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1 Introduction 
ZEMENTIS server and ZEMENTIS Plugins support PMML versions 2.0 through 4.4. They 
do that by incorporating a PMML converter, which is able to convert older versions of 
PMML to its latest. The converter is also tasked with the correction of known issues with 
automatically exported PMML code from different model building tools. 
To represent certain features not present in standard PMML, a few extensions had to be 
defined so that the models using these features would be processed correctly when 
executed in one of our scoring products. In this way, whenever a known non-standard 
feature is encountered, the PMML converter automatically moves it into an extension that 
makes sense for scoring. These extensions and customizations are defined below. 
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2 Activation Functions 
A Neural Network Model in PMML is represented by the element NeuralNetwork. This 
element is composed of a series of elements including NeuralLayer which encapsulates 
the neurons in that layer. In PMML, a single activation function may be defined for the 
entire network or a different activation function may be defined for each neural layer. 
Typical activation functions include logistic, hyperbolic tangent, and Gauss. ZEMENTIS 
server and ZEMENTIS Plugins define two extensions targeted towards activation 
functions.  

2.1 Activation Function: Stretched Logistic 
The first is an activation function modifier. It is a stretched up version of the logistic 
activation function and when used, it transforms the logistic activation function from 
activation(Z) = 1/(1+exp(-Z)) to activation(Z) = -1 + 2/(1+exp(-Z)). The extension per se is 
defined as: 
<Extension name="ACTIVATION_FUNCTION" value="Stretch" extender="ADAPA" /> 
 
For example, the PMML code shown in Figure 1 implements the setting up of the 
element NeuralNetwork for a neural network that uses the logistic activation function with 
the stretch modification.  
  



 

   3 
 
 

 
Figure 1. Setting up a NeuralNetwork element in PMML with the stretch modification 

2.2 Activation Function: MaxPool 
The second extension defines an activation function designed to mimic a network layer 
which simply collects and down-samples data from the previous layer; this is a common 
layer in deep networks. When used, it takes the input to all the neurons in the layer and 
outputs the maximum value of the inputs. In other words, using the notation from the 
PMML schema definition, activation(Z) = max(output(i)). Note that the step combining the 
outputs is skipped.  
<Extension name="ACTIVATION_FUNCTION" value="maxPool" extender="ADAPA" /> 

2.3 Activation Function: Gauss 
The third extension defines an alternative to the Gaussian activation function defined by 
the PMML specification. When used, it converts it from activation(Z) = exp(-(Z*Z)) to 
activation(Z) = exp(-(Z*Z)*0.5). The extension is defined as: 

<Extension name="ACTIVATION_FUNCTION" value="GaussMean0StD1"  
extender="ADAPA" /> 
 
Note that the Extension element, when present, takes precedence in defining the 
activation function even if attribute activationFunction is explicitly defined as part of the 
NeuralNetwork or NeuralLayer element. 
 

<NeuralNetwork 
   modelName="ADAPABackPropagationModel" 
   functionName="classification" 
   activationFunction="logistic" 
   numberOfLayers="2"> 
   <Extension name="ACTIVATION_FUNCTION" 
      value="Stretch" extender="ADAPA"/> 
   <!-- MiningField elements --> 
   <!-- NeuralInput elements --> 
   <!-- NeuralLayer elements -->   
   <!-- NeuralOutput element -->  
</NeuralNetwork> 
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3 Thermometer Coding 
When thermometer coding is specified, the outputs of a neural network are to be 
interpreted as cumulative probabilities. In this way, to compute the output of any category 
other than the first, one must take the difference between successive outputs.  
The extension for representing thermometer coding is define as: 
<Extension name="NORM_DISCRETE_METHOD" value="Thermometer"  
   extender="ADAPA" /> 

For example, the PMML code shown in Figure 2 implements the use of thermometer 
coding for the NeuralOutput elements of a neural network. Note that although the 
example assumes eleven NeuralOutput elements, only three are explicitly defined. 
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<NeuralNetwork ...> 
   <!-- MiningField elements --> 
   <!-- NeuralInput elements --> 
   <!-- NeuralLayer elements -->   
    <NeuralOutputs numberOfOutputs="11"> 
      <NeuralOutput outputNeuron="Output_10"> 
        <DerivedField dataType="string" optype="categorical"> 
          <NormDiscrete field="Final" value="10"> 
            <Extension extender="ADAPA"  
             name="NORM_DISCRETE_METHOD" value="Thermometer"/> 
          </NormDiscrete> 
        </DerivedField> 
      </NeuralOutput> 
      <NeuralOutput outputNeuron="Output_9"> 
        <DerivedField dataType="string" optype="categorical"> 
          <NormDiscrete field="Final" value="9"> 
            <Extension extender="ADAPA"  
             name="NORM_DISCRETE_METHOD" value="Thermometer"/> 
          </NormDiscrete> 
        </DerivedField> 
      </NeuralOutput> 
      <!— ... -->  
      <NeuralOutput outputNeuron="Output_0"> 
        <DerivedField dataType="string" optype="categorical"> 
          <NormDiscrete field="Final" value="0"> 
            <Extension extender="ADAPA"  
             name="NORM_DISCRETE_METHOD" value="Thermometer"/> 
          </NormDiscrete> 
        </DerivedField> 
      </NeuralOutput> 
   </NeuralOutputs> 
</NeuralNetwork> 

Figure 2. Setting up a NeuralNetwork element in PMML with the help of an Extension element 
used to implement neural outputs with thermometer coding 
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4 Topology Representing Network 
Topology Representing Network (TRN) is a self-organizing network that can be 
formulated as a combination of a vector quantization scheme and a competitive Hebbian 
rule. The vector quantizer implemented in TRN is known in the literature as the neural-
gas algorithm (T. M. Martinetz and K. J. Schulten. Topology Representing Networks. 
Neural Networks, Vol. 7, No. 3, pp. 507-522, 1994). 
TRN networks are usually represented by a single manifold of neurons. Figure 3 shows 
the self-organizing dynamics of this manifold during learning. It depicts the development 
of a two-dimensional network. Initially, the network is presented with equally distributed 
random numbers (t = 0) and the neural gas vector quantization algorithm distributes the 
weights matching the input probability distribution. At the same time, the competitive 
Hebb-rule introduces connections between the units resembling the topology of the input 
manifold. 
Note that in t = 0, the neurons have not yet started to map the input data. In t = 100, the 
first connections have already been established. Finally, in t = 100,000 the network 
resembles the topology of the input space. 
 
 

 
Figure 3. Neuron dynamics in a TRN 

TRN is not a modeling technique supported by the PMML standard. The representation 
depicted here, although particular to ZEMENTIS, is very much in line with how PMML 
represents neural networks. A TRN network is therefore implemented as a multi-layer 
feed-forward entity in which the input variables are mapped to a neural input layer, the 
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self-organizing network (or manifold of neurons) is represented as a hidden layer, and 
the output of the network is represented by an output layer containing a single node. 

4.1 TRN in PMML 
TRN is represented in PMML by the element NeuralNetwork in which the following 
attribute-value pair needs to be specified: 

 Attribute activationFunction should contain the value "identity".  

Also, to identify that the TRN algorithm is to be run, ZEMENTIS requires the PMML code 
representing TRN to be defined as an Extension as follows: 
 
 
<Extension name="NEURAL_NETWORK_TYPE" 
   value="TopologyRepresentingNetwork"  
   extender="ADAPA" /> 
 
For example, the PMML code shown in Figure 4 implements the setting up of the 
element NeuralNetwork for TRN. Note that the number of layers is defined as "2" 
(attribute numberOfLayers) since the input layer is not considered. Also, note the 
required Extension element. 

 
Figure 4. Setting up a TRN NeuralNetwork element in PMML with the help of an Extension element 

As mentioned above, TRN networks are represented in ZEMENTIS server and 
ZEMENTIS Plugins as feed-forward networks in a very similar manner as back-
propagation networks. The only difference between these is the number of hidden nodes. 
In back-propagation networks, the number of hidden neurons is usually small, whereas 

<NeuralNetwork 
   modelName="ADAPATRNModel" 
   functionName="classification" 
   activationFunction="identity" 
   numberOfLayers="2"> 
   <Extension name="NEURAL_NETWORK_TYPE" 
      value="TopologyRepresentingNetwork" extender="ADAPA"/> 
   <!-- 
      Other PMML elements such as MiningSchema 
      as well as model specific elements 
   --> 
</NeuralNetwork> 
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the manifold of neurons in TRN can be composed of hundreds of neurons. Therefore the 
representation of the hidden-layer in TRN can be quite large. 
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5 Combining Multiple PMML Files 
ZEMENTIS provides a flexible way to combine multiple models in different PMML files. It 
does this by allowing a model to invoke one or more external models as functions. Note 
that this feature is not available in ZEMENTIS Plugins. 
In ZEMENTIS, each model that gets imported is automatically made available to be 
invoked by another model as a function. The name of the generated function is 
“model:model_name”, where “model:” is a fixed prefix, creating a separate name space 
for functions backed by models, and “model_name” is the name of the corresponding 
model. The input parameters of the function are created by the input fields of the model, 
in the order they appear in the mining schema. The names of the input fields are not 
important. Their data types are as they determine the data type of the corresponding 
input parameter of the function. 
The output data type of the function, i.e. the data type of the returned values, depends on 
the number of output fields of the model. For models with a single output field, the output 
data type is that of the single output field. For models with more than one output field, the 
output data type of the function is always “string” and the returned values are a JSON 
representation of all the output values of the model. As discussed in section 6.2, the 
JSON representation allows a function to return multiple values in a structured object. 
ZEMENTIS also provides functions that help pick individual values out of the structured 
object.  
Let’s consider first an example of a model that invokes another model with a single 
output field. Figure 5 shows the input and output fields of a regression model, which we 
will be using as an example of a “child” model. It has six input fields of type double and a 
single output field, also of type double. Note that the model element contains attribute 
modelName. Although this attribute is optional in PMML, it is required if being used to 
define external models as functions. In the example shown here, the “child” model is 
named ElNino_LR. 
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Another model, which we may think of as the “parent” model, may invoke the ElNino_LR 
model by using the generated function model:ElNino_LR anywhere where an Apply 
expression may be used. Typically, this is done in a derived field in the 
LocalTransformations section, as shown below in Figure 6. 

 

<DataDictionary numberOfFields="6"> 
   <DataField name="airtemp" optype="continuous" 
      dataType="double" /> 
   <DataField name="humidity" optype="continuous" 
      dataType="double" /> 
   <DataField name="latitude" optype="continuous" 
      dataType="double" /> 
   <DataField name="longitude" optype="continuous" 
      dataType="double" /> 
   <DataField name="mer" optype="continuous" 
      dataType="double" /> 
   <DataField name="zon" optype="continuous" 
      dataType="double" /> 
</DataDictionary> 
<RegressionModel modelName="ElNino_LR" functionName="regression" 
   modelType="linearRegression"> 
   <MiningSchema> 
      <MiningField name="airtemp" usageType="active" /> 
      <MiningField name="humidity" usageType="active" /> 
      <MiningField name="latitude" usageType="active" /> 
      <MiningField name="longitude" usageType="active" /> 
      <MiningField name="mer" usageType="active" /> 
      <MiningField name="zon" usageType="active" /> 
   </MiningSchema> 
   <Outputs> 
      <OutputField name="temp" optype="continuous" 
         dataType="double" feature="predictedValue"/> 
   </Outputs> 

Figure 5. Multiple Models: Input and output fields of a “child” model with a single output field. 

<DerivedField name="elnino_lr_score" optype="continuous" 
   dataType="double"> 
   <Apply function="model:ElNino_LR"> 
      <FieldRef field="my_airtemp"/> 
      <FieldRef field="my_humidity"/> 
      <FieldRef field="my_latitude"/> 
      <FieldRef field="my_longitude"/> 
      <FieldRef field="my_mer"/> 
      <FieldRef field="my_zone"/> 
   </Apply> 
</DerivedField> 
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Figure 6. Multiple Models: Example of “parent” model invoking “child” model with a single output field.  

Now let’s consider an example of a “child” model with multiple output fields. Figure 7 
presents the input and output fields of a classification model. The model has four input 
fields of type double and four output fields, one of type string (the predicted class) and 
three of type double (the probability for each of the possible classes). 
<DataDictionary numberOfFields="4"> 
   <DataField dataType="double" name="sepal_length"  
      optype="continuous" /> 
   <DataField dataType="double" name="sepal_width"  
      optype="continuous" /> 
   <DataField dataType="double" name="petal_length"  
      optype="continuous" /> 
   <DataField dataType="double" name="petal_width"  
      optype="continuous" /> 
</DataDictionary> 
<NeuralNetwork activationFunction="tanh"    
   functionName="classification" modelName="Iris_NN"> 
   <MiningSchema> 
      <MiningField name="sepal_length" /> 
      <MiningField name="sepal_width" /> 
      <MiningField name="petal_length" /> 
      <MiningField name="petal_width" /> 
   </MiningSchema> 
   <Output> 
      <OutputField dataType="string" feature="predictedValue" name="class" /> 
      <OutputField dataType="double" feature="probability"  
         name="Probability_setosa" optype="continuous" 
         value="Iris-setosa" /> 
      <OutputField dataType="double" feature="probability"  
         name="Probability_versicolor" optype="continuous" 
         value="Iris-versicolor" /> 
      <OutputField dataType="double" feature="probability"  
         name="Probability_virginica" optype="continuous" 
         value="Iris-virginica" /> 
   </Output> 
 
Figure 7. Multiple Models: Example of “child” model with multiple output fields. 

The way to invoke this model from another one is similar to the single output field 
example. However, the return value of the model will be a JSON representation of the 
predicted values. This would require defining additional derived fields to select the 
individual values from the JSON result. This is shown in the example in Figure 5. The 
Apply element for the derived field json_nn_result invokes the model Iris_NN and the 
result of that invocation is stored in that field as a JSON string. The other four derived 
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fields use the provided JSON functions (see section 6.2) to pick the different values out 
of this JSON string. Note that, depending on the type of an output field, the appropriate 
JSON function should be used to retrieve the value of the correct data type. In this 
example, in order to retrieve the class prediction, which is of type string, we use the 
function zementis:jsonString, and for the three predicted probabilities, which are of type 
double, we use the function zementis:jsonDouble. 
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<DerivedField dataType="string" optype="categorical"  
   name="json_nn_result"> 
   <Apply function="model:Iris_NN"> 
      <FieldRef field="my_sepal_length" /> 
      <FieldRef field="my_sepal_width" /> 
      <FieldRef field="my_petal_length" /> 
      <FieldRef field="my_petal_width" /> 
   </Apply> 
</DerivedField> 
<DerivedField name="nn_class" dataType="string"  
   optype="categorical"> 
   <Apply function="zementis:jsonString"> 
      <FieldRef field="json_nn_result" /> 
      <Constant>$.class</Constant> 
   </Apply> 
</DerivedField> 
<DerivedField name="nn_setosa_prob" dataType="double"   
   optype="categorical"> 
   <Apply function="zementis:jsonDouble"> 
      <FieldRef field="json_nn_result" /> 
      <Constant>$.Probability_setosa</Constant> 
   </Apply> 
</DerivedField> 
<DerivedField name="nn_versicolor_prob" dataType="double"  
   optype="categorical"> 
   <Apply function="zementis:jsonDouble"> 
      <FieldRef field="json_nn_result" /> 
      <Constant>$.Probability_versicolor</Constant> 
   </Apply> 
</DerivedField> 
<DerivedField name="nn_virginica_prob" dataType="double"  
   optype="categorical"> 
   <Apply function="zementis:jsonDouble"> 
      <FieldRef field="json_nn_result" /> 
      <Constant>$.Probability_virginica</Constant> 
   </Apply> 
</DerivedField> 
 
Figure 5. Multiple Models: Example of “parent” model calling a “child” model with multiple output fields. 
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6 Functions 
PMML implements a large set of built-in functions. Nonetheless, ZEMENTIS server and 

ZEMENTIS Plugins offer extra functions. These functions can be divided into three 

categories:  1) functions to make it easier to handle date values; 2) functions that allow 

string manipulations using regular expressions and patterns; 3) functions that implement 

JSON functionality; and 4) function to display multiple values as a single output. The 

three groups of functions are described below. Note that whenever used, these functions 

need to be preceded by the namespace “zementis:” which identifies that these are 

ZEMENTIS’ extensions to PMML and not standard built-in functions. 

6.1 Functions for Date/Time Handling 

Function zementis:toDate 
This function is somewhat the reverse of the PMML built-in function “formatDatetime”. It 

parses a string representation of a date value to a value of type “date”. Its arguments are 

a string representation of a date value and a string representing the format that value is 

in. It returns the parsed date value. This format string follows the pattern described in the 

Java class: 

org.joda.time.format.DateTimeFormat 

For more information, refer to: 

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html 

For example, the PMML code shown in Figure 9. PMML code using the function 

zementis:toDate contains three derived fields. While the first one is used to define the 

desired format, the last two use the function “toDate” to parse a string value to an actual 

date value.  

<DerivedField name="date_format" optype="categorical" dataType="string"> 
   <Constant>MM/dd/yyyy</Constant> 
</DerivedField> 
<DerivedField name="bankruptcy_discharged_date" optype="ordinal" 
dataType="date"> 
   <Apply function="zementis:toDate"> 
      <FieldRef field="string_bankruptcy_discharged_date"/> 
      <FieldRef field="date_format"/> 



 

   15 
 
 

   </Apply> 
</DerivedField> 
<DerivedField name="loan_created_date" 
   optype="ordinal" dataType="date"> 
   <Apply function="zementis:toDate"> 
      <FieldRef field="string_loan_created_date"/> 
      <FieldRef field="date_format"/> 
   </Apply> 
</DerivedField> 
 
Figure 9. PMML code using the function zementis:toDate 

Function zementis:toTime 
This function parses a string representation of a time value to a value of type “time”. Its 

arguments are a string representation of a time value and a string representing the 

format that value is in. It returns the parsed time value. This format string follows the 

pattern described in the Java class: 

org.joda.time.format.DateTimeFormat 

For more information, refer to:  

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html 

For example, the PMML code shown in Figure 10 shows two examples of using the 

“toTime” function to parse a string value to an actual time value. 

<DerivedField name="purchase_time" optype="ordinal" dataType="time"> 
   <Apply function="zementis:toTime"> 
      <Constant>15:24:32.000</Constant"/> 
      <Constant>HH:mm:ss.SSS</Constant"/> 
   </Apply> 
</DerivedField> 
 <DerivedField name="purchase_time" 
   optype="ordinal" dataType="time"> 
   <Apply function="zementis:toTime"> 
      <Constant>03:24:32PM</Constant"/> 
      <Constant>KK:mm:ssa</Constant"/> 
   </Apply> 
</DerivedField> 
 
Figure 10. PMML code using the function zementis:toTime 

Function zementis:toDateTime 
This function parses a string representation of a date/time value to a value of type 

“dateTime”. Its arguments are a string representation of a date/time value and a string 
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representing the format that value is in. It returns the parsed dateTime value. This format 

string follows the pattern described in the Java class: 

org.joda.time.format.DateTimeFormat 

For more information, refer to: 

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html 

For example, the PMML code depicted in Figure 11 shows two examples of using the 

“toDateTime” function to parse a string value to an actual time value. Notice, that the 

format string in the second example does not specify a time zone. In such a case, the 

time zone is assumed to be UTC. 

 <DerivedField name="purchase_date_time" optype="ordinal" dataType="dateTime"> 
   <Apply function="zementis:toDateTime"> 
      <Constant>2013-05-19 14:24:32-0700</Constant> 
      <Constant>yyyy-MM-dd HH:mm:ssZ</Constant> 
   </Apply> 
</DerivedField> 
 <DerivedField name="purchase_date_time_UTC " optype="ordinal" dataType="time"> 
   <Apply function="zementis:toDateTime"> 
      <Constant>2013-05-19 21:24:32</Constant> 
      <Constant>yyyy-MM-dd HH:mm:ss</Constant> 
   </Apply> 
</DerivedField> 
Figure 11. PMML code using the function zementis:toDateTime 

Function zementis:daysFromTo 
This function computes the number of days between two date values. For example, the 

PMML code shown in Figure 12 depicts the “daysFromTo” function being invoked to 

calculate a derived value representing the number of days since bankruptcy in which the 

first date attribute contains the bankruptcy discharge date and, the second, the date in 

which the loan was created. Note that both of these dates were obtained from using the 

function “toDate” as depicted in Figure 9 and so are represented in the date format 

MM/dd/yyyy. 
<DerivedField name="days_since_bankruptcy" optype="continuous" 
dataType="double"> 
   <Apply function="zementis:daysFromTo"> 
      <FieldRef field="bankruptcy_discharged_date"/> 
      <FieldRef field="loan_created_date"/> 
   </Apply> 
</DerivedField> 
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Figure 12. PMML code using the function zementis:daysFromTo 

6.2 JSON Functions 
When a PMML model relies on an external system to retrieve values required for the 

score computation, a custom function can be developed to implement such a 

requirement. Often, multiple values may be needed from the external system. However, 

with PMML, each function may return only a single value. This means that retrieving 

multiple values from an external system would require multiple function calls. In turn, 

these function calls result in multiple remote calls to the external system, which can be 

expensive in terms of performance.  

To overcome this limitation, ZEMENTIS allows creating custom functions that return 

several values (a structured object) in the form of a JSON string in a single call (one 

round trip Vs. multiple round trips). In addition, it provides functions that, using JSON 

path expressions, pick the values you care about out of the JSON structure (locally). 

Below is a list of the JSON functions supported. Each of these functions takes as input a 

JSON string and a JSON path. It returns a value (of the appropriate type) located in the 

provided path. For details on the format of the supported JSON paths, please refer to: 

https://code.google.com/p/json-path/ 

1) zementis:jsonString 

2) zementis:jsonDouble 

3) zementis:jsonFloat 

4) zementis:jsonInteger 

5) zementis:jsonBoolean 

6) zementis:jsonDate 

7) zementis:jsonTime 

8) zementis:jsonDateTime 

As an example, assume you would like to look for specific information about a particular 

product or item. Assume you have a system that, given the barcode of a particular item, 

returns all the information pertaining to that item such as name, price, origin, etc. Such 

information can be implemented through a custom function. In this example, this function 

is called “findItemInfo”. When invoked, “findItemInfo” needs to return more than one 
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value. This cannot be done through a normal PMML function. However, “findItemInfo” 

can pack all the information it needs to return into a JSON object and represent it as a 

string. For example, if we pass barcode “4131” as the input argument, function 

“findItemInfo” will return a JSON string such as: 
 

{“name”:FujiApple, “price”:1.29, “organic”:true, “state”:Oregon} 

 

The PMML code that uses function “findItemInfo” is shown in Figure 13. Note that field 

“barcode” is used as the input argument. Once the function is invoke, the resulting JSON 

string will be assigned to derived field “itemInfoJSONString”. 

<DerivedField name="itemInfoJSONString" dataType="string" optype="categorical"> 
   <Apply function="custom:findItemInfo"> 
      <FieldRef field="barcode"/> 
   </Apply> 
</DerivedField> 
 
Figure 13. PMML code using custom function custom:findItemInfo 

 
We can then use one or more of the JSON functions listed above to find out, for 

example, the name and the price of item “4131”. Figure 14 shows the PMML code for two 

derived fields that do just that. These are named “itemName” and “itemPrice”. They use 

functions “jsonString” and “jsonDouble”, respectively, to parse out name and price from 

the JSON string returned by custom function “findItemInfo”.  

<DerivedField name="itemName" dataType="string" optype="categorical"> 
   <Apply function="zementis:jsonString"> 
      <FieldRef field="itemInfoJSONString"/> 
      <Constant>name<constant/> 
   </Apply> 
</DerivedField> 
<DerivedField name="itemPrice" dataType="string" optype="categorical"> 
   <Apply function="zementis:jsonDouble"> 
      <FieldRef field="itemInfoJSONString"/> 
      <Constant>price<constant/> 
   </Apply> 
</DerivedField> 
 
Figure 14. PMML code using JSON functions 
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7 Multi-Valued  Types  

In many cases, an algorithm will produce multi-valued outputs. For instance, in the case 

of Timeseries models, it is common to generate multi-step forecasts and/or confidence 

intervals as the model output. PMML currently only supports primitive data types. To 

overcome this limitation, ZEMENTIS defines a custom dataType extension which 

enables multi-valued outputs to be represented as JSON objects.  

 

Using this extensions, the output fields of a Timeseries model that returns the point 

forecast and confidence intervals (upper and lower at 80th and 95th percentile) will be 

represented in PMML as follows: 

 
<OutputField name="predicted_value" optype="continuous" dataType="string" 
feature="predictedValue"/> 
<OutputField name =”cpi_80_lower” optype=continuous” dataType=”double” 
feature=”confidenceIntervalLower” value=”80”/> 
<OutputField name =”cpi_80_upper” optype=continuous” dataType=”double” 
feature=”confidenceIntervalUpper” value=”80”/> 
<OutputField name =”cpi_95_lower” optype=continuous” dataType=”double” 
feature=”confidenceIntervalLower” value=”95”/> 
<OutputField name =”cpi_95_upper” optype=continuous” dataType=”double” 
feature=”confidenceIntervalUpper” value=”95”/> 
 
    
<Output> 
    <OutputField name="predicted_value" optype="continuous" dataType="string" 
feature="predictedValue"> 

<Extension extender="ADAPA" name="datatype" value="json" /> 
    </OutputField> 
    <OutputField name="cpi_80_lower" optype="continuous" dataType="string" 
feature="confidenceIntervalLower"  value="80"> 
           <Extension extender="ADAPA" name="dataType" value="json"/> 
     </OutputField> 
     <OutputField name="cpi_80_upper" optype="continuous" dataType="string" 
feature="confidenceIntervalUpper" value="80"> 
           <Extension extender="ADAPA" name="dataType" value="json"/> 
      </OutputField> 
      <OutputField name="cpi_95_lower" optype="continuous" dataType="string" 
feature="confidenceIntervalLower" value="95"> 
            <Extension extender="ADAPA" name="dataType" value="json"/> 
       </OutputField> 
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       <OutputField name="cpi_95_upper" optype="continuous" dataType="string" 
feature="confidenceIntervalUpper" value="95"> 
            <Extension extender="ADAPA" name="dataType" value="json"/> 
       </OutputField> 
</Output> 
 
The output produced from this PMML will look like this: 
 
predicted_value 
{"1": 475.80903601, "2": 468.74832101, "3": 465.85399714, "4": 465.25670554, "5": 
465.92557547, "6": 467.29212632, "7": 469.04286579} 
 
cpi_80_lower 
{"1": 439.37508312, "2": 413.06325561, "3": 405.53250569, "4": 403.60077505, "5": 
403.87303557, "6": 405.12139623, "7": 406.83728310000004} 
 
cpi_80_upper 
{"1": 512.24298889, "2": 524.43338641, "3": 526.1754886, "4": 526.91263603, "5": 
527.97811536, "6": 529.4628564, "7": 531.24844848} 
 
cpi_95_lower  
{"1": 420.08811349999996, "2": 383.58536261, "3": 373.60023699, "4": 370.962097, "5": 
371.02440519, "6": 372.21019974, "7": 373.90763675} 
 
cpi_95_upper 
{"1": 531.52995851, "2": 553.91127941, "3": 558.10775729, "4": 559.55131408, "5": 
560.82674574, "6": 562.37405289, "7": 564.17809483}  
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8 Conclusion 
The extensions and functions presented in this document aim to extend the functionality 

of PMML. It is our goal to eventually have them as part of the standard itself. For that, a 

proposal needs to written and subsequently presented to the Data Mining Group (DMG). 

If approved by the DMG, the new functionality is then reflected in a new version of the 

PMML standard. Typically, a new version is released every two years.  

In addition to the extensions described in this document, the ZEMENTIS also allows for 

custom functions coded in Java to be dynamically uploaded as resources. In this way, 

custom functionality can be directly used from inside the PMML code. This feature gives 

ZEMENTIS yet another powerful way to represent computations that are not part of the 

PMML standard, but that may still be required for the full deployment of a predictive 

solution. For details on this ZEMENTIS feature, please refer to the “ZEMENTIS Solutions 

Guide”.  


