaWYgbGUobjEsMCk6DQogICAgICAgICAgICAgICAgICAgIHJlc3VsdCArPSBzdHIoYmFzZTY0LnN0YW5kYXJk
 X2I2NGVuY29kZShmQXJyYXkpLCAndXRmLTgnKSArICJcbiINCiAgICAgICAgICAgICAgICAgICAgbmwgPSBubFBvcw0K
 ICAgICAgICAgICAgICAgICAgICBmQXJyYXkgPSBhcnJheSgnZicpDQogICAgICAgICAgICByZXN1bHQgKz0gc3RyKGJh
 c2U2NC5zdGFuZGFyZF9iNjRlbmNvZGUoZkFycmF5KSwgJ3V0Zi04JykNCiAgICAgICAgICAgIHJldHVybiByZXN1bHQN
 CiAgICAgICAgZWxzZToNCiAgICAgICAgICAgIHJlc3VsdCA9ICIiDQogICAgICAgICAgICBmQXJyYXkgPSBhcnJheSgn
 ZicpDQogICAgICAgICAgICBmb3IgaSBpbiByYW5nZSgwLCBsZW4oZmxvYXRBcnJheSkpOg0KICAgICAgICAgICAgICAg
 IGZBcnJheS5hcHBlbmQoZmxvYXRBcnJheVtpXSkNCiAgICAgICAgICAgIHJlc3VsdCArPSBzdHIoYmFzZTY0LnN0YW5k
 YXJkX2I2NGVuY29kZShmQXJyYXkpLCAndXRmLTgnKQ0KICAgICAgICAgICAgcmV0dXJuIHJlc3VsdA0KICAgIGVsc2U6
 DQogICAgICAgIGlmIG5sUG9zID4gMDoNCiAgICAgICAgICAgIHJlc3VsdCA9ICIiDQogICAgICAgICAgICBubCA9IG5s
 UG9zDQogICAgICAgICAgICBmQXJyYXkgPSBhcnJheSgnZicpDQogICAgICAgICAgICBmb3IgaSBpbiByYW5nZSgwLCBs
 ZW4oZmxvYXRBcnJheSkpOg0KICAgICAgICAgICAgICAgIGZBcnJheS5hcHBlbmQoZmxvYXRBcnJheVtpXSkNCiAgICAg
 ICAgICAgICAgICBubCAtPSAxDQogICAgICAgICAgICAgICAgaWYgbGUobjEsMCk6DQogICAgICAgICAgICAgICAgICAg
 IHJlc3VsdCArPSBiYXNlNjQuc3RhbmRhcmRfYjY0ZW5jb2RlKGZBcnJheSkgKyAiXG4iDQogICAgICAgICAgICAgICAg
 ICAgIG5sID0gbmxQb3MNCiAgICAgICAgICAgICAgICAgICAgZkFycmF5ID0gYXJyYXkoJ2YnKQ0KICAgICAgICAgICAg
 cmVzdWx0ICs9IGJhc2U2NC5zdGFuZGFyZF9iNjRlbmNvZGUoZkFycmF5KQ0KICAgICAgICAgICAgcmV0dXJuIHJlc3Vs
 dA0KICAgICAgICBlbHNlOg0KICAgICAgICAgICAgcmVzdWx0ID0gIiINCiAgICAgICAgICAgIGZBcnJheSA9IGFycmF5
 KCdmJykNCiAgICAgICAgICAgIGZvciBpIGluIHJhbmdlKDAsIGxlbihmbG9hdEFycmF5KSk6DQogICAgICAgICAgICAg
 ICAgZkFycmF5LmFwcGVuZChmbG9hdEFycmF5W2ldKQ0KICAgICAgICAgICAgcmVzdWx0ICs9IGJhc2U2NC5zdGFuZGFy
 ZF9iNjRlbmNvZGUoZkFycmF5KQ0KICAgIHJldHVybiByZXN1bHQNCmRlZiBnZXRCYXNlNjRFbmNvZGVkU3RyaW5nKGlu
 cHV0KToNCiAgICBpbXBvcnQgc3lzDQogICAgaW1wb3J0IGFycmF5IGFzIGFycg0KICAgIGltcG9ydCBzdHJ1Y3QNCiAg
 ICBpbXBvcnQgYmFzZTY0DQogICAgZnJvbSBQSUwgaW1wb3J0IEltYWdlDQogICAgaW1wb3J0IG51bXB5IGFzIG5wDQog
 ICAgd2l0aCBJbWFnZS5vcGVuKGlucHV0KSBhcyBpbWc6DQogICAgICAgIHdpZHRoLCBoZWlnaHQgPSBpbWcuc2l6ZQ0K
 ICAgICAgICBwaXg9aW1nLmxvYWQoKQ0KICAgICAgICB4PWxpc3QoaW1nLmdldGRhdGEoKSkNCiAgICBwaXhlbHMgPSBs
 aXN0KCkNCiAgICBmb3IgdCBpbiB4Og0KICAgICAgICBSLEcsQj10DQogICAgICAgIGZvciBwaXggaW4gW1IsIEcsIEJd
 Og0KICAgICAgICAgICAgcGl4ZWxzLmFwcGVuZChwaXggLyAxMjcuNSAtIDEuMCkNCiAgICAgICAgDQogICAgbXlhcnJh
 eSA9IG5wLmFzYXJyYXkocGl4ZWxzKQ0KICAgIHJldHVybiBmcm9tX2Zsb2F0QXJyYXkobXlhcnJheSk=
 </Extension>
 <FieldRef field="image"/>
 </Apply>
</DefineFunction>

3.6.2. Use python script function from PMML

Once the python script is defined as in Figure 3.16, it can be used within the Apply transformations. The PMML

fragment in Figure 3.18 contains an example that uses the python function described in Figure 3.16

Page 32

Figure 3.18. Using python script function in PMML

<DeepNetwork modelName="DeepNetwork Sample" functionName="classification" numberOfLayers="2">
 ...
 <LocalTransformations>
 <DerivedField name="input_base64String" optype="categorical" dataType="string">
 <Apply function="pythonCustomFunc">
 <FieldRef field="input_image"/>
 </Apply>
 </DerivedField>
 </LocalTransformations>
 <NetworkLayer layerType="Input" layerId="layer_1" connectionLayerId="na"
 inputFieldName="input_base64String">
 <LayerParameters inputDimension="(2, 2, 3)" outputDimension="(2, 2, 3)"/>
 </NetworkLayer>
 ...
</DeepNetwork>

Important

This feature can be supported only if the host system contains python installation. Please refer Section 4.5

in the Deployment Guide for configuring python support in PMML.

Caution

The embedded Python scripts in PMML are loaded and executed dynamically at runtime. This could result

in serious security risks which can lead to system compromise. It is highly recommended that users upload

such PMML files from a trusted source like Nyoka.

https://github.com/nyoka-pmml/nyoka/

Page 33

Chapter 4. Extensions API

Zementis Server has been designed to easily support customizations and/or extensions needed to meet the re-

quirements imposed by the target environment. Using the popular Spring Framework, it allows injecting external re-

sources either as configuration modifications or as extensions. This means that Zementis Server can be customized

by providing an appropriate Spring context file along with the necessary custom implementations and required li-

braries. In the following sections, the Zementis Server Java Extensions API is described, which can be implemented

to provide custom resources (Custom Functions and Lookup Tables), custom asset repository and a custom logging

store for Zementis Server.

4.1. Using the Zementis Server Extensions API

Using Zementis Server Extensions API, you can provide a custom implementation for the following:

• Custom Function

• Lookup Table

• Asset Repository

• Logging Store

The following sections will describe each of these items in detail. Section 4.2 will provide details about how the

Extensions API and sample implementations are packaged with the adapa-app-10.7.0.2.zip distribution.

4.1.1. Custom Function

Zementis Server provides a facility to create and use custom PMML functions. This capability enables, for example,

the implementation of intricate calculations that cannot be easily described in PMML, functions that access external

systems to retrieve necessary data, or even specialized algorithms not supported by PMML.

The Function<T> interface represents a custom function which can be called from PMML. This function can

be referenced by the name returned by the getName() method and it operates on the arguments provided in

the evaluate(Object...) method. It returns a value of the specified type T. A sample implementation of this

interface is contained in CalcSomething.java which demonstrates a custom function that can operate on several

(at least 2) numeric arguments and returns a value of type Double.

The Function.Factory interface provides a factory method for creating Function instances with the method

createFunction(String functionName, Class<?> ... argumentTypes). The Function.getName()

http://www.springframework.org/

Page 34

method must match parameter functionName and Function.evaluate(Object...) must be able

to operate on parameter argumentTypes. A sample implementation of this interface is contained in

CalcSomethingFactory.java which creates functions that can operate over a variable number (but at least

two) of numeric arguments.

Please add the following dependencies as listed under Figure 4.1 when packaging the project as a JAR. Make sure

${project.version} resolves to 10.7.0.2.

Figure 4.1. Dependencies for Custom Functions

<dependencies>
 <dependency>
 <groupId>com.zementis.adapa</groupId>
 <artifactId>adapa-extensions</artifactId>
 <version>${project.version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.zementis.adapa</groupId>
 <artifactId>adapa-api</artifactId>
 <version>${project.version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.zementis.adapa</groupId>
 <artifactId>adapa-bundle</artifactId>
 <version>${project.version}</version>
 </dependency>
</dependencies>

4.1.2. Lookup Table

Predictive models can sometimes require the use of lookup tables. If relatively small and static, these tables can be

easily embedded within the PMML file itself. However, if they are fairly large and/or they are modified frequently, it

is more practical to create and manage them separately.

The LookupTable interface represents a lookup table that can be called from PMML. This lookup table can be

referenced by the name returned by the getName() method. The lookup table implementation can be used to

retrieve an output value identified by column name with getOutputColumnName(). This can be done by looking

up provided input values which are identified by column names with getInputColumnNames(). The order of input

values for the lookup(Object...) method must match the order of column names returned by the getInput-

ColumnNames() method. A sample implementation of this interface is contained in GDPLookupTable.java which

returns a GDP number corresponding to two inputs, Country and State by querying a database table.

Please add the following dependencies as listed under Figure 4.2 when packaging the project as a JAR. Make sure

${project.version} resolves to 10.7.0.2.

Page 35

Figure 4.2. Dependencies for Lookup Table

<dependencies>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.6</version>
 </dependency>
 <dependency>
 <groupId>com.zementis.adapa</groupId>
 <artifactId>adapa-extensions</artifactId>
 <version>${project.version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.zementis.adapa</groupId>
 <artifactId>adapa-api</artifactId>
 <version>${project.version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.zementis.adapa</groupId>
 <artifactId>adapa-bundle</artifactId>
 <version>${project.version}</version>
 </dependency>
</dependencies>

4.1.3. Asset Repository

The AssetRepository interface provides methods for managing Zementis Server assets on a back-end storage.

By default, Zementis Server uses a file-based repository to store the uploaded artifacts (models and resources).

Zementis Server also provides support for a database-based repository by using the Java Persistence API (JPA)

in conjunction with using Hibernate as the JPA provider. A traditional Database can be plugged-in as a repository

store for Zementis Server by providing an appropriate configuration file.

On top of this, Zementis Server also allows users to provide a custom back-end store (e.g. MongoDB) by imple-

menting this interface. A sample implementation is contained in MongoAssetRepository.java. As shown in

the sample implementation, the addAsset(Serializable, InputStream) method requires assignment of a

unique identifier to the provided Zementis Server asset. The choice of unique identifier is left to the implementor.

The implementation of this interface needs to be in the classpath of Zementis Server library along with any required

JDBC drivers.

Please add the following dependencies as listed under Figure 4.3 when packaging the project as a JAR. Make sure

${project.version} resolves to 10.7.0.2.

http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
http://www.hibernate.org/
http://www.mongodb.com/

Page 36

Figure 4.3. Dependencies for Asset Repository

<dependencies>
 <dependency>
 <groupId>org.mongodb</groupId>
 <artifactId>mongodb-driver</artifactId>
 <version>3.3.0</version>
 </dependency>
 <dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <version>2.5</version>
 </dependency>
 <dependency>
 <groupId>commons-lang</groupId>
 <artifactId>commons-lang</artifactId>
 <version>2.6</version>
 </dependency>
 <dependency>
 <groupId>com.zementis.adapa</groupId>
 <artifactId>adapa-extensions</artifactId>
 <version>${project.version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.zementis.adapa</groupId>
 <artifactId>adapa-api</artifactId>
 <version>${project.version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.zementis.adapa</groupId>
 <artifactId>adapa-bundle</artifactId>
 <version>${project.version}</version>
 </dependency>
</dependencies>

4.1.4. Logging Store

Information about records processed by Zementis Server can be logged in a file system or database. The captured

data includes input and output values as well as information regarding invalid and missing values presented to the

model for execution. The logging mechanism can be enabled and configured for file-based or database store by

providing an appropriate Spring configuration file as described in the Zementis Server Deployment Guide.

On top of this, Zementis Server also allows users to provide a custom logging store by implementing the Model-

LogHandler interface. This interface represents a handler for logging records that a model processes. This inter-

face can be implemented to log entire records, invalid values and missing values. A sample implementation of this

interface is contained in FileLogHandler.java. This implementation logs every record to a file as soon as the

record is processed. The implementation also logs a counter for missing and invalid values for a given field. The

logging of missing and invalid values is done when method flush() is invoked.

Page 37

Note

The implementor is responsible for the invocation of flush() and for ensuring the thread safety of any

state which is maintained before flush() is invoked. The code samples are for illustration purposes only.

The ModelLogHandler.Factory interface provides a factory method for creating ModelLogHandler instances.

A sample implementation of this interface is contained in FileLogHandlerFactory.java.

Please add the following dependencies as listed under Figure 4.4 when packaging the project as a JAR. Make sure

${project.version} resolves to 10.7.0.2.

Figure 4.4. Dependencies for Logging Repository

<dependencies>
 <dependency>
 <groupId>com.zementis.adapa</groupId>
 <artifactId>adapa-extensions</artifactId>
 <version>${project.version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.zementis.adapa</groupId>
 <artifactId>adapa-api</artifactId>
 <version>${project.version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.zementis.adapa</groupId>
 <artifactId>adapa-bundle</artifactId>
 <version>${project.version}</version>
 </dependency>
</dependencies>

4.2. Overview of code examples

The files under directory adapa-extensions/samples offer Java code examples for each use case. Table 4.1

describes all the sample files in detail.

Table 4.1. Directory structure of code examples

Directory Files Description

customfunction applicationContext.xml The application context XML file to be included.

CalcSomething.java The CalcSomething function calculates something over

several numeric arguments. In order to support Double,

Float, and Long arguments, it uses reflection to enable in-

vocation of the appropriate "doubleValue" method at run-

time.

Page 38

Directory Files Description

CalcSomethingFactory.java Example of a custom function factory which creates func-

tions that can compute something over a variable num-

ber (but at least two) of numeric arguments.

loghandler applicationContext.xml The application context XML file to be included.

FileLogHandler.java Contains methods for custom record logging.

FileLogHandlerFactory.java Factory for custom record logging.

lookuptable applicationContext.xml The application context XML file to be included.

GDPLookupTable.java The lookup table returns a GDP number corresponding to

Country and State. Country, State and GDP are columns

in the database table GDP_Table.

repository applicationContext.xml The application context XML file to be included.

MongoAssetRepository.java A sample AssetRepository for MongoDB.

4.3. Deployment of Zementis Server Extensions

Once the new Zementis Server extension is created, the Java code needs to be packaged as a JAR together with all

depending libraries. Once the JAR file is created, copy it in the directory ADAPA_HOME/adapa-lib. This directory

must also contain adapa-extensions-10.7.0.2.jar file. The new code can then be integrated into Zementis

Server by using a Spring configuration file as described in the respective applicationContext.xml. This context

file needs to be copied to the working directory of the server. One or more context files may be used. In case there are

multiple context files, rename them as per the extension it configures (For example, adapaContextLogging.xml or

adapaContextRepository.xml). For configuration purposes and upon start-up, Zementis Server will examine any files

in the server's working directory following the name pattern adapaContext*.xml. Please note that configuration

changes through context files require a server restart before they can take effect.

Page 39

Chapter 5. REST API

This Application Programming Interface (API) provides users with a comprehensive set of defined interfaces to inter-

act with Zementis Server using Representational State Transfer (REST) over Hypertext Transfer Protocol (HTTP).

Zementis REST API allows users to perform operations on models and custom resources, and process data by

issuing a simple request using any HTTP client such as a web browser.

5.1. General Notes

5.1.1. URI

A full path to the Zementis REST API resource consists of a base path and a resource path. The base path Uni-

form Resource Identifier (URI) for the Zementis REST API is http://domain:port/adapars, where http or

https is the protocol name, domain is the internet domain or network address, port is a non-negative integer

representing the port number, and adapars represents the application context path. The base path is static and

does not change between requests; it merely identifies the server with an application on the network. Connecting

with your favorite web browser to the base path URI will load Zementis REST interactive API documentation that

describes all available resources, enables request execution and displays received responses from the Zementis

REST service. See Figure 5.1.

Page 40

Figure 5.1. Interactive REST API Documentation

Following the base path is the resource path. It may contain path or query parameters depending on the type of

the request and available resources on the server. For example, a resource path /model/Iris_NN/source?

annotated=true contains static path definitions such as model or source, path parameter Iris_NN for a dy-

namically allocated resource, and a query parameter annotated=true.

Page 41

5.1.2. Request

The HTTP request is a combination of a simple Uniform Resource Identifier (URI), HTTP verb GET, POST, PUT, or

DELETE, request parameters, which can be in the form of a path variable, query, body, or header parameters, and

message body (content). The path variable is a variable part of otherwise static URI that denotes a set of possi-

ble resource names on the server and is denoted with curly braces. For example, our /model/{model_name}/

source resource path specifies the PMML file for an arbitrary model denoted as {model_name}. Thus, the request

path for the PMML file of model Iris_NN should be constructed as /model/Iris_NN/source. Query parameters

are appended to the URI with a question mark followed by a list of key/value pairs. A query variable annotated

with the value true in the /model/Iris_NN?annotated=true resource path specifies that the returned PMML

file should contain annotations as placed by Zementis Server, in case of errors or warnings. Header parameters are

HTTP message metadata in the form of key/value pairs containing information about the message such as content

type, message encoding type, authorization, etc. Body parameters appear only in POST or PUT requests and need

to be encoded by the HTTP client.

Please, refer to HTTP 1.1 specification for details.

5.1.3. Response

The HTTP response message is composed of a message header and a message body. All Zementis REST response

content types implement standard UTF-8 character set encoding. The header contains response status code and

header fields represented as list of key/value pairs, i.e. Content-Type:application/json.

Every response from Zementis REST contains a Content-Type header entry with one of following internet media

types (aka MIME) as value.

• application/json

• application/xml

• text/plain

• application/zip

5.1.4. Errors

Zementis REST maps error responses to appropriate HTTP status codes and returns a Javascript Object Notation

(JSON) Errors object in the response body containing an array of error messages. For example, if the requested

model, e.g. Iris_NN, has not been uploaded into Zementis Server yet, a response header with status code 404

and its following response body with Errors are returned.

http://www.w3.org/Protocols/rfc2616/rfc2616.html

Page 42

Example 5.1. Zementis REST Error Response

Request

 curl -u adapa:adapa -k https://localhost/adapars/model/Iris_NN

Request Header

 GET /adapars/model/Iris_NN HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 404 Not Found
 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 16:00:00 PST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/json
 Content-Length: 49
 Date: Thu, 27 Mar 2014 20:22:14 GMT

Response Body

 {
 "errors" : ["Model 'Iris_NN' not found."]
 }

Table 5.1. Typical Zementis REST Error Responses

Code Error Message

400 Empty input stream.

400 File name missing.

400 Invalid XML format.

400 Failed to parse JSON input.

400 Invalid CSV File.

401 This request requires HTTP authentication.

403 You are not authorized to access this resource.

404 Model 'model_name' not found.

404 Resource 'file_name' not found.

409 A model with the name 'model_name' already exists.

409 A resource file with the name 'file_name' already exists.

Page 43

Code Error Message

409 A resource with the name 'resource_name' already ex-

ists.

500 Invalid License.

500 Internal server error.

5.1.5. Authorization

All requests are authorized by the basic access authentication method. For example, HTTP header entry Autho-

rization: Basic YWRhcGE6YWRhcGE= is created for credentials with user name and password adapa. If

the provided credentials fail to authenticate, the HTTP 401 response code is returned, and 403 if the user is not

authorized to perform the requested operation. The below table lists the authorized role(s) for each operation, and

the detailed description of each operation can be found in the following sections.

Table 5.2. Zementis REST Permissions

Operation Definition Authorized Role(s)

List Available Models GET /models adapa-admin, adapa-ws-user

Get Model Information GET /model/{model_name} adapa-admin, adapa-ws-user

Get Model Source GET /model/{model_name}/source adapa-admin

Get Model Serialized Source GET /model/{model_name}/serial-

ized

adapa-admin

Get Model Metrics Information GET /model/{model_name}/metrics adapa-admin, adapa-ws-user

Upload New Model with POST POST /model adapa-admin

Upload New Model with PUT PUT /model adapa-admin

Activate an existing Model with PUT PUT /model/{model_name}/activate adapa-admin

Deactivate an existing Model with

PUT

PUT /model/{model_name}/deacti-

vate

adapa-admin

Remove Model DELETE /model/{model_name} adapa-admin

Remove All Models DELETE /models adapa-admin

Apply Model to Single Record GET /apply/{model_name} adapa-admin, adapa-ws-user

Apply Model to Single Record and

Explain Result

GET /apply/{model_name}/explain adapa-admin, adapa-ws-user

Page 44

Operation Definition Authorized Role(s)

Apply Model to Multiple Records or

Apply Model to Single Binary Data

POST /apply/{model_name} adapa-admin, adapa-ws-user

Apply Model to Multiple Records or

Apply Model to Single Binary Data

with PUT

PUT /apply/{model_name} adapa-admin, adapa-ws-user

Asynchronously Apply Model to Mul-

tiple Records

POST /apply/{model_name}/async adapa-admin, adapa-ws-user

Asynchronously Apply Model to Mul-

tiple Records with PUT

PUT /apply/{model_name}/async adapa-admin, adapa-ws-user

List Available Resources GET /resources adapa-admin, adapa-ws-user

Get Resource Information GET /resource/{file_name} adapa-admin, adapa-ws-user

Get Resource File GET /resource/{file_name}/source adapa-admin

Upload New Resource File with

POST

POST /resource adapa-admin

Upload New Resource File with PUT PUT /resource adapa-admin

Remove Resource File DELETE /resource/{file_name} adapa-admin

Remove All Resource Files DELETE /resources adapa-admin

Get License GET /license adapa-admin

Post License POST /license adapa-admin

5.2. API

Zementis REST has three APIs denoted by static path identifiers: models, apply, and resources. Requests in

the following examples employ syntax for cURL, a popular command line data transfer tool for Unix-like systems,

and use username/password credentials adapa/adapa with user permissions to execute all REST API operations.

All examples also include Iris_NN PMML model which can be found in the executable samples package.

5.2.1. JSON Objects

Errors Error messages container

Properties

Page 45

errors (array[string]): array of strings containing error messages

Example 5.2. Zementis REST Errors Object

{
 "errors": [
 "Model 'Iris_NN' not found."
]
}

Models Model names container

Properties

models (array[string]): array of strings containing model names

Example 5.3. Zementis REST Models Object

{
 "models": [
 "Iris_NN",
 "Iris_CT",
 "Iris_MLR"
]
}

ModelInfo Model information

Properties

modelName (string): model name

description (string): model description

isActive (boolean): model currently loaded into memory

inputFields (array[Field]): array of input Field objects

outputFields (array[Field]): array of output Field objects

Page 46

Example 5.4. Zementis REST ModelInfo Object

{
 "modelName": "Iris_NN",
 "description": "Neural Network for multi-class classification using the Iris
 dataset",
 "isActive": true,
 "inputFields": [
 {
 "name": "sepal_length",
 "type": "DOUBLE",
 "usage": "ACTIVE"
 },
 {
 "name": "sepal_width",
 "type": "DOUBLE",
 "usage": "ACTIVE"
 },
 {
 "name": "petal_length",
 "type": "DOUBLE",
 "usage": "ACTIVE"
 },
 {
 "name": "petal_width",
 "type": "DOUBLE",
 "usage": "ACTIVE"
 }
],
 "outputFields": [
 {
 "name": "class",
 "type": "STRING",
 "usage": "OUTPUT"
 },
 {
 "name": "Probability_setosa",
 "type": "DOUBLE",
 "usage": "OUTPUT"
 },
 {
 "name": "Probability_versicolor",
 "type": "DOUBLE",
 "usage": "OUTPUT"
 },
 {
 "name": "Probability_virginica",
 "type": "DOUBLE",
 "usage": "OUTPUT"
 }
]
}

Field Field information

Properties

name (string): field name

type (string): field data type with one of string values: BOOLEAN, INTEGER, FLOAT,

DOUBLE, DATE, DATETIME, TIME, or STRING

Page 47

usage (string): field usage type with one of string values: ACTIVE, SUPPLEMENTARY,

TARGET, GROUP, DERIVED, or OUTPUT

Example 5.5. Zementis REST Field Object

{
 "name": "petal_width",
 "type": "DOUBLE",
 "usage": "ACTIVE"
}

MetricsInfo Model Metrics information

Properties

modelSize (string): model size

usedMemory (string): used memory

freeMemory (string): free memory

totalMemory (string): total memory

predictionMetrics (object): Object used to represent prediction metrics as a set of

key/value pairs

Example 5.6. Zementis REST MetricsInfo Object

{
 "modelSize": ".006 MB",
 "usedMemory": "1126.692 MB",
 "freeMemory": "3993.302 MB",
 "totalMemory": "5120.0 MB",
 "predictionMetrics": {
 "Iris-setosa": 50,
 "Iris-versicolor": 50,
 "Iris-virginica": 50
 }
}

Record Object used to represent input or output data record as a set of field/value pairs.

Properties

field_name_1 (string): optional field/value pair

field_name_2 (number): optional field/value pair

field_name_3 (boolean): optional field/value pair

field_name... (date-time): optional field/value pair

field_name_n (array[string]): optional field/value pair

Page 48

Example 5.7. Zementis REST Record Object

{
 "probability": 0.99995417336,
 "days": 47,
 "class": "shirt",
 "time": "2010-07-14 09:00:02",
 "colors": ["white", "red", "yellow"]
}

Records Anonymous array of Record objects used to represent multiple input or output records.

Example 5.8. Zementis REST Record Object

[
 {
 "Probability_virginica": 2.536692637033178E-13,
 "class": "Iris-setosa",
 "Probability_setosa": 0.9995535104664939,
 "Probability_versicolor": 4.464895332525406E-4
 },
 {
 "Probability_virginica": 1.0465677336558733E-12,
 "class": "Iris-setosa",
 "Probability_setosa": 0.9985890830740689,
 "Probability_versicolor": 0.0014109169248845744
 },
 {
 "Probability_virginica": 4.111504068226951E-13,
 "class": "Iris-setosa",
 "Probability_setosa": 0.9993451737365701,
 "Probability_versicolor": 6.54826263018726E-4
 }
]

Result Object used to return the result of applying a model to data.

Properties

modelName (string): model name

outputs (array[Record]): array of output Record objects

Page 49

Example 5.9. Zementis REST Result Object

{
 "model": "Iris_NN",
 "outputs": [
 {
 "Probability_virginica": 2.536692637033178E-13,
 "class": "Iris-setosa",
 "Probability_setosa": 0.9995535104664939,
 "Probability_versicolor": 4.464895332525406E-4
 },
 {
 "Probability_virginica": 1.0465677336558733E-12,
 "class": "Iris-setosa",
 "Probability_setosa": 0.9985890830740689,
 "Probability_versicolor": 0.0014109169248845744
 },
 {
 "Probability_virginica": 4.111504068226951E-13,
 "class": "Iris-setosa",
 "Probability_setosa": 0.9993451737365701,
 "Probability_versicolor": 6.54826263018726E-4
 },
 {
 "Probability_virginica": 6.620361333170605E-13,
 "class": "Iris-setosa",
 "Probability_setosa": 0.9990465573403722,
 "Probability_versicolor": 9.534426589658814E-4
 }
]
}

ResourceInfo Resource file information

Properties

fileName (string): file name

resourceType (string): resource type

resourceIdentifier (string): resource identifier

resourceNames (array[string]): array of resource names

Example 5.10. Zementis REST ResourceInfo Object

{
 "fileName": "ECommerceFraud_NN.xls",
 "resourceType": "Lookup Tables",
 "resourceIdentifier": "Table Name",
 "resourceNames": [
 "StatePoints"
]
}

Resources Anonymous array of ResourceInfo objects.

Page 50

Example 5.11. Zementis REST Resources Object

{
 "resources": [
 {
 "fileName": "ECommerceFraud_NN.xls",
 "resourceType": "Lookup Tables",
 "resourceIdentifier": "Table Name",
 "resourceNames": [
 "StatePoints"
]
 },
 {
 "fileName": "ECommerceFraud_NN.jar",
 "resourceType": "Custom Functions",
 "resourceIdentifier": "Function Namespace",
 "resourceNames": [
 "fraud"
]
 }
]
}

5.2.2. Operations on Models

5.2.2.1. List Available Models

Definition GET /models

This operation retrieves the model names of all the available PMML models in Ze-

mentis Server. Use these model names as identifiers for all operations requiring the

model_name path variable.

Request Parameters None

Returns Returns Models object if successful, Errors otherwise.

Example 5.12. Zementis REST List Models

Request

 curl -u adapa:adapa -k https://localhost/adapars/models

Request Header

 GET /adapars/models HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK

Page 51

 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 16:00:00 PST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/json
 Content-Length: 53
 Date: Wed, 26 Mar 2014 18:20:09 GMT

Response Body

 {
 "models" : ["Iris_NN", "Iris_CT", "Iris_MLR"]
 }

5.2.2.2. Get Model Information

Definition GET /model/{model_name}

Get model name, description, and information about input, output, or derived fields.

Request Parameters model_name (string): required path variable for existing model name

Returns Returns ModelInfo object if successful, Errors otherwise.

Example 5.13. Zementis REST Get Model Information

Request

 curl -u adapa:adapa -k https://localhost/adapars/model/Iris_NN

Request Header

 GET /adapars/model/Iris_NN HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 16:00:00 PST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/json
 Content-Length: 1969
 Date: Wed, 26 Mar 2014 18:39:57 GMT

Response Body

 {
 "modelName" : "Iris_NN",
 "description" : "Neural Network for multi-class classification using the Iris dataset",
 "isActive": true,
 "inputFields" : [{
 "name" : "sepal_length",
 "type" : "DOUBLE",

Page 52

 "usage" : "ACTIVE"
 }, {
 "name" : "sepal_width",
 "type" : "DOUBLE",
 "usage" : "ACTIVE"
 }, {
 ...

5.2.2.3. Get Model Source

Definition GET /model/{model_name}/source

Get annotated or original PMML file. Annotated source may contain warning or error

messages embedded in XML comments that are useful for verifying that the PMML

code is correct.

Request Parameters model_name (string): required path variable for existing model name

annotated (boolean): optional query parameter used to request the annotated

version of the PMML file.

Returns Returns the PMML source code if successful, Errors otherwise.

Example 5.14. Zementis REST Get Model Source

Request

 curl -u adapa:adapa -k https://localhost/adapars/model/Iris_NN/source?annotated=true

Request Header

 GET /adapars/model/Iris_NN/source?annotated=true HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 19:00:00 EST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/xml
 Content-Length: 7983
 Date: Wed, 26 Mar 2014 20:44:04 GMT

Response Body

 <?xml version="1.0" encoding="UTF-8"?>
 <!--(Comment generated by ADAPA) PMML processed by ADAPA (Version : 4.2)-->
 <PMML version="4.2"
 xsi:schemaLocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-2/pmml-4-2.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.dmg.org/PMML-4_2">
 <Header copyright="Copyright (c) 2008-2014 Zementis, Inc. (www.zementis.com)"

Page 53

 description="Neural Network for multi-class classification using the Iris dataset">
 <Timestamp>Feb 15, 2008</Timestamp>
 </Header>
 <DataDictionary numberOfFields="5">
 <DataField dataType="string" name="target_class" optype="categorical">
 <Value value="Iris-setosa"/>
 <Value value="Iris-versicolor"/>
 <Value value="Iris-virginica"/>
 </DataField>
 <DataField dataType="double" name="sepal_length" optype="continuous"/>
 <DataField dataType="double" name="sepal_width" optype="continuous"/>
 ...

5.2.2.4. Get Model Serialized Source

Definition GET /model/{model_name}/serialized

Get binary file containing serialized representation of the model.

Request Parameters model_name (string) : required path variable for existing model name

Returns Returns the binary file if successful, Errors otherwise.

Example 5.15. Zementis REST Get Model Serialized

Request

 curl -u adapa:adapa -k https://localhost/adapars/model/Iris_NN/serialized

Request Header

 GET /adapars/model/Iris_NN/serialized HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.54.0
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: private
 Expires: Wed, 31 Dec 1969 19:00:00 EST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/octet-stream
 Transfer-Encoding: chunked
 Date: Wed, 09 Aug 2017 22:44:48 GMT

Response Body

 BINARY DATA
 ...

5.2.2.5. Get Model Metrics Information

Definition GET /model/{model_name}/metrics

Page 54

Get the memory metrics and prediction metrics of an uploaded model.

Request Parameters model_name (string) : required path variable for existing model name

Returns Returns MetricsInfo object if successful, Errors otherwise.

Example 5.16. Zementis REST Get Model Metrics

Request

 curl -u adapa:adapa -k https://localhost/adapars/Iris_NN/metrics

Request Header

 GET /adapars/Iris_NN/metrics HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 16:00:00 PST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/json
 Content-Length: 1969
 Date: Wed, 26 Mar 2014 18:39:57 GMT

Response Body

 {
 "modelSize": ".006 MB",
 "usedMemory": "1126.692 MB",
 "freeMemory": "3993.302 MB",
 "totalMemory": "5120.0 MB",
 "predictionMetrics": {
 "Iris-versicolor": 50,
 "Iris-virginica": 50,
 "Iris-setosa": 50
 }
 }

5.2.2.6. Upload New Model

Definition POST /model

Upload new PMML model. Resulting identifier for this model is extracted from optional

PMML attribute modelName if specified or file body parameter name otherwise. If

the PMML file is large, such as Random Forest model, we recommend compressing

the file using ZIP/GZIP before uploading. This will reduce the upload time dramatically.

Page 55

Request Parameters Content-Type (string): required header parameter with two accepted values:

application/octet-stream or multipart/form-data

file (string): required query parameter for PMML file name, if Content-Type is

application/octet-stream, or a body parameter in multipart/form-data

content encoding

applyCleanser (boolean): optional parameter used to automatically perform

comprehensive syntactic and semantic checks, correct known issues and convert

your PMML file to version 4.4 (default is true)

Returns Returns a ModelInfo object, 201 HTTP status code, and a response header entry

Location with the URI of the created resource if the upload was successful. If the

uploaded model was a valid XML but an invalid PMML, 200 HTTP status code and

error annotated PMML source is returned, Errors otherwise.

Example 5.17. Zementis REST Upload New Model with POST

Request

 curl -u adapa:adapa -k https://localhost/adapars/model?file=Iris_NN.pmml -X POST -T Iris_NN.pmml \
 -H "Content-Type:application/octet-stream"
 curl -u adapa:adapa -k https://localhost/adapars/model -X POST -F file=@Iris_NN.pmml
 curl -u adapa:adapa -k https://localhost/adapars/model?applyCleanser=true -X POST -F
 file=@Iris_NN.pmml

Request Header

 POST /adapars/model HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*
 Content-Length: 9265
 Expect: 100-continue
 Content-Type: multipart/form-data; boundary=----------------------------1ff14caee8ae

Response Header

 HTTP/1.1 201 Created
 Server: Apache-Coyote/1.1
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Location: https://localhost/adapars/model/Iris_NN
 Content-Type: application/json
 Content-Length: 836
 Date: Wed, 26 Mar 2014 19:45:18 GMT

Response Body

 {
 "modelName" : "Iris_NN",
 "description" : "Neural Network for multi-class classification using the Iris dataset",
 "inputFields" : [{
 "name" : "sepal_length",
 "type" : "DOUBLE",
 "usage" : "ACTIVE"
 }, {
 "name" : "sepal_width",

Page 56

 "type" : "DOUBLE",
 "usage" : "ACTIVE"
 }, {
 ...

5.2.2.7. Upload New Model with PUT

Definition PUT /model

Upload new PMML model. Resulting identifier for this model is extracted from optional

PMML attribute modelName if specified or file query parameter name otherwise.

If the PMML file is large, such as the Random Forest model, we recommend com-

pressing the file using ZIP/GZIP before uploading. This will reduce the upload time

dramatically.

Request Parameters file (string): required query parameter for PMML file name

applyCleanser (boolean): optional parameter used to automatically perform

comprehensive syntactic and semantic checks, correct known issues and convert

your PMML file to version 4.4 (default is true)

Returns Returns a ModelInfo object, 201 HTTP status code, and a response header entry

Location with the URI of the created resource if the upload was successful. If the

uploaded model was a valid XML but the PMML was invalid, a 200 HTTP status code

and with errors annotated PMML file is returned, Errors otherwise.

Example 5.18. Zementis REST Upload New Model with PUT

Request

 curl -u adapa:adapa -k 'https://localhost/adapars/model?file=Iris_NN.pmml' -X PUT -T Iris_NN.pmml
 curl -u adapa:adapa -k 'https://localhost/adapars/model?file=Iris_NN.pmml&applyCleanser=true' -X PUT -
T Iris_NN.pmml

Request Header

 PUT /adapars/model?file=Iris_NN.pmml HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*
 Content-Length: 9061
 Expect: 100-continue

Response Header

 HTTP/1.1 201 Created
 Server: Apache-Coyote/1.1

Page 57

 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 19:00:00 EST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Location: https://localhost/adapars/model/Iris_NN
 Content-Type: application/json
 Content-Length: 836
 Date: Wed, 26 Mar 2014 19:56:26 GMT

Response Body

 {
 "modelName" : "Iris_NN",
 "description" : "Neural Network for multi-class classification using the Iris dataset",
 "inputFields" : [{
 "name" : "sepal_length",
 "type" : "DOUBLE",
 "usage" : "ACTIVE"
 }, {
 "name" : "sepal_width",
 "type" : "DOUBLE",
 "usage" : "ACTIVE"
 }, {
 ...

5.2.2.8. Activate an existing Model with PUT

Definition PUT /model/{model_name}/activate

Activates the model with name modelName if it was inactive. Activating an active

model has no effect. After activation, the model is immediately available for handling

data processing requests. Please note an active model consumes runtime resources,

especially Heap.

Request Parameters model_name (string) : required path variable for existing model name

Returns Returns a ModelInfo object and 200 HTTP status code.

Example 5.19. Zementis REST Activate an existing Model

Request

 curl -u adapa:adapa -k https://localhost/adapars/model/Iris_NN/activate -X PUT

Request Header

 PUT /adapars/model/Iris_NN/activate HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.54.0
 Host: localhost
 Accept: */*

Response Header

Page 58

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Cache-Control: private
 Expires: Wed, 31 Dec 1969 19:00:00 EST
 Content-Type: application/json
 Content-Length: 7166
 Date: Wed, 09 Aug 2017 22:44:48 GMT

Response Body

 {
 "modelName" : "Iris_NN",
 "description" : "Neural Network for multi-class classification using the Iris dataset",
 "isActive" : true,
 ...

5.2.2.9. Deactivate an existing Model with PUT

Definition PUT /model/{model_name}/deactivate

De-activates the model with name modelName by making it inactive. After de-activa-

tion, the model is still available, but it no longer consumes runtime resources, espe-

cially Heap. Deactivating an inactive model has no effect.

Request Parameters model_name (string) : required path variable for existing model name

Returns Returns a ModelInfo object and 200 HTTP status code.

Example 5.20. Zementis REST Deactivate an existing Model

Request

 curl -u adapa:adapa -k https://localhost/adapars/model/Iris_NN/deactivate -X PUT

Request Header

 PUT /adapars/model/Iris_NN/deactivate HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.54.0
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Cache-Control: private
 Expires: Wed, 31 Dec 1969 19:00:00 EST
 Content-Type: application/json
 Content-Length: 7166
 Date: Wed, 09 Aug 2017 22:44:48 GMT

Response Body

 {

Page 59

 "modelName" : "Iris_NN",
 "description" : "Neural Network for multi-class classification using the Iris dataset",
 "isActive" : false,
 ...

5.2.2.10. Remove Model

Definition DELETE /model/{model_name}

Remove the specified model and list the remaining models.

Request Parameters model_name (string): required path variable for existing model name

Returns Returns a Models object with a list of remaining model names if successful, Errors

object otherwise.

Example 5.21. Zementis REST Remove Model

Request

 curl -u adapa:adapa -k https://localhost/adapars/model/Iris_NN -X DELETE

Request Header

 DELETE /adapars/model/Iris_NN HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 19:00:00 EST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/json
 Content-Length: 42
 Date: Wed, 26 Mar 2014 19:53:50 GMT

Response Body

 {
 "models" : ["Iris_CT", "Iris_MLR"]
 }

5.2.2.11. Remove All Models

Definition DELETE /models

Page 60

Remove all available models and list the remaining models.

Request Parameters None

Returns Returns a Models object with an empty models array if successful, an Errors object

otherwise.

Example 5.22. Zementis REST Remove All Models

Request

 curl -u adapa:adapa -k https://localhost/adapars/models -X DELETE

Request Header

 DELETE /adapars/models HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 19:00:00 EST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/json
 Content-Length: 20
 Date: Wed, 26 Mar 2014 20:01:42 GMT

Response Body

 {
 "models" : []
 }

5.2.3. Apply model

5.2.3.1. Apply Model to Single Record

Definition GET /apply/{model_name}

Apply a model to a single JSON input record.

Request Parameters model_name (string) : required path variable for name of the model to be applied

record (Record) : optional query parameter for input Record

Returns Returns Result object if successful, Errors otherwise.

Page 61

Example 5.23. Zementis REST Apply Model to Single Record

Request

 curl -u adapa:adapa -k https://localhost/adapars/apply/Iris_NN -G --data-urlencode \
 'record={"sepal_length":5.1,"sepal_width":3.5,"petal_length":1.4,"petal_width":0.2}'

Request Header

 GET /adapars/apply/Iris_NN?record=%7B%22sepal_length%22%3A5.1%2C%22sepal_width%22%3A3.5%2C%22
 petal_length%22%3A1.4%2C%22petal_width%22%3A0.2%7D HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 19:00:00 EST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/json
 Content-Length: 231
 Date: Wed, 26 Mar 2014 20:10:30 GMT

Response Body

 {
 "model" : "Iris_NN",
 "outputs" : [{
 "Probability_virginica" : 2.536692637033178E-13,
 "class" : "Iris-setosa",
 "Probability_setosa" : 0.9995535104664939,
 "Probability_versicolor" : 4.464895332525406E-4
 }]
 }

5.2.3.2. Apply Model to Single Record and Explain Result

Definition GET /apply/{model_name}/explain

Apply model to a single JSON input record and get the result with details of the per-

formed computation in plain text. Useful for debugging PMML code.

Request Parameters model_name (string) : required path variable for name of the model to be applied

record (Record) : optional query parameter for input Record

Returns Returns a result in plain text if successful, Errors otherwise.

Example 5.24. Zementis REST Apply Model to Single Record and Explain Result

Request

Page 62

 curl -u adapa:adapa -k https://localhost/adapars/apply/Iris_NN/explain -G --data-urlencode \
 'record={"sepal_length":5.1,"sepal_width":3.5,"petal_length":1.4,"petal_width":0.2}'

Request Header

 GET /adapars/apply/Iris_NN/explain?record=%7B%22sepal_length%22%3A5.1%2C%22sepal_width%22%3A3.5%2C%22
 petal_length%22%3A1.4%2C%22petal_width%22%3A0.2%7D HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 19:00:00 EST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: text/plain
 Content-Length: 1361
 Date: Wed, 26 Mar 2014 20:13:34 GMT

Response Body

 [sepal_length] := 5.1 (DOUBLE)
 [sepal_width] := 3.5 (DOUBLE)
 [petal_length] := 1.4 (DOUBLE)
 [petal_width] := 0.2 (DOUBLE)

 [MiningSchema]
 [sepal_length] := 5.1 (DOUBLE)
 [sepal_width] := 3.5 (DOUBLE)
 [petal_length] := 1.4 (DOUBLE)
 [petal_width] := 0.2 (DOUBLE)

 [LocalTransformations]
 [derived_sepal_length] := 0.22222222222222213 (DOUBLE)
 [derived_sepal_width] := 0.6818181818181818 (DOUBLE)
 [derived_petal_length] := 0.07017543859649121 (DOUBLE)
 [derived_petal_width] := 0.04166666666666667 (DOUBLE)

 [BackPropagationNetwork]
 Value of neural input [3] is [0.042].
 Value of neural input [2] is [0.07].
 Value of neural input [1] is [0.682].
 Value of neural input [0] is [0.222].
 Value of output neuron [11] in the last neural layer is [1].
 Value of output neuron [12] in the last neural layer is [0].
 Value of output neuron [13] in the last neural layer is [0].

 [Output]
 The [predictedValue] is [Iris-setosa (STRING)]
 [class] := Iris-setosa (STRING)
 The [probability] of [Iris-setosa (STRING)] is [0.9995535104664939 (DOUBLE)]
 [Probability_setosa] := 0.9995535104664939 (DOUBLE)
 The [probability] of [Iris-versicolor (STRING)] is [4.464895332525406E-4 (DOUBLE)]
 [Probability_versicolor] := 4.464895332525406E-4 (DOUBLE)
 The [probability] of [Iris-virginica (STRING)] is [2.536692637033178E-13 (DOUBLE)]
 [Probability_virginica] := 2.536692637033178E-13 (DOUBLE)

Page 63

5.2.3.3. Apply Model to Multiple Records or Apply Model to Single Binary

Data

Definition POST /apply/{model_name}

This provides two kinds of operations. Generally, if a predictive model without binary

type input is applied, this will be a batch 'apply' operation that streams multiple input

records to Zementis Server. Zementis Server will automatically detect Comma Sep-

arated Value (CSV) or JSON Records formatted input and stream results back in

the same format unless otherwise specified in the Accept request header parameter

with text/csv or application/json values. Compressing input data with zip or

gzip will result in the same compression method for the returned output stream.

If a predictive model with a binary type input is applied, this will be a single 'apply'

operation that processes a single binary source as input to Zementis Server.

Request Parameters Content-Type (string) : required header parameter with two accepted values:

application/octet-stream or multipart/form-data

model_name (string) : required path variable for the name of the model to be

applied

maxThreads : optional query parameter for specifying the maximum number of con-

current threads (default value is twice the number of processor cores). No impact if a

predictive model with a binary type input was applied.

maxRecordsPerThread : optional query parameter for specifying the maximum

number of records processed by a thread in batch (default value is 5000). No impact

if a predictive model with a binary type input was applied.

Accept : optional header parameter for explicitly specifying text/csv or appli-

cation/json output format

User-Agent : optional header parameter for full duplex HTTP streaming data if set

to AdapaStreaming followed by any characters or a string containing value curl

. Default data handling mode is copy-forward where response is rendered only after

full request has been read by the server.

Returns Returns results as CSV or as Result object if successful, Errors otherwise.

Example 5.25. Zementis REST Apply Model to Multiple Records

Request

Page 64

 curl -u adapa:adapa -k https://localhost/adapars/apply/Iris_NN -X POST -T Iris_NN.csv \
 -H "Content-Type:application/octet-stream"
 curl -u adapa:adapa -k https://localhost/adapars/apply/Iris_NN?maxThreads=8 -X POST -F
 file=@Iris_NN.csv

Request Header

 POST /adapars/apply/Iris_NN?maxThreads=8 HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*
 Content-Length: 10148
 Expect: 100-continue
 Content-Type: multipart/form-data; boundary=----------------------------6da946996e0d

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: text/csv
 Transfer-Encoding: chunked
 Date: Wed, 26 Mar 2014 20:19:23 GMT

Response Body

 class,Probability_setosa,Probability_versicolor,Probability_virginica
 Iris-setosa,0.9995535104664939,4.464895332525406E-4,2.536692637033178E-13
 Iris-setosa,0.9985890830740689,0.0014109169248845744,1.0465677336558733E-12
 Iris-setosa,0.9993451737365701,6.54826263018726E-4,4.111504068226951E-13
 ...

Example 5.26. Zementis REST Apply Model to Single Binary Record

Request

 curl -u adapa:adapa -k https://localhost/adapars/apply/Caffe_NN -X POST -H 'Accept:application/json' -
F file=@0.jpg

Request Header

 POST /adapars/apply/Caffe_NN HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.43.0
 Host: localhost
 Accept: application/json
 Content-Length: 5319
 Expect: 100-continue
 Content-Type: multipart/form-data; boundary=------------------------6099e489fd2da819

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/json
 Content-Length: 403
 Date: Fri, 27 May 2016 21:39:07 GMT

Response Body

 {
 "model" : "Caffe_NN",

Page 65

 "outputs" : [{
 "p_7" : 0.009013318755324183,
 "p_8" : 0.011660178735845163,
 "p_9" : 0.040489440800734404,
 "p_0" : 0.7602463077131643,
 "class" : "0",
 "p_1" : 0.006724422031736871,
 "p_2" : 0.052489690530517254,
 "p_3" : 0.004134235496422808,
 "p_4" : 0.027965981244545225,
 "p_5" : 0.014539398304602753,
 "p_6" : 0.07273702638710705
 }]

5.2.3.4. Asynchronously Apply Model to Multiple Records

Definition POST /apply/{model_name}/async

This is an asynchronous batch 'apply' operation that streams multiple input records

from remote location specified in uploaded properties file and writes the result back

to the remote data target. The properties file describes the remote data source and

target locations, connection properties, and access credentials. Zementis Server will

automatically detect Comma Separated Value (CSV) or JSON Records formatted

input and streams the result back in CSV format. Compressing input data with zip

or gzip will result in the same compression method for the result.

Request Parameters Content-Type (string) : required header parameter with two accepted values:

application/octet-stream or multipart/form-data

model_name (string) : required path variable for the name of the model to be

applied

maxThreads : optional query parameter for specifying the maximum number of con-

current threads (default value is twice the number of processor cores).

maxRecordsPerThread : optional query parameter for specifying the maximum

number of records processed by a thread in batch (default value is 5000).

Returns Returns status information, job ID and description, output handle, and start timestamp

of processing job in JSON format.

Example 5.27. Zementis REST Asynchronously Apply Model to Multiple Records

Request

 curl -u adapa:adapa -k https://localhost/adapars/apply/Iris_NN/async -X POST -T Iris_NN_CSV.properties
 \
 -H "Content-Type:application/octet-stream"
 curl -u adapa:adapa -k https://localhost/adapars/apply/Iris_NN/async?maxThreads=8 -X POST \

Page 66

 -F file=@Iris_NN_CSV.properties

Request Header

 POST /adapars/apply/Iris_NN/async?maxThreads=8 HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.54.0
 Host: localhost
 Accept: */*
 Content-Length: 376
 Expect: 100-continue
 Content-Type: multipart/form-data; boundary=----------------------------c6e69656a61898e9

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Content-Type: application/json
 Date: Thu, 10 Aug 2017 16:24:42 GMT

Response Body

 {
 "status" : "STARTED",
 "id" : 4,
 "output" : "Iris_NN_output_4_20170810_092441.csv",
 "startTime" : "2017-08-10 09:24:41.595 -0700",
 "description" : "Amazon S3 Connector: bucket='myBucket', input='Iris_NN.csv'"
 }

5.2.4. Operations on Resources

5.2.4.1. List Available Resources

Definition GET /resources

This operation retrieves information on all available resource files uploaded on Ze-

mentis Server. Use file names as identifiers for all operations requiring a file_name

path variable.

Request Parameters None

Returns Returns a Resources object if successful, an Errors object otherwise.

Example 5.28. Zementis REST List Resources

Request

 curl -u adapa:adapa -k https://localhost/adapars/resources

Request Header

 GET /adapars/resources HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5

Page 67

 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 16:00:00 PST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/json
 Content-Length: 363
 Date: Mon, 24 Nov 2014 22:56:50 GMT

Response Body

 {
 "resources" : [{
 "fileName" : "ECommerceFraud_NN.jar",
 "resourceType" : "Custom Functions",
 "resourceIdentifier" : "Function Namespace",
 "resourceNames" : ["fraud"]
 }, {
 "fileName" : "ECommerceFraud_NN.xls",
 "resourceType" : "Lookup Tables",
 "resourceIdentifier" : "Table Name",
 "resourceNames" : ["StatePoints"]
 }]
 }

5.2.4.2. Get Resource Information

Definition GET /resource/{file_name}

Get information on the specified resource file.

Request Parameters file_name (string): required path variable for an existing resource file name

Returns Returns a ResourceInfo object if successful, an Errors object otherwise.

Example 5.29. Zementis REST Get Resource Information

Request

 curl -u adapa:adapa -k https://localhost/adapars/resource/ECommerceFraud_NN.jar

Request Header

 GET /adapars/resources/ECommerceFraud_NN.jar HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1

Page 68

 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 16:00:00 PST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/json
 Content-Length: 161
 Date: Mon, 24 Nov 2014 23:05:51 GMT

Response Body

 {
 "fileName" : "ECommerceFraud_NN.jar",
 "resourceType" : "Custom Functions",
 "resourceIdentifier" : "Function Namespace",
 "resourceNames" : ["fraud"]
 }

5.2.4.3. Get Resource File

Definition GET /resource/{file_name}/source

Download a resource file.

Request Parameters file_name (string): required path variable for an existing resource file name

Returns Returns a copy of the resource file if successful, an Errors object otherwise.

Example 5.30. Zementis REST Get Resource File

Request

 curl -u adapa:adapa -k https://localhost/adapars/resource/ECommerceFraud_NN.jar/source

Request Header

 GET /adapars/resources/ECommerceFraud_NN.jar/source HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 16:00:00 PST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/octet-stream
 Content-Length: 1675
 Date: Mon, 24 Nov 2014 23:15:35 GMT

Response Body

 PK
 ??uE META-INF/??PK
 ??uE?'!
 K-*??#R0?3??r?Cq,HL?HU?%-?x???RKRSt?*A???

Page 69

 ...

5.2.4.4. Upload New Resource File

Definition POST /model

Upload a new resource file. The file name in 'file' body parameter will be used to

identify this resource.

Request Parameters Content-Type (string): required header parameter with two accepted values:

application/octet-stream or multipart/form-data

file (string): required query parameter for PMML file name, if Content-Type is

application/octet-stream, or a body parameter in multipart/form-data

content encoding

Content-Type (string): required body parameter for resource a file name, and

its content

Returns Returns ResourceInfo object, 201 HTTP response status code, and response header

entry Location with URI of created resource if upload was successful, an Errors

object otherwise.

Example 5.31. Zementis REST Upload New Resource File with POST

Request

 curl -u adapa:adapa -k https://localhost/adapars/resource?file=ECommerceFraud_NN.xls -X POST \
 -T ECommerceFraud_NN.xls -H "Content-Type:application/octet-stream"
 curl -u adapa:adapa -k https://localhost/adapars/resource -X POST -F file=@ECommerceFraud_NN.xls

Request Header

 POST /adapars/resource HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*
 Content-Length: 30933
 Expect: 100-continue
 Content-Type: multipart/form-data; boundary=----------------------------d9c9597fd160

Response Header

 HTTP/1.1 201 Created
 Server: Apache-Coyote/1.1
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Location: http://localhost:8080/adapars/resource/ECommerceFraud_NN.xls
 Content-Type: application/json
 Content-Length: 156
 Date: Wed, 26 Mar 2014 19:45:18 GMT

Response Body

Page 70

 {
 "fileName" : "ECommerceFraud_NN.xls",
 "resourceType" : "Lookup Tables",
 "resourceIdentifier" : "Table Name",
 "resourceNames" : ["StatePoints"]
 }

5.2.4.5. Upload New Resource File with PUT

Definition PUT /model

Upload a new resource file. The file name in 'file' query parameter will be used to

identify this resource.

Request Parameters file (string): required query parameter for resource file name

Returns Returns a ResourceInfo object, 201 HTTP response status code, and a response

header entry Location with URI of the created resource if the upload was successful,

an Errors object otherwise.

Example 5.32. Zementis REST Upload New Resource File with PUT

Request

 curl -u adapa:adapa -k https://localhost/adapars/resource?file=ECommerceFraud_NN.xls -X PUT -T
 ECommerceFraud_NN.xls

Request Header

 PUT /adapars/resource?file=ECommerceFraud_NN.xls HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*
 Content-Length: 30720
 Expect: 100-continue

Response Header

 HTTP/1.1 201 Created
 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: no-cache
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Location: http://localhost:8080/adapars/resource/ECommerceFraud_NN.xls
 Content-Type: application/json
 Content-Length: 156
 Date: Mon, 24 Nov 2014 23:37:26 GMT

Response Body

 {

Page 71

 "fileName" : "ECommerceFraud_NN.xls",
 "resourceType" : "Lookup Tables",
 "resourceIdentifier" : "Table Name",
 "resourceNames" : ["StatePoints"]
 }

5.2.4.6. Remove Resource File

Definition DELETE /resource/{file_name}

Remove the specified resource file and list all remaining resources.

Request Parameters file_name (string): required path variable for existing resource file name

Returns Returns a Resources object with a list of all remaining resource files if successful, an

Errors object otherwise.

Example 5.33. Zementis REST Remove Resource File

Request

 curl -u adapa:adapa -k https://localhost/adapars/resource/ECommerceFraud_NN.jar -X DELETE

Request Header

 DELETE /adapars/resource/ECommerceFraud_NN.xls HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 16:00:00 PST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/json
 Content-Length: 195
 Date: Mon, 24 Nov 2014 23:50:13 GMT

Response Body

 {
 "resources" : [{
 "fileName" : "ECommerceFraud_NN.jar",
 "resourceType" : "Custom Functions",
 "resourceIdentifier" : "Function Namespace",
 "resourceNames" : ["fraud"]
 }]
 }

Page 72

5.2.4.7. Remove All Resource Files

Definition DELETE /resources

Remove all available resources and list the remaining resources.

Request Parameters None

Returns Returns a Resources object with an empty resources array if successful, an Errors

object otherwise.

Example 5.34. Zementis REST Remove All Resource Files

Request

 curl -u adapa:adapa -k https://localhost/adapars/resources -X DELETE

Request Header

 DELETE /adapars/resources HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*

Response Header

 HTTP/1.1 200 OK
 Server: Apache-Coyote/1.1
 Pragma: No-cache
 Cache-Control: no-cache
 Expires: Wed, 31 Dec 1969 16:00:00 PST
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Content-Type: application/json
 Content-Length: 23
 Date: Mon, 24 Nov 2014 23:57:57 GMT

Response Body

 {
 "resources" : []
 }

5.2.5. Operations on License

5.2.5.1. Get License Properties

Definition GET /license

This operation retrieves properties of license on Zementis Server.

Request Parameters None

Page 73

Returns Returns license properties if successful, an Errors object otherwise.

Example 5.35. Zementis REST Get License

Request

 curl -X GET "http://localhost:8080/adapars/licenses" -H "accept: application/json"

Request Header

 GET /adapars/license HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*

Response Header

 cache-control: private
 content-length: 204
 content-length: 583
 content-type: application/json
 date: Sun, 27 Jan 2019 23:24:35 GMT

Response Body

{
 "properties" : {
 "Company" : "Zementis, Inc.",
 "Email" : "support@zementis.com",
 "Expires On" : "Jan 6, 2116 16:24 PST",
 "Product" : "ADAPA",
 "Edition" : "ADAPA Enterprise Server",
 "Number of Cores" : "128 (system reports 4 cores)",
 "Name" : "Engineering Team"
 },
 "status" : "VALID",
 "message" : "The license is VALID."
}

5.2.5.2. Upload a new license file

Definition POST /license

Upload a new license file.

Request Parameters file_name (string): required path variable for an existing license file name

Returns Returns license properties if successful, an Errors object otherwise.

Example 5.36. Zementis REST Post License

Request

 curl -X GET "http://localhost:8080/adapars/licenses" -H "accept: application/json"

Request Header

Page 74

 POST /adapars/license HTTP/1.1
 Authorization: Basic YWRhcGE6YWRhcGE=
 User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
 Host: localhost
 Accept: */*
 Content-Length: 30933
 Expect: 100-continue
 Content-Type: multipart/form-data; boundary=----------------------------d9c9597fd160

Response Header

 HTTP/1.1 201 Created
 Server: Apache-Coyote/1.1
 X-Powered-By: Servlet 2.5; JBoss-5.0/JBossWeb-2.1
 Location: http://localhost:8080/adapars/resource/ECommerceFraud_NN.xls
 content-length: 583
 content-type: application/json
 date: Sun, 27 Jan 2019 23:24:35 GMT

Response Body

 {
 "properties" : {
 "Company" : "Zementis, Inc.",
 "Email" : "support@zementis.com",
 "Expires On" : "Jan 6, 2116 16:24 PST",
 "Product" : "ADAPA",
 "Edition" : "ADAPA Enterprise Server",
 "Number of Cores" : "128 (system reports 4 cores)",
 "Name" : "Engineering Team"
 },
 "status" : "VALID",
 "message" : "The license is VALID."
}

