

ZEMENTIS Predictive Analytics
Extensions to PMML

 i

ZEMENTIS Predictive Analytics

Extensions to PMML

Software AG
Copyright © 2004 – 2016 Zementis Inc.
Copyright © 2016 – 2020 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or
its subsidiaries and/or its affiliates and/or their licensors.

This document applies to ZEMENTIS Predictive Analytics and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes
or new editions.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of
Software AG and/or Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other
company and product names mentioned herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of
the product documentation, located at http://softwareag.com/licenses and/or in the root installation directory of the
licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional
rights or restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For
certain specific third-party license restrictions, please refer to section E of the Legal Notices available under "License
Terms and Conditions for Use of Software AG Products / Copyright and Trademark Notices of Software AG Products".
These documents are part of the product documentation, located at http://softwareag.com/licenses and/or in the root
installation directory of the licensed product(s).

 ii

1 Table of Contents
1 Introduction .. 1	
2 Activation Functions ... 2	

2.1 Activation Function: Stretched Logistic ... 2	
2.2 Activation Function: MaxPool ... 3	
2.3 Activation Function: Gauss ... 3	

3 Thermometer Coding ... 4	
4 Topology Representing Network .. 6	

4.1 TRN in PMML ... 7	
5 Combining Multiple PMML Files ... 9	
6 Functions ... 14	

6.1 Functions for Date/Time Handling ... 14	
Function zementis:toDate ... 14	
Function zementis:toTime ... 15	
Function zementis:toDateTime ... 15	
Function zementis:daysFromTo .. 16	

6.2 JSON Functions ... 17	
7 Multi-Valued Types .. 19	
8 Conclusion ... 21	

 1

1 Introduction
ZEMENTIS server and ZEMENTIS Plugins support PMML versions 2.0 through 4.4. They
do that by incorporating a PMML converter, which is able to convert older versions of
PMML to its latest. The converter is also tasked with the correction of known issues with
automatically exported PMML code from different model building tools.
To represent certain features not present in standard PMML, a few extensions had to be
defined so that the models using these features would be processed correctly when
executed in one of our scoring products. In this way, whenever a known non-standard
feature is encountered, the PMML converter automatically moves it into an extension that
makes sense for scoring. These extensions and customizations are defined below.

 2

2 Activation Functions
A Neural Network Model in PMML is represented by the element NeuralNetwork. This
element is composed of a series of elements including NeuralLayer which encapsulates
the neurons in that layer. In PMML, a single activation function may be defined for the
entire network or a different activation function may be defined for each neural layer.
Typical activation functions include logistic, hyperbolic tangent, and Gauss. ZEMENTIS
server and ZEMENTIS Plugins define two extensions targeted towards activation
functions.

2.1 Activation Function: Stretched Logistic
The first is an activation function modifier. It is a stretched up version of the logistic
activation function and when used, it transforms the logistic activation function from
activation(Z) = 1/(1+exp(-Z)) to activation(Z) = -1 + 2/(1+exp(-Z)). The extension per se is
defined as:
<Extension name="ACTIVATION_FUNCTION" value="Stretch" extender="ADAPA" />

For example, the PMML code shown in Figure 1 implements the setting up of the
element NeuralNetwork for a neural network that uses the logistic activation function with
the stretch modification.

 3

Figure 1. Setting up a NeuralNetwork element in PMML with the stretch modification

2.2 Activation Function: MaxPool
The second extension defines an activation function designed to mimic a network layer
which simply collects and down-samples data from the previous layer; this is a common
layer in deep networks. When used, it takes the input to all the neurons in the layer and
outputs the maximum value of the inputs. In other words, using the notation from the
PMML schema definition, activation(Z) = max(output(i)). Note that the step combining the
outputs is skipped.
<Extension name="ACTIVATION_FUNCTION" value="maxPool" extender="ADAPA" />

2.3 Activation Function: Gauss
The third extension defines an alternative to the Gaussian activation function defined by
the PMML specification. When used, it converts it from activation(Z) = exp(-(Z*Z)) to
activation(Z) = exp(-(Z*Z)*0.5). The extension is defined as:

<Extension name="ACTIVATION_FUNCTION" value="GaussMean0StD1"
extender="ADAPA" />

Note that the Extension element, when present, takes precedence in defining the
activation function even if attribute activationFunction is explicitly defined as part of the
NeuralNetwork or NeuralLayer element.

<NeuralNetwork
 modelName="ADAPABackPropagationModel"
 functionName="classification"
 activationFunction="logistic"
 numberOfLayers="2">
 <Extension name="ACTIVATION_FUNCTION"
 value="Stretch" extender="ADAPA"/>
 <!-- MiningField elements -->
 <!-- NeuralInput elements -->
 <!-- NeuralLayer elements -->
 <!-- NeuralOutput element -->
</NeuralNetwork>

 4

3 Thermometer Coding
When thermometer coding is specified, the outputs of a neural network are to be
interpreted as cumulative probabilities. In this way, to compute the output of any category
other than the first, one must take the difference between successive outputs.
The extension for representing thermometer coding is define as:
<Extension name="NORM_DISCRETE_METHOD" value="Thermometer"
 extender="ADAPA" />

For example, the PMML code shown in Figure 2 implements the use of thermometer
coding for the NeuralOutput elements of a neural network. Note that although the
example assumes eleven NeuralOutput elements, only three are explicitly defined.

 5

<NeuralNetwork ...>
 <!-- MiningField elements -->
 <!-- NeuralInput elements -->
 <!-- NeuralLayer elements -->
 <NeuralOutputs numberOfOutputs="11">
 <NeuralOutput outputNeuron="Output_10">
 <DerivedField dataType="string" optype="categorical">
 <NormDiscrete field="Final" value="10">
 <Extension extender="ADAPA"
 name="NORM_DISCRETE_METHOD" value="Thermometer"/>
 </NormDiscrete>
 </DerivedField>
 </NeuralOutput>
 <NeuralOutput outputNeuron="Output_9">
 <DerivedField dataType="string" optype="categorical">
 <NormDiscrete field="Final" value="9">
 <Extension extender="ADAPA"
 name="NORM_DISCRETE_METHOD" value="Thermometer"/>
 </NormDiscrete>
 </DerivedField>
 </NeuralOutput>
 <!— ... -->
 <NeuralOutput outputNeuron="Output_0">
 <DerivedField dataType="string" optype="categorical">
 <NormDiscrete field="Final" value="0">
 <Extension extender="ADAPA"
 name="NORM_DISCRETE_METHOD" value="Thermometer"/>
 </NormDiscrete>
 </DerivedField>
 </NeuralOutput>
 </NeuralOutputs>
</NeuralNetwork>

Figure 2. Setting up a NeuralNetwork element in PMML with the help of an Extension element
used to implement neural outputs with thermometer coding

 6

4 Topology Representing Network
Topology Representing Network (TRN) is a self-organizing network that can be
formulated as a combination of a vector quantization scheme and a competitive Hebbian
rule. The vector quantizer implemented in TRN is known in the literature as the neural-
gas algorithm (T. M. Martinetz and K. J. Schulten. Topology Representing Networks.
Neural Networks, Vol. 7, No. 3, pp. 507-522, 1994).
TRN networks are usually represented by a single manifold of neurons. Figure 3 shows
the self-organizing dynamics of this manifold during learning. It depicts the development
of a two-dimensional network. Initially, the network is presented with equally distributed
random numbers (t = 0) and the neural gas vector quantization algorithm distributes the
weights matching the input probability distribution. At the same time, the competitive
Hebb-rule introduces connections between the units resembling the topology of the input
manifold.
Note that in t = 0, the neurons have not yet started to map the input data. In t = 100, the
first connections have already been established. Finally, in t = 100,000 the network
resembles the topology of the input space.

Figure 3. Neuron dynamics in a TRN

TRN is not a modeling technique supported by the PMML standard. The representation
depicted here, although particular to ZEMENTIS, is very much in line with how PMML
represents neural networks. A TRN network is therefore implemented as a multi-layer
feed-forward entity in which the input variables are mapped to a neural input layer, the

 7

self-organizing network (or manifold of neurons) is represented as a hidden layer, and
the output of the network is represented by an output layer containing a single node.

4.1 TRN in PMML
TRN is represented in PMML by the element NeuralNetwork in which the following
attribute-value pair needs to be specified:

 Attribute activationFunction should contain the value "identity".

Also, to identify that the TRN algorithm is to be run, ZEMENTIS requires the PMML code
representing TRN to be defined as an Extension as follows:

<Extension name="NEURAL_NETWORK_TYPE"
 value="TopologyRepresentingNetwork"
 extender="ADAPA" />

For example, the PMML code shown in Figure 4 implements the setting up of the
element NeuralNetwork for TRN. Note that the number of layers is defined as "2"
(attribute numberOfLayers) since the input layer is not considered. Also, note the
required Extension element.

Figure 4. Setting up a TRN NeuralNetwork element in PMML with the help of an Extension element

As mentioned above, TRN networks are represented in ZEMENTIS server and
ZEMENTIS Plugins as feed-forward networks in a very similar manner as back-
propagation networks. The only difference between these is the number of hidden nodes.
In back-propagation networks, the number of hidden neurons is usually small, whereas

<NeuralNetwork
 modelName="ADAPATRNModel"
 functionName="classification"
 activationFunction="identity"
 numberOfLayers="2">
 <Extension name="NEURAL_NETWORK_TYPE"
 value="TopologyRepresentingNetwork" extender="ADAPA"/>
 <!--
 Other PMML elements such as MiningSchema
 as well as model specific elements
 -->
</NeuralNetwork>

 8

the manifold of neurons in TRN can be composed of hundreds of neurons. Therefore the
representation of the hidden-layer in TRN can be quite large.

 9

5 Combining Multiple PMML Files
ZEMENTIS provides a flexible way to combine multiple models in different PMML files. It
does this by allowing a model to invoke one or more external models as functions. Note
that this feature is not available in ZEMENTIS Plugins.
In ZEMENTIS, each model that gets imported is automatically made available to be
invoked by another model as a function. The name of the generated function is
“model:model_name”, where “model:” is a fixed prefix, creating a separate name space
for functions backed by models, and “model_name” is the name of the corresponding
model. The input parameters of the function are created by the input fields of the model,
in the order they appear in the mining schema. The names of the input fields are not
important. Their data types are as they determine the data type of the corresponding
input parameter of the function.
The output data type of the function, i.e. the data type of the returned values, depends on
the number of output fields of the model. For models with a single output field, the output
data type is that of the single output field. For models with more than one output field, the
output data type of the function is always “string” and the returned values are a JSON
representation of all the output values of the model. As discussed in section 6.2, the
JSON representation allows a function to return multiple values in a structured object.
ZEMENTIS also provides functions that help pick individual values out of the structured
object.
Let’s consider first an example of a model that invokes another model with a single
output field. Figure 5 shows the input and output fields of a regression model, which we
will be using as an example of a “child” model. It has six input fields of type double and a
single output field, also of type double. Note that the model element contains attribute
modelName. Although this attribute is optional in PMML, it is required if being used to
define external models as functions. In the example shown here, the “child” model is
named ElNino_LR.

 10

Another model, which we may think of as the “parent” model, may invoke the ElNino_LR
model by using the generated function model:ElNino_LR anywhere where an Apply
expression may be used. Typically, this is done in a derived field in the
LocalTransformations section, as shown below in Figure 6.

<DataDictionary numberOfFields="6">
 <DataField name="airtemp" optype="continuous"
 dataType="double" />
 <DataField name="humidity" optype="continuous"
 dataType="double" />
 <DataField name="latitude" optype="continuous"
 dataType="double" />
 <DataField name="longitude" optype="continuous"
 dataType="double" />
 <DataField name="mer" optype="continuous"
 dataType="double" />
 <DataField name="zon" optype="continuous"
 dataType="double" />
</DataDictionary>
<RegressionModel modelName="ElNino_LR" functionName="regression"
 modelType="linearRegression">
 <MiningSchema>
 <MiningField name="airtemp" usageType="active" />
 <MiningField name="humidity" usageType="active" />
 <MiningField name="latitude" usageType="active" />
 <MiningField name="longitude" usageType="active" />
 <MiningField name="mer" usageType="active" />
 <MiningField name="zon" usageType="active" />
 </MiningSchema>
 <Outputs>
 <OutputField name="temp" optype="continuous"
 dataType="double" feature="predictedValue"/>
 </Outputs>

Figure 5. Multiple Models: Input and output fields of a “child” model with a single output field.

<DerivedField name="elnino_lr_score" optype="continuous"
 dataType="double">
 <Apply function="model:ElNino_LR">
 <FieldRef field="my_airtemp"/>
 <FieldRef field="my_humidity"/>
 <FieldRef field="my_latitude"/>
 <FieldRef field="my_longitude"/>
 <FieldRef field="my_mer"/>
 <FieldRef field="my_zone"/>
 </Apply>
</DerivedField>

 11

Figure 6. Multiple Models: Example of “parent” model invoking “child” model with a single output field.

Now let’s consider an example of a “child” model with multiple output fields. Figure 7
presents the input and output fields of a classification model. The model has four input
fields of type double and four output fields, one of type string (the predicted class) and
three of type double (the probability for each of the possible classes).
<DataDictionary numberOfFields="4">
 <DataField dataType="double" name="sepal_length"
 optype="continuous" />
 <DataField dataType="double" name="sepal_width"
 optype="continuous" />
 <DataField dataType="double" name="petal_length"
 optype="continuous" />
 <DataField dataType="double" name="petal_width"
 optype="continuous" />
</DataDictionary>
<NeuralNetwork activationFunction="tanh"
 functionName="classification" modelName="Iris_NN">
 <MiningSchema>
 <MiningField name="sepal_length" />
 <MiningField name="sepal_width" />
 <MiningField name="petal_length" />
 <MiningField name="petal_width" />
 </MiningSchema>
 <Output>
 <OutputField dataType="string" feature="predictedValue" name="class" />
 <OutputField dataType="double" feature="probability"
 name="Probability_setosa" optype="continuous"
 value="Iris-setosa" />
 <OutputField dataType="double" feature="probability"
 name="Probability_versicolor" optype="continuous"
 value="Iris-versicolor" />
 <OutputField dataType="double" feature="probability"
 name="Probability_virginica" optype="continuous"
 value="Iris-virginica" />
 </Output>

Figure 7. Multiple Models: Example of “child” model with multiple output fields.

The way to invoke this model from another one is similar to the single output field
example. However, the return value of the model will be a JSON representation of the
predicted values. This would require defining additional derived fields to select the
individual values from the JSON result. This is shown in the example in Figure 5. The
Apply element for the derived field json_nn_result invokes the model Iris_NN and the
result of that invocation is stored in that field as a JSON string. The other four derived

 12

fields use the provided JSON functions (see section 6.2) to pick the different values out
of this JSON string. Note that, depending on the type of an output field, the appropriate
JSON function should be used to retrieve the value of the correct data type. In this
example, in order to retrieve the class prediction, which is of type string, we use the
function zementis:jsonString, and for the three predicted probabilities, which are of type
double, we use the function zementis:jsonDouble.

 13

<DerivedField dataType="string" optype="categorical"
 name="json_nn_result">
 <Apply function="model:Iris_NN">
 <FieldRef field="my_sepal_length" />
 <FieldRef field="my_sepal_width" />
 <FieldRef field="my_petal_length" />
 <FieldRef field="my_petal_width" />
 </Apply>
</DerivedField>
<DerivedField name="nn_class" dataType="string"
 optype="categorical">
 <Apply function="zementis:jsonString">
 <FieldRef field="json_nn_result" />
 <Constant>$.class</Constant>
 </Apply>
</DerivedField>
<DerivedField name="nn_setosa_prob" dataType="double"
 optype="categorical">
 <Apply function="zementis:jsonDouble">
 <FieldRef field="json_nn_result" />
 <Constant>$.Probability_setosa</Constant>
 </Apply>
</DerivedField>
<DerivedField name="nn_versicolor_prob" dataType="double"
 optype="categorical">
 <Apply function="zementis:jsonDouble">
 <FieldRef field="json_nn_result" />
 <Constant>$.Probability_versicolor</Constant>
 </Apply>
</DerivedField>
<DerivedField name="nn_virginica_prob" dataType="double"
 optype="categorical">
 <Apply function="zementis:jsonDouble">
 <FieldRef field="json_nn_result" />
 <Constant>$.Probability_virginica</Constant>
 </Apply>
</DerivedField>

Figure 5. Multiple Models: Example of “parent” model calling a “child” model with multiple output fields.

 14

6 Functions
PMML implements a large set of built-in functions. Nonetheless, ZEMENTIS server and

ZEMENTIS Plugins offer extra functions. These functions can be divided into three

categories: 1) functions to make it easier to handle date values; 2) functions that allow

string manipulations using regular expressions and patterns; 3) functions that implement

JSON functionality; and 4) function to display multiple values as a single output. The

three groups of functions are described below. Note that whenever used, these functions

need to be preceded by the namespace “zementis:” which identifies that these are

ZEMENTIS’ extensions to PMML and not standard built-in functions.

6.1 Functions for Date/Time Handling

Function zementis:toDate
This function is somewhat the reverse of the PMML built-in function “formatDatetime”. It

parses a string representation of a date value to a value of type “date”. Its arguments are

a string representation of a date value and a string representing the format that value is

in. It returns the parsed date value. This format string follows the pattern described in the

Java class:

org.joda.time.format.DateTimeFormat

For more information, refer to:

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html

For example, the PMML code shown in Figure 9. PMML code using the function

zementis:toDate contains three derived fields. While the first one is used to define the

desired format, the last two use the function “toDate” to parse a string value to an actual

date value.

<DerivedField name="date_format" optype="categorical" dataType="string">
 <Constant>MM/dd/yyyy</Constant>
</DerivedField>
<DerivedField name="bankruptcy_discharged_date" optype="ordinal"
dataType="date">
 <Apply function="zementis:toDate">
 <FieldRef field="string_bankruptcy_discharged_date"/>
 <FieldRef field="date_format"/>

 15

 </Apply>
</DerivedField>
<DerivedField name="loan_created_date"
 optype="ordinal" dataType="date">
 <Apply function="zementis:toDate">
 <FieldRef field="string_loan_created_date"/>
 <FieldRef field="date_format"/>
 </Apply>
</DerivedField>

Figure 9. PMML code using the function zementis:toDate

Function zementis:toTime
This function parses a string representation of a time value to a value of type “time”. Its

arguments are a string representation of a time value and a string representing the

format that value is in. It returns the parsed time value. This format string follows the

pattern described in the Java class:

org.joda.time.format.DateTimeFormat

For more information, refer to:

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html

For example, the PMML code shown in Figure 10 shows two examples of using the

“toTime” function to parse a string value to an actual time value.

<DerivedField name="purchase_time" optype="ordinal" dataType="time">
 <Apply function="zementis:toTime">
 <Constant>15:24:32.000</Constant"/>
 <Constant>HH:mm:ss.SSS</Constant"/>
 </Apply>
</DerivedField>
 <DerivedField name="purchase_time"
 optype="ordinal" dataType="time">
 <Apply function="zementis:toTime">
 <Constant>03:24:32PM</Constant"/>
 <Constant>KK:mm:ssa</Constant"/>
 </Apply>
</DerivedField>

Figure 10. PMML code using the function zementis:toTime

Function zementis:toDateTime
This function parses a string representation of a date/time value to a value of type

“dateTime”. Its arguments are a string representation of a date/time value and a string

 16

representing the format that value is in. It returns the parsed dateTime value. This format

string follows the pattern described in the Java class:

org.joda.time.format.DateTimeFormat

For more information, refer to:

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html

For example, the PMML code depicted in Figure 11 shows two examples of using the

“toDateTime” function to parse a string value to an actual time value. Notice, that the

format string in the second example does not specify a time zone. In such a case, the

time zone is assumed to be UTC.

 <DerivedField name="purchase_date_time" optype="ordinal" dataType="dateTime">
 <Apply function="zementis:toDateTime">
 <Constant>2013-05-19 14:24:32-0700</Constant>
 <Constant>yyyy-MM-dd HH:mm:ssZ</Constant>
 </Apply>
</DerivedField>
 <DerivedField name="purchase_date_time_UTC " optype="ordinal" dataType="time">
 <Apply function="zementis:toDateTime">
 <Constant>2013-05-19 21:24:32</Constant>
 <Constant>yyyy-MM-dd HH:mm:ss</Constant>
 </Apply>
</DerivedField>
Figure 11. PMML code using the function zementis:toDateTime

Function zementis:daysFromTo
This function computes the number of days between two date values. For example, the

PMML code shown in Figure 12 depicts the “daysFromTo” function being invoked to

calculate a derived value representing the number of days since bankruptcy in which the

first date attribute contains the bankruptcy discharge date and, the second, the date in

which the loan was created. Note that both of these dates were obtained from using the

function “toDate” as depicted in Figure 9 and so are represented in the date format

MM/dd/yyyy.
<DerivedField name="days_since_bankruptcy" optype="continuous"
dataType="double">
 <Apply function="zementis:daysFromTo">
 <FieldRef field="bankruptcy_discharged_date"/>
 <FieldRef field="loan_created_date"/>
 </Apply>
</DerivedField>

 17

Figure 12. PMML code using the function zementis:daysFromTo

6.2 JSON Functions
When a PMML model relies on an external system to retrieve values required for the

score computation, a custom function can be developed to implement such a

requirement. Often, multiple values may be needed from the external system. However,

with PMML, each function may return only a single value. This means that retrieving

multiple values from an external system would require multiple function calls. In turn,

these function calls result in multiple remote calls to the external system, which can be

expensive in terms of performance.

To overcome this limitation, ZEMENTIS allows creating custom functions that return

several values (a structured object) in the form of a JSON string in a single call (one

round trip Vs. multiple round trips). In addition, it provides functions that, using JSON

path expressions, pick the values you care about out of the JSON structure (locally).

Below is a list of the JSON functions supported. Each of these functions takes as input a

JSON string and a JSON path. It returns a value (of the appropriate type) located in the

provided path. For details on the format of the supported JSON paths, please refer to:

https://code.google.com/p/json-path/

1) zementis:jsonString

2) zementis:jsonDouble

3) zementis:jsonFloat

4) zementis:jsonInteger

5) zementis:jsonBoolean

6) zementis:jsonDate

7) zementis:jsonTime

8) zementis:jsonDateTime

As an example, assume you would like to look for specific information about a particular

product or item. Assume you have a system that, given the barcode of a particular item,

returns all the information pertaining to that item such as name, price, origin, etc. Such

information can be implemented through a custom function. In this example, this function

is called “findItemInfo”. When invoked, “findItemInfo” needs to return more than one

 18

value. This cannot be done through a normal PMML function. However, “findItemInfo”

can pack all the information it needs to return into a JSON object and represent it as a

string. For example, if we pass barcode “4131” as the input argument, function

“findItemInfo” will return a JSON string such as:

{“name”:FujiApple, “price”:1.29, “organic”:true, “state”:Oregon}

The PMML code that uses function “findItemInfo” is shown in Figure 13. Note that field

“barcode” is used as the input argument. Once the function is invoke, the resulting JSON

string will be assigned to derived field “itemInfoJSONString”.

<DerivedField name="itemInfoJSONString" dataType="string" optype="categorical">
 <Apply function="custom:findItemInfo">
 <FieldRef field="barcode"/>
 </Apply>
</DerivedField>

Figure 13. PMML code using custom function custom:findItemInfo

We can then use one or more of the JSON functions listed above to find out, for

example, the name and the price of item “4131”. Figure 14 shows the PMML code for two

derived fields that do just that. These are named “itemName” and “itemPrice”. They use

functions “jsonString” and “jsonDouble”, respectively, to parse out name and price from

the JSON string returned by custom function “findItemInfo”.

<DerivedField name="itemName" dataType="string" optype="categorical">
 <Apply function="zementis:jsonString">
 <FieldRef field="itemInfoJSONString"/>
 <Constant>name<constant/>
 </Apply>
</DerivedField>
<DerivedField name="itemPrice" dataType="string" optype="categorical">
 <Apply function="zementis:jsonDouble">
 <FieldRef field="itemInfoJSONString"/>
 <Constant>price<constant/>
 </Apply>
</DerivedField>

Figure 14. PMML code using JSON functions

 19

7 Multi-Valued Types

In many cases, an algorithm will produce multi-valued outputs. For instance, in the case

of Timeseries models, it is common to generate multi-step forecasts and/or confidence

intervals as the model output. PMML currently only supports primitive data types. To

overcome this limitation, ZEMENTIS defines a custom dataType extension which

enables multi-valued outputs to be represented as JSON objects.

Using this extensions, the output fields of a Timeseries model that returns the point

forecast and confidence intervals (upper and lower at 80th and 95th percentile) will be

represented in PMML as follows:

<OutputField name="predicted_value" optype="continuous" dataType="string"
feature="predictedValue"/>
<OutputField name =”cpi_80_lower” optype=continuous” dataType=”double”
feature=”confidenceIntervalLower” value=”80”/>
<OutputField name =”cpi_80_upper” optype=continuous” dataType=”double”
feature=”confidenceIntervalUpper” value=”80”/>
<OutputField name =”cpi_95_lower” optype=continuous” dataType=”double”
feature=”confidenceIntervalLower” value=”95”/>
<OutputField name =”cpi_95_upper” optype=continuous” dataType=”double”
feature=”confidenceIntervalUpper” value=”95”/>

<Output>
 <OutputField name="predicted_value" optype="continuous" dataType="string"
feature="predictedValue">

<Extension extender="ADAPA" name="datatype" value="json" />
 </OutputField>
 <OutputField name="cpi_80_lower" optype="continuous" dataType="string"
feature="confidenceIntervalLower" value="80">
 <Extension extender="ADAPA" name="dataType" value="json"/>
 </OutputField>
 <OutputField name="cpi_80_upper" optype="continuous" dataType="string"
feature="confidenceIntervalUpper" value="80">
 <Extension extender="ADAPA" name="dataType" value="json"/>
 </OutputField>
 <OutputField name="cpi_95_lower" optype="continuous" dataType="string"
feature="confidenceIntervalLower" value="95">
 <Extension extender="ADAPA" name="dataType" value="json"/>
 </OutputField>

 20

 <OutputField name="cpi_95_upper" optype="continuous" dataType="string"
feature="confidenceIntervalUpper" value="95">
 <Extension extender="ADAPA" name="dataType" value="json"/>
 </OutputField>
</Output>

The output produced from this PMML will look like this:

predicted_value
{"1": 475.80903601, "2": 468.74832101, "3": 465.85399714, "4": 465.25670554, "5":
465.92557547, "6": 467.29212632, "7": 469.04286579}

cpi_80_lower
{"1": 439.37508312, "2": 413.06325561, "3": 405.53250569, "4": 403.60077505, "5":
403.87303557, "6": 405.12139623, "7": 406.83728310000004}

cpi_80_upper
{"1": 512.24298889, "2": 524.43338641, "3": 526.1754886, "4": 526.91263603, "5":
527.97811536, "6": 529.4628564, "7": 531.24844848}

cpi_95_lower
{"1": 420.08811349999996, "2": 383.58536261, "3": 373.60023699, "4": 370.962097, "5":
371.02440519, "6": 372.21019974, "7": 373.90763675}

cpi_95_upper
{"1": 531.52995851, "2": 553.91127941, "3": 558.10775729, "4": 559.55131408, "5":
560.82674574, "6": 562.37405289, "7": 564.17809483}

 21

8 Conclusion
The extensions and functions presented in this document aim to extend the functionality

of PMML. It is our goal to eventually have them as part of the standard itself. For that, a

proposal needs to written and subsequently presented to the Data Mining Group (DMG).

If approved by the DMG, the new functionality is then reflected in a new version of the

PMML standard. Typically, a new version is released every two years.

In addition to the extensions described in this document, the ZEMENTIS also allows for

custom functions coded in Java to be dynamically uploaded as resources. In this way,

custom functionality can be directly used from inside the PMML code. This feature gives

ZEMENTIS yet another powerful way to represent computations that are not part of the

PMML standard, but that may still be required for the full deployment of a predictive

solution. For details on this ZEMENTIS feature, please refer to the “ZEMENTIS Solutions

Guide”.

