5 software

Zementis Predictive Analytics

Solutions Guide

10.7.0.2

5 software~

Zementis Predictive Analytics

Solutions Guide

Software AG
Copyright © 2004 - 2016 Zementis Inc.
Copyright © 2016 - 2020 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/

or its subsidiaries and/or its affiliates and/or their licensors.

This document applies to Zementis Server 10.7.0.2 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or Software
AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be

trademarks of their respective owners.
Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at http://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product documentation,

located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or restrictions, please
refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party license restrictions, please
refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG Products / Copyright and Trademark
Notices of Software AG Products". These documents are part of the product documentation, located at http:/softwareag.com/licenses/ and/or

in the root installation directory of the licensed product(s).

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

5 software~

Table of Contents

IO o1 (oo [8 o1 o T o KPS TTTRTPSPPPP 1
1.1. DECISION SOIULIONS OVEIVIEWiieeiiiiiiiitiis e e e ettt e e et e e et a s e e et e e ettt r e e e e e e e e ese b aaseeeeeeennnnanns 1

2. PrediCtiVe IMOUEISoeeiiii et e ettt a et e e 3
2.1. Predictive Model BUIldiNG PrOCESScciuuiiiiiiiiiie et e e e e e e e e e et e e et e e et 7

2.2. Deploy and Test PrediCtive MOUEISiiiniiiii e e e e et e e e e aaeees 9
b R B 1= o] [0 o 1 o T =Y PN 9

A =) 11T 1Y, Yo 1= £ 10

2.3. Data Scoring and ClasSIfiCatiONccuiiiiiiiiiii e e e 11

P S Y T o = B Y = ol PSSP 12

2.5, Other DAt SOUICES ...ccevvttiiiiieeiiiiiiitt ettt e e e ettt e et e e e e ettt ae e e e e e e et e e es bbb e n e e e e e e eennbnn s 13

3. CUSLOM RESOUICESuuiiiiiiiieit ettt et et e e e e et et e s e bt e et e e e a et et e e e et e s e b e e s e e e eb e r e e e e sae s 15
3.1, CUSLOM PMML FUNCHONS ...eiiiitiiiiiieee ettt ettt e ettt s s e e et e et en bbb s s e e e e e e eesbbbaaeeeeeeenns 15
3.1.1. Create Custom PMML FUNCLONSiiiiiiiiiiiiiiiie ettt e e e e e e eennes 15

3.1.2. Use Custom PMML FUNCHONSccovttiiiiieeiitiieiiiie ettt e e et e e e e e e e eenbb e e e e e e eeenes 17

3.1.3. NON-DeterminiStic FUNCHIONSuuuiiiiiieeiieiiiiiis et e et e e e e e et eeeeeeenes 18

I o (=11 g T VI oY) U o T = o] [N 19
3.2.1. Create LooKup Tables iN EXCEliiiiiiii e e e e 19

3.2.2. Use Lookup Tables in PIMMLiiiiiiiiii e e e e e et e et e e e e eanas 21

3.3. External Training Data Tablescooiiiiiii e e e 22

I I U I g o [ST 10 T= Uy VA B 7 - N Y/ o1 T 22
3.4.1. Using Default Di NAr Y TY P8 oovuiiiiiiii et e e e e e e et e e et e e e e aaeeeen 23

3.4.2. Using Buffered bi NAry TYPE ..o e e e e e aen 25

BT 1T o] (o) VA = =T Yo LU o =N 26
3.5.1. DEIELiNG RESOUICEScuuiiiiiiiie et e e e et e e e e e e e e e e e e et e et e e et e e et e e eaneeerneeeen 27

3.6. Supporting Python scripts in PMIMLou.iiii e e e e e e eaaas 28
3.6.1. Define a Function with python script in PMML ... 28

3.6.2. Use python script function from PMMLooiiiiiiii e e 31

A, EXIENSIONS AP ittt e ettt et et e et et e e e e e e e e n b s 33
4.1. Using the Zementis Server EXtENSIONS APlcou i e 33
4.1.1. CUSEOM FUNCHION ...ttt e et e e e e e et e e r b b r e e e e e e e eesbbaraaeeeeeeens 33
O Mo o (W T 1= 1 o = PPN 34

O T XY= Bl =T 010 Y1 (0] YA U 35

W o To [[o) (o] = 36

4.2. OVErview Of COUE EXAMPIES ...ciiiiiiii e e e e et e e e e et e et e e et e eaanas 37

Page iii

5 software~

4.3. Deployment of Zementis Server EXIENSIONSccoouuiiiiiiiie e 38
ST S I Y] PSSR 39
I CT=T o =T = U N o (=T PP PPPTTR 39
ST 00 I U 1 USRS 39

T D =T o [U [T PRSPPI 41

5. 0.3, RESPONSE ..ttt ettt ettt et e anas 41

ST I e 4 (o] £ PP PPP 41
B5.1.5. AUTNOTIZALION ...ooieiii ettt et 43

ST AN TSR 44
I N 1S @]\ @ o 1= od U PPPRTPRRR 44
5.2.2. Operations 0N MOEISiiiiiiiee ettt 50
5.2.2.1. List Available MOUEIScoouuiiiii e e 50

5.2.2.2. Get Model INFOMMALIONcooutiiiiiii e e et e et e et e eeees 51

5.2.2.3. GEL MOUEI SOUICE ... ettt ettt e e et e e e et e e era e aees 52

5.2.2.4. Get Model SerialiZed SOUICEcoouuiiiiiiii e 53

5.2.2.5. Get Model Metrics INFOrMALIONcouuuiiiiiii i 53

5.2.2.6. UpIoad NEW MOEIccouiiiiiiiii e 54

5.2.2.7. Upload New Model With PUT ..o e e 56

5.2.2.8. Activate an existing Model With PUT ... 57

5.2.2.9. Deactivate an existing Model With PUTooiiiiiiiiii e 58

5.2.2.10. REMOVE MOUEI ...ttt ettt eeaans 59

5.2.2.11. ReMOVE All MOEISouiiiiii et e 59

5.2.3. APPLY MOEL ... e et 60
5.2.3.1. Apply Model t0 Single RECOIiiiiiiiiiiiii e e 60

5.2.3.2. Apply Model to Single Record and Explain Resultcccoooeiiiiiiiiiiiniee, 61

5.2.3.3. Apply Model to Multiple Records or Apply Model to Single Binary Data 63

5.2.3.4. Asynchronously Apply Model to Multiple ReCOrdsocooieiiiiiiiiiiiiiiiiii e 65

5.2.4. OPerationS ON RESOUITESuuuiiiiiiii ettt ettt e e et ettt ettt e et e et e et et eea et enaa e eeneas 66
5.2.4.1. List Available RESOUICEScoouuiiiiiiii e e 66

5.2.4.2. Get Resource INFOrMALIONiiiiiiiiiiiii e 67

5.2.4.3. Gt RESOUICE Fl ...t et e 68

5.2.4.4. Upload New RESOUICE FilEuuiiiiiiiei e 69

5.2.4.5. Upload New Resource File With PUT ..o 70

5.2.4.6. RemMOVe RESOUICE Fle ... 71

5.2.4.7. Remove All RESOUICE FlEScoouuuiiiiiiii e 72

5.2.5. OPerations 0N LICENSE ...ttt e e et e et et e e e et eeeeba e eeees 72
5.2.5.1. Get LICENSE PIOPEITIESuiiiiiiiieiiiii et 72

Page iv

5 software~

5.2.5.2. Upload a new lICENSE i@ ... 73

Page v

5 software~

List of Figures

1.1, DECISION SOIULIOM ...ttt ettt e ettt et e e e e ettt eee b s e e e e ettt e se bbb e e e et e e ees bbb s e e eeee e 2
2.1, MOEI ENSEMDIE ...ttt ettt e e et e e e e e e e e e et e e e e e e r e e as 5
A o = To [1ot)Y/ Y 1Y To o [= [T Vo o o PPN 6
2.3. Predictive Models in the ZementiS CONSOIEooiiiiiiiiiiiii e e e e ennees 10
2.4. Memory Metrics and Prediction Metrics of Classification Modelcccoiiiiiiiiiiiin e, 13
2.5. Memory Metrics and Prediction Metrics of Regression Modelccoveiiiiiiiiiiiiiici e 13
3.1. Custom PMML FUNCLION EXAMPIEciiiiiiiii e e e e e e e e e e e e e et e et e eaaes 16
3.2. Example Using a Custom FUNCON iN PIMIVILuiiiiii e e e e e e e e e e e e e eaa s 18
3.3. Custom PMML FUNCLION EXAMPIEciiiiiiiiii e e e e e e e e et e e et e et eeaaes 18
G o T (U o N 1= o] ST e 2] o PR 19
3.5. Sample EXCEl LOOKUP TaDIEcouiiiiiiiii et e e e e e e e e et e et e e ean e ean s 20
3.6. A LookupTable with two iNPUtS and ONE OULPULiiieiiiii e e e e e e e e e et e e e e aaeees 21
3.7. Binary DataTyPe EXAMPIE .ouiiiiiiiii it e e e e e e e e e e e 23
3.8. Custom Function of Binary Data EXamPIecc.uiiiiiiiiiiiiiii e e 24
3.9. Example Using Custom Function of Binary Data in PMMLcoiiiiiiiiii e 25
3.10. Binary (Buffered) DataType EXAMPIEcouuiiiiiiiii e e e e e e s 25
3.11. Custom Function of Buffered Binary Data EXampleccooiiiiiiiiiiiiiii e 26
3.12. Example Using Custom Function of Buffered Binary Data in PMMLcccoiiiiiiiiiiniieee e, 26
3.13. Resource Files in the ZementisS CONSOIEcoouuiiiiiiii e 27
3.14. Resource dependency exception in the Zementis CONSOIEooiiiiiiiii i 27
3.15. Data Type CONVErSION EXAMPIEciuuiiiiieii e e e e e e e e e e e e e e e et e e et e e e e e eanas 28
3.16. Custom PYthon SCriPt EXAMPIEcuuiiiiiiii ettt e e e e e e e e et e e et e e et e e et a e e e eaaaees 30
3.17. Custom Python Script in Base64 Encoded FOrmMatc.iiiiiiiiiiiiiiie e e i 31
3.18. Using python script funCtion in PMMLoouiiiiii e e e e e e e e e e e 32
4.1. Dependencies for CUSTOM FUNCLONSoiiiiiiiiii e e e e e e e e e e e e e et e e e eanas 34
4.2. Dependencies for LOOKUP TabIeiiiiiiiiiii e e e e e e e e e e e e e e et e e e e aaeees 35
4.3. Dependencies for ASSEE REPOSIHOIYciuuiii i e e e e e e e e e et e e e e eaaas 36
4.4. Dependencies for LOgging REPOSIIONYcuuuiiiiiiiiiii e e e e e e e e e e e e et e e et eean e enes 37
5.1. Interactive REST API DOCUMENTALIONcciviiiiiiiiieeeieiieiiiiie e e e ettt e e e et e e aabi e s e e e s e e esstabaaaeeeeeeeennes 40

Page vi

s

softwares

List of Tables

2.1
2.2.
3.1
3.2.
3.3.
4.1.
5.1.
5.2.

Sample PrediCtive MOGEISooiiiiii e e e e e e e e e e et e e e et e e e e eanaas 8
Directory Structure of SAmMPIe MOGEIScouuiiiiiii e e e e e e e e 9
PMML and Java types iN ZEMENLS SEIVETiiiuuiiiii et e e et e e e e e e e e et e e e e e e et e e et e e eanaeenes 16
D= L= W Y/ o LT =T o] o1 1 Vo NP 28
Purpose of each attribute in EXtENSION EIEMENTciiiiiii e e e 29
Directory structure Of COUE EXAMPIESc.uuiiiiiiii e e e e e e e e e e eaens 37
Typical Zementis REST ErrOr RESPONSESuuciiuiiiiiieiii e eeeiee e e e e e e e e e e e e st e e et e e st e e st s ertnaeaanaees 42
ZementiS REST PEIMISSIONSuiiieiiiiiittii i e ettt e e ettt e e e e et e e e e r e e et et e ee bbb r e e e e e e eenrarn e as 43

Page vii

s

softwares

List of Examples

5.1. ZementiS REST EITOr RESPONSEuiiiiiiiiii e et e et e et e e e e e e e e et e e e e e e e e et e e et e et e e et e eaaneeaenas 42
5.2. Zementis REST EITOrs OB ECEiiuuiiiiiiii i e e e e e e e et e e et e e aaeeeanns 45
5.3. Zementis REST MOAEIS ODJECE ...ccuuiiiiiiii et e e e e e e e e e et e et e e et e e aa e eenas 45
5.4. Zementis REST MOAEIINTO ODJECTu.iiiiiiii e e e e e e e e e et e et e eanees 46
5.5. Zementis REST FIeld ODJECEcouniiiiiii e e e e e e e e e e e et e et e e eaeaaanees a7
5.6. Zementis REST MEetricSINfO ODJECTiiiniiiic e e e s 47
5.7. Zementis REST RECOI ODJECT ...iiuuiiiiiiii it e e e e e e e e e et e et e et e e aa e aenas 48
5.8. Zementis REST RECOI ODJECT ...iivuiiiiiiii et e e e e e e e e e et e et e e et e e aa e eenas 48
5.9. Zementis REST RESUIL ODJECT ...ciuuiiiii i e e e e e e e e e e e e e e e e e eenas 49
5.10. Zementis REST ResoUrcelnfo ODJECTiiiiiii e e e e e 49
5.11. Zementis REST RESOUICES ODJECTuuuiiii i e e e e e e e e e et e e et e e e eeaes 50
5.12. Zementis REST LISt MOUEISccoiiiiiiiiiiii ettt et e e et e e e e e e e e en bbb 50
5.13. Zementis REST Get Model INFOrMEALIONuuuiiiiieiiieiiii e e e e e e e e e ennnnes 51
5.14. Zementis REST Get MOUEI SOUICEcccoiiiiiiiiiiiie ettt e e et e e e e e e e eeeennnes 52
5.15. Zementis REST Get Model SerialiZeduuiiiiiiiiiiiiiiiii e e e e 53
5.16. Zementis REST Get MOUEI MEIIICSccvuruiiiiieeiiiiiii et e e e e e 54
5.17. Zementis REST Upload New Model With POST ... 55
5.18. Zementis REST Upload New Model With PUT ... e e e e 56
5.19. Zementis REST Activate an exiSting MOdelcoouiiiiiiiii e 57
5.20. Zementis REST Deactivate an existing MOGEloiiiiiiiiiiiii e 58
5.21. Zementis REST REMOVE MOUEIuiiiiiiiiiiiiii ettt e e e e e et e e e e eeenes 59
5.22. Zementis REST RemMOVE All MOEISuuuiiiiieiiiiiiii et e s 60
5.23. Zementis REST Apply Model to Single RECOIAcoiiiiiiiiii e e e e 61
5.24. Zementis REST Apply Model to Single Record and Explain Resultcccoooiiiiiiiin e 61
5.25. Zementis REST Apply Model to Multiple RECOIASoviiiiiiiiicii e 63
5.26. Zementis REST Apply Model to Single Binary RECOIAoiiiiiiiiiiiiiiiic i 64
5.27. Zementis REST Asynchronously Apply Model to Multiple Recordsccccoiiiiiiiiiiiiiiiii e, 65
5.28. Zementis REST LiSt RESOUITESuuuuiiieiiiiiiiii ettt e e ettt e et et e et e e e et e e eestbt e aeeeeeaeennes 66
5.29. Zementis REST Get Resource INfOrMatioNoouuiiiiiiiiiiiiiiiii e e 67
5.30. Zementis REST Get RESOUICE FilEcoii it e e e e e ennees 68
5.31. Zementis REST Upload New Resource File With POSTcoiiiiiiiiiiiii e 69
5.32. Zementis REST Upload New Resource File With PUTo e 70
5.33. Zementis REST Remove RESOUICE FlEccoiiiiiiiiii et 71
5.34. Zementis REST Remove All RESOUICE FilESoiii it 72

Page viii

5 software~

5.35. ZeMENS REST GEE LICEBNSE ..ottt et e ettt et e et et e e et e e et eeaeaaans 73
5.36. ZEMENTS REST POSE LICEBNSE ...viiiieiiiieiiiie ettt et et e et et et e et e et e e e e et e e e e e e aens 73

Page ix

5 software~

Chapter 1. Introduction

Zementis Server enables the agile deployment and integration of predictive decision services. It allows organizations
to convert predictive models into operational services without requiring any additional custom coding by the infor-
mation technology (IT) organization. Zementis Server ensures model integrity, optimizes performance and powers

scaling as necessary.

This document serves as a guide for creating decision solutions using Zementis Server. It describes how Zementis
Server components are used to verify and execute your advanced analytics either in real-time (against in-flight data)
or batch mode (against data at rest). This guide also explains how the different Zementis Server components are

combined to offer a powerful scoring framework.

It is important to note that Zementis Server leverages the Predictive Model Markup Language (PMML) standard.
PMML handles data pre-processing and post-processing as well as the predictive model itself. In this way, the entire

predictive workflow can be implemented in PMML.

Note

In respect of considerations concerning EU General Data Protection Regulation (GDPR), our product stores
personal information in shape of a user ID for the purpose of logging in. The user ID can be created, modified
and removed as described in the Zementis Server Deployment Guide. As the input data might contain
sensitive personal information, please anonymize any such data to ensure that the processing of personal

data is in accordance with the GDPR.

1.1. Decision Solutions Overview

Zementis Server allows data-driven insight and expert knowledge to be combined into a single and powerful decision
strategy through the use of PMML. Whereas expert knowledge encapsulates the logic used by experts to solve
problems, data-driven knowledge is based on the ability to automatically recognize patterns in data not obvious to
the expert eye. These two different types of knowledge are represented by two powerful technologies: Business
Rules and Predictive Analytics. By bringing together both technologies, Zementis Server offers the best combination

of control and flexibility for orchestrating critical day-to-day business decisions.

During the process of building a predictive model, there is usually quite a bit of data analysis and data pre-processing
that need to take place. This is done to prepare the raw historical data so that it is suitable for model building and/
or to combine and transform different data fields so that they create feature detectors that offer a richer predictive
power than the input fields they were derived from. More often than not, such features entail looking at the data from

a descriptive point of view as to explain it. For example, a feature detector may be defined as an aggregate value

Page 1

5 software~

of an input field containing the transaction amount as part of a credit card transaction. If this feature detector is the
average transaction amount for the last month or week, the predictive model can use this information to generate a
prediction that takes into account the delta between the current amount and the average past amount. The average
amount for the last month is a typical case of descriptive analytics which tries to answer what happened in the past.
Descriptive features are extremely important since when fed into a predictive model, they transform the nature of the
information itself, allowing a model to answer what will happen next. Through PMML, Zementis Server is capable of
capturing this process entirely. It also takes it a step further, by including prescriptive analytics into the mix, which

is implemented by a series of post-processing steps expressed via the use of business rules.

Prescriptive analytics takes advantage of the outputs generated by a predictive technique by transforming them
into business decisions. As depicted in Figure 1.1 the process of integrating descriptive, predictive and prescriptive

analytics into a single solution is easy and straightforward with PMML and Zementis Server.

Figure 1.1. Decision Solution

Decision Solution

Descriptive Predictive Prescriptive
Analytics Analytics Analytics

Input
Validation

Data Pre- Predictive Data Post-
Processing Model Processing

Raw Inputs Signature

Outliers, MNormalize,

Missing Values,
Invalid Values

Neural Net, SVM,
Scorecard, Random
Forest, etc

Data and
operational types

Scaling,
Business Decisions,
Thresholds, etc.

Discretize, Bin,
Map, Aggregate,
etc

With Zementis Server, the power of predictive analytics is made available to any other application in your enterprise
via web services. Without further configuration or customization, a predictive model is exposed as a web service

and seamlessly participates in the overall business process flow.

Zementis Server is the first technology solution that enables an enterprise to score data from any source in batch
or real-time while combining the power of descriptive, predictive and prescriptive analytics by leveraging a well-
supported open industry standard. By using Zementis Server and PMML both the human resource and technology

requirement to deploy these powerful analytics is drastically reduced. At the same time, pace of deployment is
increased and model integrity and quality is improved.

In this guide, we start by describing the process of building and testing a predictive model in Chapter 2. This is
followed by a description of custom resources in Chapter 3. Chapter 4 gives an overview of the Zementis Server

Java Extensions API. Finally, an extensive description of the web service capabilities is provided in Chapter 5.

Page 2

5 software~

Chapter 2. Predictive Models

The conversation around Big Data for both technologists and businesses has become pervasive. The challenge
many enterprises and teams face is how to deliver measurable value from Big Data initiatives. By enabling rapid
deployment from the Data Scientist's desktop to the operational IT environment, Zementis Server and PMML provide
a standards-based methodology and process through which value from Big Data initiatives can be gained, quantified

and demonstrated.

The predictive model building process begins by working with and developing a deep understanding of historical data
which is mined for feature detectors. These are in turn used to build the predictive models. While a time consuming

and laborious process, this provides the foundation for creating value from Big Data.

Building models is only the first step to realizing the benefits of predictive analytics. The second and final step is to
actually use them within the overall business flow and processes. In other words, the models need to move from
the data scientist's desktop into the enterprise operational IT environment where they can be used for scoring new

data and drive business decisions.

Deployment of predictive models into the IT operational environment is all but straightforward. It can take as long
as the data analysis phase itself or even longer and consume a significant amount of resources. It is not uncommon
that by the time models are finally deployed, they are already stale and require to be refreshed with newer (historical)

data reflecting a changing market.

Zementis Server makes deployment and use of complex predictive models trivial. Zementis Server has been de-
signed from the ground up to consume, execute, optimize and scale Predictive Models that have been saved in
PMML. PMML is the standard for moving predictive models between applications and, as a consequence, is sup-
ported by the leading technology companies including IBM, Microsoft, Oracle, SAP, SAS and Software AG to hame
a few. PMML is developed by the Data Mining Group (DMG), an independent vendor led consortium that develops

data mining standards.

PMML is a very mature standard. Its latest version, PMML 4.4, was released in August 2016. Given that different
data mining tools may support different versions of PMML, Zementis Server incorporates proprietary IP developed
by Software AG that converts any older version of PMML (versions 2.0, 2.1, 3.0, 3.1, 3.2, 4.0, 4.1, 4.2 and 4.3)
into version 4.4. This converter also checks the code for any syntactic and semantic problems and corrects known

issues found in the PMML code of certain model building tools automatically.

PMML 4.4 incorporates many new elements into the standard, including elements for representing Time Series

Analysis (including SpectralAnalysis, ARIMA and SeasonalTrendDecomposition) and Anomaly Detection models.

Page 3

http://dmg.org

5 software~

Note

PMML 4.2 changed the way the target field is referred to in the mining schema element. In PMML 4.2,
the target field is simply referred to as "target" while in previous versions of PMML, it was referred to as
"predicted". This change avoids any confusion related to the target field which is used to train a model and
the true predicted field which is output by a model after scoring. As a consequence, Zementis Server also
changed the way it treats predicted fields. If a PMML file is missing the output element, Zementis Server will
add it to the file and will name the predicted output field "predictedValue" if no target field name is specified
in the model's mining schema. If however, the target field is given, Zementis Server will name the predicted
output field "predictedValue_X" where X is the name of the target field as specified in the mining schema.

Zementis Server will not add any output fields to a PMML file if it already has an output element.

If you would like to learn more about PMML, we highly recommend that you visit the Software AG web site for
a list of resources. We also recommend the book PMML in Action (2nd Edition): Unleashing the Power of Open
Standards for Data Mining and Predictive Analytics by Alex Guazzelli, Wen-Ching Lin, and Tridivesh Jena, which is
available for purchase on Amazon.com. "PMML in Action” gives an introduction to PMML as well as a PMML-based

description of all the predictive modeling techniques supported by Zementis Server.

Software AG also offers a two-day on-site training course in PMML which is usually enough training for data scientists

to become highly productive in using PMML. No pre-requisites for this course are required to be effective.
Zementis Server supports an extensive collection of statistical and data mining algorithms. These are:

< Anomaly Detection Models (Isolation Forest and One-Class SVM)

« Association Rules Models (Rectangular or Transactional format)

* Clustering Models (Distribution-Based, Center-Based, and 2-Step Clustering)

 Decision Trees (for classification and regression) together with multiple missing value handling strategies

(Default Child, Last Prediction, Null Prediction, Weighted Confidence, Aggregate Nodes)
* Deep Neural Networks (MobileNet, VGGNet, ResNet, RetinaNet)
« K-Nearest Neighbors (for regression, classification and clustering)
« Naive Bayes Classifiers (with continuous or categorical inputs)
» Neural Networks (Back-Propagation, Radial-Basis Function, and Neural-Gas)

* Regression Models (Linear, Polynomial, and Logistic) and General Regression Models (General Linear, Or-

dinal Multinomial, Generalized Linear, Cox)

Page 4

https://www.softwareag.com/corporate/products/az/zementis/default.html
https://www.amazon.com/PMML-Action-2nd-Unleashing-Predictive/dp/1470003244/
https://www.amazon.com/PMML-Action-2nd-Unleashing-Predictive/dp/1470003244/

5 software~

* Ruleset Models (Each rule contains a predicate and a predicted class value)
 Support Vector Machines (for regression and multi-class and binary classification)

« Scorecards (point allocation for categorical, continuous, and complex attributes as well as support for reason

codes)

« Time Series Models (Univariate Seasonal and Non-Seasonal ARIMA with computation of confidence intervals
for non-seasonal models, Multi-variate State Space Models with computation of confidence intervals, Support

for multi-step output in JSON format)

« Multiple models (model ensemble, segmentation, chaining, composition and cascade), including Random

Forest Models and Stochastic Boosting Models

Zementis Server also implements the definition of a data dictionary, missing and invalid values handling, outlier
treatment, as well as a myriad of functions for data pre- and post-processing, including: text mining, value mapping,
discretization, normalization, scaling, logical and arithmetic operators, conditional logic, built-in functions, business

decisions and thresholds.

Due to the highly publicized Netflix prize and the many tools that now make it easier for data scientists to develop
a solution containing multiple models, model ensembles are now being used to build many predictive solutions. As
depicted in Figure 2.1, in a model ensemble, every model is executed and the overall result or output is a combination

of the partial results obtained from each model.

Figure 2.1. Model Ensemble

Model

Ensemble

Data Pre-
Processing

Prediction

Majority Voting,
Wveighted Voting,
Weighted Average,
etc.

Model n

Scares from all
models are
computed

Page 5

http://www.netflixprize.com/

5 software~

PMML is capable of representing not only a model ensemble but also model composition, segmentation, chaining
and cascade. The same is true for Zementis Server, which consumes and executes PMML files containing multiple
models. With Zementis Server and PMML, after a model is built, export it as (or convert it to) PMML, upload it to

Zementis Server, and start scoring right away.

Zementis Server makes the task of verifying a model extremely easy. After a model gets uploaded in Zementis
Server, a test data file containing the expected results can be uploaded so that the necessary validation can be
performed, before the model is actually used to score new data. When presented with a scored data file, Zementis
Server will automatically operate in score-matching test mode. In this mode, Zementis Server will compare expected

scores against computed scores for each data record and warn the user if any mismatches are found.

The overall process of model building, using a commercial or open-source data mining tool as well as model de-
ployment, verification, and execution is depicted in Figure 2.2. In the next sections, we elaborate on each phase

of this process in more detail.

Figure 2.2. Predictive Modeling Process

Data Mining Tools

Model Deployment

Commercial Vendors

Integration/Execution

Open Source Tools

Predictive Algorithms

3
<+ Anomaly Detection MM L
<+ Association Rules e Predictive Model @ ZE M E NTI s

Markup Language

il
¥

Clustering BY SOFTWARE AG
«» Cox Regression

<+ Decision Trees

“» Deep Networks

<+ General and Generalized Linear
Models

1) Model Verification

Deployin minutes.... 3) Model Execution:

“+ K-Mearest Neighbors < Real-time Execution (via Web-

<+ Linear and Logistic Regression Services)

“* Multiple Models [Segmentation, <+ Batch-scoring
Chaining, Composition, and Ensemble,
including Random Forest Maodels and
Boosted Trees)

“* MNaive Bayes Classifiers
“ MNeural Networks

“+ Rule Set Models

“+ Scorecards

“* Support Vector Machines

Page 6

5 software~

2.1. Predictive Model Building Process

The process of creating predictive models starts by defining a clear business goal that needs to be achieved. This
is followed by the data analysis phase in which the data scientist mines historical data looking for all the pieces
deemed necessary for model building. Data is usually processed and feature detectors are created before a pre-
dictive algorithm such as a neural network is trained. Data analysis, model building and model validation is usually
performed within the scientist's desktop through the use of an array of tools and scripts. Today, the leading statistical
packages are able to export models in PMML, the language recognized by Zementis Server. Examples of such
statistical packages are IBM SPSS, SAS, R, and KNIME. For a more comprehensive list of tools that support the
PMML standard, check the Powered by PMML on the Data Mining Group (DMG) web site.

Besides this guide and as part of the overall documentation for Zementis Server, a number of sample models
represented in PMML format are also available for inspection and use. Our sample models provide the PMML files
listed in Table 2.1. These models were obtained from a variety of datasets, including the Iris, Heart, Audit and
Diabetes datasets. We use three of the sample models built with the Iris dataset to showcase the power of web

services through a series of examples. These are featured in the code shown in Chapter 5.

The Iris classification problem is one of the most famous data mining problems and datasets. It involves determining
the class of an Iris plant given the length and width of its sepal and petal. Possible classes are: set osa, vi r gi ni ca,
and ver si col or . The models built with the Iris dataset not only predict the class with the highest probability, but
also output the probabilities for each of the three classes. For more on the Iris dataset and for further information
on the Heart Disease dataset, please refer to Bache, K. and Lichman, M. (2013). UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

The Audit dataset is supplied as part of the R Rattle package - http://rattle.togaware.com (it is also available for
download as a CSV file from http://rattle.togaware.com/audit.csv). The Audit data set is an artificial dataset consist-
ing of fictional clients who have been audited, perhaps for tax refund compliance. For each case an outcome is
recorded (whether the taxpayer's claims had to be adjusted or not) and any amount of adjustment that resulted is

also recorded.

The Diabetes dataset consists of ten physiological variables (age, sex, weight, blood pressure ...) measure on 442
patients, and an indication of disease progression after one year. The goal is to predict disease progression from the
given physiological variables. For more information on the Diabetes dataset, please refer to Scikit-learn: Machine
Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Page 7

http://www.spss.com/
http://www.sas.com/
http://www.r-project.org/
http://www.knime.org/
http://www.dmg.org/products.html
http://dmg.org

5 software~

Table 2.1. Sample Predictive Models

File Name

Description

Heart Di sease M5_
Cl assification. pmm

A multiple model implementing model segmentation and used to predict the
likelihood of a person developing a heart disease. It contains three different
models: a linear regression model, a decision tree and a neural network
model. Each predictive model is executed depending on the value of an input
field.

TaxAudi t _SVM pnmi

A predictive model composed of a support vector machine used to predict
compliance issues with tax returns and the consequent need for them to be

audited.

Cust oner Chur n_NN. pnm

A predictive model composed of a neural network model used to predict the
likelihood of churn, based on attrition, for a company's customer base. This
model also defines thresholds and business rules as part of the model's post-

processing for implementing a business strategy to mitigate the risk of churn.

D abetes_RF. pnmi

A predictive model composed of a random forest model used to predict di-
abetes progression for a group of patients. This predictive model is an ex-
ample of multiple models being used to implement a random forest model

(model ensemble).

EConmrer ceFr aud_NN. pnmi

A predictive model composed of a neural network model used to predict
the likelihood of fraud for e-commerce transactions. This model requires
the use of custom functions for some of its data pre-processing, which are
made available through the file "custom.jar". It also requires a lookup table,
which can be found in the "customerStateMappingTable.xIs" file. Both files
are available as custom resource files (see Table 2.2 for information on how

to locate these files).

Transf or mati ons. pmmi

This file contains a series of data pre-processing steps. It illustrates how
PMML, in conjunction with Zementis Server, can be used solely for data ma-
nipulation. The results obtained from a PMML file containing transformations

can then be used for training a predictive model.

Iris_NN pmm A neural network model used to predict the class of Iris flower. This model
is used to illustrate the use of web services.
Iris_MR pmi A multinomial logistic regression used to predict the class of Iris flower. This

model is used to illustrate the use of web services.

Page 8

5 software~

File Name Description

Iris_CT.pmm A CART decision tree used to predict the class of Iris flower. This model is

used to illustrate the use of web services.

All sample files described here are available to download from the Zementis Console Help page. In there you will
find a link to a compressed file in ZIP format. When uncompressed, this file reveals a number of directories which

contain the sample files. Table 2.2 describes how the sample files are organized.

Table 2.2. Directory Structure of Sample Models

Directory Contents

nodel s Predictive models (PMML) files: contains the PMML files for all the sample
solutions.

resour ces Custom resource files: contains custom functions (JAR file) and a lookup

table for model "ECommerceFraud_NN.pmml". Upload these resource files

in Zementis Server before uploading the PMML model file.

dat a Scored data files: contains the scored data files in CSV format for mod-
el execution for all the sample predictive models. Score a data file in Ze-
mentis Server against its respective model in order to perform the score
matching test. Each data file is named according to its respective PMML
file. In this case, if the PMML file is "Diabetes_RF.pmml", the data file is

"Diabetes_RF.csv".

rest-client Source and build files for sample Java client to Zementis REST API.

2.2. Deploy and Test Predictive Models

Once your models are built and expressed in PMML, it is extremely easy to deploy them in Zementis Server. Man-

aging and deploying models can be accomplished through the use of the Zementis Console.

2.2.1. Deploying Models

Models are deployed in Zementis Server by uploading them directly in the Zementis Console. Although a data min-
ing tool may export an older version of PMML, Zementis Server will automatically perform comprehensive syntactic
and semantic checks, correct known issues and convert your PMML file to version 4.4 when the Enabl e val i da-
tion and correction on PMWL file(s) checkbox is checked. By default, the Enabl e val i dati on and

correction on PMML fil e(s) checkbox is checked. Unchecking the checkbox will improve upload time, but

Page 9

5 software~

this is only recommended for annotated PMML files that are generated after being processed by Zementis Server.
The annotated PMML file for a model can be downloaded by clicking the middle icon in the "Download" column of
the corresponding model name. The yellow shield indicates potential issues with a PMML file that may need to be
reviewed. The detailed warning messages are available in the annotated PMML file as comments at the top of the
PMML file. The corresponding model is fully functional and more often than not, these warnings are not relevant to
the scoring process. However, a review of these messages is highly recommended as, in some cases, they may
have an impact on the scoring process. The green shield indicates that the PMML file was uploaded without any
warnings or errors. For security vulnerability mitigation, the model name of uploaded model may be replaced with

safe characters when the value of rodel Name attribute in PMML file(s) contains special or reserved characters.
Tip
If the PMML file is large, such as the Random Forest model, we recommend compressing the file using ZIP/
GZIP before uploading. This will reduce the upload time dramatically.

If you had previously uploaded models into Zementis Server, those models would be listed in the Zementis Console
Predictive Models page. Figure 2.3 shows the Zementis Console after uploading the sample predictive models
described in Table 2.1.

Figure 2.3. Predictive Models in the Zementis Console

ZEMENTIS " :
Predictive Analytics Predictive Models Resources Score/Classify Data

o1, Upload PMML Files

Active Name Description Creation Date Download | Delete
P 1Y Y
) | ECommerceFraud_NN | Neural Network for evaluating the risk of fraud for e-commerce transactions (for demo purposes only). | 2011-10-14T11:14:31.5 ﬂﬁm oW
n Y
O | ENinoLR Linear Regression Model using the EINino dataset 0ct3,2011 BB
n A
O | JobCat_MLR Multinomial Logistic Regression Model 0Oct3,2011 = ﬁ

N 1Y
@ | scorecard LR Linear Regression representing a Scerecard through the use of transformations 2010-02-20T08:17:10.8 | |8 gﬁ

B B B ES

o Y
O | Transactional_LAR Association Rules Model Apr8,2011 mﬁ

RPC Web Service Description (WSDL) &3

Support Version: 10.3.0.0-SNAPSHOT

For more information on how to upload your models through the Zementis Console, see the Help page.

2.2.2. Testing Models

Given that models are built with different tools, you need to make sure that both Zementis Server and the model

development environment produce exactly the same results during scoring.

Page 10

5 software~

Zementis Server provides an integrated testing process to make sure your model was represented accurately,
uploaded correctly, and works as expected. This is also done through the Zementis Console which allows for a
model verification data file to be uploaded for score matching. This file should be in Comma Separated Values
(CSV) format containing one record per line (for more information on how to format your CSV file for scoring, please
refer to the Zementis support forum). Each record should have values for all the input variables along with at least
one of the output variables. The values for the output variables serve as the expected predicted values. Zementis
Server will compute new predicted values and compare them to the expected ones. If all the values match, the
model is considered production-ready, i.e. ready for scoring. If not, Zementis Server offers execution trace details

to facilitate trouble shooting.

The sample predictive models (Table 2.1) provide CSV files that can be used for testing their respective PMML
files. For more information on how to test models, see the Zementis Console Help page or the Zementis support

forum on model verification.

PMML also offers a "ModelVerification" element for similar testing purposes. In this way, verification records are part
of the PMML file itself. Given that Zementis Server supports this element, there is more than one way to test models.
For more information on this specific PMML element, please refer to the Data Mining Group (DMG) web site or to
the book PMML in Action (2nd Edition): Unleashing the Power of Open Standards for Data Mining and Predictive

Analytics by Alex Guazzelli, Wen-Ching Lin, and Tridivesh Jena, which is available for purchase on Amazon.com.

2.3. Data Scoring and Classification

Bulk scoring in batch mode can be easily performed through the Zementis Console, using the same process as for
model testing. First, select the target model and then upload a data file in CSV format. The only difference between
this process and the score-matching test is that in the present case, the predicted field and its expected scores are
not part of the data file. Zementis Server will process the uploaded file and return a new file with your original data
expanded with an extra column containing the predicted variable and the scores/results for each row. For more
details on how to format your data file for batch scoring in Zementis Server, please refer to the Zementis support

forum on data formatting.
Tip

If the data file is large, Software AG suggests compressing the file in ZIP format before uploading. This
reduces the upload time dramatically. In this case, Zementis Server also returns a compressed file contain-

ing the results.

Real-time scoring allows other applications to get and use predictions on demand from anywhere in your enterprise.
With Zementis Server this can be achieved through standard web service calls. Details on using web services can

be found in Chapter 5.

Page 11

https://support.zementis.com/entries/21194393-Formatting-your-data-file-for-batch-scoring-in-ADAPA
https://support.zementis.com/entries/21207918-verifying-your-model-in-adapa-did-it-upload-correctly
https://support.zementis.com/entries/21207918-verifying-your-model-in-adapa-did-it-upload-correctly
http://dmg.org
https://www.amazon.com/PMML-Action-2nd-Unleashing-Predictive/dp/1470003244/
https://www.amazon.com/PMML-Action-2nd-Unleashing-Predictive/dp/1470003244/
https://support.zementis.com/entries/21194393-Formatting-your-data-file-for-batch-scoring-in-ADAPA
https://support.zementis.com/entries/21194393-Formatting-your-data-file-for-batch-scoring-in-ADAPA

5 software~

2.4. Model Metrics

The Model Metrics feature describes Memory Metrics and Prediction Metrics for the selected model.

Clicking on the model name from the Zementis Console displays a pop-up window with model metrics for the re-
spective model. Memory metrics information of a model is displayed only if the Zementis Java Agent is configured
and the Prediction Metrics information will be displayed only when the scoring is applied at least once. Please refer

to the Deployment Guide for configuring the Zementis Java Agent.

Memory Metrics provides the information about the memory footprint of the model on the server and its related
attributes like used memory, free memory and total memory of the application. The same information is represented

as a vertical Bar Chart.

Prediction Metrics provides a scoring result summary for the models. Prediction Metrics of a classification model
displays the predicted categories and its respective counts as a Pie Chart. Prediction Metrics of a regression model
displays the Five Point Summary of predicted values i.e., Minimum, FirstQuartile, Median, ThirdQuartile and Max-

imum values as a Box Plot.

With the fresh deployment of Zementis Server the Prediction Metrics is empty and it will be displayed only if scoring
is applied. Prediction Metrics of a model will be reset when the model is deleted, deactivated or if the server is
restarted. Also the Prediction Metrics information that shows up is always the cumulative result with the past scoring

of the model.

Note

Currently the Prediction Metrics feature is supported only for classification and regression models. Please

refer to the Deployment Guide for configuring Model Metrics.

Page 12

5 software~

Figure 2.4. Memory Metrics and Prediction Metrics of Classification Model

ZEMENTIS
Predictive Analytics PredictiveModels ~ Resources Score/Classify Data a2
Upload PMML Files
Active Name Description Creation Date Download |Delete
41_0ther_chainFirst2 Sample scorecar R —— 2010-11-10T08:17:10.8 i}
Memory Metrics -
415 N del_modelChain_pollenindex Target Model Size 013 M8 Aug 10,2018
Used Memory 4169.329 MB
Caffe_model 2016 1.12.18 53 59 PMML Model Free Memory 950.658 M8 20160112 18:53:50.005145
Total Memery 5120.0 ME
HeartDisease_MS _Classification Model Segmenta M VodsiSize. BN Usechiemory B Frechemory purposes only). | 2012-12-12T15:23:24.1
6,000

Iris_NN Neural Network f Feb 15,2008
4,500

IsolationForests Isolation Forest 3,000 201807-14T19:42:01Z
1,500

LoanDefault_NN Neural Network f 2009-09-25T09:32:21.4
0

Memory Snapshot
Multinom_Model Multinom nnet m 2012-02-17 14:18:51

Prediction Metrics

MultipleDeviceMaintenanceModels Multiple Neural N| 20011-12-15T09:32:21.4
Iris-versicolor 50

(2 e A e e A R e A A A A A
DB D DD BB BB
A -
B8 858 5 58 58 58 858 5 5 8 5 &5 8

R_act_1 Random Forast T| fris-virginiea 50 2014-08-26 16:14:41
Iris-setosa 50

SCModel3 Aug 10,2018

@ Iris-versicolor
Shuttle_GZLM Generalized Line: riswirginica Feb 15,2008

@ lris-setosa
Transformations Different types o 20131021 12:32:33
prekernel 20041115 17:36:08
sequential_1 Keras Models in 2017-12:28 12:31:54.185821

Close .

Figure 2.5. Memory Metrics and Prediction Metrics of Regression Model

Resources Score/Classify Data

Upload PMML Files

Active Name Description Creation Date Download |Delete

L]

AL
31_Salford_crd144m_adapaCsv | MARS Model 0Oct 23,2018 -] 2]

Modal Metrics

AuditSVMModel ho-25T09:32:21.4

Memory Metrics

A v

- f-=

A a

IrisMLRModel Model Size .043 MB Jo-25700:32:21.4 | B8 &y

Used Memory 1660.957 MB

LoanDefault_ NN Free Memory 3450.0 MB 10-25T00:32:21.4 ﬁ ﬁ
Total Memory 5120.0 MB

Ay

-]

LoanNNModel)9-25T09:32:21.4
oeniess M ModelSize [UsedMemory [FreeMemory

6,000

4,500
1,500
. I

Memory Snapshot

B BB BB
5 8 8 8

Prediction Metrics.

Minimum 5.0
Support) § Version: 10.40.0-SNAPSF
FirstQuartile 170.0
Median 303.0
ThirdQuartile 445.0
Maximum 741.0

TotalObservations 995
800

600

400
200

2.5. Other Data Sources

Zementis Server also supports applying predictive models to a wide variety of data sources, such as images, audio

files, videos, binary feeds or even text files as input data. In Zementis Server, with binary input definition and proper

Page 13

5 software~

custom functions which convert unstructured data into structured data, the data type of the input source in the
deployed model could be in any format for analytics process. Details on how to apply models to binary data source

can be found in Section 3.4.

Page 14

5 software~

Chapter 3. Custom Resources

Predictive models may require external resources such as custom functions, look-up tables or training data tables.
Files containing such resources can be uploaded in Zementis Server using the Zementis Console. Note, such
resources should be uploaded before any models that depend on them. Also, deleting a resource file will remove all
the resources contained in it from Zementis Server. In this case, first the model that is dependent on the resource

should be deleted.

3.1. Custom PMML Functions

Zementis Server provides a facility to create and use custom PMML functions. This capability enables, for example,
the implementation of intricate calculations that cannot be easily described in PMML, functions that access external
systems to retrieve necessary data, or even specialized algorithms not supported by PMML. One class of functions
that can be easily implemented using custom functions which are aggregations over a period of time or window of
transactions. Aggregations are used to obtain, for example, the count, average, maximum and minimum for a set of
records. One example is to use custom functions to obtain the average transaction amount for a certain account for
the last 30 days. The predictive model ECommerceFraud_NN.pmml, provided as part of the sample models, uses
several custom functions to compute the average transaction amount as well as the transaction velocity for a period

of time. This model is described in Table 2.1

Zementis Server currently supports custom functions written in Java. Once created and made available to Zementis
Server, custom functions are used the same way as the built-in ones. The steps to achieve this are explained in

the following sections.

3.1.1. Create Custom PMML Functions

Custom functions are implemented as static methods of Java classes. For a method to be recognized as a custom
PMML function, the containing class needs to be annotated with the Zementis Server specific @ MVLFunct i ons
annotation. In addition, the types of the method parameters as well as its return type must be compatible with the

PMML data types. An example of such a function is shown in Figure 3.1.

Page 15

5 software~

Figure 3.1. Custom PMML Function Example

package com conpany. udf;
import com zenentis. st ereotype. PMMLFuncti ons

@MWLFuncti ons(nanmespace = "conpany")
cl ass Custonfunctions {
public static Long factorial (Long n) {
if (n==null) {
return null;
} elseif (n<0) {
throw new || | egal Argunent Excepti on()
} elseif (n==0) {
return 1

} else {
return n * factorial (n-1)
}

In this example, the class Recur si veFunct i ons has been annotated with the @MVLFunct i ons annotation. This
annotation informs Zementis Server that the class contains methods which may be used as PMML functions. The
parameter namespace defines a namespace for the functions defined in this class. Namespaces prevent conflicts
between function names. Within PMML, the namespace is used as a prefix for the name of the custom function.
For example, the PMML name of the function implemented by the Java method f act ori al in Figure 3.1 would

be conpany: factori al .

The namespace does not have to be unique for each class. Multiple classes may specify the same namespace. This
would allow, for example, creating the notion of a function library where functions spread across multiple class files
are grouped under one namespace. In this scenario, extra care needs to be taken so that there are no ambiguities

between function names located in different classes.

Within each annotated class, only methods that are declared as publ i ¢ and stati ¢ can be used as PMML
functions. In addition, a method should accept parameters and return values compatible with the PMML data types.

Table 3.1 provides the Java primitive types and classes that correspond to the different PMML data types.

Table 3.1. PMML and Java types in Zementis Server

PMML Data Type Java Primitive Type Java Class

bool ean bool ean j ava. | ang. Bool ean

date org.joda.tine. Local Date
dat eTi e org.joda.tine. DateTi me
doubl e doubl e j ava. | ang. Doubl e

Page 16

5 software~

PMML Data Type Java Primitive Type Java Class

fl oat fl oat j ava. |l ang. Fl oat

i nt eger | ong j ava.l ang. Long

string java.lang. String

tinme org.joda.tine. Local Tinme
bi nary java.io. |l nputStream

bi nary (buffered) byte[] byte[]

The method return type must be one of the Java types listed in the table. Note that methods declared as voi d
cannot be used as PMML functions. The types of the parameters must be either among those listed in the ta-
ble or among one of their super-classes or super-interfaces (j ava. | ang. Obj ect , j ava. | ang. Conpar abl e, or

j ava. | ang. Nunber). Finally, methods can also declare variable number of parameters (var ar gs).

Important

Make sure these methods are thread-safe as Zementis Server may need to execute these methods con-

currently in different threads.

Caution

The custom functions are packaged into a JAR file and loaded dynamically at runtime. This could result in
serious security risks which can lead to system compromise. Even though uploading the custom function
JARSs require Administrative privileges (adapa- admni n role), it is highly recommended that users upload

only trusted JARSs.

3.1.2. Use Custom PMML Functions

To make custom functions available to Zementis Server, compile the corresponding classes into a JAR file and
upload it using the Zementis Console. To compile a class using the @MVLFunct i ons annotation, include the
adapa- api - 10. 7. 0. 2. j ar file in the classpath. This file is included in the Zementis Server distribution package

as well as the provided package of sample files.

Once deployed, custom functions can be used exactly like the built-in functions within Appl y transformations. Please
make sure you use the fully qualified name of the custom function, i.e. prefix the function name with the appropri-
ate namespace. The PMML fragment in Figure 3.2 contains a simple example that uses the function defined in

Figure 3.1.

Page 17

5 software~

Figure 3.2. Example Using a Custom Function in PMML

<Deri vedFi el d nane="fi el d2" optype="conti nuous" dataType="integer">
<Apply function="conpany:factorial">
<Fi el dRef field="fieldl"/>

</ Appl y>
</ Deri vedFi el d>

3.1.3. Non-Deterministic Functions

When processing PMML models, Zementis Server performs certain performance optimizations which assume that
functions are deterministic, i.e. when presented with the same input values they always return the same result.
However, this may not be the case for all functions. For example, the result of a function may depend on the current
time and date. Another example might be a call to an external source that retrieves information that is being modified

by other systems.

With Zementis Server, a custom function may be declared as non-deterministic by annotating the corresponding
implementation Java method with the @lonDet er mi ni st i cFunct i on annotation. Note that this annotation marks
a method, and not the containing class. This means a class implementing multiple functions may contain a combi-

nation of deterministic and non-deterministic functions.

The following is an example of a non-deterministic function which provides the current time value for a specific a

time zone.

Figure 3.3. Custom PMML Function Example

package com conpany. udf;

import com zenentis. st ereotype. PMMLFuncti ons;

import com zenentis. st ereotype. NonDet er nmi ni sti cFuncti on;
import org.joda.tine.DateTi ne;

i mport org.joda.tine.DateTi mneZone;

@MWLFuncti ons(namespace = "conpany")
cl ass Custonfunctions {

@\onDet er mi ni sti cFuncti on
public static DateTi me dateTi neAt Zonme(String ti meZone) {
if (timeZone == null) {
return null;
}

return new Dat eTi ne(Dat eTi mneZone. forl D(ti meZone));

}

Page 18

5 software~

3.2. External Lookup Tables

Predictive models can sometimes require the use of lookup tables. If relatively small and static, these tables can
be easily embedded within the PMML file itself. However, if they are fairly large and/or they are modified frequently,
it is more practical to create and manage them separately. Zementis Server supports external lookup tables and

their seamless integration with predictive models.

As an example of a simple lookup table, suppose a model makes use of a country's GDP (Gross Domestic Product).
That requires the ability to look up the GDP by country name. Such a simple lookup table is shown in Figure 3.4.
Given an input country, say Taiwan, the row in the lookup table which has Tai wan in its first column maps it to a
GDP of 576. 20. Being an example, we show only a few mappings; in reality, we can imagine similar cases with

hundreds and even thousands of mappings.

Figure 3.4. Lookup Table Example

Find Country Set GDP

Afghanistan 21.50
Brazil 1,492.00
Canada 1,023.00
China 7,262.00
Egypt 316.30
Germany 2,362.00
Greece 226.40
India 3,319.00
Irag 54.40
Morocco 134.60
Switzerland 251.90
Taiwan 576.20
us 11,750.00

The predictive model ECommerceFraud_NN.pmml, provided as part of the sample models, uses a lookup table to

retrieve the number of points for each US state. This model is described in Table 2.1

3.2.1. Create Lookup Tables in Excel

Zementis Server supports lookup tables implemented in Excel files. In this section, we describe the structure of such
tables. In general, a lookup table has one or more input variables and an output variable. The intended functionality
is that any set input values can be looked up to retrieve the corresponding output value, if one is found. Figure 3.5
shows a slightly expanded version of the previous example. Here, we have two input variables, Count ry and
St at e. The output variable is GDP.

Page 19

5 software~

Figure 3.5. Sample Excel Lookup Table

LookupTable GDPTable
input Country itring
input state itring
output GOP Double
Country State GDP
Afghanistan 21.50
Brazil 149200
Canada 1023.00
China F262.00
Egvpt 316,30
Germany 2362.00
Greece 226,40
India 3319.00
LS California B57.37
LIS 11750.00

A single Excel file may contain one or more lookup tables. However, only one lookup table is allowed per work-
sheet. Multiple tables should be arranged in separate worksheets. Within a worksheet, the beginning of a lookup
table is identified by the keyword LookupTabl e. The name of the table should appear in the cell right next to this
keyword (GDPTabl e in this example). The definitions of the input and output variables start in the cell right below
the LookupTabl e keyword. Variables must be listed one per row, with the output variable listed last. For each
variable, provide the usage (i nput or out put), the name and the data type. The variable names must be unique.
The allowed types of data are | nt eger, Long, Doubl e, Fl oat , Bool ean and St ri ng, corresponding to the Java
primitive types. In this example, the first row defines an input variable called Count r y which is of type St ri ng. The
next row defines an input variable St at e, again of type St ri ng. Finally, the output variable is called GDP which

is of type Doubl e.

The data area of the lookup table starts right below the output variable definition. In the simple form shown here, this
area consists of one column per variable. The first is the header row, where the name of the corresponding variable
is listed. All the following rows contain combinations of input and output values. Each row represents a mapping from
the input values to the output value. Note that empty cells are allowed. For an input variable, an empty cell represents
any val ue. For an output variable, an empty cell represents no value (or a nul | value). A fully empty row, i.e., a

row with empty cells for all the variables marks the end of the table. Anything below a fully empty row is ignored.

Page 20

5 software~

Duplicate mappings are not allowed. However, with empty cells representing any val ue, overlapping mappings are
possible (and allowed). To illustrate this, please consider the overlapping mapping in last two rows of the example
in Figure 3.5. The second to last row implies that if the country is USA and the state is CA then the GDP is 557.37.
However, the last row implies that if the country is USA, the GDP is 11750.00 no matter what the state is. In the
presence of overlapping mappings, the tighter mapping, i.e. the mapping with more matching input values, prevails.
In the current example, this means that the a GDP lookup for CA will result in 557.37 and a GDP lookup for any
other state will be 11,750.00

In some cases, it is desirable to arrange some mapping as a cross tab. Such an example is shown in Figure 3.6 where
the probability of child obesity can be looked up by child age and group. The probabilities for all the combinations
of four child groups (Rural Girls, Urban Girls, Rural Boys, and Urban Boys) and six different ages (10 through 15)

are presented.

Figure 3.6. A LookupTable with two inputs and one output

LookupTable ChildObesity

input Group iring

input Age Integer

output ObesityProbabil ity Dauble

Age 10 11 12 13 14 15
Group OhesityProbahility

Rural Girls 0.0058 0.0116 0.0566 0.0309 0.0174 0.0000
Urban Girls 0.03550 0.0570 0.0467 0.0&50 0.04z0 0.0526
Fural Boys 0.0222 0.0333 0.0234 0.0411 0.0118 0.0384
Urban Boys 0.0730 0.0730 0.0745 0.0627 0.0668 0.0117%

The structure of a cross tab lookup table is similar to the previous one. The only difference is that the values for one
or more of the input variables are listed horizontally above the header of the data area, as opposed to vertically. Note
that not all input variables can be listed horizontally. At least one must be listed vertically. In addition, the header
cell containing the name of the output variable must span all the data columns. Similarly to the previous case, the

boundaries of the lookup table are identified by the first fully empty row and the first fully empty column.

Our sample solution provides a lookup table in the Excel file bor r ower St at eMappi ngTabl e. xI s. This table is

used by the demo PMML model for fixed rate loans.

3.2.2. Use Lookup Tables in PMML

In PMML, lookup tables can be used within MapVal ues transformations and the Tabl eLocat or mechanism. In the
following sample PMML snippet, the lookup table Chi | dCbesi ty is used to retrieve the appropriate child obesity
probability.

Page 21

5 software~

<Local Transfor mati ons>
<Deri vedFi el d nane="obesi tyProbability" dataType="doubl e" optype="conti nuous">
<MapVal ues out put Col utm="Pr obabi | i ty" defaul t Val ue="0.5" napM ssi ngTo="0">
<Fi el dCol umPai r col utm="Age" fi el d="chil dAge" />
<Fi el dCol umPai r col um="G oup" field="childG oup" />
<Tabl eLocat or >
<Ext ensi on ext ender =" ADAPA" nane="TABLE NAME' val ue="Chil dOoesity" />
</ Tabl eLocat or >
</ MapVal ues>
</ Deri vedFi el d>
</ Local Transf ormati ons>

The table used in the mapping is identified in the Ext ensi on element. The value attribute of this element contains
the name of the lookup table to use. The rest of the structure details what fields of the model (chi | dAge, chi | d-

Group, and chi | dObesi ty) correspond to what columns (Age, G oup, and Pr obabi | i t y) of the lookup table.

3.3. External Training Data Tables

Some algorithms (e.g. K Nearest Neighbor) expect a table of training data as part of the model. This table can be
included in the PMML document, or loaded as an external resource in CSV format. The format of the external table
is identical to the one of the test data offered in the samples directory. This file should be in CSV format containing
one record per line (for more information on how to format your CSV file, please refer to the Zementis support

forum). Each record should have values for all the input variables along with the predicted values.

<Tr ai ni ngl nst ances>
<l nst anceFi el ds>
<l nstanceFi el d fiel d="Sepal . Lengt h" col utm="Sepal . Lengt h"/>
<l nstanceFi el d fiel d="Sepal . Wdth" col um="Sepal . Wdth"/>
<InstanceField field="Petal.Length" col um="Petal .Length"/>
<InstanceField field="Petal . Wdth" colum="Petal . Wdth"/>
<l nstanceFi el d fiel d="Speci es" col utm="Speci es"/ >
</ nst anceFi el ds>
<Tabl eLocat or >
<Ext ensi on ext ender =" ADAPA" nane="TRAI Nl NG_| NSTANCES_NAME" val ue="Iris_KNN. csv" />
</ Tabl eLocat or >
</ Trai ni ngl nst ances>

The table is identified in the Ext ensi on element. The value attribute of this element contains the name of the training
data table to use including the file ending. The | nst anceFi el ds element details one to one correspondence

between the field of the model and the column of the table.

3.4. Using Binary Data Type

Some predictive models use bi nary data as input for generating predictions. Zementis Server supports applying
models to bi nary data by utilizing an external custom function which transforms unstructured data into the format
expected by the model. Given proper bi nar y input definition and appropriate custom function deployed in Zementis

Server, the bi nary input data can be seamlessly integrated into the prediction process. This section shows how to

Page 22

https://support.zementis.com/entries/21194393-Formatting-your-data-file-for-batch-scoring-in-ADAPA
https://support.zementis.com/entries/21194393-Formatting-your-data-file-for-batch-scoring-in-ADAPA

5 software~

define a bi nary input in PMML using DeepNet wor k model as an example and how to create the corresponding
custom function that processes the provided bi nar y input data. This sample is also packaged with the distribution:

adapa- app- 10. 7. 0. 2. zi p/ adapa- sanpel s/ resour ces/ cust om f unct i ons- deepnet wor k.

3.4.1. Using Default bi nary Type

Figure 3.7 shows an example of how to define bi nary input type. This can be done by setting the data type as
bi nary in the <Dat aFi el d> element. The bi nary input data, i nput _i mage in this case, can be sent to Zemen-
tis Server by providng the contents of the corresponding file. Zementis Server will process the contents of the file
as a single bi nary input record. It is recommended to provide MIME type in m neType attribute, for example
m meType="i mage/ png" . Zementis Server will do the data format verification before starting the prediction pro-

cess in order to avoid data type mismatch.

Figure 3.7. Binary DataType Example

<Dat aDi cti onary nunber O Fi el ds="2">
<Dat aFi el d name="i nput _i nage" optype="categorical" dataType="bi nary" m nmeType="i mage/ png"/>
<Dat aFi el d nanme="predi ctions" optype="categorical" dataType="string">
<Val ue val ue="predi cted_category_a"/>
<Val ue val ue="predi cted_category_b"/>
<Val ue val ue="predi cted_category_c"/>
</ Dat aFi el d>
</ Dat aDi cti onary>

Here are the steps to create a corresponding custom function:
* Implement a custom function as static method of Java class.
< Annotate it with Zementis Server specific @MVLFunct i ons annotation.
« Specify the type of the method parameter as j ava. i 0. | nput St r eam

The custom function shown in Figure 3.8 processes the incoming i nput _i nage and returns the Base64 encoded

String representing the pixel values of the image.

Page 23

5 software~

Figure 3.8. Custom Function of Binary Data Example

package com zenenti s. udf;

i mport java.awt.i mage. Buf f er edl mage;

import java.io. | OException;

i mport java.io.lnputStream

i mport java.nio.ByteBuffer;

import java.nio.ByteOder;

i mport javax.i magei o. | magel O

i mport org.apache. conmons. codec. bi nary. Base64;
import com zenenti s. st ereotype. PMMLFuncti ons;

@MWLFuncti ons(namespace = "nmyCustonfuncti on")
public class Custonfunctions {

public static String getBase64String(lnputStreaminputStrean throws | OException {

/'l read inage frominputstream

Buf f er edl mage bufferedl mage = | nagel O read(i nput Strean;
float[] array = preprocess(bufferedl mage);

return encodeFl oat ArrayToBase64String(array);

}

private static String encodeFl oat ArrayToBase64String(float[] array) {
int float32Length = 4;
byte[] floatByteArray = new byte[array.length * float32Length];
for (int i =0; i < array.length; i++) {
byte[] thisFloatArray =

Byt eBuf fer. al | ocat e(fl oat 32Lengt h) . order (Byt eOrder. LI TTLE_ENDI AN) . put Fl oat (array[i]).array();

for (int j =0; j <thisFloatArray.length; j++) {
floatByteArray[float32Length * i + j] = thisFloatArray[j];
}
}

return "data:fl oat 32; base64," + new String(Base64. encodeBase64(fl oat ByteArray));

}

private static float[] preprocess(Bufferedl nage bufferedl nage) {
int height = bufferedl mage. get Hei ght () ;
int width = bufferedl mage. get Wdt h();
int channel = 3;
float[] floatRGBArray = new float[height * width * channel];
int counter = 0;
for (int i =0; i < height; i++) {
for (int j =0; j <wdth; j++) {
/'l read
int pixel = bufferedl mage. getRGB(j, i);
int red = (pixel > 16) & OxFF;
int green = (pixel >> 8) & OxFF;
int blue = pixel & OxFF;

/] pre-process and wite
float r = (red / 127.5f) - 1.0f;
fl oat RGBArray[counter++] = r;

float g = (green / 127.5f) - 1.0f;
fl oat RGBArray[counter++] = g;

float b = (blue / 127.5f) - 1.0f;
fl oat RGBArray[counter++] = b;

}
}
return fl oat RGBArray;

Page 24

5 software~

Once the custom function in Figure 3.8 is compiled and deployed, myCust onfuncti on: get Base64St ri ng can
be used exactly like a built-in function within Appl y transformations. The PMML fragment in Figure 3.9 contains a

simple example that uses the function defined in Figure 3.8.

Figure 3.9. Example Using Custom Function of Binary Data in PMML

<DeepNet wor k nodel Nane="DeepNet wor k Sanpl e" functi onNanme="cl assificati on" nunber O Layers="2">

<Local Transf or nati ons>
<Deri vedFi el d name="i nput _base64Stri ng" optype="categorical" dataType="string">
<Apply function="nyCustonfuncti on: get Base64Stri ng">
<Fi el dRef field="input_i mage"/>
</ Appl y>
</ Deri vedFi el d>
</ Local Transf or mat i ons>
<Net wor kLayer | ayer Type="Input" |ayerld="layer_1" connectionLayer|d="na"
i nput Fi el dNanme="i nput _base64String">
<Layer Par aneters i nputDi nensi on="(2, 2, 3)" outputDi nension="(2, 2, 3)"/>
</ Net wor kLayer >

</ DeepNet wor k>

3.4.2. Using Buffered bi nary Type

Zementis Server provides two ways to manage bi nar y input data. The provided bi nary data can be processed
eitherasaj ava. i 0. | nput St r eamobjector abyt e[] . The data types are listed in Table 3.1. By default Zementis
Server processes bi nary input data asj ava. i 0. | nput St r eam This means the provided input will be read only
once. If bi nary input data needs to be read more than once, set Bl NARY_BUFFERED as t r ue in <Ext ensi on>

element as shown in PMML fragment in Figure 3.10.

Figure 3.10. Binary (Buffered) DataType Example

<Dat aDi cti onary nunber O Fi el ds="2">
<Dat aFi el d nanme="i nput _i mage" optype="categorical" dataType="bi nary" m nmeType="i mage/ png" >
<Ext ensi on ext ender =" ADAPA" nane="Bl NARY_BUFFERED"' val ue="true" />
</ Dat aFi el d>
<Dat aFi el d nane="predi cti ons" optype="categorical" dataType="string">
<Val ue val ue="predi cted_category_a"/>
<Val ue val ue="predi cted_category_b"/>
<Val ue val ue="predi cted_category_c"/>
</ Dat aFi el d>
</ Dat aDi cti onary>

Here are the steps to create a corresponding custom function:
« Implement a custom function as static method of Java class.
* Annotate it with Zementis Server specific @MVLFunct i ons annotation.

* Specify the type of the method parameter as byt e[] .

Page 25

5 software~

Figure 3.11. Custom Function of Buffered Binary Data Example

package com zenenti s. udf;

i mport java.awt.i mage. Buf f er edl mage;

import java.io.ByteArrayl nput Stream

import java.io.|OException;

i mport java.io.lnputStream

i mport javax.i magei o. | magel G

import com zenenti s. st ereotype. PMMLFuncti ons;

@MWLFuncti ons(namespace = "nmyCustonfuncti on")
public class Custonfunctions {

public static String getBase64String(byte[] byteArray) {
Buf f er edl mage bufferedl mage = | nagel O read(new Byt eArrayl nput Strean(byt eArray));
float[] array = preprocess(bufferedl mage);
return encodeFl oat ArrayToBase64String(array);

}

private static float[] preprocess(Bufferedl nage bufferedl nage) {

return fl oat RGBArray;
}

private static String encodeFl oat ArrayToBase64String(float[] array) {

return base64encodedStri ng;

Once the custom function in Figure 3.11 is compiled and deployed, myCust onfFunct i on: get Base64St ri ng can
be used exactly like a built-in function within Appl y transformations. The PMML fragment in Figure 3.12 contains

a simple example that uses the function defined in Figure 3.11.

Figure 3.12. Example Using Custom Function of Buffered Binary Data in PMML

<DeepNet wor k nodel Nane="DeepNet wor k Sanpl e" functi onNanme="cl assi fication" nunberf Layers="2">

<Local Transfor mati ons>
<Deri vedFi el d nanme="i nput _base64Stri ng" optype="categorical" dataType="string">
<Apply function="nyCustonfFunction: get Base64Stri ng">
<Fi el dRef field="input_i mage"/>
</ Appl y>
</ Deri vedFi el d>
</ Local Transformati ons>
<Net wor kLayer | ayer Type="Input" |ayerld="Ilayer_1" connecti onLayer| d="na"
i nput Fi el dNane="i nput _base64String">
<Layer Par anet ers i nput Di nensi on="(2, 2, 3)" outputDi nmension="(2, 2, 3)"/>
</ Net wor kLayer >

</ DeepNet wor k>

3.5. Deploy Resources

Custom PMML functions or lookup tables are deployed in Zementis Server by simply uploading them directly in

the Zementis Console.

Page 26

5 software~

If you have previously uploaded any resource files into Zementis Server, these are shown in the Zementis Console
as a list. Figure 3.13 shows the Zementis Console after the uploading of the lookup table and custom functions (JAR

file) used by predictive model ECommerceFraud_NN.pmml (for more details on this sample mode, see Table 2.1).

Figure 3.13. Resource Files in the Zementis Console

ZEMENTIS

Predictive Analytics Predictive Models ~ Resources Score/Classify Data a
1, Upload Custom Resources
File Name Content Resources | Download | Delete
ECommerceFraud NN jar |Custom Functions ieientiemespece | B | iy
. fraud

Table Name

ECommerceFraud NN.xls | Lookup Tables | = ™t g o

Support Version: 10.3.0.0-SNAPSHOT

3.5.1. Deleting Resources

When deleting a resource file which is a downstream dependency of one of the models from the models list, you must
first delete the model and then delete the resource. Figure 3.14 shows the Zementis Console when an exception

is thrown.

Figure 3.14. Resource dependency exception in the Zementis Console

ZEMENTIS - :
Predictive Analytics Predictive Models Resources Score/Classify Data

Upload Custom Resources

File Name Content Resources Download | Delete

Function Namespace b
ECommercefraud NN jar | Custom Functions| {7} -] i}

Table Name >
ECommerceFraud_NNxls | Lookup Tables rmemonts] i}

The file [ECommerceFraud_NN.jar] contains
resources required by the Model(s)

() [ECommerceFraud NNI|. Please delete these
model(s) before deleting the file
[ECommerceFraud_NN.jar]

Close

Support Version: 10.3.0.0-SNAPSHOT

Page 27

5 software~

3.6. Supporting Python scripts in PMML

Zementis Server currently supports custom functions written in Java. Once created and made available to Zementis
Server, custom functions are used the same way as the built-in ones. As an alternative, the same functionality can
also be achieved by embedding python scripts in PMML. This approach eliminates the dependency on external

resources by capturing the pre-processing transformation steps as python code embedded within the PMML file.

3.6.1. Define a Function with python script in PMML

Custom functions can be defined as a python script in PMML. For a Python script to be identified as a custom
function script by zementis, it has to be defined as an Ext ensi on within the Appl y element of Def i neFuncti on

element. An example of such a script is shown in Figure 3.16

The nane attribute of the Appl y element needs to be defined as pyt hon and the script has to be enclosed within

the Ext ensi on element of Appl y element by defining the Ext ensi on attributes appropriately.

Python script can be represented in clear text with proper indentation as shown in Figure 3.16 . It can also be

represented in Base64 encoded text as shown in Figure 3.17 to avoid whitespace issues.

The python script has to be defined in the form of a python function by accepting required input as function param-

eters.

The function parameters are passed as string data types from zementis and they have to be converted into their
respective python data types using python built-in functions. An example of type conversion is shown in Figure 3.15.

Please refer Table 3.2 for the data type mapping.

Figure 3.15. Data Type Conversion Example

<Def i neFuncti on nane="cust onfunc" optype="conti nuous" dataType="doubl e">
<Par anet er Fi el d nane="transacti onAmount" dat aType="doubl e" />
<Apply function="python">
<Ext ensi on ext ender =" ADAPA" nane="avgPer Day" val ue="doubl e">
def avgPer Day(transacti onAmount):
amount =f | oat (t ransacti onAnmount)/ 30;
return anount;
</ Ext ensi on>
<Fi el dRef fiel d="transacti onAmount" />
</ Appl y>
</ Defi neFuncti on>

Table 3.2. Data Type Mapping

PMML Type Python Type

i nt eger i nt eger Exanpl e: i nt (paranval ue)

Page 28

5 software~

PMML Type

Python Type

float, double

fl oat Exanpl e: fl oat (paranval ue)

string, binary

No conversion is required.

Note

The python script can be auto-generated into the PMML using Nyoka PMML exporter API. Please refer to

Nyoka for details.

Table 3.3. Purpose of each attribute in Extension element

Attribute Name

Usage

ext ender

Val ue of this attribute should be ADAPA.

nane

The value of this attribute should be as
same as the script function nane. Refer
Figure 3.16, getBase64EnocdedString is the
mai n function and the sane nanme i s provi ded

for the nane attribute.

val ue

The value of this attribute is the return
data type value fromthe script function.
For exanple: string or integer or float or

doubl e.

Page 29

https://github.com/nyoka-pmml/nyoka/

5 software~

Figure 3.16. Custom Python Script Example

<Def i neFuncti on nanme="pyt honCust onfFunc" optype="categorical" dataType="string">
<Par anet er Fi el d nanme="i mage" dat aType="bi nary"/>
<Apply function="python">
<Ext ensi on ext ender =" ADAPA" nane="get Base64EncodedStri ng" val ue="string">
def fromfloatArray(floatArray, nlPos = 0):
if sys.version_info >= (3,0):
if nlPos > O:
result =""
nl = nl Pos
fArray = array('f')
for i in range(0, len(floatArray)):
fArray. append(floatArray[i])

nl -=1

if le(ni, 0):
result += str(base64. standard_b64encode(fArray), 'utf-8') + "\n"
nl = nl Pos

fArray = array('f')
result += str(base64. standard_b64encode(fArray), 'utf-8")
return result
el se:
resul t "
fArray array('f')
for i in range(0, len(floatArray)):
fArray. append(fl oatArray[i])
result += str(base64. standard_b64encode(fArray), 'utf-8")
return result

el se:

if nlPos > 0:
result =""
nl = nl Pos

fArray = array('f')
for i in range(0, len(floatArray)):
fArray. append(fl oatArray[i])

nl -=1

if le(ni, 0):
result += baseb64. standard_b64encode(fArray) + "\n"
nl = nl Pos

fArray = array('f')
result += base64. st andard_b64encode(f Array)
return result
el se:
resul t "
fArray array('f')
for i in range(0, len(floatArray)):
fArray. append(fl oatArray[i])
result += base64. st andard_b64encode(f Array)
return result
def getBase64EncodedString(input):
fromPIL inport |nage
wi th | nage. open(input) as ing:
wi dt h, height = ing.size
pi x=i ng. | oad()
x=list(ing.getdata())
pi xels = list()
for t in x:
R G B=t
for pix in [R G B]:
pi xel s. append(pix / 127.5 - 1.0)

nyarray = np.asarray(pixels)
return fromfloatArray(nyarray)
</ Ext ensi on>
<Fi el dRef field="i mage"/>
</ Appl y>
</ Def i neFuncti on>

Page 30

5 software~

Figure 3.17. Custom Python Script in Base64 Encoded Format

<Def i neFuncti on nane="cust onfFunc" optype="categorical" dataType="string">
<Par anet er Fi el d nane="i nage" dataType="bi nary"/>
<Apply function="python">
<Ext ensi on ext ender =" ADAPA" nane="get Base64EncodedStri ng" val ue="string">
ZGVm &Zyb21f ZmxvYXRBcnJheShnmb&hdEFycnF5LCBubFBvcy A9l DApOgOKI CAgl Cl i | m\vbnZl cnRzl HRoZSBnb G
dEFycnF51 d ud@&BgYSBi YXN Nj Qgc3RyaWsnOyBubFBvczogaWszZXJ0cyBcbi BhZnRl ci BubFBvcyBmb&hdHWaW g
Z2| 2Z\Wigl i | i DQogl CAgaWLwb3J0!1 HN5cwOKI CAgl GZyb20gYXJy YXkgaWlwbh3J01 GFycnF5DQogl CAgaWiwb3J01 Glh
C2U2NAOKI CAgl @ ml HN5cy52ZXJzaVWuX2l uZnBgPj 0gKDMs MCk6DQogl CAgl CAgl G ml GesU@z| DAgMDoNGi Agl CAg
| CAgl CAgl HIl c3VsdCA9I Cl i DQogl CAgl CAgl CAgl CBubCA91 G5s UGz DQogl CAgl CAgl CAgl CBmiXJy YXkgPSBhcnJh
eSgnZi cpDQogl CAgl CAgl CAgl CBb3I gaSBphi By YWsnZSgwlCBs ZWioZmxv YXRBcnJhe SkpOgOKI CAgl CAgl CAgl CAg
| CAgl GZBcnJheS5hcHBI bmQoZmxv YXRBcnJheVt pXSkNCi Agl CAgl CAgl CAgl CAgl CBubCAt PSAXxDQogl CAgl CAgl CAg
| CAgl CAgaWrgbGUobj EsMCk6DQogl CAgl CAgl CAgl CAgl CAgl CAgl HII c3VsdCAr PSBzdHI 0YnFzZTYOLNNOYWk YXJk
X21 2NGVU Y29k ZShnXJy YXkpLCAndXRnLTgnKSAr | Cchi | NG Agl CAgl CAgl CAgl CAgl CAgl CAgbmagPSBubFBvcwOK
| CAgl CAgl CAgl CAgl CAgl CAgl CBmXJy YXkgPSBhcnJheSgnZi cpDQogl CAgl CAgl CAgl CBy ZXN1bHQgKz0gc3RyKGIh
c2U2NC5zdGFUZGFy ZF9i Nj Rl bm\vZGUoZk Fy cnF5KSwgJ3V0Zi 04JykNGi Agl CAgl CAgl CAgl HII dHVybi By ZXN1bHQN
Ci Agl CAgl CAgZWzZToNCi Agl CAgl CAgl CAgl HJl c3VsdCA9I Cl i DQogl CAgl CAgl CAgl CBmXJy YXkgPSBhcnJheSgn
Zi cpDQogl CAgl CAgl CAgl CBb31 gaSBphi By YWsnZSgwl CBs ZWioZmxv YXRBcnJhe SkpOgOKI CAgl CAgl CAgl CAgl CAg
| &ZBcnJheS5hcHBI bmQoZnmxv YXRBcnJheVt pXSkNCi Agl CAgl CAgl CAgl HII c3VsdCAr PSBzdHI oYnFzZTYOLNNOYWsk
YXIKX21 2NGVUY29k ZShnXJy YXk pLCANdXRL TgnKQOKI CAgl CAgl CAgl CAgemVOdXJul HII c3VsdAOKI CAgl GVsc2UB
DQogl CAgl CAgl G m GosU@z| D4gMDoNCi Agl CAgl CAgl CAgl HJI c3VsdCA9I Cl i DQogl CAgl CAgl CAgl CBubCA9I Gbs
UGz DQogl CAgl CAgl CAgl CBmiQXJy YXkgPSBhcnJheSgnZi cpDQogl CAgl CAgl CAgl CBnb3I gaSBpbi By YWsnZSgwi CBs
ZWioZmxv YXRBcnJheSkpOgOKI CAgl CAgl CAgl CAgl CAgl GZBcnJheS5hcHBI bnQoZmxv YXRBcnJheVt pXSkNG Agl CAg
| CAgl CAgl CAgl CBubCAt PSAxDQogl CAgl CAgl CAgl CAgl CAgaWrghGUobj EsMCk6DQogl CAgl CAgl CAgl CAgl CAgl CAg
| HJI ¢3VsdCAr PSBi YXNI Nj Quc3RhbrRhenRf Y] YOZWBj b2RI KGZBcnJheSkgKy Al XG4i DQogl CAgl CAgl CAgl CAgl CAg
| CAgl G5s| DOgbmxQo3MNGi Agl CAgl CAgl CAgl CAgl CAgl CAgZkFycnF51 DOgYXJyYXkoJ2YnKQOKI CAgl CAgl CAgl CAg
cnmvVzdWk0l Cs9I GIhc2U2NC5zdGFuZGFy ZF9i Nj Rl bmi\vZGUoZk Fy cmF5KQOKI CAgl CAgl CAgl CAgemVOdXJul Hl c3Vs
dAOKI CAgl CAgl CBI bHNI OgOKI CAgl CAgl CAgl CAgcmvzdW0I DOgl i | NG Agl CAgl CAgl CAgl GZBcnJheSA9I GFycnF5
KCdmlykNGi Agl CAgl CAgl CAgl GZvci Bpl G ul HIhbndl KDAs| GxI bi hmbGIhdEFy cnF5KSk6DQogl CAgl CAgl CAgl CAg
| CAgZk Fy cnF5LnmFwe GVuZChmb @ hdEFy cnF5W21 dKQOKI CAgl CAgl CAgl CAgcnmivzdW«0I Cs91 GIhc2U2NC5zdGFuZGRy
ZF9i Nj Rl bmi\vZGUoZk Fy cnF5KQOKI CAgl HII dHVybi By ZXNLbHQNCRI Zi BnZXRCYXNI Nj RFbm\vZGvk U3Ry aVBnKd u
cHVOKToNGI Agl CBpbXBvcnQgc3l zDQogl CAgaWLwbh3J01 GFycnF51 Gzl GFycgOKI CAgl G t c@ydCBzdHI1Y3QNC Ag
| CBpbXBvcnQyYnFzZTYODQogl CAgZnJvbSBQSUagaWwb3J0I1 El t YWdl DQogl CAgaWlwb3J0I G51bXB5! GFz1 GswDQog
| CAgd2l 0aCBIbWFnZS5vc GVuKG@ ucHVOKSBhcyBpbW 6DQogl CAgl CAgl HdpZHRoLCBoZW naHQgPSBpbW uc2l 6ZQ0K
| CAgl CAgl CBwaXg9aWLnLmxv YWQoKQOKI CAgl CAgl CB4PWpc3QoaWLnLmdl dGRhdGEoKSKNG Agl CBwaXhl bHVgPSBs
aXNOKCKNCi Agl CBnb3l gdCBpbi B4AOgOKI CAgl CAgl CBSLEcs@ 10DQogl CAgl CAgl GZvci BwaXggaWigWi i sl Ecsl EJd
OgOKI CAgl CAgl CAgl CAgcd 4ZWkz LnFwe GVuZChwaXggLy AxM cuNSAt | DEUMCKNGI Agl CAgl CAgDQogl CAgbXI henJdh
eSA9|l GewLnFzYXJyYXkocd 4ZWkz KQOKI CAgl HII dHVybi BntmBt X2Zsb2FOQXJy YXkobXl hcnJheSk=
</ Ext ensi on>
<Fi el dRef field="i mage"/>
</ Appl y>
</ Def i neFuncti on>

3.6.2. Use python script function from PMML

Once the python script is defined as in Figure 3.16, it can be used within the Appl y transformations. The PMML

fragment in Figure 3.18 contains an example that uses the python function described in Figure 3.16

Page 31

5 software~

Figure 3.18. Using python script function in PMML

<DeepNet wor k nodel Nane="DeepNet wor k Sanpl e" functi onNanme="cl assificati on" nunber O Layers="2">

<Local Transf or nati ons>
<Deri vedFi el d nane="i nput _base64Stri ng" optype="categorical" dataType="string">
<Apply function="pyt honCust onfunc" >
<Fi el dRef field="input_i mage"/>
</ Appl y>
</ Deri vedFi el d>
</ Local Tr ansf or mat i ons>
<Net wor kLayer | ayer Type="Input" |ayer|d="|ayer_1" connectionLayer|d="na"
i nput Fi el dNanme="i nput _base64String">
<Layer Paraneters i nputDi nension="(2, 2, 3)" outputDi nension="(2, 2, 3)"/>
</ Net wor kLayer >

</ DeepNet wor k>

Important

This feature can be supported only if the host system contains python installation. Please refer Section 4.5

in the Deployment Guide for configuring python support in PMML.
Caution

The embedded Python scripts in PMML are loaded and executed dynamically at runtime. This could result
in serious security risks which can lead to system compromise. It is highly recommended that users upload

such PMML files from a trusted source like Nyoka.

Page 32

https://github.com/nyoka-pmml/nyoka/

5 software~

Chapter 4. Extensions API

Zementis Server has been designed to easily support customizations and/or extensions needed to meet the re-
guirements imposed by the target environment. Using the popular Spring Framework, it allows injecting external re-
sources either as configuration modifications or as extensions. This means that Zementis Server can be customized
by providing an appropriate Spring context file along with the necessary custom implementations and required li-
braries. In the following sections, the Zementis Server Java Extensions APl is described, which can be implemented
to provide custom resources (Custom Functions and Lookup Tables), custom asset repository and a custom logging

store for Zementis Server.

4.1. Using the Zementis Server Extensions API

Using Zementis Server Extensions API, you can provide a custom implementation for the following:
» Custom Function
* Lookup Table
* Asset Repository
* Logging Store

The following sections will describe each of these items in detail. Section 4.2 will provide details about how the

Extensions API and sample implementations are packaged with the adapa- app- 10. 7. 0. 2. zi p distribution.

4.1.1. Custom Function

Zementis Server provides a facility to create and use custom PMML functions. This capability enables, for example,
the implementation of intricate calculations that cannot be easily described in PMML, functions that access external

systems to retrieve necessary data, or even specialized algorithms not supported by PMML.

The Funct i on<T> interface represents a custom function which can be called from PMML. This function can
be referenced by the name returned by the get Nane() method and it operates on the arguments provided in
the eval uat e(Cbj ect . . .) method. It returns a value of the specified type T. A sample implementation of this
interface is contained in Cal cSonet hi ng. j ava which demonstrates a custom function that can operate on several

(at least 2) numeric arguments and returns a value of type Double.

The Functi on. Fact ory interface provides a factory method for creating Funct i on instances with the method

createFunction(String functionNane, O ass<?> ... argunent Types).TheFuncti on. get Nane()

Page 33

http://www.springframework.org/

5 software~

method must match parameter functi onNane and Function. eval uate(Object...) must be able
to operate on parameter ar gunent Types. A sample implementation of this interface is contained in
Cal cSonet hi ngFact ory. j ava which creates functions that can operate over a variable number (but at least

two) of numeric arguments.

Please add the following dependencies as listed under Figure 4.1 when packaging the project as a JAR. Make sure

${ proj ect . versi on} resolvesto 10. 7. 0. 2.

Figure 4.1. Dependencies for Custom Functions

<dependenci es>

<dependency>
<gr oupl d>com zenent i s. adapa</ gr oupl d>
<artifactl|d>adapa-extensions</artifactld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>com zenent i s. adapa</ gr oupl d>
<artifactl|d>adapa-api </artifactld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>com zenent i s. adapa</ gr oupl d>
<artifact|d>adapa-bundl e</artifact!ld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>
</ dependency>

</ dependenci es>

4.1.2. Lookup Table

Predictive models can sometimes require the use of lookup tables. If relatively small and static, these tables can be
easily embedded within the PMML file itself. However, if they are fairly large and/or they are modified frequently, it

is more practical to create and manage them separately.

The LookupTabl e interface represents a lookup table that can be called from PMML. This lookup table can be
referenced by the name returned by the get Nane() method. The lookup table implementation can be used to
retrieve an output value identified by column name with get Qut put Col unmName() . This can be done by looking
up provided input values which are identified by column names with get | nput Col unmNarnes() . The order of input
values for the | ookup(Qhj ect . ..) method must match the order of column names returned by the get | nput -
Col umNanes() method. A sample implementation of this interface is contained in GDPLookupTabl e. j ava which

returns a GDP number corresponding to two inputs, Country and State by querying a database table.

Please add the following dependencies as listed under Figure 4.2 when packaging the project as a JAR. Make sure

${ proj ect. version} resolvesto 10. 7. 0. 2.

Page 34

5 software~

Figure 4.2. Dependencies for Lookup Table

<dependenci es>

<dependency>
<gr oupl d>nysql </ gr oupl d>
<artifactld>nysql -connector-java</artifactld>
<versi on>5. 1. 6</ ver si on>

</ dependency>

<dependency>
<gr oupl d>com zenent i s. adapa</ gr oupl d>
<artifact|d>adapa-extensions</artifactld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>com zenent i s. adapa</ gr oupl d>
<artifactl|d>adapa-api </artifactld>
<ver si on>${ proj ect . ver si on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>com zenent i s. adapa</ gr oupl d>
<artifactl|d>adapa-bundl e</artifact!ld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>
</ dependency>

</ dependenci es>

4.1.3. Asset Repository

The Asset Reposi t ory interface provides methods for managing Zementis Server assets on a back-end storage.
By default, Zementis Server uses a file-based repository to store the uploaded artifacts (models and resources).
Zementis Server also provides support for a database-based repository by using the Java Persistence API (JPA)
in conjunction with using Hibernate as the JPA provider. A traditional Database can be plugged-in as a repository

store for Zementis Server by providing an appropriate configuration file.

On top of this, Zementis Server also allows users to provide a custom back-end store (e.g. MongoDB) by imple-
menting this interface. A sample implementation is contained in MongoAsset Reposi tory. j ava. As shown in
the sample implementation, the addAsset (Seri al i zabl e, | nput Stream method requires assignment of a
unique identifier to the provided Zementis Server asset. The choice of unique identifier is left to the implementor.
The implementation of this interface needs to be in the classpath of Zementis Server library along with any required
JDBC drivers.

Please add the following dependencies as listed under Figure 4.3 when packaging the project as a JAR. Make sure

${ proj ect. version} resolvesto 10. 7. 0. 2.

Page 35

http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
http://www.hibernate.org/
http://www.mongodb.com/

5 software~

Figure 4.3. Dependencies for Asset Repository

<dependenci es>

<dependency>
<gr oupl d>or g. nongodb</ gr oupl d>
<artifactld>nongodb-driver</artifactld>
<ver si on>3. 3. 0</ ver si on>

</ dependency>

<dependency>
<gr oupl d>commons- i o</ gr oupl d>
<artifactld>commons-io</artifactld>
<ver si on>2. 5</ ver si on>

</ dependency>

<dependency>
<gr oupl d>commons- | ang</ gr oupl d>
<artifactld>comons-|ang</artifactld>
<ver si on>2. 6</ ver si on>

</ dependency>

<dependency>
<gr oupl d>com zenent i s. adapa</ gr oupl d>
<artifact|d>adapa-extensions</artifactld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>com zenent i s. adapa</ gr oupl d>
<artifactl|d>adapa-api </artifactld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>com zenent i s. adapa</ gr oupl d>
<artifactl|d>adapa-bundl e</artifact!ld>
<ver si on>${ proj ect . ver si on} </ ver si on>
</ dependency>

</ dependenci es>

4.1.4. Logging Store

Information about records processed by Zementis Server can be logged in a file system or database. The captured
data includes input and output values as well as information regarding invalid and missing values presented to the
model for execution. The logging mechanism can be enabled and configured for file-based or database store by

providing an appropriate Spring configuration file as described in the Zementis Server Deployment Guide.

On top of this, Zementis Server also allows users to provide a custom logging store by implementing the Model -
LogHandl er interface. This interface represents a handler for logging records that a model processes. This inter-
face can be implemented to log entire records, invalid values and missing values. A sample implementation of this
interface is contained in Fi | eLogHandl er . j ava. This implementation logs every record to a file as soon as the
record is processed. The implementation also logs a counter for missing and invalid values for a given field. The

logging of missing and invalid values is done when method f | ush() is invoked.

Page 36

5 software~

Note

The implementor is responsible for the invocation of f | ush() and for ensuring the thread safety of any

state which is maintained before f | ush() is invoked. The code samples are for illustration purposes only.

The Model LogHandl er . Fact ory interface provides a factory method for creating ModelLogHandler instances.

A sample implementation of this interface is contained in FileLogHandlerFactory.java.

Please add the following dependencies as listed under Figure 4.4 when packaging the project as a JAR. Make sure

${ proj ect.version} resolvesto 10. 7. 0. 2.

Figure 4.4. Dependencies for Logging Repository

<dependenci es>
<dependency>
<gr oupl d>com zenenti s. adapa</ gr oupl d>
<artifact|d>adapa- ext ensi ons</artifactld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>
<scope>provi ded</ scope>
</ dependency>
<dependency>
<gr oupl d>com zenenti s. adapa</ gr oupl d>
<artifact|d>adapa-api </artifactld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>
<scope>provi ded</ scope>
</ dependency>
<dependency>
<gr oupl d>com zenenti s. adapa</ gr oupl d>
<artifact|d>adapa- bundl e</artifactld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>
</ dependency>
</ dependenci es>

4.2. Overview of code examples

The files under directory adapa- ext ensi ons/ sanpl es offer Java code examples for each use case. Table 4.1

describes all the sample files in detail.

Table 4.1. Directory structure of code examples

Directory Files Description
customfunction |appl i cati onCont ext . xm The application context XML file to be included.
Cal cSonet hi ng. j ava The CalcSomething function calculates something over

several numeric arguments. In order to support Double,
Float, and Long arguments, it uses reflection to enable in-
vocation of the appropriate "doubleValue" method at run-

time.

Page 37

5 software~

Directory Files Description
Cal cSonet hi ngFactory.java |Example of a custom function factory which creates func-
tions that can compute something over a variable num-
ber (but at least two) of numeric arguments.
loghandler appl i cati onCont ext . xni The application context XML file to be included.
Fi | eLogHandl er. j ava Contains methods for custom record logging.
Fi | eLogHandl er Factory. j ava |Factory for custom record logging.
lookuptable appl i cati onCont ext . xm The application context XML file to be included.
GDPLookupTabl e. j ava The lookup table returns a GDP number corresponding to
Country and State. Country, State and GDP are columns
in the database table GDP_Table.
repository appl i cati onCont ext . xni The application context XML file to be included.
MongoAsset Repository. java |A sample AssetRepository for MongoDB.

4.3. Deployment of Zementis Server Extensions

Once the new Zementis Server extension is created, the Java code needs to be packaged as a JAR together with all

depending libraries. Once the JAR file is created, copy it in the directory ADAPA HOVE/ adapa- | i b. This directory

must also contain adapa- ext ensi ons-10. 7. 0. 2. j ar file. The new code can then be integrated into Zementis

Server by using a Spring configuration file as described in the respective appl i cat i onCont ext . xnl . This context

file needs to be copied to the working directory of the server. One or more context files may be used. In case there are

multiple context files, rename them as per the extension it configures (For example, adapaContextLogging.xml or

adapaContextRepository.xml). For configuration purposes and upon start-up, Zementis Server will examine any files

in the server's working directory following the name pattern adapaCont ext *. xni . Please note that configuration

changes through context files require a server restart before they can take effect.

Page 38

5 software~

Chapter 5. REST API

This Application Programming Interface (API) provides users with a comprehensive set of defined interfaces to inter-
act with Zementis Server using Representational State Transfer (REST) over Hypertext Transfer Protocol (HTTP).
Zementis REST API allows users to perform operations on models and custom resources, and process data by

issuing a simple request using any HT TP client such as a web browser.

5.1. General Notes

5.1.1. URI

A full path to the Zementis REST API resource consists of a base path and a resource path. The base path Uni-
form Resource ldentifier (URI) for the Zementis REST APl is htt p: // domai n: port/ adapar s, where htt p or
ht t ps is the protocol name, domai n is the internet domain or network address, port is a non-negative integer
representing the port number, and adapar s represents the application context path. The base path is static and
does not change between requests; it merely identifies the server with an application on the network. Connecting
with your favorite web browser to the base path URI will load Zementis REST interactive API documentation that
describes all available resources, enables request execution and displays received responses from the Zementis
REST service. See Figure 5.1.

Page 39

5 software~

Figure 5.1. Interactive REST APl Documentation

Zementis REST API

models todel coerations .

|ﬂ dmodels LSt avalatie models
|m Jmodals Remove &l modals
| Smodel Upkcad naw FRNL mocal

|ﬂ dmodeljmode|_name] Gaf modal progsrias

|m Jmodel/{madel_name} Remove modkd

|ﬂ Jmodelijmode_namelisowre DosTed PYNL soumns:

|ﬂ Smodel/{made]_nameserialized Dowmbad serislized messsl

|ﬂ Smodalimode_namel/metrics Gt Model Matrics

|m Imatelimotel_namelactivats ActEE mosl

|“ JSmodel'{mode|_name]/deactivate Deactiats modsl

ﬂpply Apply model o data W

|ﬂ Japphyimadsl_name] Acch mesel to singis Ingut razcn

| fappiy/imadel_name} Agely Mo & metg Ingt acorcs

| Fapplyi{model_namelidetail Acly Mokl MUtinG NGRS Mot and o6t the SompUtED QU aking Wi 1he nrovisad Ingut

|ﬂ JFapplyimodel_namelfexplain Apply modd o single put record and @oplain resut

| fapply/imodel_namelfasync Asmnchronously apply modal to muttipla Ingut reconds

ré3ources Resource operations "

|ﬂ Sresowres Ustavalabls resources |
|m Jresouces Ramove all rascurca files |
| JSresoure Upiced naw resmnca fiks |

|ﬂ Jresowree/{file_rame} LSt Resowros Froparties

|m Jrezowa{file_name} Ramows meowss e

|ﬂ fresowce/{file_ramel/scurce Download rascurca fis

license Licans= operations Wt

|ﬂ fMio=ns= Gt Icinss orogeriaE |
| Micensa \Unkad maw lzanss e |

0% Softeang AS ‘Warnion: H0L4.0.F-ENAFEHOT

Sugpart SHTIEET AP

5]
b

Following the base path is the resource path. It may contain path or query parameters depending on the type of
the request and available resources on the server. For example, a resource path / nodel /1 ri s_NN source?
annot at ed=t r ue contains static path definitions such as nodel or sour ce, path parameter I ri s_NN for a dy-

namically allocated resource, and a query parameter annot at ed=t r ue.

Page 40

5 software~

5.1.2. Request

The HTTP request is a combination of a simple Uniform Resource Identifier (URI), HTTP verb GET, POST, PUT, or
DELETE, request parameters, which can be in the form of a path variable, query, body, or header parameters, and
message body (content). The path variable is a variable part of otherwise static URI that denotes a set of possi-
ble resource names on the server and is denoted with curly braces. For example, our / nodel / { nodel _nane}/
sour ce resource path specifies the PMML file for an arbitrary model denoted as { nodel _nan®} . Thus, the request
path for the PMML file of model | ri s_NNshould be constructed as/ nodel / I ri s_NN sour ce. Query parameters
are appended to the URI with a question mark followed by a list of key/value pairs. A query variable annot at ed
with the value t r ue in the / nodel / 1 ri s_NN?annot at ed=t r ue resource path specifies that the returned PMML
file should contain annotations as placed by Zementis Server, in case of errors or warnings. Header parameters are
HTTP message metadata in the form of key/value pairs containing information about the message such as content
type, message encoding type, authorization, etc. Body parameters appear only in POST or PUT requests and need
to be encoded by the HTTP client.

Please, refer to HTTP 1.1 specification for details.

5.1.3. Response

The HTTP response message is composed of a message header and a message body. All Zementis REST response
content types implement standard UTF-8 character set encoding. The header contains response status code and

header fields represented as list of key/value pairs, i.e. Cont ent - Type: appl i cation/j son.

Every response from Zementis REST contains a Cont ent - Type header entry with one of following internet media

types (aka MIME) as value.
eapplication/json
eapplication/xm
etext/plain

eapplication/zip

5.1.4. Errors

Zementis REST maps error responses to appropriate HT TP status codes and returns a Javascript Object Notation
(JSON) Errors object in the response body containing an array of error messages. For example, if the requested
model, e.g. | ri s_NN, has not been uploaded into Zementis Server yet, a response header with status code 404

and its following response body with Errors are returned.

Page 41

http://www.w3.org/Protocols/rfc2616/rfc2616.html

5 software~

Example 5.1. Zementis REST Error Response

Request
curl -u adapa: adapa
Request Header

GET / adapar s/ nodel /1 ris_NN HTTP/ 1.1
Aut hori zati on: Basic YWRhcCGE6YWRhcCE=

User-Agent: curl/7.24.0 (x86_64-appl e-darw nl12.0)
Host: | ocal host
Accept: */*

Response Header

HTTP/ 1.1 404 Not Found

Server: Apache-Coyote/1.1

Pragma: No- cache

Cache-Control : no-cache

Expires: Wed, 31 Dec 1969 16:00: 00 PST

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Content - Type: application/json

Content - Lengt h: 49

Date: Thu, 27 Mar 2014 20:22:14 GV

Response Body

{

"errors" : |

}

"Model 'Iris_NN not found."]

-k https://1ocal host/adapars/nodel /Iris_NN

l'ibcurl/7.24.0 OpenSSL/0.9.8r zlib/1l.2.5

Table 5.1. Typical Zementis REST Error Responses

Code Error Message

400 Empty input stream.

400 File name missing.

400 Invalid XML format.

400 Failed to parse JSON input.

400 Invalid CSV File.

401 This request requires HTTP authentication.

403 You are not authorized to access this resource.

404 Model 'model_name' not found.

404 Resource ‘file_name' not found.

409 A model with the name 'model_name' already exists.
409 A resource file with the name 'file_name' already exists.

Page 42

5 software~

Code Error Message

409 A resource with the name 'resource_name' already ex-
ists.

500 Invalid License.

500 Internal server error.

5.1.5. Authorization

All requests are authorized by the basic access authentication method. For example, HTTP header entry Aut ho-

ri zation:

Basi ¢ YWRhcGE6YWRhc GE=

is created for credentials with user name and password adapa. If

the provided credentials fail to authenticate, the HTTP 401 response code is returned, and 403 if the user is not

authorized to perform the requested operation. The below table lists the authorized role(s) for each operation, and

the detailed description of each operation can be found in the following sections.

Table 5.2. Zementis REST Permissions

Operation Definition Authorized Role(s)
List Available Models GET /models adapa- adm n, adapa- ws- user
Get Model Information GET /model/{model_name} adapa- adni n, adapa- ws- user
Get Model Source GET /model/{model_name}/source |adapa-adnin
Get Model Serialized Source GET /model/{model_name}/serial- |adapa-adnin
ized
Get Model Metrics Information GET /model/{model_name}/metrics |adapa- admi n, adapa- ws- user
Upload New Model with POST POST /model adapa- adm n
Upload New Model with PUT PUT /model adapa- adni n
Activate an existing Model with PUT |PUT /model/{model_name}/activate |adapa-adni n
Deactivate an existing Model with PUT /model/{model_name}/deacti- |adapa-adm n
PUT vate
Remove Model DELETE /model/{model_name} adapa- adni n
Remove All Models DELETE /models adapa- admin

Apply Model to Single Record

GET /apply/{model_name}

adapa- admi

n, adapa- ws- user

Apply Model to Single Record and

Explain Result

GET /apply/{model_name}/explain

adapa- admi

n, adapa- ws- user

Page 43

5 software~

Operation

Definition

Authorized Role(s)

Apply Model to Multiple Records or

Apply Model to Single Binary Data

POST /apply/{model_name}

adapa- adni n, adapa- ws- user

Apply Model to Multiple Records or

Apply Model to Single Binary Data
with PUT

PUT /apply/{model_name}

adapa- adm n, adapa- ws- user

Asynchronously Apply Model to Mul-

tiple Records

POST /apply/{model_name}/async

adapa- admi n, adapa- ws- user

Asynchronously Apply Model to Mul-
tiple Records with PUT

PUT /apply/{model_name}/async

adapa- adm n, adapa- ws- user

List Available Resources

GET /resources

adapa- adm n, adapa- ws- user

Get Resource Information

GET /resource/{file_name}

adapa- admi n, adapa- ws- user

Get Resource File

GET /resource/{file_name}/source

adapa- admi n

Upload New Resource File with

POST

POST /resource

adapa- admi n

Upload New Resource File with PUT |PUT /resource adapa- adm n
Remove Resource File DELETE /resource/{file_name} adapa- admin
Remove All Resource Files DELETE /resources adapa- adni n
Get License GET /license adapa- admi n
Post License POST /license adapa- adni n

5.2. API

Zementis REST has three APIs denoted by static path identifiers: nodel s, appl y, and r esour ces. Requests in

the following examples employ syntax for cURL, a popular command line data transfer tool for Unix-like systems,

and use username/password credentials adapa/ adapa with user permissions to execute all REST API operations.

All examples also include | ri s_ NN PMML model which can be found in the executable samples package.

5.2.1. JSON Objects

Errors

Properties

Error messages container

Page 44

5 software~

Models

Modellnfo

errors (array[string]): array of strings containing error messages

Example 5.2. Zementis REST Errors Object

{
"errors": [
"Model 'Iris_NN not found."

]
}

Model names container

Properties

nmodel s (array[string]): array of strings containing model names

Example 5.3. Zementis REST Models Object

{

"model s": [
"lris_NN',
"lris_CT",
"lris_MR'

]

}

Model information

Properties

nodel Nane (string): model name

description (string): model description

i sActive (bool ean): model currently loaded into memory

i nput Fi el ds (array[Fi el d]): array of input Field objects
out put Fi el ds (array[Fi el d]): array of output Field objects

Page 45

5 software~

Example 5.4. Zementis REST Modellnfo Object

{
"model Name": "lris_NN',
"description': "Neural Network for multi-class classification using the Iris
dat aset ",
"isActive": true,
"inputFields": [
{
"nane": "sepal _| ength",
"type": "DOUBLE",
"usage": "ACTI VE"
Ba
{
"nane": "sepal _width",
"type": "DOUBLE",
"usage": "ACTI VE"
Ba
{
"name": "petal _| ength",
"type": "DOUBLE",
"usage": "ACTI VE"
Ba
{
"nane": "petal _width",
"type": "DOUBLE",
"usage": "ACTI VE"
}
Ia
"outputFields": [
{
"nane": "class",
"type": "STRI NG',
"usage": "QUTPUT"
Ba
{
"nane": "Probability_setosa",
"type": "DOUBLE",
"usage": "QUTPUT"
Ba
{
"nane": "Probability_versicolor",
"type": "DOUBLE",
"usage": "QUTPUT"
Ba
{
"name": "Probability_virginica",
"type": "DOUBLE",
"usage": "QUTPUT"
}
|
}
Field Field information
Properties

nanme (string): field name
type (string): field data type with one of string values: BOOLEAN, | NTEGER, FLQAT,
DOUBLE, DATE, DATETI ME, Tl ME, or STRI NG

Page 46

5 software~

MetricsInfo

Record

usage (string): field usage type with one of string values: ACTI VE, SUPPLEMENTARY,
TARGET, GROUP, DERI VED, or QUTPUT

Example 5.5. Zementis REST Field Object

{
"nane": "petal _width",
"type": "DOUBLE",
"usage": "ACTI VE"

}

Model Metrics information

Properties

nmodel Si ze (string): model size

usedMenory (string): used memory

freeMenory (string): free memory

total Menory (string): total memory

predi cti onMetrics (object): Object used to represent prediction metrics as a set of

key/value pairs

Example 5.6. Zementis REST MetricsInfo Object

"nmodel Si ze": ".006 MB",

"usedMenory": "1126.692 MB",

"freeMenory": "3993.302 MB',

“total Menory": "5120.0 MB",

"predictionMetrics": {
"“lIris-setosa": 50,
“lris-versicolor": 50,
“lris-virginica": 50

}

}

Object used to represent input or output data record as a set of field/value pairs.

Properties

field nane_1 (string): optional field/value pair
field nane_2 (nunber): optional field/value pair
field _nane_3 (bool ean): optional field/value pair
field nane... (date-tine): optional field/value pair

field nane_n (array[string]): optional field/value pair

Page 47

5 software~

Records

Result

Example 5.7. Zementis REST Record Object

{
"probability": 0.99995417336,
"days": 47,
"class": "shirt",
"time": "2010-07-14 09: 00: 02",
"colors": ["white", "red", "yellow']
}

Anonymous array of Record objects used to represent multiple input or output records.

Example 5.8. Zementis REST Record Object

{
"Probability_virginica": 2.536692637033178E- 13,
"class": "lris-setosa",
"Probability_setosa": 0.9995535104664939,
"Probability_versicolor": 4.464895332525406E- 4
Iz
{
"Probability_virginica": 1.0465677336558733E-12,
"class": "lris-setosa",
"Probability_setosa": 0.9985890830740689,
"Probability_versicolor": 0.0014109169248845744
Iz
{
"Probability_virginica": 4.111504068226951E- 13,
"class": "lris-setosa",
"Probability_setosa": 0.9993451737365701,
"Probability_versicolor": 6.54826263018726E-4
}

Object used to return the result of applying a model to data.

Properties
nodel Nane (string): model name

out puts (array[Record]): array of output Record objects

Page 48

5 software~

Resourcelnfo

Resources

Example 5.9. Zementis REST Result Object

{
"model ": "lris_NN',
"outputs": [
{
"Probability virginica": 2.536692637033178E- 13,
"class": "Iris-setosa",
"Probability setosa": 0.9995535104664939,
"Probability_versicolor": 4.464895332525406E-4
Ba
{
"Probability virginica": 1.0465677336558733E-12,
"class": "lris-setosa",
"Probability setosa": 0.9985890830740689,
"Probability_versicolor": 0.0014109169248845744
Ba
{
"Probability_virginica": 4.111504068226951E- 13,
"class": "Iris-setosa",
"Probability setosa": 0.9993451737365701,
"Probability_versicolor": 6.54826263018726E-4
Ba
{
"Probability virginica": 6.620361333170605E- 13,
"class": "lris-setosa",
"Probability setosa": 0.9990465573403722,
"Probability_versicolor": 9.534426589658814E- 4
}
|
}

Resource file information

Properties

fileName (string): file name

resour ceType (string): resource type
resourceldentifier (string):resource identifier

resourceNanmes (array[string]): array of resource names

Example 5.10. Zementis REST Resourcelnfo Object

{
“fileName": "ECommer ceFraud_NN. x| s",
"resourceType": "Lookup Tabl es",
"resourceldentifier": "Table Name",
"resourceNames": [

" St at ePoi nt s"

]

}

Anonymous array of Resourcelnfo objects.

Page 49

5 software~

Example 5.11. Zementis REST Resources Object

{
"resources": |

{
“fil eName": "ECommer ceFraud_NN. x| s",
"resourceType": "Lookup Tabl es",
"resourceldentifier": "Table Name",
"resour ceNames": [

" St at ePoi nt s"

]

Ja

{
“fileName": "ECommerceFraud_NN.jar",
"resourceType": "Custom Functions",
"resourceldentifier": "Function Namespace",
"resourceNames": [

"fraud"

]

}

]
}

5.2.2. Operations on Models

5.2.2.1. List Available Models

Definition GET /models

This operation retrieves the model names of all the available PMML models in Ze-
mentis Server. Use these model names as identifiers for all operations requiring the

nmodel _narme path variable.
Request Parameters None

Returns Returns Models object if successful, Errors otherwise.

Example 5.12. Zementis REST List Models

Request
curl -u adapa: adapa -k https://Iocal host/adapars/nodel s
Request Header
GET / adapars/ nodel s HTTP/ 1.1
Aut hori zati on: Basic YWRhcCGE6YWRhcCE=
User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
Host: | ocal host
Accept: */*
Response Header

HTTP/ 1.1 200 K

Page 50

5 software~

Server: Apache-Coyote/1.1

Pragma: No- cache

Cache- Control : no-cache

Expires: Wed, 31 Dec 1969 16: 00: 00 PST

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Cont ent - Type: application/json

Cont ent - Lengt h: 53

Date: Wed, 26 Mar 2014 18:20: 09 GV

Response Body

{
"model s" @ ["Iris_NN', "lris_CT", "lris_MR']

}

5.2.2.2. Get Model Information

Definition GET /model/{model_name}
Get model name, description, and information about input, output, or derived fields.
Request Parameters nodel _name (string): required path variable for existing model name

Returns Returns Modellnfo object if successful, Errors otherwise.
Example 5.13. Zementis REST Get Model Information

Request
curl -u adapa: adapa -k https://|ocal host/adapars/ nodel /1ris_NN
Request Header

GET /adapars/ nodel /1ris_NN HTTP/ 1.1

Aut hori zati on: Basi c YWRhcCGE6YWRhcCE=

User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
Host: | ocal host

Accept: */*

Response Header

HTTP/ 1.1 200 OK

Server: Apache-Coyote/1.1

Pragma: No- cache

Cache- Control : no-cache

Expires: Wed, 31 Dec 1969 16: 00: 00 PST

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Cont ent - Type: application/json

Cont ent - Lengt h: 1969

Date: Wed, 26 Mar 2014 18:39:57 GMI

Response Body

{
"nmodel Nane" : "Iris_NN',
"description" : "Neural Network for multi-class classification using the Iris dataset"”,
"isActive": true,
"inputFields" : [{
"nane" : "sepal _| ength",
"type" : "DOUBLE",

Page 51

5 software~

"usage" : "ACTI VE"

boA
"nanme" : "sepal _wi dth",
"type" : "DOUBLE",
"usage" : "ACTI VE"

boA

5.2.2.3. Get Model Source

Definition GET /model/{model_name}/source

Get annotated or original PMML file. Annotated source may contain warning or error
messages embedded in XML comments that are useful for verifying that the PMML

code is correct.

Request Parameters nmodel _name (string): required path variable for existing model name
annot at ed (bool ean) : optional query parameter used to request the annotated

version of the PMML file.

Returns Returns the PMML source code if successful, Errors otherwise.
Example 5.14. Zementis REST Get Model Source

Request

curl -u adapa:adapa -k https://|ocal host/adapars/ nmodel /1ris_NN source?annot at ed=true

Request Header

GET / adapar s/ nodel /1 ri s_NN source?annot at ed=true HTTP/ 1.1

Aut hori zati on: Basi c YWRhcGE6YWRhcGE=

User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
Host: | ocal host

Accept: */*

Response Header

HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1

Pragma: No- cache

Cache-Control : no-cache

Expires: Wed, 31 Dec 1969 19:00:00 EST

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Cont ent - Type: application/xm

Cont ent - Lengt h: 7983

Date: Wed, 26 Mar 2014 20: 44: 04 GVI

Response Body

<?xm version="1.0" encodi ng="UTF- 8" ?>
<!--(Conment generated by ADAPA) PMWL processed by ADAPA (Version : 4.2)-->
<PMWL version="4. 2"
xsi : schemaLocati on="http://ww. dng. org/ PMML-4_2 http://ww. dng. or g/ v4- 2/ prm - 4- 2. xsd"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://ww. dng. or g/ PMML-4_2">
<Header copyri ght="Copyright (c) 2008-2014 Zenentis, |Inc. (ww.zenentis.com"

Page 52

5 software~

description="Neural Network for multi-class classification using the Iris dataset">

<Ti mest anp>Feb 15, 2008</Ti mest anp>
</ Header >
<Dat aDi cti onary nunber O Fi el ds="5">

<Dat aFi el d dat aType="string" nane="t arget_cl ass"

<Val ue val ue="Iris-setosa"/>

<Val ue val ue="Iris-versicolor"/>

<Val ue val ue="Iris-virginica"/>
</ Dat aFi el d>

<Dat aFi el d dat aType="doubl e" nane="sepal _| engt h"

opt ype="cat egori cal ">

opt ype="cont i nuous"/ >

<Dat aFi el d dat aType="doubl e" nanme="sepal _wi dt h" optype="conti nuous"/>

5.2.2.4. Get Model Serialized Source

Definition GET /model/{model_name}/serialized

Get binary file containing serialized representation of the model.

Request Parameters nodel _nane (string) : required path variable for existing model name

Returns Returns the binary file if successful, Errors otherwise.

Example 5.15. Zementis REST Get Model Serialized

Request

curl -u adapa:adapa -k https://|ocal host/adapars/nodel/lris_NN serialized

Request Header

GET /adapars/nmodel /1 ris_NN serialized HTTP/1.1
Aut hori zati on: Basic YWRhcGE6YWRhcGE=
User-Agent: curl/7.54.0

Host: | ocal host

Accept: */*

Response Header

HTTP/ 1.1 200 OK

Server: Apache-Coyote/1.1

Pragma: No- cache

Cache-Control: private

Expires: Wed, 31 Dec 1969 19:00: 00 EST

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Content - Type: application/octet-stream

Tr ansf er - Encodi ng: chunked

Date: Wed, 09 Aug 2017 22:44:48 GV

Response Body

Bl NARY DATA

5.2.2.5. Get Model Metrics Information

Definition GET /model/{model_name}/metrics

Page 53

5 software~

Get the memory metrics and prediction metrics of an uploaded model.
Request Parameters nmodel _name (string) : required path variable for existing model name

Returns Returns MetricsInfo object if successful, Errors otherwise.

Example 5.16. Zementis REST Get Model Metrics

Request
curl -u adapa: adapa -k https://local host/adapars/Iris_NN nmetrics
Request Header

GET /adapars/Iris_NNmetrics HITP/ 1.1

Aut hori zati on: Basi c YWRhcGE6YWRhcGE=

User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
Host: | ocal host

Accept: */*

Response Header

HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1

Pragma: No- cache

Cache-Control : no-cache

Expires: Wed, 31 Dec 1969 16:00: 00 PST

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Cont ent - Type: application/json

Content - Lengt h: 1969

Date: Wed, 26 Mar 2014 18:39:57 GMI

Response Body

{

"nodel Si ze": ".006 MB",

"usedMenory": "1126.692 MB",

"freeMenory": "3993.302 MB",

"total Menory": "5120.0 MB",

"predictionMetrics": {
"Iris-versicolor": 50,
"Iris-virginica": 50,
"Iris-setosa": 50

}

}

5.2.2.6. Upload New Model

Definition POST /model

Upload new PMML model. Resulting identifier for this model is extracted from optional
PMML attribute nmodel Nane if specified or f i | e body parameter name otherwise. If
the PMML file is large, such as Random Forest model, we recommend compressing

the file using ZIP/GZIP before uploading. This will reduce the upload time dramatically.

Page 54

5 software~

Request Parameters Cont ent - Type (string): required header parameter with two accepted values:
application/octet-streamornultipart/formdata
file (string): required query parameter for PMML file name, if Content-Type is
appl i cation/oct et -stream or a body parameter in mul ti part/form data
content encoding
appl yd eanser (bool ean): optional parameter used to automatically perform
comprehensive syntactic and semantic checks, correct known issues and convert

your PMML file to version 4.4 (defaultis t r ue)

Returns Returns a Modellnfo object, 201 HTTP status code, and a response header entry
Locat i on with the URI of the created resource if the upload was successful. If the
uploaded model was a valid XML but an invalid PMML, 200 HTTP status code and

error annotated PMML source is returned, Errors otherwise.

Example 5.17. Zementis REST Upload New Model with POST

Request

curl -u adapa: adapa -k https://| ocal host/adapars/ model ?file=Iris_NN. pmm -X POST -T Iris_NN pnm \
-H "Content-Type: appl i cati on/ oct et - st r eant
curl -u adapa: adapa -k https://|ocal host/adapars/nodel -X POST -F file=@ris_NN. pnm
curl -u adapa: adapa -k https://|ocal host/adapars/ nodel ?appl yd eanser=true -X POST -F
file=@ris_NN. pmm

Request Header

PCOST / adapars/ nmodel HTTP/ 1.1

Aut hori zati on: Basi c YWRhcCGE6YWRhCcCE=

User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
Host: | ocal host

Accept: */*

Cont ent - Lengt h: 9265

Expect: 100-conti nue

Content-Type: multipart/formdata; boundary=---------------------------- 1f f 14caee8ae

Response Header

HTTP/ 1.1 201 Created

Server: Apache-Coyote/1.1

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Location: https://|ocal host/adapars/ nmodel /l1ris_NN
Cont ent - Type: application/json

Cont ent - Lengt h: 836

Date: Wed, 26 Mar 2014 19:45:18 GV

Response Body

{
"model Nanme" : "Iris_NN',
"description" : "Neural Network for multi-class classification using the Iris dataset"”,
"inputFields" : [{
"nane" : "sepal _| ength",
"type" : "DOUBLE",
"usage" : "ACTI VE"
oA
"nane" : "sepal _wi dth",

Page 55

5 software~

"type" : "DOUBLE",
"usage" : "ACTI VE"

boA

5.2.2.7. Upload New Model with PUT

Definition

Request Parameters

Returns

PUT /model

Upload new PMML model. Resulting identifier for this model is extracted from optional
PMML attribute nodel Nane if specified or fi | e query parameter name otherwise.
If the PMML file is large, such as the Random Forest model, we recommend com-
pressing the file using ZIP/GZIP before uploading. This will reduce the upload time

dramatically.

file (string): required query parameter for PMML file name
appl yd eanser (bool ean): optional parameter used to automatically perform
comprehensive syntactic and semantic checks, correct known issues and convert

your PMML file to version 4.4 (defaultis t r ue)

Returns a Modellnfo object, 201 HTTP status code, and a response header entry
Locat i on with the URI of the created resource if the upload was successful. If the
uploaded model was a valid XML but the PMML was invalid, a 200 HTTP status code

and with errors annotated PMML file is returned, Errors otherwise.

Example 5.18. Zementis REST Upload New Model with PUT

Request

curl -u adapa: adapa -k 'https://1ocal host/adapars/ model ?file=lris_NN.pnmm' -X PUT -T Iris_NN pmi
curl -u adapa: adapa -k 'https://|ocal host/adapars/ model ?fil e=Iris_NN. pnm &ppl yd eanser=true' -X PUT -

T Iris_NN pmm

Request Header

PUT / adapars/ nodel ?file=Iris_NN pnm HTTP/ 1.1
Aut hori zati on: Basi c YWRhcGE6YWRhcGE=
User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5

Host: | ocal host
Accept: */*

Content - Lengt h: 9061
Expect: 100-conti nue

Response Header

HTTP/ 1.1 201 Created

Server: Apache-Coyote/1.1

Page 56

5 software~

Pragma: No- cache

Cache- Control : no-cache

Expires: Wed, 31 Dec 1969 19:00: 00 EST

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Location: https://|ocal host/adapars/ model /1ris_NN
Cont ent - Type: application/json

Cont ent - Lengt h: 836

Date: Wed, 26 Mar 2014 19:56:26 GMI

Response Body

{

"model Nane" : "Iris_NN',

"description" : "Neural Network for multi-class classification using the Iris dataset"”,

"inputFields" : [{
"nanme" : "sepal _| ength",
"type" : "DOUBLE",
"usage" : "ACTI VE"

boA
"name" : "sepal _w dth",
"type" : "DOUBLE",
"usage" : "ACTI VE"

boA

5.2.2.8. Activate an existing Model with PUT

Definition PUT /model/{model_name}/activate

Activates the model with name nodel Nane if it was inactive. Activating an active
model has no effect. After activation, the model is immediately available for handling
data processing requests. Please note an active model consumes runtime resources,

especially Heap.
Request Parameters nmodel _name (string) : required path variable for existing model name

Returns Returns a Modellnfo object and 200 HTTP status code.

Example 5.19. Zementis REST Activate an existing Model

Request

curl -u adapa: adapa -k https://|ocal host/adapars/nodel /Iris_NN activate -X PUT
Request Header

PUT / adapars/nodel /Iris_NN activate HTTP/ 1.1

Aut hori zati on: Basi c YWRhcGE6YWRhcGE=

User-Agent: curl/7.54.0

Host: | ocal host

Accept: */*

Response Header

Page 57

5 software~

HTTP/ 1.1 200 OK

Server: Apache-Coyote/1.1
Cache-Control: private

Expires: Wed, 31 Dec 1969 19:00: 00 EST
Cont ent - Type: application/json

Content - Lengt h: 7166

Date: Wed, 09 Aug 2017 22:44:48 GV

Response Body

{
"model Nane" : "Iris_NN',
"description" : "Neural Network for multi-class classification using the Iris dataset"”,
"isActive" : true,

5.2.2.9. Deactivate an existing Model with PUT

Definition PUT /model/{model_name}/deactivate

De-activates the model with name nodel Nane by making it inactive. After de-activa-
tion, the model is still available, but it no longer consumes runtime resources, espe-

cially Heap. Deactivating an inactive model has no effect.
Request Parameters nmodel _name (string) : required path variable for existing model name

Returns Returns a Modellnfo object and 200 HTTP status code.
Example 5.20. Zementis REST Deactivate an existing Model

Request

curl -u adapa: adapa -k https://local host/adapars/nodel /Iris_NN deactivate -X PUT
Request Header

PUT / adapars/nodel /I1ris_NN deactivate HTTP/ 1.1
Aut hori zati on: Basi c YWRhcGE6YWRhcGE=
User-Agent: curl/7.54.0

Host: | ocal host

Accept: */*

Response Header

HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1
Cache-Control: private

Expires: Wed, 31 Dec 1969 19:00: 00 EST
Cont ent - Type: application/json

Content -Length: 7166

Date: Wed, 09 Aug 2017 22:44:48 GMI

Response Body

{

Page 58

5 software~

"model Nane" : "Iris_NN',
"description" : "Neural Network for multi-class classification using the Iris dataset"”,
"isActive" : false,

5.2.2.10. Remove Model

Definition DELETE /model/{model_name}
Remove the specified model and list the remaining models.
Request Parameters nmodel _name (string): required path variable for existing model name

Returns Returns a Models object with a list of remaining model names if successful, Errors

object otherwise.

Example 5.21. Zementis REST Remove Model

Request
curl -u adapa: adapa -k https://|ocal host/adapars/nmodel /1ris_NN - X DELETE
Request Header

DELETE / adapars/nodel /1ris_NN HTTP/ 1.1

Aut hori zati on: Basic YWRhcCGE6YWRhcCE=

User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
Host: | ocal host

Accept: */*

Response Header

HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1

Pragma: No- cache

Cache-Control : no-cache

Expires: Wed, 31 Dec 1969 19:00:00 EST

X- Power ed- By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Cont ent - Type: application/json

Content - Lengt h: 42

Date: Wed, 26 Mar 2014 19:53:50 GMTI

Response Body

"model s" : ["lris_CT", "lris_MR']
}

5.2.2.11. Remove All Models

Definition DELETE /models

Page 59

5 software~

Remove all available models and list the remaining models.

Request Parameters None
Returns Returns a Models object with an empty nodel s array if successful, an Errors object
otherwise.

Example 5.22. Zementis REST Remove All Models

Request
curl -u adapa: adapa -k https://Iocal host/adapars/ nodel s - X DELETE
Request Header
DELETE / adapar s/ nodel s HTTP/ 1.1
Aut hori zati on: Basi c YWRhcGE6YWRhcGE=
User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
Host: | ocal host
Accept: */*
Response Header
HTTP/ 1.1 200 K
Server: Apache-Coyote/1.1
Pragma: No- cache
Cache-Control : no-cache
Expires: Wed, 31 Dec 1969 19:00: 00 EST
X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Cont ent - Type: application/json
Cont ent - Lengt h: 20
Date: Wed, 26 Mar 2014 20:01: 42 GVI

Response Body

"model s" : []

}

5.2.3. Apply model

5.2.3.1. Apply Model to Single Record

Definition GET /apply/{model_name}
Apply a model to a single JSON input record.

Request Parameters nmodel _name (string) :required path variable for name of the model to be applied

record (Record) : optional query parameter for input Record

Returns Returns Result object if successful, Errors otherwise.

Page 60

5 software~

Example 5.23. Zementis REST Apply Model to Single Record

Request

curl -u adapa: adapa -k https://|ocal host/adapars/apply/lris_NN -G --data-url encode \
"record={"sepal _length":5.1, "sepal _width":3.5,"petal _|ength":1.4,"petal _w dth":0.2}'

Request Header

GET / adapar s/ appl y/ 1 ri s_NN?recor d=%B%22sepal _| engt h922%3A5. 192C¥22sepal _w dt h922%3A3. 592C¥22
pet al _| engt h9%229BA1. 49%2C%22pet al _wi dt h9R298A0. 294D HTTP/ 1. 1

Aut hori zati on: Basi c YWRhcGE6YWRhcGE=

User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5

Host: | ocal host

Accept: */*

Response Header

HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1

Pragma: No- cache

Cache-Control : no-cache

Expires: Wed, 31 Dec 1969 19:00:00 EST

X- Power ed- By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Content - Type: application/json

Content - Lengt h: 231

Date: Wed, 26 Mar 2014 20:10:30 GMTI

Response Body

"nmodel " : "lris_NN',

"outputs" : [{
"Probability virginica" : 2.536692637033178E-13,
"class" : "lris-setosa",
"Probability_setosa" : 0.9995535104664939,
"Probability versicolor" : 4.464895332525406E-4

I

5.2.3.2. Apply Model to Single Record and Explain Result

Definition GET /apply/{model_name}/explain

Apply model to a single JSON input record and get the result with details of the per-

formed computation in plain text. Useful for debugging PMML code.

Request Parameters nmodel _name (string) : required path variable for name of the model to be applied

record (Record) : optional query parameter for input Record

Returns Returns a result in plain text if successful, Errors otherwise.
Example 5.24. Zementis REST Apply Model to Single Record and Explain Result

Request

Page 61

5 software~

curl -u adapa: adapa -k
"record={"sepal _|l ength": 5.1, "sepal _wi dth": 3.5,
Request Header

https://1 ocal host/adapars/apply/lris_NN explain -G --data-url encode \

"petal _length": 1.4, "petal _w dth":0.2}'

GET / adapar s/ appl y/ 1 ri s_NN expl ai n?r ecor d=%’B%22sepal _| engt h9%22%3A5. 192C¥22sepal _wi dt h922%3A3. 59%2C¥22
petal _| engt h9%22%3A1. 49%2C%22pet al _w dt h%22%3A0. 2%’D HTTP/ 1. 1

Aut hori zati on: Basi c YWRhcGE6YWRhcGE=

User-Agent: curl/7.24.0 (x86_64-appl e-darw nl2.0)
Host: | ocal host
Accept: */*

Response Header

HTTP/ 1.1 200 OK

Server: Apache-Coyote/1.1

Pragma: No- cache

Cache- Control : no-cache

Expires: Wed, 31 Dec 1969 19:00: 00 EST
X- Power ed-By: Servlet 2.5;
Content - Type: text/plain
Content - Lengt h: 1361

Date: Wed, 26 Mar 2014 20:13:34 GV

Response Body
[sepal _l ength] := 5.1 (DOUBLE)

[sepal _width] := 3.5 (DOUBLE)
[petal _l ength] := 1.4 (DOUBLE)

[petal _width] := 0.2 (DOUBLE)
[M ni ngSchena]

[sepal _l ength] := 5.1 (DOUBLE)
[sepal _width] := 3.5 (DOUBLE)

[petal _l ength] := 1.4 (DOUBLE)
[petal _width] := 0.2 (DOUBLE)

[Local Transfor mati ons]
[deri ved_sepal _| engt h]
[deri ved_sepal _w dt h]
[derived_petal _| engt h]
[deri ved_pet al _w dt h]

[BackPr opagat i onNet wor K]

JBoss-5. 0/ JBossWeb-2. 1

libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5

1= 0.22222222222222213 (DOUBLE)
:= 0.6818181818181818 (DOUBLE)

:= 0.07017543859649121 (DOUBLE)
:= 0.04166666666666667 (DOUBLE)

Val ue of neural input [3] is [0.042].

Val ue of neural input [2] is [0.07].

Val ue of neural input [1] is [0.682].

Val ue of neural input [0] is [0.222].

Val ue of output neuron [11] in the |last neural layer is [1].
Val ue of output neuron [12] in the |last neural layer is [O].
Val ue of output neuron [13] in the |last neural layer is [O].
[Qut put]

The [predictedValue] is [Iris-setosa (STRI NG]

[class] := Iris-setosa (STRI NG

The [probability] of [Iris-setosa (STRI NG]
[Probability_setosa]
The [probability] of [Iris-versicolor (STRI NG]
[Probability_versicol or]
The [probability] of [Iris-virginica (STRI NG]

i's [0.9995535104664939 (DOUBLE)]

= 0.9995535104664939 (DOUBLE)

i's [4.464895332525406E- 4 (DOUBLE)]
: = 4.464895332525406E- 4 (DOUBLE)

is [2.536692637033178E- 13 (DOUBLE)]

[Probability_virginica] := 2.536692637033178E-13 (DOUBLE)

Page 62

5 software~

5.2.3.3. Apply Model to Multiple Records or Apply Model to Single Binary

Data

Definition

Request Parameters

Returns

POST /apply/{model_name}

This provides two kinds of operations. Generally, if a predictive model without bi nary
type input is applied, this will be a batch 'apply’ operation that streams multiple input
records to Zementis Server. Zementis Server will automatically detect Conmra Sep-
ar at ed Val ue (CSV) or JSON Records formatted input and stream results back in
the same format unless otherwise specified in the Accept request header parameter
witht ext / csv orappl i cati on/j son values. Compressing input data with zi p or

gzi p will result in the same compression method for the returned output stream.

If a predictive model with a bi nary type input is applied, this will be a single 'apply’

operation that processes a single binary source as input to Zementis Server.

Cont ent - Type (string) : required header parameter with two accepted values:
application/octet-streamornultipart/formdata

nmodel _name (string) : required path variable for the name of the model to be
applied

maxThr eads : optional query parameter for specifying the maximum number of con-
current threads (default value is twice the number of processor cores). No impact if a
predictive model with a bi nar y type input was applied.

maxRecor dsPer Thread : optional query parameter for specifying the maximum
number of records processed by a thread in batch (default value is 5000). No impact
if a predictive model with a bi nar y type input was applied.

Accept : optional header parameter for explicitly specifying t ext / csv or appl i -

cation/j son output format

User - Agent : optional header parameter for full duplex HTTP streaming data if set
to AdapaSt r eani ng followed by any characters or a string containing value cur |

. Default data handling mode is copy-forward where response is rendered only after

full request has been read by the server.

Returns results as CSV or as Result object if successful, Errors otherwise.

Example 5.25. Zementis REST Apply Model to Multiple Records

Request

Page 63

5 software~

curl -u adapa: adapa -k https://|ocal host/adapars/apply/lris_NN -X POST -T Iris_NN csv \
-H "Content - Type: appl i cati on/ oct et - st r eant
curl -u adapa: adapa -k https://|ocal host/adapars/apply/lris_NN?maxThreads=8 - X POST -F
file=@ris_NN. csv

Request Header

POST /adapar s/ appl y/ I ri s_NN?maxThreads=8 HTTP/ 1.1

Aut hori zati on: Basi c YWRhcCGE6YWRhcCE=

User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
Host: | ocal host

Accept: */*

Content - Lengt h: 10148

Expect: 100-conti nue

Content-Type: multipart/formdata; boundary=---------------------------- 6da946996e0d

Response Header

HTTP/ 1.1 200 OK

Server: Apache-Coyote/1.1

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Content - Type: text/csv

Tr ansf er - Encodi ng: chunked

Date: Wed, 26 Mar 2014 20:19:23 GVl

Response Body

cl ass, Probabi lity_setosa, Probability_versicol or, Probability_virginica
Iris-setosa, 0.9995535104664939, 4. 464895332525406E- 4, 2. 536692637033178E- 13
Iris-setosa, 0.9985890830740689, 0. 0014109169248845744, 1. 0465677336558733E- 12
Iris-setosa, 0.9993451737365701, 6. 54826263018726E- 4, 4. 111504068226951E- 13

Example 5.26. Zementis REST Apply Model to Single Binary Record

Request

curl -u adapa: adapa -k https://| ocal host/adapars/apply/ Caffe_NN -X POST -H ' Accept: application/json'
Ffile=@.]pg

Request Header

PCOST / adapar s/ appl y/ Caffe_NN HTTP/ 1. 1

Aut hori zati on: Basi c YWRhcCGE6YWRhCcCE=

User-Agent: curl/7.43.0

Host: | ocal host

Accept: application/json

Cont ent - Lengt h: 5319

Expect: 100-conti nue

Content-Type: multipart/formdata; boundary=------------------------ 6099e489f d2da819

Response Header
HTTP/ 1.1 200 OK
Server: Apache-Coyote/1.1
X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Cont ent - Type: application/json
Cont ent - Lengt h: 403
Date: Fri, 27 May 2016 21:39:07 GVl

Response Body

"model " : "Caffe_NN',

Page 64

5 software~

"outputs" : [{

"p_7" : 0.009013318755324183,
"p_8" : 0.011660178735845163,
"p_9" : 0.040489440800734404,
"p_0" : 0.7602463077131643,
"class" : "0",
"p_1" : 0.006724422031736871,
"p_2" : 0.052489690530517254,
"p_3" : 0.004134235496422808,
p_4" : 0.027965981244545225,
"p_5" : 0.014539398304602753,
"p_6" : 0.07273702638710705

I

5.2.3.4. Asynchronously Apply Model to Multiple Records

Definition

Request Parameters

Returns

POST /apply/{model_name}/async

This is an asynchronous batch ‘apply' operation that streams multiple input records
from remote location specified in uploaded properties file and writes the result back
to the remote data target. The properties file describes the remote data source and
target locations, connection properties, and access credentials. Zementis Server will
automatically detect Conma. Separ at ed Val ue (CSV) or JSON Records formatted
input and streams the result back in CSV format. Compressing input data with zi p

or gzi p will result in the same compression method for the result.

Cont ent - Type (string) : required header parameter with two accepted values:
application/octet-streamornultipart/formdata

nmodel _name (string) : required path variable for the name of the model to be
applied

maxThr eads : optional query parameter for specifying the maximum number of con-
current threads (default value is twice the number of processor cores).

maxRecor dsPer Thread : optional query parameter for specifying the maximum

number of records processed by a thread in batch (default value is 5000).

Returns status information, job ID and description, output handle, and start timestamp

of processing job in JSON format.

Example 5.27. Zementis REST Asynchronously Apply Model to Multiple Records

Request

\

curl -u adapa: adapa -k https://|ocal host/adapars/apply/lris_NNasync -X POST -T Iris_NN_CSV. properties

-H " Cont ent - Type: appl i cati on/ oct et - st reant
curl -u adapa: adapa -k https://|ocal host/adapars/apply/lris_NN async?maxThreads=8 - X POST \

Page 65

5 software~

-F file=@ris_NN_CSV.properties
Request Header

POST / adapars/appl y/Iris_NN async?maxThreads=8 HTTP/ 1.1

Aut hori zati on: Basic YWRhcCGE6YWRhCcCE=

User-Agent: curl/7.54.0

Host: | ocal host

Accept: */*

Cont ent - Lengt h: 376

Expect: 100-conti nue

Content-Type: multipart/formdata; boundary=---------------------------- c6e69656a61898e9

Response Header
HTTP/ 1.1 200 OK
Server: Apache-Coyote/1.1
Cont ent - Type: application/json
Date: Thu, 10 Aug 2017 16: 24:42 GMVI

Response Body

{

"status" : "STARTED',

“id" o 4,

"output” : "lris_NN_output_4_20170810_092441. csv",

“startTime" : "2017-08-10 09: 24: 41.595 -0700",

"description" : "Amazon S3 Connector: bucket="nmyBucket', input="Iris_NN. csv'"
}

5.2.4. Operations on Resources

5.2.4.1. List Available Resources

Definition GET /resources

This operation retrieves information on all available resource files uploaded on Ze-
mentis Server. Use file names as identifiers for all operations requiring afi |l e_nane

path variable.
Request Parameters None

Returns Returns a Resources object if successful, an Errors object otherwise.

Example 5.28. Zementis REST List Resources

Request

curl -u adapa: adapa -k https://| ocal host/adapars/resources
Request Header

GET / adapars/resources HITP/ 1.1

Aut hori zati on: Basi c YWRhcGE6YWRhcGE=
User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5

Page 66

5 software~

Host: | ocal host
Accept: */*

Response Header

HTTP/ 1.1 200 OK

Server: Apache-Coyote/1.1

Pragma: No- cache

Cache- Control : no-cache

Expires: Wed, 31 Dec 1969 16: 00: 00 PST

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Cont ent - Type: application/json

Cont ent - Lengt h: 363

Date: Mon, 24 Nov 2014 22:56:50 GV

Response Body

{
"resources" : [{
"fil eName" : "ECommerceFraud_NN.jar",
"resourceType" : "Custom Functions",
"resourceldentifier" : "Function Nanespace",
"resourceNames” : ["fraud"]
oA
"fil eName" : "ECommerceFraud_NN. x| s,
"resourceType" : "Lookup Tabl es",
"resourceldentifier" : "Table Name",
"resourceNanmes" : ["StatePoints"]
I
}

5.2.4.2. Get Resource Information

Definition GET /resource/{file_name}
Get information on the specified resource file.
Request Parameters file_name (string): required path variable for an existing resource file name

Returns Returns a Resourcelnfo object if successful, an Errors object otherwise.

Example 5.29. Zementis REST Get Resource Information

Request
curl -u adapa: adapa -k https://|ocal host/adapars/resource/ EComrer ceFraud_NN. j ar
Request Header
GET / adapar s/ resour ces/ ECommer ceFraud_NN.jar HTTP/ 1.1
Aut hori zati on: Basi c YWRhcGE6YWRhcGE=
User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
Host: | ocal host
Accept: */*
Response Header

HTTP/ 1.1 200 K
Server: Apache-Coyote/1.1

Page 67

5 software~

Pragma: No- cache

Cache- Control : no-cache

Expires: Wed, 31 Dec 1969 16: 00: 00 PST

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Cont ent - Type: application/json

Content - Lengt h: 161

Date: Mon, 24 Nov 2014 23:05:51 GV

Response Body

{
"fil eName" : "ECommerceFraud_NN.jar",
"resourceType" : "Custom Functions",
"resourceldentifier" : "Function Nanespace",
"resourceNanmes" : ["fraud"]

}

5.2.4.3. Get Resource File

Definition GET /resource/{file_name}/source
Download a resource file.
Request Parameters file_name (string): required path variable for an existing resource file name

Returns Returns a copy of the resource file if successful, an Errors object otherwise.

Example 5.30. Zementis REST Get Resource File

Request
curl -u adapa: adapa -k https://|ocal host/adapars/resource/ EConmer ceFraud_NN. j ar/ source
Request Header

GET / adapar s/ resour ces/ ECommer ceFraud_NN. j ar/source HTTP/ 1.1

Aut hori zati on: Basi c YWRhcGE6YWRhcGE=

User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
Host: | ocal host

Accept: */*

Response Header

HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1

Pragma: No- cache

Cache-Control : no-cache

Expires: Wed, 31 Dec 1969 16:00: 00 PST

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Cont ent - Type: application/octet-stream

Content - Length: 1675

Date: Mon, 24 Nov 2014 23:15:35 GVI

Response Body
PK
??uE META- | NF/ ??PK

??uE?" !
K- *?2?#R0?37?7?r ?Cq, HL?HU?% ?x???RKRSt ?* A???

Page 68

5 software~

5.2.4.4. Upload New Resource File

Definition

Request Parameters

Returns

POST /model

Upload a new resource file. The file name in 'file' body parameter will be used to

identify this resource.

Cont ent - Type (string): required header parameter with two accepted values:
application/octet-streamornultipart/formdata

file (string): required query parameter for PMML file name, if Content-Type is
appl i cation/oct et -stream or a body parameter in mul ti part/form data
content encoding

Cont ent - Type (string): required body parameter for resource a file name, and

its content

Returns Resourcelnfo object, 201 HTTP response status code, and response header
entry Locat i on with URI of created resource if upload was successful, an Errors

object otherwise.

Example 5.31. Zementis REST Upload New Resource File with POST

Request

curl -u adapa: adapa -k https://| ocal host/adapars/resource?fil esECormer ceFraud_NN. xl s - X POST \
-T ECommer ceFraud_NN. xI s -H "Cont ent - Type: appl i cati on/ oct et - st r eant
curl -u adapa: adapa -k https://|ocal host/adapars/resource -X POST -F fil e=@Comer ceFraud_NN. x| s

Request Header

PCOST / adapars/resource HTTP/ 1.1
Aut hori zati on: Basi c YWRhcGE6YWRhcGE=
User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5

Host: | ocal host
Accept: */*

Cont ent - Lengt h: 30933
Expect: 100-conti nue

Content-Type: multipart/formdata; boundary=-------------c---coomou d9c9597f d160

Response Header

HTTP/ 1.1 201 Created

Server: Apache-Coyote/1.1

X- Power ed- By: Servlet 2.5; JBoss-5.0/JBossWb-2.1

Location: http://1 ocal host: 8080/ adapar s/ resour ce/ EConmer ceFraud_NN. xI s
Cont ent - Type: application/json

Cont ent - Lengt h: 156

Date: Wed, 26 Mar 2014 19:45:18 GVI

Response Body

Page 69

5 software~

{
"fil eName" : "ECommerceFraud_NN. x| s,
"resourceType" : "Lookup Tabl es",
"resourceldentifier" : "Table Name",
"resourceNanmes" : ["StatePoints"]

}

5.2.4.5. Upload New Resource File with PUT

Definition PUT /model

Upload a new resource file. The file name in 'file' query parameter will be used to

identify this resource.
Request Parameters file (string): required query parameter for resource file name

Returns Returns a Resourcelnfo object, 201 HTTP response status code, and a response

header entry Locat i on with URI of the created resource if the upload was successful,

an Errors object otherwise.

Example 5.32. Zementis REST Upload New Resource File with PUT

Request

curl -u adapa: adapa -k https://|ocal host/adapars/resource?fil esECormerceFraud_NN. xls -X PUT -T

EConmmer ceFr aud_NN. x| s
Request Header

PUT / adapars/resource?fil e=EComrer ceFraud_NN. xI s HTTP/ 1.1
Aut hori zati on: Basi c YWRhcGE6YWRhcGE=

User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5

Host: | ocal host
Accept: */*

Cont ent - Lengt h: 30720
Expect: 100-conti nue

Response Header

HTTP/ 1.1 201 Created

Server: Apache-Coyote/1.1

Pragma: No- cache

Cache-Control : no-cache

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1

Location: http://1 ocal host: 8080/ adapars/resour ce/ EConmer ceFraud_NN. xI s

Cont ent - Type: application/json

Cont ent - Lengt h: 156

Date: Mon, 24 Nov 2014 23:37:26 GVI
Response Body

{

Page 70

5 software~

"fil eName" : "ECommerceFraud_NN. x| s,
"resourceType" : "Lookup Tabl es",
"resourceldentifier" : "Table Name",
"resourceNanmes" : ["StatePoints"]

5.2.4.6. Remove Resource File

Definition DELETE /resource/{file_name}
Remove the specified resource file and list all remaining resources.
Request Parameters file_name (string): required path variable for existing resource file name

Returns Returns a Resources object with a list of all remaining resource files if successful, an

Errors object otherwise.

Example 5.33. Zementis REST Remove Resource File

Request

curl -u adapa: adapa -k https://|ocal host/adapars/resource/ EConmerceFraud_NN.jar -X DELETE

Request Header

DELETE / adapar s/ r esour ce/ ECommer ceFraud_NN. xI s HTTP/ 1.1

Aut hori zati on: Basi c YWRhcGE6YWRhcGE=

User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
Host: | ocal host

Accept: */*

Response Header

HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1

Pragma: No- cache

Cache-Control : no-cache

Expires: Wed, 31 Dec 1969 16:00: 00 PST

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Content - Type: application/json

Cont ent - Lengt h: 195

Date: Mon, 24 Nov 2014 23:50: 13 GV

Response Body

{
"resources" : [{
"fileNanme" : "ECommerceFraud_NN.jar",
"resourceType" : "Custom Functions",
"resourceldentifier" : "Function Nanespace",
"resourceNanes" : ["fraud"]
}l
}

Page 71

5 software~

5.2.4.7. Remove All Resource Files

Definition DELETE /resources
Remove all available resources and list the remaining resources.
Request Parameters None

Returns Returns a Resources object with an empty r esour ces array if successful, an Errors

object otherwise.

Example 5.34. Zementis REST Remove All Resource Files

Request
curl -u adapa:adapa -k https://| ocal host/adapars/resources -X DELETE
Request Header

DELETE / adapar s/ resources HTTP/ 1.1

Aut hori zati on: Basic YWRhcCGE6YWRhCcCE=

User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
Host: | ocal host

Accept: */*

Response Header

HTTP/ 1.1 200 OK

Server: Apache-Coyote/1.1

Pragma: No- cache

Cache- Control : no-cache

Expires: Wed, 31 Dec 1969 16: 00: 00 PST

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1
Content - Type: application/json

Cont ent - Lengt h: 23

Date: Mon, 24 Nov 2014 23:57:57 GMI

Response Body

{

"resources" : []

}

5.2.5. Operations on License

5.2.5.1. Get License Properties

Definition GET /license
This operation retrieves properties of license on Zementis Server.

Request Parameters None

Page 72

5 software~

Returns Returns license properties if successful, an Errors object otherwise.

Example 5.35. Zementis REST Get License

Request
curl -X GET "http://|ocal host: 8080/ adapars/|icenses" -H "accept: application/json"
Request Header

GET /adapars/license HITP/ 1.1

Aut hori zati on: Basic YWRhcCGE6YWRhCcCE=

User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
Host: | ocal host

Accept: */*

Response Header

cache-control: private
content-|ength: 204

content-| ength: 583

content-type: application/json

date: Sun, 27 Jan 2019 23:24:35 GVI

Response Body

{
"properties" : {
"Conpany" : "Zenentis, Inc.",
"Emai | " : "support @enentis.conl,
"Expires On" : "Jan 6, 2116 16:24 PST",
"Product” : "ADAPA",
"Edition" : "ADAPA Enterprise Server",
"Nunber of Cores" : "128 (systemreports 4 cores)",
"Nanme" : "Engi neering Teant
b
"status" : "VALID',
"message” : "The license is VALID."
}

5.2.5.2. Upload a new license file

Definition POST /license
Upload a new license file.
Request Parameters file_name (string): required path variable for an existing license file name

Returns Returns license properties if successful, an Errors object otherwise.

Example 5.36. Zementis REST Post License

Request
curl -X GET "http://]ocal host: 8080/ adapars/|icenses" -H "accept: application/json"

Request Header

Page 73

5 software~

POST /adapars/|icense HITP/ 1.1

Aut hori zati on: Basi c YWRhcCGE6YWRhCcCE=

User-Agent: curl/7.24.0 (x86_64-appl e-darwi n12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
Host: | ocal host

Accept: */*

Cont ent - Lengt h: 30933

Expect: 100-conti nue

Content-Type: mnultipart/formdata; boundary=---------------------------- d9c9597f d160

Response Header

HTTP/ 1.1 201 Created

Server: Apache-Coyote/1.1

X- Power ed-By: Servlet 2.5; JBoss-5.0/JBossWb-2.1

Location: http://1ocal host: 8080/ adapar s/ resour ce/ EConmer ceFraud_NN. xI s
content-| ength: 583

content-type: application/json

date: Sun, 27 Jan 2019 23:24:35 GVI

Response Body

{

"properties" : {
"Conpany" : "Zenentis, Inc.",
"Emai | " : "support @enentis.conl,
"Expires On" : "Jan 6, 2116 16:24 PST",
"Product" : "ADAPA",
"Edition" : "ADAPA Enterprise Server",
"Nunber of Cores" : "128 (systemreports 4 cores)",
"Nanme" : "Engi neering Teant

I

"status" : "VALID',

"message" : "The license is VALID."

}

Page 74

