5 software~

Software AG Infrastructure Administrator’s Guide

Version 9.9

October 2015

This document applies to webMethods Product Suite Version 9.9 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: SAG-INFRA-99-20151015

http://documentation.softwareag.com/legal/
http://softwareag.com/licenses/
http://documentation.softwareag.com/legal/

Table of Contents

Table of Contents

ADOUL thiS GUILE.......cererercrrerererecs s s a e s anene s 7
DOCUMENT CONVENTIONS........oveeieiireiieisiee st 7
ONlNE INFOMMALION. ... 8

00 1 1oL o VTPV 9
Software AG CommOon Platform..........ccvviirree s 10
SOfWAre AG RUNHIME.......c.cviiiicieces s 10
Software AG Security INfrastrUCIUIE..........ccccvivicveiie i 1
Software AG Web Services Stack.........covcerrireirccss s 13
JAVA SEIVICE WIADPPE ..ottt bbb 14

Running Web Applications.........ccovcecnmenncnssnnsnesesssssssssesessss s sssssssssssssssssessssssssssesessases 15
Configure Software AG Runtime Credentials............cccevviicreeniieceeeeee e 16
Change the Default Software AG Runtime Keystore and Truststore............cccooeverninininnnn. 16
Work With HTTP CONNECIONS.........coeuiecieiceiscesese s 18

Use the Predefined HTTP CONNECIOT........c.ceuviriricieiiieniesee s 18
Configure a User-Defined HTTP CONNECIOT...........coviiiiiiiricircceneseseecesei 19
Work With HTTPS CONNECIOTS........cciueeireiricieiieiries s 20
Use the Predefined HTTPS CONNECIOT..........ccoieiiieiieieciereese s 20
Configure a User-Defined HTTPS CONNECION.........c.cccuriiiiiiriieiricseececee, 21
Server-Side Configuration............cccceiiicieices s 22
Securing the HTTPS Connector Passwords.............ccccvviveceenineiccieeneeeeenee, 22

Client-Side ConfIguration............cviie e 23
Predefined CONNECION..........veuiieicecer e 23
Configure JNDI RESOUICES........ccueveveiicicteteieiiecie ettt ettt sttt 23
Configure the JNDI Injection Framework............ccverinninnieneeeesesesene 23
Configure JNDI RESOUICES........c.cucveviiriicieteisri sttt 24
Configure EnvVIironment ENHES..........ccceveiiicieiersece et 26
Configure the Software AG Runtime Java Service Wrapper.........coovvrevniennnnnereenninnns 27
Configure Software AG Runtime Log Settings.........cccverviriirineiecceessee s 27
Hot Configuration UPate..........cceueiiiucieieicce ettt 27
USE Path TOKENS......cveeiiiiicieissseece sttt 28
Start and Stop Software AG RUNTIME.........cccieiiiices s 29
Start and Stop Software AG Runtime on a Windows System...........ccccccevvericeniicnnen. 29
Start and Stop Software AG Runtime on @ UNIX System...........ccooevnvninnivnicnnnns 29
Manage Software AG RUNtIME SECUMEY........cceeviiicicrerccee e 30

Setting UP SECUNLY......cc v sss e s s sess s seseasanns 31

Set Up the JAAS Configuration File.........ccccviiieieiiiccee e 32
Create the JAAS Configuration File............ccovviiniinrieceeee s 32
Define @ Login COMEXL........oviiieiiiecces e 32
Define the LogGin MOGUIES........ccviivcieteiiiicctete et 33

Software AG Infrastructure Administrator’s Guide Version 9.9 3

Table of Contents

Verify JAAS CONfIQUrALIoN.........ccuieiiiiriceee s 35
TUIM ON LOGGING...ttittiteiiiiiieceetes ettt bbbt bbb s bt 35
Make the JAAS Configuration File ACHIVE.........ccceeiviiiiieiiicecece e 36
Create Technical User Credential Files.........ccovierrviiicessccicces s 36
Create or Edit Internal User Repository Files..........ccovieeiiiiceeiscsces e 37
Create Login MOGUIES...........ccueuiiiicieteiei ettt st bbb 39
USE the LDAP FTamMEWOIK..........ceueueiririiieieirisisteieisisi sttt 40
Update the Single Sign-On System for Your Product............ccoceviiceenicccescceeees 42
Create Custom Keys and Certificates..........ccouvviiiiieiiiiicceesseeree et 43
DEVEIOP @ JAAS ClIENL.......oeeieeeeiecees et 45
TroubleshOot ProbIEMS...........c.oiiec e 45

Verify the JAAS Configuration...........cceeieceeiicce e 45

When Problems PerSISt...........cceriiirrrsiieessee e 45
Predefined Login MOUIES.........cccoiiiecieisiicccce ettt 46

SagAbStractLOGINMOTUIE.c.cucveiecce et 46

INterN@ILOGINMOTUIE. ... e 46

LDAPLOGINMOTUIE.coviecvereisiciccte sttt 48

SAMLASssertValidatorLoginMOTUIE.............cceeueveiriicrctee e 52

SAMLASSertISSUErLOGINMOTUIE..........coeuiriiiieiicie e 53

JMXDelegatedAuthLoginNMOGUIE............cceeeeeeececccceeeee s 53

ServlietHeaderLoginMOTUIE.........ccvviiucieieiccte e 54

SimpleNameMappingLogiNMOAUIE..........c.cueiiirrerrriciees s 55

X509CertificateLogiNMOTUIE...........ccviiiiiiices s 56

SAMLATACILOGINMOAUIE.ocviveviictcice e 58

ROIELOGINMOUTUIE. ..o 58

Working with Web ServiCes.........ossssssssssssssssss s 61
Configure Web Services STaCK........cccvviieiiiiicce e 62
Configure the Web Services Stack RUNEIME.........cccovviiiiieniicccee e 62
Configure the axiS2.Xml File..........coiiiiice e 63

Configure the ClIENL.........covccece e 65

ConfIGUIE MTOM......coouiiiicee ettt bbbt 65
Configure Web SErviCe SECUNMMY......c.u it 65

Set Up Message-Level SECUNLY........cccv e 66

Configure the SErVEr SIAE.......ccviiiiieeiecccte e 66
Specify settings in the axis2.xml or services.xml File...........ccovvevninrinninnnn. 66
Specify Settings in a Software AG Designer Web Service Client...................... 67
Example of Symmetric Binding Security Configuration in the Services.xml
BB 67

Configure the ClIEnt SIde.........ccviiriiee e 69

Set Up Transport-LEVEl SECUMILY.......ccccviiiiceirsece e 73

Configure Software AG Runtime to Use SSL at the Server Side..........cccocovvvrnnne. 73

Configure SSL at the Client Side............ooevirrieni s 76

Configure SSL with Client Authentication.............ccceevviceeiieccce e 77

Configure HTTP Basic AUthentiCation...............ocvrericnnieccnesee e 78

Software AG Infrastructure Administrator’s Guide Version 9.9 4

Table of Contents

Configure Client AUthentiCation.............ccoeirie e 80
CoNfIGUIE JAAS........oeecee e 80
Security CredentialS...........oocccuiieiiiccee et 80
Implement Password Callback Handlers............cooverrnneecnnneceessseesssens 81

com.softwareag.wsstack.pwcb.ConfigFilePasswordCallbackHandler................. 81
com.softwareag.wsstack.pwcb.LdapPasswordCallbackHandler......................... 82

Implement Policy Validation Callbacks.............ccoreriirirnicnrceseseens 83
Authenticate WED SEIVICES.........cocviriirerrese e 83
Configure MesSage TraNSPOMES........c.ccviiiveveriiicecte ettt et bbb 84

Configure HTTP and HTTPS TranSport...........cocerieerinieniesesesseesseseeeeens 84
Activate or Deactivate HTTP or HTTPS.........cccooiierrcenesceeeeeesens 85
Activate or Deactivate HTTP or HTTPS in Software AG Runtime...........c.cccocevuvenee. 85

Configure TCP TranSPOM........c.cuiueiiieiriiiriienteise s 85
Activate TCP Transport on the Server Side.......ccovvvcceiiecceesceee e 85
Invoke a Web Service Over TCP Transport on the Client Side.........cccccecveviviennnee, 86

Activate JMS TranSPOIt.........cocvriieerrrice st 87
Activate JMS Transport on the Server Side......cccovvvviceiiiicceesseeee e 87
Force Deployment Over JMS Transport Only...........cccocceeniieiccrenieieee e 87
Specify the Connection Factory Name...........cccoocviinniencncceees 88
Invoke a Web Service Using JMS on the Client Side.........c.cccoovveevvviricciniienen, 88

Configure Mail TranSPOrt........ccccviiiiiieericeece et 89
Set Up Apache James SEIVEN..........coeiriceerreess s 89
Activate Mail Transport on the Server Side.........cccccovvieiviiecceecce e 90
Force Deployment Over Mail Transport Only..........cccceeiieerceeieccee e, 92
Invoke a Web Service Over Mail Transport on the Client Side.........cccccocvvvcvrnnnee 92

MONItOr SOAP MESSAGES........ceveviiiireiereiiiie ettt 93
Enable the SOAP Monitor in the Web Services Stack............ocevivrienicnnccincnne. 93

CONFIGUIE LOGGING. ..ttt 94
Configure Logging in Web Services Stack..........covvevviiceeiiiecce e 94
Configure Logging for System Management Hub Agents...........ccoceeeviviveceiese i 94

Deploy Web ServiCes STACK...........cuuiuiuriiiriiicrieieesesise s 95

Manage WED SEIVICES.........cuiiiiiicce st 95

Access the Administration MOAUIE............ceviirrrrceeer e 96

Change Logon CredentialS......... ..o 96

Change the Administrator Password Using the Reset Password Utility...............ccccoo...... 96

Display Deployed Web Services Stack Libraries............cccocevviiiiceniicccesceccve s 97

Configuring the Java Service WIapPer.......vvmnenessssnssesess s ssssssssssssssssssssssssses 99

Determine Whether Your Product Uses the Java Service Wrapper, and Which Version........ 100

Edit Java Service Wrapper PrOperties........cccooviviiieeniicciee e 100

Generate a Thread Dump Using the Java Service Wrapper Utility........c.cccoovvvceiiiccennen, 101

Software AG Infrastructure Administrator’s Guide Version 9.9 5

Software AG Infrastructure Administrator’s Guide Version 9.9

About this Guide

This guide explains how to administer the Software AG Infrastructure used by many

products.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods
Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace Identifies text you must type or messages displayed by the

font system.

{

Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[]

Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

Software AG Infrastructure Administrator’s Guide Version 9.9

Online Information

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at http://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.
Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at http://techcommunity.softwareag.com. You can:

B Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation” as an area of interest.

B Access articles, code samples, demos, and tutorials.

®m Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

®m Link to external websites that discuss open standards and web technology.

Software AG Infrastructure Administrator’s Guide Version 9.9

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

Concepts

1 Concepts

m Software AG Common PIAtIOrMcoiiiiiis s 10
B SOftWare AG RUNTME ... 10
m Software AG Security INfraStrUCIUIEcccoviviiicccce e 11
B Software AG Web Services STACK ..o 13
B JAVA SEIVICE WIADPETveeieeiicieicieisie sttt 14

Software AG Infrastructure Administrator's Guide Version 9.9 9

Concepts

Software AG Common Platform

The Software AG Common Platform is OSGi-based and offers the possibility to
dynamically construct executable instances of various products. It enables applications
to be remotely installed, started, stopped, updated, and uninstalled without the
necessity of a reboot. Packages and classes can be managed in great detail.

Software AG Runtime

Software AG Runtime is an runnable instance of the Common Platform environment.
Software AG Runtime hosts and runs web applications. Software AG Runtime
comprises these key components:

Software AG Web Server based on Apache Tomcat.
Authentication infrastructure named Software AG Security Infrastructure.

Toolkit for creating, configuring, deploying, and managing web services named
Software AG Web Services Stack.

Software AG NERV.

Spring Framework.

Software AG System Management Hub, webMethods EntireX, and CentraSite use
Software AG Runtime. Terracotta BigMemory client libraries are integrated with
Software AG Runtime and are therefore available to these products. Other Software AG

products such as Command Central and Integration Server have their own instances of

parts of Software AG Runtime in product-specific profiles.

You can use the OSGi technology supported by the Common Platform to construct your
own applications from reusable components, and then run them within Software AG
Runtime.

Software AG Infrastructure Administrator’s Guide Version 9.9

10

Concepts

Spring components

OSGi services Solution

Product-specific services

. . Web Services
Messaging JDBC Security Stack Web server
. . . JMX and . Enterprise
l L h
Configuration °gging administration Caching services

OSGi container

Software AG Security Infrastructure

Security Infrastructure provides security components for authentication of users,
management of roles, and query of user, role, and group information. It works both on
client-side applications and on server-side applications. Security Infrastructure is used
by many Software AG products and can be used by your own applications.

Security Infrastructure’s basic advantage is the re-use of existing security components.
For example, Security Infrastructure supports the same security mechanism for an
application that uses a database and another application that uses LDAP directory
without any change of code on the application level.

Security Infrastructure is based on login modules, login context, and JAAS configuration
files, which in turn are all based on the Oracle JAAS framework.

Software AG Infrastructure Administrator's Guide Version 9.9 11

Concepts

Login modules are reusable entities that define authentications to perform. Applications
can call login modules to authenticate users; verify client certificates; or query user, role,
or group information in user repositories. Security Infrastructure provides predefined
login modules and OSGi services that you can configure for your environment and
desired authentication process. You can also create your own login modules by copying
predefined modules and modifying the copies.

You list login modules in login contexts. If you want an application to use more than one
login module, you list multiple login modules in a login context.

You define login contexts in a JAAS configuration file. You set up one JAAS
configuration file per JVM.

JAAS offers these benefits:
® Authentication is independent of applications.

B Professional services do not need special know-how to customize and re-use login
modules for different authentication schemes.

JAAS accommodates the information for groups and roles in classes derived from
java.security.Principal. The Principal interface represents the abstract notion of a
Principal that can be any entity, such as an individual, a corporation, and a login

ID, while the Subject class represents a grouping of related information for a single
entity. Such information includes the Subject's identities, as well as its security-related
attributes (passwords and cryptographic keys). If authentication is successful, JAAS
creates a Subject that contains one or more Principals with security-related attributes like
passwords and cryptographic keys. For example, if a Subject is a person named John, he
may have two Principals:

® Principal 1 represents John as the citizen of a particular country.

B Principal 2 represents John as the employee of a particular company.

Both Principals refer to the same Subject even though they have different names.
The authentication process is as follows:

1. An application instantiates a login context.

2. The login context consults the application configuration (realm) in the JAAS
configuration file to load all login modules for the application.

3. The application invokes the login context’s login method to authenticate the user.
4. The login method invokes all loaded login modules as specified in the login context.

5. Each login module tries to authenticate the Subject. If successful, login modules
associate relevant Principals and credentials with a Subject object that represents the
subject being authenticated. If unsuccessful, login modules throw an exception or the
authenticate method returns false.

6. The login context returns the authentication status to the application.

Software AG Infrastructure Administrator’s Guide Version 9.9 12

Concepts

7. 1If authentication is successful, the application retrieves the Subject from the login
context. If not successful, no login occurs and the Subject is empty and does not
contain any Principals.

For background information relating to Security Infrastructure, see Java™ Platform,
Standard Edition 7 API Specification, Java™ SE 7 Security Documentation, JAAS
Reference Guide, JAAS Tutorials, Introduction to JAAS and Java GSS-API Tutorials.

Software AG Web Services Stack

Software AG Web Services Stack is a toolkit for creating, configuring, deploying, and
managing web services. It handles the complex process of processing request and
response messages between web services within Software AG products.

You can specify individual configuration settings for your web services. This enables
you to modify their behavior at runtime and facilitate the correct invocation of the
functionality they expose. You can configure the web services by providing advanced
design settings, such as web services addressing, security, and transactional behavior
(for example, the service should only be executed on HTTPS with encryption, and the
client can only execute the service between 2 and 5 p.m. on Thursdays).

You can deploy your web services on the default Web Services Stack servlet container
and run them locally or you can deploy them on a fully functional application server
and consume the functionality using a variety of Web service clients.

Web Services Stack supports these web services standards:
HTTP and SMTP for basic network transport services
XML (Extensible Markup Language) as data format
UDDI for web service registries

WSDL for service descriptions

SOAP for XML messaging and RPC

SOAP with Attachments (SwA)

SOAP MTOM/XOP

WS-Policy and WS-Policy Attachment Specifications
WS-RM Policy

WS-Security Policy

WS-MeX

WS-Addressing

WS-ReliableMessaging

XML Schema

Software AG Infrastructure Administrator’s Guide Version 9.9 13

Concepts

® XML Core (XML Language, DTD, DOM, XML Name Space)

Java Service Wrapper

The Java Service Wrapper is an application developed by Tanuki Software, Ltd. Some
Software AG products use the Java Service Wrapper to:

Start and stop the Java Virtual Machines (JVM) in which they run. You can configure
Java startup parameters such as heap size and classpath.

Record the console output from the JVM in a log file. This log includes stack
traces that the JVM produces when a process throws an exception and any thread
dumps you generate from the JVM. The wrapper log is particularly useful when
a webMethods product runs as a Windows service, because console output is not
normally available to you in this mode. The log file is named wrapper.log.

Monitor the JVM for various fault conditions and take a specified action when a fault
occurs. You can do the following:

m Detect a nonoperational (hung) JVM. After the Java Service Wrapper starts the

JVM, it pings the JVM periodically to check whether it is operational. If the JVM
does not respond to a ping within a specified interval, the Java Service Wrapper
assumes that the JVM has stopped functioning and restarts it. Each Software AG
product configures this feature differently; some disable it entirely.

Detect thread deadlocks in the JVM. A thread deadlock occurs when two or
more threads try to lock resources in a manner that causes all threads to wait
indefinitely. The Java Service Wrapper can monitor the JVM for a deadlock
condition and take a specified action (for example, restarting the JVM) when
the condition occurs. For most Software AG products, this feature is disabled by
default.

Detect specified messages in the console output. The Java Service Wrapper can
monitor the console output and take a specified action when a given string of text
appears. This feature is often used to watch for out-of-memory messages.

® Enable you to generate a thread dump when the JVM is running as a service under

Windows.

This guide discusses the Java Service Wrapper as it is used by Software AG products
that run on the Software AG Common Platform. The documentation for a product might
contain additional instructions for using the Java Service Wrapper for that product.

For information about Software AG products that use the Java Service
Wrapper but do not run on the Software AG Common Platform, see the
documentation for those products.

Software AG Infrastructure Administrator’s Guide Version 9.9 14

Running Web Applications

2 Running Web Applications

m Configure Software AG Runtime CredentialS ... 16
m Change the Default Software AG Runtime Keystore and Truststorecccooeevivricnieinnnnne. 16

B Work with HTTP CONNECIONS ..o 18
B Work With HTTPS CONNECLOSc.cciviiiiiiiiciicisiisscset e 20
B Predefined CONNECION ..o e 23
B Configure JNDI RESOUICESciviiiiieiiseisiisieieiei i 23
m Configure the Software AG Runtime Java Service Wrappercccoceevvieceessesecee s 27

m Configure Software AG Runtime LOg Settingsccovevrierriiirienieseeseseeeseesee e 27
B Hot Configuration UPatec.ceueiiiiiiiciciicecce v 27
B USE Path TOKENS ..o 28
m Start and Stop Software AG RUNLMEccueviiiiiieieece e 29
m Manage Software AG RUNtIME SECUMEYccvviimiiriiiiees e 30

Software AG Infrastructure Administrator's Guide Version 9.9 15

Running Web Applications

Configure Software AG RuntimeCredentials

1.

Change the default Software AG Web Services Stack credentials (see "Manage Web
Services" on page 95).

Change the default credentials of the internal user repository (see "Create or Edit
Internal User Repository Files" on page 37).

Generate a Java keystore file with a key pair and certificate for the Tomcat HTTPS
connector (see "Work with HTTPS Connectors" on page 20).

Change the Default Software AG Runtime Keystore and
Truststore

Change the default Software AG Runtime keystore.jks and platform_truststore.jks files
to a custom key pair and corresponding certificate.

Note: If other users have access to this certificate, they might have managing access

for Software AG Runtime through JMX.

Go to the Software AG_directory \ common)\ conf directory.

You cannot create a keystore with an existing alias (default alias is ssos). Back up the
default keystore.jks and platform_truststore.jks files to another directory, and then
delete the files from the conf directory.

In the Software AG_directory \ common conf directory, open a command window.
Create the keystore by running this command:

Software AG directory

\jvm\jvm\bin\keytool -genkeypair -alias keystore alias

-keystore keystore path -storepass keystore password -validity days count
-keypass keystore password -keyalg key algorithm -keysize key size
-sigalg signing algorithm -storetype JKS

The keytool prompts for information such as your name, company, and address.

Note: Due to limitation of the Software AG single sign-on system (SSOS), the -
storepass and -keypass values must be identical.

Show the details of the keystore you created on the command window by running
this command:

Software AG directory
\jvm\jvm\bin\keytool -list -v -keystore keystore path
-storepass keystore password

Note the certificate information.

Export the certificate from the keystore you created by running this command:

Software AG directory

Software AG Infrastructure Administrator’s Guide Version 9.9 16

Running Web Applications

\jvm\jvm\bin\keytool -exportcert -alias keystore alias
-file certificate path -keystore keystore path -storepass keystore password

-storetype JKS

Create a truststore by running this command:

Software AG directory\jvm\jvm\bin\keytool -import -file certificate path
-alias truststore alias -keystore truststore path

Show the details of the truststore you created on the command window by running

\jvm\jvm\bin\keytool -list -v -keystore truststore path

Make sure the certificate information is identical to the certificate you noted earlier
in this procedure. If it is not identical, remove the keystore and truststore and start

6.

7.
this command:
Software AG directory
again at step 3.

8.

Update your SSOS configuration. Go to the Software AG_directory \ profiles\ CTP

\ configuration \ com.softwareag.platform.config.propsloader directory, open the
com.softwareag.sso.pid.properties file, and update your SSOS configuration.

Variables Description Default Value
certificate_path Path for generated Software AG_directory/
certificate. common/conf/default.cer

days_count Integer value of days 10957
count of the certificate
validity.
key_algorithm Algorithm for RSA
encryption of the
keystore.
key_size Keysize of the keystore 2048
keys.
keystore_alias Alias for the new SS0S
keystore.
keystore_path Path to the new Software AG_directory/
keystore. common/conf/keystore.jks
keystore_password Password for the new manage
keystore.
signing_algorithm Algorithm for the SHA512with RSA

certificate signature.

Software AG Infrastructure Administrator’s Guide Version 9.9

17

Running Web Applications

Variables Description Default Value
truststore_alias Alias for the new SS0S
truststore.
truststore_path Path to the new Software AG_directory/
truststore. common/conf/

platform_truststore.jks

your_C CountryName DE
your_CN CommonName SS0S
You_L Locality Unknown
Your_O Organization sag
your_OU OrganizationalUnit default
your_ST StateOrProvinceName Unknown

9. Go to the Software AG_directory [profiles/CTP/configuration/
com-softwareag.platform.confi.propsloader directory. Open the
com.softwareag.sso.pid.properties file and edit these properties:

com.softwareag.security.idp.truststore.location
com.softwareag.security.idp.truststore.keyalias
@secure.com.softwareag.security.idp.truststore.password

The default truststore location is @path\ :sag.install.area/common/conf/
platform_truststore.jks, and the default alias and password are ssos and manage.

Work with HTTP Connectors

Use the Predefined HTTP Connector

Software AG Runtime is installed with a predefined HTTP connector. It is

defined in the com.softwareag.catalina.connector.http.pid-port_number .properties
file, located in the Software AG_directory\ profiles\ CTP\ configuration
com.softwareag.platform.config.propsloader directory. You can use the predefined
HTTP connector as is, or you can modify some of its properties.

Software AG Infrastructure Administrator’s Guide Version 9.9 18

Running Web Applications

Configure a User-Defined HTTP Connector

You can configure one or more user-defined connectors to use instead of the predefined
connector.

You can configure a user-defined HTTP connector by:

B Modifying the predefined HTTP connector settings in the
com.softwareag.catalina.connector.http.pid-port_number .properties file. The
file is available in the Software AG_directory\ profiles\ CTP\ configuration\
com.softwareag.platform.config.propsloader directory.

®m Creating another properties file in the same location. The new configuration
file must follow the naming convention of the predefined file by keeping the
com.softwareag.catalina.connector.https.pid- prefix. The created file must
have configured unique port and alias properties. The aliases of defaultHttp and
defaultHttps are reserved for the predefined HTTP and HTTPS connectors and
must not be used.

®m Using the Software AG Command Central user interface. For more information, see
the Software AG Command Central Help.

Note: Make sure that one of your HTTP connectors has the alias property set to
defaultHttp. This value exists by default in the predefined HTTP connector
definition. The defaultHttp value is used by the Common Platform to
distinguish default connectors from other existing connectors. If this value is
not present in at least one HTTP connector definition, this results in an invalid
or corrupted Software AG Runtime configuration the next time you install a
product in the profile.

1. Browse to the Software AG_directory \ profiles\ CTP\ configuration\
com.softwareag.platform.config.propsloader directory.

2. In atext editor, open one of the following files:

m The existing com.softwareag.catalina.connector.http.pid-port_number .properties
file to modify the predefined HTTP connector.

Note: When using the existing HTTP connector, make sure you rename the
properties file by modifying the port_number in the filename.

m The user-defined HTTP connector properties file to define a new HTTP
connector.

3. Modify the values of the following properties:

Software AG Infrastructure Administrator’s Guide Version 9.9 19

Running Web Applications

Property Description

port Used to set the TCP port number on which the connector will
create a server socket and await incoming connections.

alias Used by Software AG Platform Manager to identify each connector.
The default HTTP connector must have this property set to
defaultHttp and this value must be unique and used for only one
connector.

enabled Used to specify whether the connector configuration is enabled.
The default value is false and must be set to true to enable the
connector.

4. Optionally, modify the other properties in the file. For more information about the
available connector properties, see the Apache Tomcat documentation.

5. Save your modifications.

Work with HTTPS Connectors

Use the Predefined HTTPS Connector

Software AG Runtime is installed with a predefined HTTPS connector. It is
defined in the com.softwareag.catalina.connector.https.pid-port_number .properties
file, located in the Software AG_directory\ profiles\ CTP\ configuration\
com.softwareag.platform.config.propsloader directory.

1. Browse to the Software AG_directory \ profiles\ CTP\ configuration\
com.softwareag.platform.config.propsloader directory.

Note: = When using the existing HTTP connector, make sure you rename the
properties file by modifying the port_number in the filename.

2. Ina text editor, open the
com.softwareag.catalina.connector.https.pid-port_number .properties file.

3. Modify the value of the keystoreFile property to point to a valid keystore file.

The keystoreFile property points to the localhost_dont_use_in_production.jks
keystore, located in the Software AG_directory\ profiles\ CTP\ configuration\ tomcat
\ conf. It is only a sample and must not be used for production purposes.

4. Modify the values of the following properties:

Software AG Infrastructure Administrator’s Guide Version 9.9 20

Running Web Applications

5.

6.

Property Description

port Used to set the TCP port number on which the connector will
create a server socket and await incoming connections.

alias Used by Software AG Platform Manager to identify each connector.
The default HTTPS connector must have this property set to
defaultHttps and this value must be unique and used for only one
connector.

enabled Used to specify whether the connector configuration is enabled.
The default value is false and must be set to true to enable the
connector.

Optionally, edit the other properties in the file. For more information about the
available connector properties, see the Apache Tomcat documentation.

Save your modifications.

Note: Make sure that the alias property is set to defaultHttps. This is required so

that Software AG Platform Manager is able to recognize this connector as the
default HTTPS connector.

Configure a User-Defined HTTPS Connector

You can configure one or more user-defined connectors to use instead of the predefined
connector.

You can configure a user-defined HTTPS connector by:

Modifying the predefined HTTPS connector settings in the
com.softwareag.catalina.connector.https.pid-port_number .properties file. The
file is available in the Software AG_directory\ profiles\ CTP\ configuration
com.softwareag.platform.config.propsloader directory.

Creating another properties file in the same location. The new configuration

file must follow the naming convention of the predefined file by keeping the
com.softwareag.catalina.connector.https.pid- prefix. The created file must have
configured unique port and alias properties. The aliases of defaultHttp and
defaultHttps are reserved for the predefined HTTP and HTTPS connectors and must
not be used.

Using the Software AG Command Central user interface. For more information, see
the Software AG Command Central Help.

Important: Make sure that one of your HTTPS connectors has the alias property set to

defaultHttps. This value exists by default in the predefined HTTPS connector
definition. The defaultHttps value is used by the Common Platform to

Software AG Infrastructure Administrator’s Guide Version 9.9 21

Running Web Applications

distinguish default connectors from other existing connectors. If this value
is not present in at least one HTTPS connector definition, this results in an
invalid or corrupted Software AG Runtime configuration the next time you
install a product in the profile.

Server-Side Configuration

Before you start the procedure for defining an HTTPS connector on the server side, make
sure that you have your own server certificate. You must set the Common Name (CN) of
the certificate to be identical to the URL of the server, without the "https://". For example,
for a server at https://MyWebServer:8443/, the CN is MyWebServer.

1. Browse to Software AG_directory \ profiles\ CTP\ configuration\
com.softwareag.platform.config.propsloader.

2. In a text editor, open one of the following files:
m The existing com.softwareag.catalina.connector.https.pid-port_number .properties

file to modify the predefined HTTPS connector.

Note: When using the existing HTTPS connector, make sure you rename the
properties file by modifying the port_number in the filename.

m The user-defined HTTPS connector properties file to define a new HTTPS
connector.

3. Define the location of the keystore file containing the server certificate by configuring
its path to the keystoreFile property.

4. Set your password by specifying a value for the keystorePass property.

5. Set the Java keystore type using the keystoreType property. Software AG Runtime
supports three types of Java keystores: JKS (default), PKCS11 and PKCS12.

6. Save your modifications.

Securing the HTTPS Connector Passwords

The keystorePass, keyPass, and truststorePass properties can be secured by adding
@secure. prefix to the property key. For example, for keystorePass:

@secure.keystorePass=change this password

The next time the properties file configuration is loaded the value of the keystorePass
property will be moved to an encrypted secure storage on the file system under
theSoftware AG_directory\ profiles\ CTP\ configuration \ security \ passman directory
and the configuration will be written back replacing the value with a secure token that
contains a handle from the secure storage instead of the original plaintext value.

You can change the value of the keystorePass property to change the password. If the
password is already secured, to change the value of the keystorePass property you have
to replace the secure token handle with a new plaintext password that will be secured in
turn and will overwrite the previous password in the secure storage.

Software AG Infrastructure Administrator’s Guide Version 9.9 22

Running Web Applications

Client-Side Configuration
To accept an HTTPS connection on the client side, you can do either of the following;:

® Import the server certificate into your Internet browser truststore. In case of a PKI,
import the CA certificate that issued the server certificate.

Note: If you are accessing resources through a Web server's HTTPS protocol
from a Java client using Oracle JSSE, you must also set a truststore via
the -Djavax.net.ssl.trustStore property and a truststore password via the -
Djavax.net.ssl.trustStorePassword property, for example:

-Djavax.net.ssl.trustStore=<your truststore here>
-Djavax.net.ssl.trustStorePassword=<your truststore password here>

® When opening an HTTPS connection in your Internet browser, click Yes at the
prompt if you trust the certificate.

Predefined Connector

Software AG Runtime is installed with a predefined JMX connector. It is

defined in the com.softwareag.jmx.connector.pid-port_number .properties

file, located in the Software AG_directory\ profiles\ CTP\ configuration

\ com.softwareag.platform.config.propsloader directory. The predefined J]MX connector
is used by Software AG Platform Manager to manage Software AG Runtime.

Important: Do not edit the com.softwareag.jmx.connector.pid-port_number .properties
file unless Software AG Global Support asks you to do so.

Configure JNDI Resources

The standard way for web applications to access resources from the external
environment is to look up objects via JNDI. Software AG Runtime provides a JNDI
injection framework that allows web applications to access dynamic Common Platform
resources in a transparent way. The JNDI injection framework supports the standard
elements resource-ref, resource-env-ref, and env-entry for resource definition. The
resource is accessed from the Java code in the standard way. It is bound under
java:comp/env namespace.

You can configure custom web applications to use JNDI resources in the standard way
(that is, by declaring a resource reference in the WEB-INF/web.xml file that is contained
in the web application war).

Configure the JNDI Injection Framework

The JNDI injection framework in Software AG Runtime is configured and enabled
by default. The configuration is stored in the Tomcat configuration files context.xml

Software AG Infrastructure Administrator’s Guide Version 9.9 23

Running Web Applications

and server.xml. The files are located in the Software AG_directory\ profiles\ CTP
\ configuration \ tomcat\ conf directory.

The context.xml file defines a context listener of type
com.softwareag.platform.catalina.jndi.Resourcelnjector that has several parameters with
default values. You can change these values.

Parameter

Description

applicationStartup
Timeout

Required. Period, in milliseconds, that the injector will wait

for the host bundle to become active. After the period expires,

the injector will try to obtain the host BundleContext. If the
context is not available, the injector will fail the application
startup. The default is 300000.

applicationStartup
Poll

Required. How often, in milliseconds, the injector will poll
the state of the host bundle. The default is 1000.

injectionStartup
Timeout

Required. Period, in milliseconds, that the injector will
wait for all unbound resources to be injected. If this period
expires and resources are missing, the injector will fail the
application startup. The default is 30000.

serviceProxy
Timeout

Required. Damping period, in milliseconds, of the service
proxies. If a service tracked by a proxy is not available, the
injector will block the caller thread for the specified number
of milliseconds. The default is 10000.

The server.xml file defines how and when Software AG Runtime is to deploy web
applications. You can change these values.

Parameter Description

autoDeploy Whether to automatically deploy web applications. The
default is true.

deployOnStartup Whether to deploy web applications during Software AG

Runtime startup. The default is false.

Configure JNDI Resources

Define JNDI resources using property files whose names

start with com.softwareag.catalina.resource.pid (for example,
com.softwareag.catalina.resource.pid-petstore.properties). Store the
configuration files in the Software AG_directory\ profiles\ CTP\ configuration

Software AG Infrastructure Administrator’s Guide Version 9.9

24

Running Web Applications

\ com.softwareag.platform.config.propsloader directory. You can use the properties
listed below in the JNDI resources configuration.

Property

Description

context

Optional. Name of the web context of the application into which
to inject the resource configuration (for example, petstore).

If the property is missing, the resource configuration will be
injected into all web applications.

factory

Required. Fully qualified name of the ObjectFactory

to use to produce the resource object (for example,
org.apache.tomcat.jdbc.pool.DataSourceFactory). To enable OSGi
service injection, this property is set to service. You can set
these properties as well:

m filter: Standard OSGi LDAP service filter. For example,
you could select a DataSource service using the filter
(&(dbName=]PetStore)(dbType=Derby)).

B timeout: Damping period, in milliseconds, for all proxies
produced by this ObjectFactory. This property overrides the
serviceProxyTimeout property of the Resourcelnjector as
specified in the global context.xml.

name

Required. Name under which to bind the resource in the java:/
comp/env namespace of the web application. The value is
relative. For example, jdbc/JPetStoreDB means the absolute name
of the resource will be java:/comp/env/jdbc/JPetStoreDB.

type

Required. Fully qualified name of the resource class (for
example, javax.sql.DataSource).

enabled

Optional. Indicates whether to have the JNDI injector process the
resource configuration. Valid values are true (default) and false.

multiple
address
properties

Optional. Actual JNDI resource configuration; these are names
of factory fields for which getters and setters are available.

The number, name, and type of these properties depends

on the concrete resource and ObjectFactory that is being
defined. For additional information, see the Tomcat JDBC pool
documentation.

The sample JNDI resource configuration below defines a DataSource to inject into the

configured context.

com.softwareag.catalina.resource.pid-petstore.properties

JND

I injection configuration

context=/petstore

Software AG Infrastructure Administrator’s Guide Version 9.9 25

Running Web Applications

name=jdbc/JPetStoreDB

type=javax.sqgl.DataSource
factory=org.apache.tomcat.jdbc.pool.DataSourceFactory
Resource definition

maxActive=100

maxIdle=30

maxWait=10000

username=user

password=pass

driverClassName=com.softwareag.platform. jdbc.dd.SQLServerDriver
url=jdbc:wm:sqglserver://hostname:1433;databaseName=dbName

Configure Environment Entries

Define environment entries using a dynamic configuration subsystem, typically
property files whose names start with com.softwareag.catalina.env.pid (for
example, com.softwareag.catalina.env.pid-petstore.properties). Store the
configuration files in the Software AG_directory\ profiles\ CTP\ configuration

\ com.softwareag.platform.config.propsloader directory. You can use the properties
listed below in the environment entry configuration.

Property

Description

context

Optional. Name of the web context of the application into which
to inject the resource configuration (for example, petstore).

If the property is missing, the resource configuration will be
injected into all web applications.

enabled

Optional. Indicates whether to have the JNDI injector process the
resource configuration. Valid values are true (default) and false.

(1-9).name

Required. Name under which to bind the resource in the java:/
comp/env namespace of the web application. The value is
relative. For example, jdbc/JPetStoreDB means the absolute name
of the resource will be java:/comp/env/jdbc/JPetStoreDB.

(1-9).type

Required. Fully qualified name of the environment entry class
(for example, javax.lang.String).

(1-9).value

Required. Value to return when this environment entry is looked
up through JNDI by its name or injected as a @Resource.

(1-9).override

Optional. Indicates whether an environment entry in the
web.xml can override the same environment entry defined in
a more global configuration (for example, the context.xml or
server.xml file). Valid values are true (default) and false.

Below is a sample environment entry configuration.

Software AG Infrastructure Administrator’s Guide Version 9.9

26

Running Web Applications

context=/petstorel.name=env/
JPetStoreEnvConfigurationl.type=java.lang.
Stringl.value=EnvConfigurationValue

Configure the Software AG Runtime Java Service Wrapper

Software AG Runtime runs on the Software AG Common Platform, which in turn runs
in a JVM. The JVM is launched by the Software AG RuntimeJava Service Wrapper.

See "Configuring the Java Service Wrapper" on page 99 for general information

about the Tanuki Software, Ltd.Java Service Wrapper. Do not make any changes to the
wrapper.conf file. Follow the instructions in "Edit Java Service Wrapper Properties” on
page 100 to configure the Software AG Runtime]ava Service Wrapper. However, do

not make any changes to the Software AG Runtime custom_wrapper.conf file other than
the ones described below. The wrapper.conf and custom_wrapper.conf files are located
in the Software AG_directory/profiles/CTP/configuration directory.

You can change the wrapper.java.initmemory and wrapper.java.maxmemory properties.
The defaults for these properties are 256 and 512, respectively. If you set these properties
to a non-zero value, the Java Service Wrapper adds an appropriate —Xms parameter.

If you want to use the default values that are configured in the JVM itself, set these
properties to 0 in the custom_wrapper.conf file. You can then set the -Xms parameter
manually as an additional property in the custom_wrapper.conf file.

The JVM timeout, deadlock detection, and console filtering fault monitoring features
are not enabled for Software AG Runtime. Do not enable them. Only modify the JVM
timeout properties if asked to do so by Software AG for troubleshooting purposes.

Configure Software AG Runtime Log Settings

Software AG Runtime delivers Journal Logging for logging purposes. To enable users
to configure log settings, Software AG Runtime installation contains a log_config.xml,
located in the Software AG_directory\ profiles\ CTP\ configuration\logging directory.

Hot Configuration Update

Software AG Runtime runs a watchdog service that monitors the

files under the Software AG_directory\ profiles\ CTP\ configuration

\ com.softwareag.platform.config.propsloader directory and the JAAS
configuration file at Software AG_directory\ profiles\ CTP\ configuration
\jaas.config and updates the runtime if changes to those files are detected. The
watchdog maintains a set of configuration loaders for each supported file type
(currently .properties and jaas.config). The poll interval for each configuration
loader can be configured by modifying the Software AG_directory\ profiles
\CTP\ configuration \ com.softwareag.platform.config.propsloader

Software AG Infrastructure Administrator’s Guide Version 9.9 27

Running Web Applications

\ com.softwareag.config.watchdog.pid.properties file. The following properties can be

configured:

Property Description

poll.default The poll interval in milliseconds to be used for configuration
loaders that do not explicitly specify a poll interval. The
default value is 5000. When the value of this property is set
to less than 1000, polling is disabled for all loaders without
values and all loaders with values set to less than 1000.

poll file. The poll interval in milliseconds to be used for property file

property.loader configuration loader. No default value. When the value of the
property is set to less than 1000, the value is reset to the value
of the poll.default property.

poll.jaas. The poll interval in milliseconds for the JAAS configuration

file.loader file loader. The default value is 1000. When the value of the

property is set to less than 1000, the value is reset to the value
of the poll.default property.

Use Path Tokens

Software AG Runtime supports the usage of path tokens in the properties

files under the Software AG_directory\ profiles\ CTP\ configuration

\ com.softwareag.platform.config.propsloader directory and in the JAAS configuration
file located at Software AG_directory\ profiles\ CTP\ configurationjaas.config. At runtime
the path tokens are detected and replaced with the respective absolute location. These
replacements take place in memory only and the files on disk will always contain values

with path tokens.

The following standard path tokens are supported:

Token

Resolves to

osgi.install.area

Software AG_directory/profiles/profile /

osgi.instance.
area

Software AG_directory/profiles/profile /[workspace/

osgi.configur
ation.area

Software AG_directory/profiles/profile /configuration/

sag.install.area

Software AG_directory

Software AG Infrastructure Administrator’s Guide Version 9.9 28

Running Web Applications

To specify that a path token must be resolved to a regular path, add a @path: prefix to
the token name. If the path token must be resolved to an URL, add a @url: prefix instead.

The following examples are valid for the jaas.config file:

For a property that contains the Software AG installation directory (C:/SoftwareAG)
as an absolute path (for example, someProperty=C\ :/Software AG/common/conf/
someFile.conf), the property value can be modified by replacing C\:/SoftwareAG
with @path:sag.install.area. After the change, the property will look like this:
someProperty=@path:sag.install.area/common/conf/someFile.conf

If the property contains an URL instead of an absolute path (for example,
someProperty=file\:\ C\:/SoftwareAG/common/conf/someFile.conf), the property value
can be modified replacing file\:C\:/SoftwareAG with @url:sag.install.area. After the
change, the property will look like this: someProperty=@url:sag.install.area/
common/conf/someFile.conf

Important: When working in a .properties file you should use the \ symbol to escape
symbols that may potentially break the configuration, for example, :.

Start and Stop Software AG Runtime

Your Software AG Runtime installation directory contains startup scripts which enable
you to start and stop the Software AG Runtime instance. Different scripts are available
depending on your operating system.

Start and Stop Software AG Runtime on a Windows System

The Software AG Runtime service is Software AG Runtime release . It is registered to start
automatically at system start. You can start, stop, and modify the service in Control Panel
> Administrative Tools > Services.

You can modify the startup type of the service in the Services window. The startup type
of the service can be set to Automatic, Manual, or Disabled. The recommended startup type
is Automatic.

Start and Stop Software AG Runtime on a UNIX System

Before you start the daemon processes on UNIX, you need to set sufficient data

user limits for the shell which starts the Software AG Runtime daemons. Having an
insufficient data user limit might result in an OutOfMemoryError java exception at
startup. For more information on setting data user limits, see the main page for ulimit or
contact your system administrator.

The installation registers the daemons for Software AG Runtime in the UNIX init
structure so that Software AG Runtime starts automatically when the system starts. The

Software AG Infrastructure Administrator’s Guide Version 9.9 29

Running Web Applications

scripts below are installed, where number refers to a number which gets incremented by
1 for each installation on the local machine.

System Scripts

Linux, ® /etc/init.d/sagnumber ctprelease_number

Solaris m /etc/rcsystem_runlevel .d/K20sagnumber ctprelease_number

m /etc/rcsystem_runlevel .d/S60sagnumber ctprelease_number

AIX m /etc/sagnumber ctprelease_number
® Entry in /etc/inittab:

sagnumber ctprelease_number :system_runlevel :wait:/etc/
sagnumber ctprelease_number start > /dev/console 2>&1

HP- m /sbin/init.d/sagnumber ctprelease_number

ux m /sbin/rcsystem_runlevel .d/K20sagnumber ctprelease_number

®m /sbin/rcsystem_runlevel .d/S60sagnumber ctprelease_number

To temporarily deactivate a service, remove or rename these files manually. Native
configuration tools like the Yast Run-Level-Editor on Linux do not work.

The path to the Software AG Runtime daemon is Software AG_directory/common/bin/
wrapper-3.5.25 and the daemon can have several child processes.

To start Software AG Runtime manually, start the daemon Software AG_directory/
profiles/CTP/bin/startup.sh.

To stop Software AG Runtime manually, stop the daemon Software AG_directory/profiles/
CTP/bin/shutdown.sh.

Manage Software AG Runtime Security

The Software AG Runtime security is managed by the jaas.config file located in the
Software AG_directory \ profiles\ CTP\ configuration directory. This security configuration
file contains application contexts for the different parts of Software AG Runtime
authentication. You can use the default login modules in the file or you can add your
own modules that enable the use of SSO. The default authentication mechanism

checks the username and password against the local user repository handled by the
InternalLoginModule. The local user repository is in the users.txt file located in the
Software AG_directory/common/conf/ directory.

For more information about available authentication mechanisms, see "Setting Up
Security" on page 31.

Software AG Infrastructure Administrator’s Guide Version 9.9 30

Setting Up Security

3 Setting Up Security

B Set Up the JAAS Configuration Filecoeirniirree e 32
B TUMN ON LOGGING woivviviiiieicieteete ettt bbb bbbt s e se e s s e 35
m Make the JAAS Configuration File ACHIVEcccoieririiiie s 36
m Create Technical User Credential Files ..o 36
m Create or Edit Internal User Repository Files ... 37
B Create LOgin MOGUIESocuiiiiieiici b 39
B Use the LDAP FrameWOrK ..o 40
m Update the Single Sign-On System for Your Product ..o 42
B Create Custom Keys and Certificatescouerireiiiiircreesecree et 43
B Develop @ JAAS CIIENT ..o 45
B Troubleshoot ProDIBMS ..o 45
B Predefined LOGin MOTUIEScciiiiriiiiieiieeee e 46

Software AG Infrastructure Administrator's Guide Version 9.9 31

Setting Up Security

Set Up the JAAS Configuration File

Set up one configuration file per JVM. A JAAS configuration file comprises the
following:

B One or more login contexts.

B One or more login modules in each login context. Login modules are listed in the
order they should be called by the application.

m C(lassification of login modules, defined using flags such as required, requisite, or
optional.

m Parameters that specify the type of authentication to use, such as
check_crl_status=true.

® Comments that provide useful information about the file contents.

Different types of Principals are derived from an available Subject. The Principals
architecture in Security Infrastructure is based on an abstract class called
AbstractSagPrincipal, and all other SAG Principals extend it. Security Infrastructure
provides some implemented classes for common use cases; these classes are
SagUserPrincipal, SagGroupPrincipal, SagRolePrincipal, LightWeightPrincipal. Security
Infrastructure returns no or only one user Principal for the authenticated user. Many
applications expect one and only one SagUserPrincipal as the result of a successful
authentication. However, a different expected behavior cannot be excluded. Make sure
you configure the login contexts accordingly.

Create the JAAS Configuration File

Go to the Software AG_directory/profiles/profile /configuration directory. Open a text
editor and create a file named jaas.config.

Note: Store the JAAS configuration file in the directory specified above because files
in those directories are automatically migrated during product upgrades. If
you store a JAAS configuration file in a different location, you will have to
remember to migrate the file manually.

Define a Login Context

In the jaas.config file, define a login context. For example:

SoftwareAGSampleLoginContext {

Use semi-colons (;) to separate login contexts from each other.

Software AG Infrastructure Administrator’s Guide Version 9.9 32

Setting Up Security

Define the Login Modules

In the login context, list the full class names of the login modules in the order the
modules should be called by the application. List one classification flag after each login
module name. List any parameters after the classification flag, separating the parameters
with a space or a new line. Use semi-colons (;) to separate login modules from each
other.

The code sample below shows a login context that contains the predefined
login modules X509CertificateLoginModule, SSXLoginModule, and
CentraSiteServerLoginModule.

SoftwareAGSampleLoginContext {
com.softwareag.security.jaas.login.modules.X509CertificatelLoginModule
required check crl status=true crl url="${com.softwareag.security.crl.url}"
truststore url="${com.softwareag.security.truststore.url}"

truststore password="${com.softwareag.security.truststore.password}"
truststore type=jks overwrite username=false;
com.softwareag.security.jaas.login.ssx.SSXLoginModule requisite

template section=0S;
com.softwareag.security.jaas.login.xmlserver.CentraSiteServerLoginModule
optional XMLSERVER URL="http://localhost:53305/CentraSite/CentraSite";};

You can also use the domain parameter in a login module. This parameter enables a
dynamic use of login modules. When a user logs in to an application with a domain and
user name, login modules that use the domain parameter verify the domain and begin
the authentication process for the user only if the domain corresponds to the one defined
for the login module.

Classification flags you can use are listed below.

Classification Means the authentication specified in the login module . . .

Requisite Must succeed. If the authentication succeeds, the authentication
process proceeds down the login module list defined in the
login context. If it fails, control is returned to the product and
authentication stops.

Required Must succeed. If the authentication succeeds or fails, the
authentication process proceeds down the login module list defined
in the login context. For example, you might want to execute audit
login module that logs user login attempts. However, the overall
authentication succeeds only if all requisite and required login
modules succeed.

Sufficient Does not have to succeed. If the authentication succeeds, control is
returned to the product and authentication stops. If the previous
requisite and required login modules also succeeded, the overall

Software AG Infrastructure Administrator’s Guide Version 9.9 33

Setting Up Security

Classification Means the authentication specified in the login module . . .

authentication succeeds. If the authentication fails, the authentication
proceeds down the login module list defined in the login context.

Optional Does not have to succeed. If the authentication succeeds or fails,
the authentication process proceeds down the login module list
defined in the login context. If there are no requisite or required
login modules in the login context, the overall authentication
succeeds only if the authentication specified in at least one sufficient
or optional login module succeeds.

The parameters below are global parameters that apply to all types of login modules.
You can use them in all login modules developed using the SagAbstractLoginModule.

Parameter Description

create_user_ Optional. Used to define whether the commit () method creates

principal a SagUserPrincipal using the SagCredentials available in the
sharedState Map.

Valid values are:

true - The commit () method creates a SagUserPrincipal. If you
set this parameter to true, it cannot later be changed.

false - The commit () method does not create a SagUserPrincipal.
The login modules that do not create SagUserPrincipal in

their own commit () method must call the super.commit ()
method.The SagUserPrincipal is created only once. This is the
default.

store_credentials Optional. Used to define whether to store SagCredentials in
Subject.privateCredentials. The servlet context and header field
of SagCredentials are not stored. Valid values are:

true - SagCredentials is stored in Subject.privateCredentials. This
is the default.

false - SagCredentials is not stored in Subject.privateCredentials.

Keeping the password in clear text in the
Subject.privateCredentials may constitute a security risk,
depending on how the Subject is handled. However, there are
use cases where the password needs to be accessible through the
Subject. Store the password only if necessary.

Software AG Infrastructure Administrator’s Guide Version 9.9

34

Setting Up Security

Parameter Description

keep_password Optional. Used to define whether to keep the password (if
present in SagCredentials) in the credentials that are stored in
Subject.privateCredentials. Valid values are:

true - if present in the SagCredentials, the value is kept in the
credentials that are stored in the Subject.privateCredentials. The
default value is true.

false - if present in the SagCredentials, the password
is not kept in the credentials that are stored in the
Subject.privateCredentials.

This parameter requires the store_credentials parameter to be set
to true.

For a complete list of parameters you can use in login modules, see "Predefined
Login Modules" on page 46. The domain parameter is listed in the predefined
InternalLoginModule and LDAPLoginModule.

You can use location tokens (@path and @url) on parameters that call for paths or URLs.
For more information about path token support, see "Running Web Applications" on
page 15.

Verify JAAS Configuration

Make sure all paths and URLs in the JAAS configuration file are valid. For UNIX
platforms, check that the path to the ssx auth daemon is correct and that the
executable to which it points has the S-bit set. All paths and URLs use the PluggableUI
LoginContext; make sure that login context is set up correctly.

Turn On Logging

Security Infrastructure uses the log4j package for logging data. To turn on logging,
include these properties in the properties list of the first login module of the stack in the
login context in the JAAS configuration file:

useLog="true"

logLevel="debug"

logFile="full path to log file"

The resulting file contains the entire debug information generated during the login
process, role management, and user repository management.

You can configure Security Infrastructure login modules to log information into an
external file on the file system. Make sure the directory is not write-protected for
the user who executes the JVM. On UNIX-based operating systems, Software AG
recommends using the /tmp directory.

Software AG Infrastructure Administrator’s Guide Version 9.9 35

Setting Up Security

Software AG recommends that you turn off the logging after you collect sufficient
information about the issues. If you do not change these logging settings, the system
keeps logging information to the log file, which leads to greater file size and reduced
overall performance. Alternatively, instead of configuring external logging on Security
Infrastructure, you can also check the system logging.

Make the JAAS Configuration File Active

If you are using Security Infrastructure with Software AG Runtime, go to the

Software AG_directory/profiles/CTP/configuration directory and open the config.ini file.
Set the java.security.auth.login.config property to the URL for the JAAS configuration
file. For example:

java.security.auth.login.config=@url\:osgi.configuration.area/jaas.config
If you are not using Security Infrastructure with Software AG Runtime, set
the java.security.auth.login.config Java system property to the URL for the

JAAS configuration file. The property can be set by the application at start up
programmatically or as a parameter of a JVM. For example:

-Djava.security.auth.login.config=URL for jaas.config file

Create Technical User Credential Files

The Security Infrastructure JAAS stack provides the SagCredentials class. Security
Infrastructure login modules support only this type of credentials. SagCredentials are
queried by SagCallbackHandler, which is the default callback handler for credentials. It
supports SagCredentialCallback. Upon successful authentication, the SagCredentials can
be stored as private credentials in the Subject, from which they can be retrieved by the
application. Following is a list of user's attributes that SagCredentials sets and retrieves.

® Domain name, password, and user name

B X.509 certificate chain including user certificate and the issuer certificate (excluding
the root certificate)

® SAML artifact
® Netegrity SiteMinder token
® HTTP header fields

You will also need Software AG Security eXtensions (S5X), an interface for user
authentication. SSX is distributed with Security Infrastructure.

Security Infrastructure provides a tool named createTechUserCreds that you can use
to create technical user credential files. You can use these files with the predefined
SSXLoginModule to find LDAP users securely on LDAP servers that do not support
anonymous requests.

Software AG Infrastructure Administrator’s Guide Version 9.9 36

Setting Up Security

By default, the tool is available in the Software AG_directory/common/security/ssx_32(64)/
bin directory under the name createTechUserCreds.exe. When you start the tool, you
enter a user name and a password, which the tool encrypts. The tool creates a text file
that contains the encrypted technical user credentials and stores it in the same directory
in which you started it. Optionally, you can specify and use a key file to encrypt the
technical user content in the result. The file encloses a string of 64 hexadecimal ASCII
characters (digits 0-9, and lower case letters a-f). The initial 32 characters denote the
alternate AES key and the final 32 characters denote the initialization vector.

1. Add the SSX libraries to the library path of the system environment settings. SSX
libraries are located in the Software AG_directory \ common\ security \ ssx_32\bin
directory on Windows and in the Software AG_directory \ common \ security
\ssx_64\bin\lib directory on UNIX based operating systems.

2. Open a command window, go to the directory specified in the previous step and
start the tool using the appropriate command below.

System Command Example
. createTechUserCreds.exe createTechUserCreds.exe
Windows [-f result file] -f techUser.txt
-k keystore fileuser ID cn=testuser,dc=testdomain, dc=com
./createTechUserCreds createTechUserCreds.exe
UNIX [-f result file] —-f techUser.txt -k key.keystore
-k keystore fileuser ID cn=testuser,dc=testdomain, dc=com

The command arguments are described below.

Argument Description

[f result_file] Name of the result text file that contains the technical user
credentials. By default, the tool creates a result file in the
directory from which you started the tool and gives it the
name techuser.

-k keystore_file Name of the key file to use to encrypt the technical user
password in the result file.

user_ID Full DN of the technical user or user name.

3. Press Enter and then provide the technical user password.

Create or Edit Internal User Repository Files

You can create or edit internal user repository files that contain user names and
encrypted passwords using the Security Infrastructure Internal User Repository

Software AG Infrastructure Administrator’s Guide Version 9.9 37

Setting Up Security

Command Line Tool. Files created with the Internal User Repository Command Line
tool can be used with the InternalLoginModule and the SSXLoginModule.

Note: For information on the deprecated ssxtxtpasswd tool, see the 9.8 Security
Infrastructure documentation.

Open a command window and go to the Software AG_directory/common/bin directory.
Start the tool using the appropriate command below.

System Command

Windows internaluserrepo.bat [-f file] [-c] [-d | -e] user_Id [-p password]

UNIX Jinternaluserrepo.sh [-f file] [-c] [-d | -e] user_Id [-p password]

The arguments for the command are described below.

Argument Description
-h Print guidelines for using the tool.
-C Create or edit a text repository file. To create a file named users.txt in

the Software AG_directory/common/bin directory, specify -c but not -
f. To create a file with a specific name and location, or to modify an
existing file, specify - c and -f.

-f file Location and name of the file to create or modify.
-d Deletes the credentials for the specified user from the file.
user_Id

-e user_Id Change the password for the specified user ID.

user_Id If you have a users.txt file in the Software AG_directory/common/bin
directory, use this argument without -d or -e to add a new user to the
file. User names can contain up to 128 digits, Latin letters, and the
characters ! ()-.?[]_~.

-p Password for the specified user ID. Passwords can contain up to 128
password digits, Latin letters, and the characters ! ()-.?[] _~. If you do not
specify this argument, the tool will prompt for the password.

If the command fails, the tool returns the appropriate exit code.

Software AG Infrastructure Administrator’s Guide Version 9.9 38

Setting Up Security

Exit Description

Code

-1 User ID specified on -e argument not found in the repository file.

1 Password is not set. Specify a password.

2 User ID is too long.

3 User ID contains an invalid character.

4 Password contains an invalid character.

5 Password is too long.

6 Repository file lists more than one version.

7 Repository file lists a version in an unknown format.

8 Repository file does not list any version.

9 User does not have permissions required to create of modify the repository
file.

10 User ID not specified on the command.

11 Specified parameters conflict or are invalid.

Create Login Modules

Security Infrastructure consists of a set of bundles located in the Software AG_directory/
common/runtime/agent/repository/plugins directory. Security Infrastructure bundle
names start with com.softwareag.security.sin. All interfaces and common classes are
contained in com.softwareag.security.sin.common_release_number jar.

You can create login modules by copying predefined modules and modifying the copies.

All LoginModules must extend the SagAbstractLoginModule. This class is an abstract
superclass for all Security Infrastructure LoginModules. It handles the retrieval of
credentials for all derived classes and the handling of the inter-LoginModule SSO.
Derived classes have to implement initConfiguration () and authenticate (). See the
Security Infrastructure Javadoc for details.

Software AG Infrastructure Administrator’s Guide Version 9.9 39

Setting Up Security

Important: When you extend the SagAbstractLoginModule, do not overwrite the
initialized () method. If you need to overwrite it (for example, when you use
anew Callback and CallbackHandler), explicitly invoke the super.initialize
() method instead. This prevents the failure of other Security Infrastructure-
based login modules.

To write a LoginModule using SagAbstractLoginModule, define the parameters for the
new module. Extend SagAbstracLoginModule with main focus on the implementation
of initConfiguration () and authenticate (). The first method gets the incoming
parameters from the JAAS configuration file in the following way:

String optionValue = (String) options.get (OPTION VALUE) ;
The second method takes care of the actual authentication of the user. It is called by the

login () method from the SagAbstracLoginModule. You can modify the user credentials
according to the inter-LoginModule SSO.

If you want to implement other methods from the SagAbstracLoginModule (for
example, logout() or commit()), it is a good idea to invoke the super method from the
parent class at the end.

Use the LDAP Framework

LDAP framework is an OSGi service that uses dynamic configuration properties

files to configure an LDAP directory. The default dynamic configurations properties
file is stored in the Software AG_directory\ profiles\ profile_name \ configuration

\ com.softwareag.platform.config.propsloader directory. The aliases from these files are
used in the JAAS configuration file.

The LDAP configuration behavior depends on the URL property in the JAAS
configuration file. The following behavior patterns exist:

Pattern LDAP Behavior

URL property is set in jaas.config, LDAP login module uses only the server

but no aliases are set configured via the JAAS configuration file.

URL property is not set in LDAP login module uses all servers

jaas.config, and no aliases are set configured via the LDAP dynamic
configuration.

URL property is not set in LDAP login module uses only the servers

jaas.config, but aliases are set configured via the LDAP dynamic

configuration with matching aliases.

These properties are used with their default values the first time you start your product.
The dynamic configuration properties files must follow specific naming conventions.

Software AG Infrastructure Administrator’s Guide Version 9.9 40

Setting Up Security

The following table outlines the dynamic configuration properties for all LDAP

connections.

Parameter

Description

watt.server.ldap.
DNescapeChars

String. Specifies which characters to escape when building
LDAP queries. Valid values: all symbols. No default.

watt.server.ldap.
retryCount

Long. Specifies how much retries can be performed on LDAP
connections before giving up. Valid values are any positive
Long number. The default value is 0.

watt.server.ldap.
DNstripQuotes

Boolean. Specifies whether to remove quotes when building
LDAP queries. Valid values are true (default) or false.

watt.server.ldap.
extendedProps

String. Specifies the additional JNDI properties to be set. No
default.

watt.server.ldap.
retryWait

Long. Specifies how many milliseconds to wait between
retries. Valid values are any positive Long number. The
default value is 0.

watt.server.ldap.
doNotBind

Boolean. Specifies whether the login module should perform
an actual binding to LDAP servers. Valid values are true or
false (default).

watt.server.ldap.
DNescapePairs

Pair of strings. Specifies whether to escape substitutions. Each
time the login module meets the first member of the pair, it
replaces it with the second member. Valid values are pairs.
All string of characters are valid values for the members of
the pair. No default.

watt.server.ldap.
DNescapeURL

Boolean. Specifies whether to escape the URL when building
LDAP queries. Valid values are true or false (default).

watt.server.ldap.
ignore.server

CertificateValidity

Boolean. Specifies whether the login module should ignore
the error if it uses SSL but the server certificate is expired or
not yet valid. Valid values are true or false (default).

watt.server.ldap.

extendedMessages

Boolean. Specifies whether JNDI should use extended
messages. Valid values are true or false (default).

Software AG Infrastructure Administrator’s Guide Version 9.9

41

Setting Up Security

Parameter Description
watt.server.jndi. Long. Specifies the maximal number of results the jndi can
searchresult. return when a search is performed. Valid values are any
maxlimit positive Long number. The default value is 0 (no limit).
watt.server.ldap. Boolean. This option applies only to Integration Server. It is
includeOnly not used in the LDAP Framework. The login module uses this
ActiveGroups option to remove from the memory those groups that do not
belong to both ACL and LDAP. Valid values are true (default)
or false.

Update the Single Sign-On System for Your Product

The Single Sign-On (SSO) service issues and parses a signed SAML assertion that can
be used as a single sign-on and delegation token. The default implementation uses the
SAML 2 assertion issuance, however SAML 1.1 version is supported as well.

The bundles required for the SSO service are available within all Common

Platform profiles. The SSO service requires a dynamic configuration properties

file in order to work correctly. By default, your installation contains a
com.softwareag.sso.pid.properties file in the Software AG_directory/profiles/profile_name /
configuration/com.softwareag.platform.config.propsloader directory.

The following table outlines the parameters of the SSO service dynamic configuration.

Parameter

Description

com.softwareag.security.

idp.keystore.location

Location of the keystore to use. Default is /common/
conf/keystore.jks.

com.softwareag.security.

idp.keystore.password

Optional. Password for the keystore to use.

com.softwareag.security.

idp.keystore.type

Optional. Type of the keystore. Valid values are
PKCS7, PKCS12, or JKS (default).

com.softwareag.security.

idp.keystore.keyalias

Key alias to use for signing. Default is ssos.

com.softwareag.security.

idp.truststore.location

Optional. Truststore to use.

Software AG Infrastructure Administrator’s Guide Version 9.9 42

Setting Up Security

Parameter Description
com.softwareag.security. Required if
idp.truststore.password com.softwareag.security.idp.truststore.location is

specified. Truststore password.

com.softwareag.security. Required if

idp.truststore.type com.softwareag.security.idp.truststore.location
is specified. Type of the trustore. Valid values are
PKCS7, PKCS12, or JKS (default).

com.softwareag.security. Truststore key alias. Default is ssos.
idp.truststore.keyalias

com.softwareag.security. Time to live for the issued assertion (in milliseconds).
idp.assertion.lifeperiod Default is 300.

com.softwareag.security. Location in which to cache the configuration used for
idp.ehcache.location caching incoming SAML assertions.

Go to the Software AG_directory/profiles directory. In each profile_name /
configuration/com-softwareag.platform.config.propsloader directory, open the
com.softwareag.sso.pid.properties file and edit these properties:
com.softwareag.security.idp.truststore.location

com.softwareag.security.idp.truststore.keyalias
@secure.com.softwareag.security.idp.truststore.password

The default truststore location is @path\ :sag.install.area/common/conf/
platform_truststore.jks, and the default alias and password are ssos and manage.

If you are editing the Command Central profile (profile name CCE) or Platform Manager
profile (profile name SPM), also edit these properties:

com.softwareag.security.idp.keystore.location
com.softwareag.security.idp.keystore.keyalias
@secure.com.softwareag.security.idp.keystore.password

The default keystore location is @path :sag.install.area/common/conf/keystore.jks, and
the default alias and password are ssos and manage.

Create Custom Keys and Certificates

Software AG Common Platform provides a single sign-on service that has a predefined
keystore (keystore.jks) and truststore (platform_truststore.jks). The predefined keystore
and truststore contain default keys for issuing and validating signed SAML assertions.

You can create and modify the keystore and certificates using the certtool tool provided
by Security Infrastructure. The certtool is located in the Software AG_directory\ common

Software AG Infrastructure Administrator’s Guide Version 9.9 43

Setting Up Security

\bin directory and the file is named certool.{bat|sh} file. It is a wrapper of Java keytool
and has default options that are used if you do not provide any custom input.

The options in the certool are mostly self-explanatory. The DEFAULT_PATH option
indicates the default path in which the certificate stores are created when you install
your products. The SIG-ALGORITHM option specifies the algorithm to use to sign the
self-signed certificate if you make any changes. The algorithm must be compatible with
KEY_ALGORITHM. The value of SIG-ALGORITHM is derived from the algorithm of
the underlying private key. For example, if the private key is of type DSA, the value of
the SIG_ALGORITHM option is SHATwithDSA.

Important: The options have reasonable default values. If you modify them, use extreme
caution; if incorrect values are entered, Security Infrastructure might stop
working.

After you create a new certificate and add it to the keystore, you must update the
configuration of the single sign-on service (5SOS) for your changes to take effect. If the
keystore file already exists, and you try to generate a new key pair in the same keystore
file, the certool warns that the file will be overwritten.

Open a command window and go to the Software AG_directory \ common\bin directory.
Start the certtool using the appropriate command below.

System Command
Windows certtool.bat
UNIX ./certtool.sh

Below are the arguments you can specify on the certtool command.

Argument Description

-listkeystore Lists keystore certificates currently located in the keystore.
The default keystore certificate is keystore.jks with a default
password of manage. The keystore should contain only one
keystore certificate that is used for issuing signed SAML
assertions.

-listtruststore Lists truststore certificates currently located in the truststore.
The default certificate is platform_truststore.jks with a default
password of manage. The truststore can contain multiple public
truststore certificates that are used for validating SAML assertion
signatures.

-add Adds a trusted certificate to the truststore. The .cer file is added
to the location specified by the TRUSTSTORE_FILE option. If the

Software AG Infrastructure Administrator’s Guide Version 9.9 44

Setting Up Security

Argument Description

truststore only contains the platform_truststore.jks certificate,
then platform_truststore.jks is used.

-delete Deletes a trusted certificate from the truststore. You are
prompted to provide the alias name of the certificate file to
delete.

-generate Generates a key pair and exports the public information as a .cer

file. You are prompted to provide a common name (CN) for the
certificate. The keystore certificate is generated in the location
specified by the DEFAULT_PATH option.

Note: The specified password will be used for both the keystore
and the key.

Develop a JAAS Client

Create the login context. Below is an example of how to authenticate a user. In this case,
you must instantiate a LoginContext, where configuration_entry is the name used as the
index into the JAAS configuration file:

import javax.security.auth.login.LoginContext;. . .LoginContext

loginContext = new LoginContext (configuration entry name,
CallbackHandler to be used for user interaction);

Troubleshoot Problems

Verify the JAAS Configuration

Make sure all paths and URLs in the JAAS configuration file are valid. For UNIX
platforms, check that the path to the ssx auth daemon is correct and that the executable it
points to has the S-bit set. All paths and URLs use the PluggableUI LoginContext; make
sure that login context is set up correctly.

When Problems Persist

If you still have problems logging in, or can log in but do not have enough rights to use
a certain product, install and run the Testjaas web application. Testjaas troubleshoots
Security Infrastructure login modules.

1. Go to the Software AG Community Website > Suite Downloads at http://
techcommunity.softwareag.com/ecosystem/communities/public/webmethods/
products/suite/downloads/ and download the testjaas.war.

Software AG Infrastructure Administrator’s Guide Version 9.9 45

http://techcommunity.softwareag.com/ecosystem/communities/public/webmethods/products/suite/downloads/
http://techcommunity.softwareag.com/ecosystem/communities/public/webmethods/products/suite/downloads/
http://techcommunity.softwareag.com/ecosystem/communities/public/webmethods/products/suite/downloads/

Setting Up Security

2. Install the testjaas.war in the Software AG_directory \ profiles\ CTP\ workspace
\webapps directory.

3. Point a browser to http://host :port /testjaas/testjaas and save the output in a file. You
can manually verify the working of your login context by pointing the browser to
http://host :port [testjaas/InputForm.html and by providing the login context and the
logon credentials.

4. Save the output in a file and send the file to Software AG Global Support.

Predefined Login Modules

Note: For information on the deprecated SSX login modules, see the 9.8 Security
Infrastructure documentation.

SagAbstractLoginModule

SagAbstractLoginModule is the basic login module in Security Infrastructure. It
provides you with a commit() method that uses the global configuration parameters. See
"Define the Login Modules" on page 33 for details.

You can extend this login module to create your own login modules. You can use this
login module to create the SagUserPrincipals with the information stored in the shared
map through the authentication process.

When setting up the JAAS configuration, keep in mind the following basics:

B The Security Infrastructure-based login contexts return zero or only one
SagUserPrincipal if the authentication succeeds. When setting up the JAAS
configuration, keep in mind that some applications expect only one SagUserPrincipal
as the result of a successful authentication. If your application expects more than one
user principal, you must configure the login context accordingly.

m Keeping the password in clear text in the Subject.privateCredentials may constitute a
security risk, depending on how the Subject is handled. However, there are use cases
where the password needs to be accessible through the Subject, so you must store the
password only if needed.

InternalLoginModule

Use the InternalLoginModule to authenticate against a user repository defined as a file
on the file system. This is the default authentication mechanism for all webMethods
suite products.

In case of successful authentication, the InternalLoginModule provides a user
repository manager. It also creates a SagUserPrincipal object, and, optionally, a set of
SagGroupPrincipal objects.

Software AG Infrastructure Administrator’s Guide Version 9.9 46

Setting Up Security

Parameter Description

domain Optional. String. Domain name to use for authentication.
Applicable if the domain usage is activated for the
InternalLoginModule.

internal Path to the internal user repository file.

Repository

group Optional. Path to the internal group repository file.

RepositoryPath

create_group_ Optional. Whether to create group principals based on he

principal information contained in groupRepositoryPath and attach the

principals to the subject. Valid values are true or false (default).

The user-defined repository files must comply with this format:

Default test repository for INTERNAL based authentication

ok X X %

Copyright (c) 2001 - 2013 Software AG, Darmstadt, Germany and/or Software AG USA,
Inc., Reston, VA, United States of America, and/or their licensors.
All rights reserved.

version:3.0
*

*

user:username: $6aSkMpE+PvDv83z7cQe6fk7rWEiK80V73qoy90Zzr
0J4p4W3K1lg9x1lw2zEadkEjL20LmlcozDfKJID7ZJckE3AysKw==

*

The group repository files must comply with this format:

Default test repository for INTERNAL based authentication

Copyright (c) 2001 - 2013 Software AG, Darmstadt, Germany and/or Software AG USA,
Inc., Reston, VA, United States of America, and/or their licensors.
All rights reserved.

version:3.0
*

£k X X X %

*

admin:1:administrator,user?2

testadmin:2:user?2
*

The following sample outlines the INTERNAL mode of the InternalLoginModule and
the corresponding configuration included in a login context of a JAAS configuration file.

LoginINTERNAL {
com.softwareag.security.jaas.login.internal.InternalloginModule required domain=
logCallback=true
create group principal=true
internalRepository="/tmp/myrepo/internalUserRepo"
groupRepositoryPath="/tmp/myrepo/internalGroupRepo";

Software AG Infrastructure Administrator’s Guide Version 9.9 47

Setting Up Security

b

LDAPLoginModule

Use the LDAPLoginModule to authenticate users against an external directory. You can
define your JAAS configuration to access information from an external directory if your
site uses one of these external directories for user and group information:

® Lightweight Directory Access Protocol (LDAP)

B Active Directory acting as an LDAP server

m JAAS Configuration Properties

The following table outlines the JAAS configuration properties for all LDAP

connections.

Parameter

Description

enabled

Optional. Whether to load the JAAS configuration. Valid values
are true (default) or false.

This parameter relates to dynamic configuration and should be
set in the dynamic configuration property file. It should not be
set in the JAAS configuration, and will have no effect if it is set
there.

alias

Optional. Alias of the LDAP configuration entry. If not specified,
it is set to match the url parameter. A valid value is any string of
characters. The default is empty.

url

Required. URL to the LDAP server. If you want to use an SSL
connection to the LDAP server, the URL should start with 1daps,
and you should provide truststore and/or keystore parameters.
The expected format is: 1dap://host :port " or 1daps://host :port .

If the URL points to IPv6 IP (not domain name), it must be
enclosed in square brackets (for example, alias=ldap://[::1]:389).

domain

Optional. String. Domain name to use for authentication.
Applicable if the domain concept is activated for the
LDAPLoginModule.

This parameter relates only to JAAS and should be set in the
jaas.config file as a property of the LDAPLoginModule. It should
not be set in the dynamic configuration property file, and will
have no effect if it is set there.

applyDomain

Optional. Whether to apply domain when returning group
information for the user. Valid values are true or false (default).

Software AG Infrastructure Administrator’s Guide Version 9.9 48

Setting Up Security

Parameter Description

This parameter relates only to JAAS and should be set in the
jaas.config file as a property of the LDAPLoginModule. It should
not be set in the dynamic configuration property file, and will
have no effect if it is set there.

prin Required if noPrinlsAnonymous is set to false; otherwise, do not
specify this parameter. Distinguished name (DN) of the technical
user that connects to the LDAP server if anonymous access to the
LDAP server is not allowed.

noPrinls Optional. When prin is not defined, specifies what credentials are
Anonymous used for LDAP server authentication. Valid values are:

m true (default). The connection to the LDAP server is done
anonymously.

m false. The real user credentials of the user that connects to
the LDAP server are also used for LDAP authentication. The
LDAPLoginModule will need the complete DN for the user or
activation of the useaf, dnprefix, dnsuffix parameters to be able
to construct a proper user DN.

cred Required if noPrinlsAnonymous is set to false; otherwise, do
not specify this parameter. Password of the technical user that
connects to the LDAP server. You use it with the prin parameter.
A valid value is any string of characters.

credHandle Can use instead of cred. Handles passman storage for technical
user passwords. When a login is successful, cred is placed in
passman.

timeout Maximum time in milliseconds to spend for an LDAP operation.
Default is 5000.

useaf Optional. Boolean. Whether to use affixes (dnprefix and

dnsuffix). Use the affixes for an easier construction of user DNs
with less errors. Valid values are true or false (default).

dnprefix Optional. String. Prefix to attach to the user name when
performing operations on the LDAP server. To use this
parameter, set useaf to true. A valid value is any string of
characters.

dnsuffix Optional. String. Suffix to attach to the user name when
performing operations on the LDAP server. To use this

Software AG Infrastructure Administrator’s Guide Version 9.9 49

Setting Up Security

Parameter

Description

parameter, set useaf to true. A valid value is any string of
characters.

usecaching

Optional. Boolean. Whether the LDAP framework caches users
and/or groups. Valid values are true (default) or false.

poolmin

Minimum number of objects to keep in the cache.

poolmax

Maximum number of objects to keep in the cache.

mattr

Optional. The LDAPLoginModule uses this parameter when
performing member-search operations. The meaning of this
parameter depends on the value of memberinfoingroups. If
memberinfoingroups is set to true, the mattr parameter points
from a group to the users that are members of this group. If
memberinfoingroups is set to false, the mattr parameter points
from a user entry to the groups that the user is a member of. A
valid value is any string of characters. Default is memberOf.

memberinfoin
groups

Optional. Boolean. Whether the login module searches users

in a group or groups in a user. You can use it only if the mattr
parameter is applied to users or groups. Valid values are true or
false (default).

createGroups

Optional. Boolean. Whether to extract the groups of the logged-
in user from the LDAP server. Valid values are true (default) or
false.

This parameter relates only to JAAS and should be set in the
jaas.config file as a property of the LDAPLoginModule. It should
not be set in the dynamic configuration property file, and will
have no effect if it is set there.

createGroup
Properties

Whether group properties should be populated to
SagGroupPrincipal. Valid values are true or false (default).

This parameter relates only to JAAS and should be set in the
jaas.config file as a property of the LDAPLoginModule. It should
not be set in the dynamic configuration property file, and will
have no effect if it is set there.

createUser
Properties

Whether user properties should be populated to
SagUserPrincipal. Valid values are true or false (default).

This parameter relates only to JAAS and should be set in the
jaas.config file as a property of the LDAPLoginModule. It should

Software AG Infrastructure Administrator’s Guide Version 9.9 50

Setting Up Security

Parameter Description
not be set in the dynamic configuration property file, and will
have no effect if it is set there.

uidprop Optional. LDAP user name attribute. Default is CN.

gidprop Optional. LDAP group attribute. A valid value is any string of
characters. Default is CN.

grourootdn Optional. Location from which to start searches for groups. A
valid value is any string of characters.

groupobijclass Optional. Specifies that the found object is a group. The login
module uses this parameter when searching for groups. Default
is group.

userrootdn Optional. Location to search for users. A valid value is any string
of characters.

personobjclass ~ Optional. Specifies that the found object is a person. The login
module uses this parameter when searching for users. Default is
person.

truststoreUrl URL of the truststore to use if an SSL connection is required.

truststore Password for the truststore if an SSL connection is required.

Password

truststoreType Type of truststore to use if an SSL connection is required.

keystoreUrl URL of the keystore to use if an SSL connection is required.

keystore Password for the keystore if an SSL connection is required.

Password

keystoreType Type of keystore to use if an SSL connection is required.

recursive Amount of time to try when resolving nested groups (that is, a

SearchDepth group that is a member of another group). The default is 0, which
means no nested groups are resolved.

useFQDNFor Optional. Whether to try to log in with the complete name.

Auth This is supported only by Microsoft AD. Usually LDAP login

Software AG Infrastructure Administrator’s Guide Version 9.9

51

Setting Up Security

Parameter Description

module uses the user name or the complete DN of the user to
log in. Valid values are true or false (default). If set to true, the
LDAPLoginModule tries to login with DOMAIN \ user_name and

password.

This parameter relates only to JAAS and should be set in the
jaas.config file as a property of the LDAPLoginModule. It should
not be set in the dynamic configuration property file, and will

have no effect if it is set there.

The following sample outlines the corresponding configuration included in a login
context of a JAAS configuration file.

ExampleRealm {

b

com.softwareag.security.sin.is.ldap.lm.LDAPLoginModule sufficient

alias="namel";

com.softwareag.security.sin.is.ldap.lm.LDAPLoginModule sufficient

alias="name2";

alias="name3"

url="1ldap://localhost:389"
prin="CN=sectest,OU=user, dc=example, dc=org"
cred:"******"

useaf="true"

dnprefix="CN="
dnsuffix=",0U=user,dc=example,dc=org"
usecaching="false"

mattr="roleoccupant"
memberinfoingroups=false
creategroups=true

gidprop="CN"

grouprootdn="0U=Groups, dc=example, dc=org"
groupobijclass="organizationalRole"
personobjclass="organizationalPerson";

SAMLAssertValidatorLoginModule

Use SAMLAssertValidatorLoginModule to validate the delegation ticket issued from
SAMLAssertIssuerLoginModule. You can use it for both SAML 1.1 and SAML 2
assertion validation.

com.softwareag.security.sin.is.ldap.lm.LDAPLoginModule sufficient;
com.softwareag.security.sin.is.ldap.lm.LDAPLoginModule required

The following sample outlines SAMLAssertValidatorLoginModule and the
corresponding configuration included in a login context of a JAAS configuration file.
The following login context is in the default jaas.config file that comes with Software AG
Runtime.

/** Login context used in Common Platform for a default authentication **/
Default ({

// SSOS login module for SAML signed assertion validation

com.softwareag.security.idp.saml.1lm.SAMLAssertValidatorLoginModule sufficient;

// Internal repository login module (java based)

com.softwareag.security.jaas.login.internal.InternalloginModule required

template section=INTERNAL
logCallback=true

Software AG Infrastructure Administrator’s Guide Version 9.9

52

Setting Up Security

internalRepository="C:/softwareag/common/conf/users.txt"
create group principal=true
groupRepositoryPath="C:/softwareag/common/conf/groups.txt";};

SAMLAssertlssuerLoginModule

Use SAMLAssertIssuerLoginModule to issue a SAML1.1 or SAML 2 assertion as a
delegation ticket among Software AG products.

You can only use the SAMLAssertIssuerLoginModule in a chain of login modules. Using
this login module on its own, in a separate login context, is not possible, because it is

the other modules in a given login context that perform the actual authentication of

the user. When the authentication is successful, SAMLAssertIssuerLoginModule issues
a SAML assertion where the fully qualified name of the authenticated user is part of

the Subject of the AuthenticationStatement attribute of the SAML 1.1 assertion and

the SubjectConfirmation attribute of the SAML 2 assertion. Optionally, the assertion
contains a list of groups (where such are available) as part of the AttributeStatement
attribute of the SAML assertion.

The SAMLAssertIssuerLoginModule has a single parameter that you set in the JAAS
configuration.

Parameter Description
forceSaml Optional. Defines which SAML assertion version to use to issue
Version the delegation token. Valid values are 1.1 or 2.0 (default).

The following sample excerpt outlines SAMLAssertIssuerLoginModule and the
corresponding configuration included in a login context of a JAAS configuration file.
First, InternalLoginModule authenticates the user. If the authentication is successful,
SAMLAssertlssuerLoginModule issues a SAML 1.1 assertion to use as a delegation
ticket.

/** Login Configuration for the SAMLAssertIssuerLoginModule. **/
SAMLIssuerRealm {
// Internal repository login module (java based)
com.softwareag.security.jaas.login.internal.InternalloginModule required
template section=INTERNAL
logCallback=true
internalRepository="C:/softwareag/common/conf/users.txt"
create group principal=true
groupRepositoryPath="C:/softwareag/common/conf/groups.txt";
// SSOS login module for SAML 1.1 signed assertion issuance
com.softwareag.security.idp.saml.lm.SAMLAssertIssuerLoginModule sufficient
forceSamlVersion="1.1";

b

JMXDelegatedAuthLoginModule

Use JMXDelegated AuthLoginModule to validate the delegation ticket issued from
SAMLAssertIssuerLoginModule or directly from the SSO service. You can use it for
both SAML 1.1 and SAML 2 assertion validation. The purpose of this login module is to

Software AG Infrastructure Administrator’s Guide Version 9.9 53

Setting Up Security

support the JMX delegation mechanism. The login module gets a delegation ticket from
the password field of the supplied credentials.

The following sample outlines JMXDelegated AuthLoginModule and the corresponding
configuration included in a login context of a JAAS configuration file. The following
login context is in the default jaas.config file that comes with Software AG Runtime.
/ *
* Login context, used in Common Platform for management channel.
*/
PlatformManagement ({
// SSOS login module for SAML signed assertion validation
// used for delegated authentication only for JMX
com.softwareag.security.idp.saml.lm.JMXDelegatedAuthLoginModule sufficient;
// Internal repository login module (java based)
com.softwareag.security.jaas.login.internal.InternalloginModule required
template section=INTERNAL
logCallback=true
internalRepository="C:/softwareag/conf/users.txt";
}i

ServletHeaderLoginModule

Use ServletHeaderLoginModule to extract information from an HttpServletRequest
which is sent to the login module as part of the SagCredentials. The login module
extracts the X.509 certificate chain or SAML artifacts, which are received as a result of

an HTTPS with ClientAuthentication against a web server. The login module enters this
information into the SagCredentials and makes it available to other login modules used
in the login context of a JAAS configuration file. Optionally, the login module can extract
more information, such as user names and passwords.

The following table outlines the parameters of ServletHeaderLoginModule.

Parameter Description

saml_artifact_ =~ Optional. Name of the SAML artifact property. Default is
prop_name SAMLATrt.

netegrity_ Optional. Defines the name of the Netegrity SiteMinder
siteminder_ property. Default is SM_USER.
prop_name

The following sample outlines ServletHeaderLoginModule and the corresponding
configuration that is included in a login context of a JAAS configuration file.

/** Login Configuration for the ServletHeaderLoginModule. **/

ServletHeaderLogin {
com.softwareag.security.jaas.login.modules.ServletHeaderLoginModule optional;

}i

Software AG Infrastructure Administrator’s Guide Version 9.9 54

Setting Up Security

SimpleNameMappingLoginModule

Use SimpleNameMappingLoginModule to map a user name that is in the sharedState

or CallbackHandler to another user name, which is for example in a different user
repository. The login module sends the result in the sharedState map. Depending on

the parameters you include in the JAAS configuration file, you can provide different
mapping modes with the login module. The properties mapping mode is based on a
Java properties file. The regular expression mapping mode is based on the java.util.regex
package. To enable a mapping mode you must use the corresponding configuration
parameter in the JAAS configuration. You cannot use both mapping modes at the same
time.

For more sophisticated mapping method, you can sub-class
SimpleNameMappingLoginModule. Using the following sample excerpt, you can
rework the method as explained. You can use the context parameter to define the
target context for which the mapping is performed. The SagCredentials are sent by the
application which calls the login module and therefore, must not be modified. You set
the values of the super class variables using the mapName method and mapPassword
method, if applicable.

protected mapName (String context, SagCredentials credentials, Map options)
throws SagGeneralSecurityException

The following table outlines the parameters of SimpleNameMappingLoginModule.

Parameter Description

user_mapping_ Required if you use properties file mapping. URL of the Java
url properties file that contains the mapping information.

user_mapping_ Required if you use regular expression mapping. Regular
regex expression to use to collect the user name from the input name.

user_mapping_ Optional. Regular expression group that is used for the results of
matchgroup the regular expression. Default is 1.

Examples are shown below.

m If you add this login module to the stack:

fcom.softwareag.security.jaas.login.modules.SimpleNameMappingLoginModule required
user mapping url=file://path/to/mapping user.properties

The mapping_user.properties file contains these entries:

testclient=Test Client

testclient.password=secretl

If you login with user name testclient, the login modules after
SimpleNameMappingLoginModule will receive user name Test Client and password
secret] as credentials.

Software AG Infrastructure Administrator’s Guide Version 9.9 55

Setting Up Security

B If you add this login module to the stack:

com.softwareag.security.jaas.login.modules.SimpleNameMappingLoginModule required

user mapping regex="CN=(\\w*), (.*)"

If you login with user name CN=Clientl, OU=R&D, O=RSUBJET, C=DE the login
modules after SimpleNameMappingLoginModule will receive user name Client1 as
credentials.

m If you add this login module to the stack:

com.softwareag.security.jaas.login.modules.SimpleNameMappingLoginModule required

user mapping regex="CN=(\\w*), (.*)"
user mapping matchgroup="3"

If you login with user name CN=Clientl, OU=R&D, O=RSUBJET, C=DE the login
modules after SimpleNameMappingLoginModules will receive user name null as
credentials.

X509CertificateLoginModule

Use X509CertificateLoginModule to verify one or more than one X.509 certificate.

The login module builds all chains of trust and at least one chain must end at the

Trust Anchor. All certificates in the chain are verified according to the Public Key
Infrastructure extensions (PKIX). The module checks the statuses of the certificates
against Certificate Revocation Lists (CRLs). It can import missing certificates from
PKCS#7 files. To get the CRL, the validation of the login module supports CRL
distribution point (CRL DP). To enable CRL DP, you can set the value of the Java system
property com.sun.security.enableCRLDP to true. The login module also provides direct
trust. This means that the module checks whether the end entity certificate is part of the
truststore. If it is, direct trust is created and further CRL checks are disabled.

The following table outlines the parameters of the X509CertificateLoginModule. The
parameters allow you to extend the login module functionality and plug in other
certificate validation methods in it.

Parameter Description

truststore_url URL of the keystore that contains the Trust Anchors. This is the
RootCA or certificate authority (CA) certificates that are trusted.

truststore_ Password of the trust keystore.
password
truststore_type Optional. Type of the trust keystore. Valid values are PKCS?,

PKCS12, or JKS (default).

check_crl_status Boolean. Valid values are:

Software AG Infrastructure Administrator’s Guide Version 9.9 56

Setting Up Security

Parameter Description

m true. The status of the end entity certificate is checked against a
URL. In this case, the crl_url parameter must be set.

m false (default). The login module is set to use direct trust.

crl_url Required when the check_crl_status is set to true. Defines the
URLs of the CRL for the end entity certificate. The URLs are
separated by a space.

overwrite_ Optional. Boolean. Valid values are:

username . . . i
m true (default). The user name is overwritten with the certificate

subject distinguished name (DN).

m false. The module accomplishes only validation of the

certificates.
additional Optional. URL of the container of additional certificates.
certificates_
container_url
additional _ Optional. Type of the container of additional certificates. Valid
certificates values are PKCS7, PKCS12, or JKS (default).
container_type
additional Required when the additional_certificates_container_type
certificates_ parameter is set to JKS or PKCS12. Password of the certificate
container_ container.

password

The following sample outlines X509CertificateLoginModule and the corresponding
configuration that is included in a login context of a JAAS configuration file.

The example also shows how the login context reads crl_url, truststore_url, and
truststore_password from the Java system parameters. Note that every Java system
parameter that is included in the JAAS configuration file must have a value that differs
from NULL or the empty string. Failure to do so may cause an exception on the system.

/** Login Configuration for the X509CertificatelLoginModule **/
X509Login {
com.softwareag.security.jaas.login.modules.X509CertificatelLoginModule required

check crl status=true
crl_url="${com.softwareag.security.crl.url}"
truststore url="${com.softwareag.security.truststore.url}"
truststore password="${com.softwareag.security.truststore.password}"
truststore type=jks
overwrite username=false
additional certificates container url="${com.softwareag.security.certificate.container.ur
additional certificates container type="jks"
additional certificates container password="="${com.softwareag.security.certificate.conte

Software AG Infrastructure Administrator’s Guide Version 9.9 57

Setting Up Security

b

SAMLArtifactLoginModule

Use SAMLArtifactLoginModule to verify credentials received as SAML artifacts. The
module uses the opensaml library and supports SAML version 1.1. It sends a request
and validates the SAML artifact against a SAML endpoint, which is the authority issuer
of the artifact. The authentication is successful only if the endpoint validates the SAML
artifact successfully. The result of the validation is a SAML response that contains
information about the owner of the artifact. A part of this response is the user name. If
configured in the JAAS configuration file, the login module can overwrite the user name
in the SagUserPrincipal with the one that is received in the SAML response.

The following table outlines the parameters of SAMLArtifactLoginModule.

Parameter Description

saml_identity_ URL of the SAML authority that validates the artifact.
provider_url

overwrite_ Optional. Boolean. Whether to overwrite the user name with the
username one that is received in the SAML artifact validation process. Valid
values are true (default) or false.

The following sample outlines SAMLArtifactLoginModule and the corresponding

configuration that is included in a login context of a JAAS configuration file. In this

example, the login context reads the saml_identity_provider_url parameter from the

Java system parameters. Note that every Java system parameter that is included in the

JAAS configuration file must have a value that differs from NULL or empty string.

Failure to do so may cause an exception on the system.

/** Login Configuration for the SAMLArtifactLoginModule **/

SAMLArtifactLogin {

com.softwareag.security.jaas.login.modules.SAMLArtifactLoginModule required

saml_identity provider url="${com.sample.security.saml.samlendpoint}"
overwrite username=true;

i

RoleLoginModule

RoleLoginModule provides authorization information using the roles/permissions
storage. The module is implemented according to the JAAS standards. The current user
that is already successfully authenticated by other login modules from the chain, is
searched in the storage by the fully qualified name. Also, if any of the previous login
modules in the chain provides group membership of the user, this login module looks
in the storage for the groups and concatenates permissions assigned to the group to

the user's permissions. The login module updates already existing SagUserPrincipal
with the permissions assigned to the current user (direclty assigned or coming from the
groups on which is member). Additionally, SagRolePrincipal is created for each role

Software AG Infrastructure Administrator’s Guide Version 9.9 58

Setting Up Security

on which the user is member and all of those SagPrincipal objects are attached to the
Subject.

Note: Permissions are added as properties of SagUserPrincipal with key name
"permissions."

This module recognizes the configuration options below.

Parameter Description

provider_class= Optional. Full class name of the role provider to use. Default
my.provider. is FileBased AuthzStoreImpl.

class

storage_location= Location of the roles storage. For FileBased AuthzStoreImpl,
"C:/tmp/ that is the full path to the roles file.

roles.txt"

A sample configuration is shown below.

Default {
// SSOS login module for SAML signed assertion validation
com.softwareag.security.idp.saml.lm.SAMLAssertValidatorLoginModule sufficient;
// Internal repository login module (java based)
com.softwareag.security.jaas.login.internal.InternalloginModule required
template section=INTERNAL
logCallback=true
internalRepository="C:/SoftwareAG/conf/users.txt"
create group principal=true
groupRepositoryPath="C:/SoftwareAG/conf/groups.txt";
// Role repository login module
com.softwareag.security.authz.store.jaas.login.RoleLoginModule optional
storage location="C:/SoftwareAG/conf/roles.txt";

b

Software AG Infrastructure Administrator’s Guide Version 9.9 59

Software AG Infrastructure Administrator’s Guide Version 9.9

60

Working with Web Services

4 Working with Web Services

m Configure Web Services STACKcocviriiiie 62
B Configure Web Service SECUMLY ... 65
m Configure MesSage TranSPOMSccuiieiriieriiiririseisie s 84
B CONfIGUIE LOGGING rvrvviiriieieieieiie ettt 94
B Deploy WeD Services SEACK ..o 95
B Manage WED SEIVICEScoiiiiiiiicice s 95

Software AG Infrastructure Administrator's Guide Version 9.9 61

Working with Web Services

Configure Web Services Stack

Configure the Web Services Stack Runtime

Use the files below to configure the Web Services Stack runtime.

File Use to configure...

axis2.xml Client side and server side of all deployed web services. The
axis2.xml file is a configuration file provided by the Apache
Software Foundation. For more information about the Axis2
parameters in this file, see the Axis2 Configuration Guide.

module.xml Specific modules.

services.xml Specific web services.

You can set up Web Services Stack in one of the configurations listed below.

B You can configure Web Services Stack as an integrated component of Software AG
Runtime. When Software AG Runtime is started, Web Services Stack uses the
runtime configuration below. The module.xml and services.xml files are stored in
the META-INF subdirectory within the module archive and the service archive,
respectively, in the location below.

Files to Location in Software AG_directorylprofiles/CTP/workspace/wsstack/
Configure repository

axis2.xml /conf

module.xml /modules

services.xml /services

B You can configure Web Services Stack as a client runtime. When Software AG
Runtime is started, Web Services Stack uses the runtime configuration below.

Web Services Stack has agent programs that use Software AG System Management
Hub administration functionality. These agent programs are called System
Management Hub agents. They manipulate the Web Services Stack environment
under the System Management Hub web interface. This configuration is primarily
used by Software AG System Management Hub agents, but can also be used by any
user-implemented web services client.

Software AG Infrastructure Administrator’s Guide Version 9.9 62

Working with Web Services

Files to Location in Software AG_directory/WS-Stack/repository
Configure

axis2.xml /conf

module.xml /modules

services.xml /services

For this configuration, also go to the Software AG_directory/WS-Stack/conf directory
and configure the deployclient.properties file, used by System Management Hub
to deploy web services, and the argusagent.properties file, which indicates the host
name and server port of the deployed Web Services Stack.

Configure the axis2.xml File

Web Services Stack uses the parameters listed below in the axis2.xml file. The default
values for the parameters are set on the server side of the Axis2 configuration. If you
want to change the default value for a parameter, add the parameter to the axis2.xml file
and provide the new value.

Important: The axis2.xml file contains important information such as the user name and
password to use to log in to the Web Services Stack administration console.
Change the default credentials to protect access to the axis2.xml file.

Parameter Description

include Whether to include message-wrapper elements in the WSDL
WrappedTypes XSD schema. Axis2 processes an RPC-style WSDL definition
Declaration and automatically creates a wrapper element and type definition

for each message. Axis2 then processes internally any request
or response as if it is in a document style with an element
declaration for each message. Valid values are:

m false - Axis2 creates a copy of the WSDL definition when
processing the message types and modifies the copy instead of
the original WSDL document.

B true (default) - Axis2 creates the web service instance and
automatically adds the auto-generated types to the XSD of the
original WSDL definition.

enableWSDL Whether to validate WSDL documents against external
Validation resources. Valid values are false (default) and true.

Software AG Infrastructure Administrator’s Guide Version 9.9

63

Working with Web Services

Parameter Description
enableSoap Whether to validate SOAP messages. Valid values are:
Validation

m false (default) - when Axis2 client side and server side exchange
SOAP messages, the messages are not automatically validated if
they comply with the SOAP specification.

m true - the SOAP validation can be enabled both on the server
side and on the client side. On the server side you can enable
the SOAP validation at these levels:

m Globally - set the parameter in the axis2.xml file.

m For a specific service group - set the parameter inside a
ServiceGroup tag in the services.xml file.

m For a specific service - set the parameter inside a Service tag
in the services.xml file.

m For a specific operation - set the parameter inside an
Operation tag in the services.xml file.

m For a specific request - set the parameter programatically to
MessageContext.

® On the client side you can enable SOAP validation at these
levels:

m Globally - set the parameter in the axis2.xml file.

m For operations that expect large SOAP
messages - call programmatically using
Options.setProperty("disableSocapValidation",Boolean.TRUE).

wsdl4jRegister ~ Whether to register default extension attribute types in the
Default WSDLA4J extension registry. Configuration is done on Input,
Extension Output and Fault WSDL elements using String type. Valid values
AttributeTypes are false (default) and true.

Since messages that Web Services Stack processes are not always in SOAP format, the
message builders and message formatters provided by Axis2 are extended to ensure
all messages are correctly converted. Below is Web Services Stack-specific information
about the proprietary message builders and message formatters available in the
axis2.xml configuration file.

The Web Services Stack axis2.xml file contains defined proprietary message builders
for the text/xml, application/xml, and application/soap+xml content types to extend the
default functionality provided by Axis2. The definitions are as follows:
<messageBuilders>

<messageBuilder contentType="text/xml"

class="com.softwareag.builders.RawXMLMessageBuilder" />
<messageBuilder contentType="application/soap+xml"

Software AG Infrastructure Administrator’s Guide Version 9.9 64

Working with Web Services

class="com.softwareag.builders.RawXMLMessageBuilder" / >
<messageBuilder contentType="application/xml "
class="com.softwareag.builders.RawXMLMessageBuilder" / >
<messageBuilder contentType="application/x-www-form-urlencoded "
class="org.apache.axis2.builder.XFormURLEncodedBuilder" / >
<messageBuilder contentType="multipart/form-data "
class="org.apache.axis2.builder.MultipartFormDataBuilder" / >

</messageBuilders>

The Web Services Stack axis2.xml file has defined proprietary message formatters for the
text/xml, application/xml, and application/soap+xml content types to extend the default
functionality provided by Axis2. The definitions are as follows:
<messageFormatters>
<messageFormatter contentType="text/xml"
class="com.softwareag.formatters.RawXMLFormatter" />
<messageFormatter contentType="application/xml"
class="com.softwareag.formatters.RawxXMLApplicationXMLFormatter"™ />
<messageFormatter contentType="application/soap+xml"
class="com.softwareag.formatters.RawXMLFormatter" />
<messageFormatter contentType="application/x-www-form-urlencoded"
class="org.apache.axis2.transport.http.XFormURLEncodedFormatter" />
<messageFormatter contentType="multipart/form-data"
class="org.apache.axis2.transport.http.MultipartFormDataFormatter" />
</messageFormatters>

Configure the Client

In the axis2.xml file, set the securityConfigFile parameter to the absolute or relative
path to the current working directory or the repository path /conf directory, or to the
wsclientsec.properties file containing security-related information. For example:

<parameter name="securityConfigFile">wsclientsec.properties</parameter>

Configure MTOM

Binary content often has to be re-encoded to be sent as text data with SOAP messages.
MTOM enables you to selectively encode portions of the message, making it possible to
send base64-encoded data as well as externally attached binary data. You can configure
MTOM message encoding at the global level in the axis2.xml file or at the service or
operation level in the services.xml file. Set the enableMTOM parameter to the one of
these values:

B true - response is always MTOM-ized in case the message includes binary data of
schema type xmime:base64Binary.

m false (default) - response is always non-MTOM-ized, even if the request is MTOM-
ized.

®m optional - response is MTOM-ized only if the request is MTOM-ized.

Configure Web Service Security

Web Services Stack provides this set of security features:

Software AG Infrastructure Administrator’s Guide Version 9.9 65

Working with Web Services

B Message-level security, which secures message content.

®m Transport-level security, which secures the communication channel. The most
typical case of transport-level security is the use of HTTP transport over SSL.

m Client authentication.

Set Up Message-Level Security

Web Services Stack provides symmetric and asymmetric message-level security between
the web service client and the web service itself in both directions. The symmetric
message security and the asymmetric message security are both part of the WS-Security
specification. To apply message security, you have to make several configurations on
both the client side and the server side.

You can use the Web Services Stack plug-in to Software AG Designer to create the
needed security configuration. Security configurations in Web Services Stack are based
on the WS-Security Policy specification. For more information, see Web Services Stack
Help.

Configure the Server Side

To configure the server side, you need a keystore file that contains the X.509 certificate of
the server. The keystore file can also contain public keys.

Specify settings in the axis2.xml or services.xml File

1. Go to the Software AG_directory [profiles/CTP/workspace/wsstack/reposiroty/conf
directory and open the axis2.xml file in a text editor.

2. You can enable keystore caching at the global level in this file by setting the
cacheCryptolnstances parameter to true. Since the keystore configuration can be
different for each message, the caching is executed per message. When a service is
undeployed or stopped, cached keystores are removed. You can stop (delete) the
service and all its files using System Management Hub.

3. When the sp:RequiredElements and sp:RequiredParts assertions are available in the
security policy, they may not be resolved and validated properly. By default, when
XPath expressions are handled in sp:RequiredElements assertion, the expressions are
validated against the soap:Envelope element, instead of the soap:Header element.
You can enable the change on the entire runtime in this file. Add these parameters:

<parameter name="enableRequiredElementsXPathCompatibility">true</parameter>
<parameter name="enableRequiredPartsValidation">true</parameter>

4. Open the services.xml file in a text editor.

5. You can enable keystore caching at the service, service group, or specific operation
level in this file by setting the cacheCryptolnstances parameter to true. Since the
keystore configuration can be different for each message, the caching is executed per
message. When a service is undeployed or stopped, cached keystores are removed.
You can stop (delete_ the service and all its files using the System Management Hub.

Software AG Infrastructure Administrator’s Guide Version 9.9 66

Working with Web Services

6. You can enable caching of initialized password callback handler classes to improve
performance by setting the cachePasswordCallbackHandler parameter to true. The
callback handler instance is always cached on the service instance and will be lost if
the service is undeployed.

7. Depending on the security policy, the client may be required to send the token used
for encryption signature within the message itself. In this case the server side does
not need to have client certificates. However, Rampart still verifies whether the
certificates are trustworthy, and it requires that at least the certificate of the issuer
be present in the truststore. Therefore, you must instruct Rampart/WSS4]J to use the
client’s certificate. Set the encryptionUser parameter to useReqSigCert.

useReqSigCert is a special fictional encryption user recognized by the security
module. In this case, the certificate that is used to verify your signature is also
used for the encryption of the response. Therefore, it is possible to have only one
configured encryption user for all clients that access the service.

8. When the sp:RequiredElements and sp:RequiredParts assertions are available in the
security policy, they may not be resolved and validated properly. By default, when
XPath expressions are handled in sp:RequiredElements assertion, the expressions
are validated against the soap:Envelope element, instead of the soap:Header
element. You can enable the change on a specific web service in this file. Add these
parameters:

<parameter name="enableRequiredElementsXPathCompatibility">true</parameter>
<parameter name="enableRequiredPartsValidation">true</parameter>

9. You can enable or disable the WS-I Basic Profile compliance mode for your web
services by setting the wsiBSPCompliant parameter to true (default) or false. For
more information about the usage of the WS-I Basic Security Profile compliance
mode, see WS-I Basic Profile.

Specify Settings in a Software AG Designer Web Service Client

When the sp:RequiredElements and sp:RequiredParts assertions are available in the
security policy, they may not be resolved and validated properly. By default, when
XPath expressions are handled in sp:RequiredElements assertion, the expressions are
validated against the soap:Envelope element, instead of the soap:Header element.

You can enable sp:RequiredElements and sp:RequiredParts assertions in the business
logic of a web service client using this code snippet:
IWSStaxClient client = SampleService;

client.getWSOptions () .setProperty ("enableRequiredElementsXPathCompatibility",
"true") ;

You can also set specific properties using Software AG Designer. For instructions, see
Web Services Stack Help.

Example of Symmetric Binding Security Configuration in the Services.xml File

You can configure keystore properties by adding a Rampart custom policy assertion
to the services.xml file. In the code sample below, the value clientCertificate is in fact
an example of an alias for a client’s certificate that has to be stored into the server side

Software AG Infrastructure Administrator’s Guide Version 9.9 67

Working with Web Services

keystore file. If you want to authenticate a client which uses a user name token, you
have to provide a password callback handler class to validate the user name and the
password received from the client. When you provide a password using the callback
handler class, you make a check towards a given authentication module.

Note: This authentication mechanism applies to the user name security token and
can be used in a similar way with other security tokens.

<wsp:Policy wsu:Id="UserDefined"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.ocasis-open.org/wss/2004/01/0asis-200401-wss—
wssecurity-utility-1.0.xsd">
<wsp:ExactlyOne>
<wsp:All>
<sp:SymmetricBinding
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
<wsp:Policy>
<sp:ProtectionToken>
<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<sp:X509Token
sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/Include
Token/Never">
<wsp:Policy>
<sp:WssX509V3Tokenl0/>
<sp:RequireDerivedKeys/>
</wsp:Policy>
</sp:X509Token>
</wsp:Policy>
</sp:ProtectionToken>
<sp:AlgorithmSuite
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
<wsp:Policy>
<sp:Basicl28/>
</wsp:Policy>
</sp:AlgorithmSuite>
<sp:Layout>
<wsp:Policy>
<sp:Strict/>
</wsp:Policy>
</sp:Layout>
<sp:IncludeTimestamp/>
</wsp:Policy>
</sp:SymmetricBinding>
<sp:Wssl0
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
<sp:Policy>
<sp:MustSupportRefKeyIdentifier/>
<sp:MustSupportRefIssuerSerial/>
</sp:Policy>
</sp:Wssl0>
<sp:SignedSupportingTokens
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
<wsp:Policy/>
</sp:SignedSupportingTokens>
<ramp:RampartConfig xmlns:ramp="http://ws.apache.org/rampart/policy">
<ramp:user>service</ramp:user>
<ramp:encryptionUser>clientCertificate</ramp:encryptionUser>

<ramp:passwordCallbackClass>com.softwareag.wsstack.pwcb.PasswordCallbackHandler
</ramp:passwordCallbackClass>
<ramp:signatureCrypto>

Software AG Infrastructure Administrator’s Guide Version 9.9 68

Working with Web Services

<ramp:crypto
provider="org.apache.ws.security.components.crypto.Merlin">
<ramp:property
name="org.apache.ws.security.crypto.merlin.keystore.type">JKS</ramp:property>
<ramp:property
name="org.apache.ws.security.crypto.merlin.file">service.jks</ramp:property>
<ramp:property
name="org.apache.ws.security.crypto.merlin.keystore.password">openssl
</ramp:property>
</ramp:crypto>
</ramp:signatureCrypto>
<ramp:encryptionCypto>
<ramp:crypto
provider="org.apache.ws.security.components.crypto.Merlin">
<ramp:property
name="org.apache.ws.security.crypto.merlin.keystore.type">JKS</ramp:property>
<ramp:property
name="org.apache.ws.security.crypto.merlin.file">service.jks</ramp:property>
<ramp:property
name="org.apache.ws.security.crypto.merlin.keystore.password">openssl
</ramp:property>
</ramp:crypto>
</ramp:encryptionCypto>
</ramp:RampartConfig>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

Configure the Client Side

When you use the client API to invoke web services that require security, you
can specify security configuration settings through a properties file. The security
configuration settings are loaded only if the web service policy contains security
assertions.

Open the axis2.xml file in a text editor and set the securityConfigFile parameter to the
file name and path to the custom properties file, as follows:

<parametername="securityConfigFile">D:/wsdev/SampleWSClient/wsclientsec.
properties</parameter>

If you do not define such a parameter, the client implementation looks for a
wsclientsec.properties file in the current working directory. If a securityConfigFile
parameter exists but the file specified cannot be found, you get an exception. If the
parameter is not defined or a wsclientsec.properties file is not present in the current
working directory, the configuration loading routine does not throw any exceptions.

Below is a list of the supported configuration parameters you can include in the custom

security configuration properties file.

Parameter Description

USERNAME User name used by:

B Web Services Stack UsernameToken function in the
UsernameToken.

Software AG Infrastructure Administrator’s Guide Version 9.9

69

Working with Web Services

Parameter

Description

m Web Services Stack signing function as the alias name in the
keystore to get the user's certificate and the private key to
perform signing.

B Web Services Stack encryption function if ENCRYPTION USER is
not set.

ENCRYPTION_USERcryption user name. The encryption function uses the public

key of this user certificate to encrypt the generated symmetric
key. If this parameter is not set, then the encryption function uses
the USERNAME parameter value to get the certificate.

USER_ Alias of the key pair in the keystore used to get the private
CERTIFICATE_ key for the signature. If this parameter is not set, the signature
ALIAS function uses the USERNAME parameter value.
STS_ALIAS STS alias used as an encryption user in case of a STS
authentication.
POLICY_ Policy validator callback class responsible for validating the
VALIDATOR_ security header against the security policy. The default callback
CLASS class is org.apache.rampart.PolicyBasedResultsValidator.
TIMESTAMP_ Defines whether time stamp precision is in milliseconds. The
PRECISION _ setting concerns the Timestamp element that may be required/
IN_MS included in the security header. This parameter is passed to wss4j
WSSConfig.
m true (default) - time stamp precision is in milliseconds.
m false - time stamp precision is in the format yyyy-MM-
dd'T'HH:mm:ss'Z'.
TIMESTAMP_ Time stamp time-to-live in seconds. Default value is 300. Valid
TTL value is any integer.
TIMESTAMP_ Used in time stamp validation where the creation time stamp
MAX_SKEW must not be later than current time plus the time skew in
seconds. Default value is 300. Valid value is any integer.
PASSWORD _ Class that implements the
CALLBACK _ javax.security.auth.callback.CallbackHandler callback interface.
HANDLER _ The security module loads the class and calls the callback
CLASS

Software AG Infrastructure Administrator’s Guide Version 9.9 70

Working with Web Services

Parameter Description
method to get the password. The class must have a public default
constructor with no parameters.
OPTIMIZE_ List of Xpath expressions that refer to nodes that must be
PARTS_ MTOM-optimized. The configured value is a semicolon delimited
EXPRESSIONS list of Xpath expressions.

Importanif this property is set, it overwrites any previously
configured list of expressions and does not add them to
the list.

OPTIMIZE _ List of namespaces taken into consideration when searching
PARTS_ for the nodes that are to be MTOM-optimized. The optimizing
NAMESPACES utility must recognize the namespace prefixes in the
OPTIMIZE_PARTS_EXPRESSIONS list to be able to retrieve
correctly the nodes from the document. By default, the following
namespaces are registered:
xmlns:ds=http://www.w3.0rg/2000/09/xmldsig#
xmlns:xenc=http://www.w3.0rg/2001/04/xmlenc#
xmlns:wsse=http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss—
wssecurity-secext-1.0.xsd
xmlns:wsu=http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss—
wssecurity-utility-1.0.xsd
The expected value for this property is a semicolon delimited list
of XML namespace declarations, for example:
OPTIMIZE PARTS_NAMESPACES=
xmlns:nsl=http://mynsl;
xmlns:ns2=http://myns2
Note: If this property is set, it overwrites any previously
configured list of namespaces and does not add them to the
list.
CRYPTO_ WSS4]-specific Crypto implementation to use to generate the
PROVIDER _ signature. It can be set to either of the following;:
SIGN ®m org.apache.ws.security.components.crypto.Merlin (default)
®m org.apache.ws.security.components.crypto.BouncyCastle
KEYSTORE_ Signature keystore provider. If not set the JVM uses the default
PROVIDER_ keystore provider, usually Oracle. For more information, see the
SIGN java.security.Provider Java doc.

Software AG Infrastructure Administrator’s Guide Version 9.9 71

Working with Web Services

Parameter Description

KEYSTORE_ Signature keystore type. If not set, the JVM uses the default

TYPE_SIGN keystore type, usually JKS. For more information, see the
java.security.KeyStore#getDefaultType() method Java doc.

KEYSTORE _ Signature keystore file.

FILE_SIGN

KEYSTORE _ Signature keystore password.

PASSWORD _

SIGN

CRYPTO_ WSS4]-specific Crypto implementation to use for encryption. It

PROVIDER_ can be set to either of the following:

ENCRYPT ®m org.apache.ws.security.components.crypto.Merlin (default)
®m org.apache.ws.security.components.crypto.BouncyCastle

KEYSTORE_ Encryption keystore provider. If not set the JVM uses the default

PROVIDER _ keystore provider, usually Oracle. For more information, see the

ENCRYPT java.security.Provider Java doc.

KEYSTORE_ Encryption keystore type. If not set, the JVM uses the default

TYPE_ keystore type, usually JKS. For more information, see the

ENCRYPT java.security.Provider Java doc.

KEYSTORE _ Encryption keystore file.

FILE_ENCRYPT

KEYSTORE _ Encryption keystore password.

PASSWORD _

ENCRYPT

CRYPTO_ WSS4]-specific Crypto implementation to use for protection

PROVIDER_STS

in case of a STS authentication. It can be set to either of the
following:

®m org.apache.ws.security.components.crypto.Merlin (default)

m org.apache.ws.security.components.crypto.BouncyCastle

KEYSTORE_
PROVIDER_STS

Keystore provider to use in case of a STS authentication. If not set
the JVM uses the default keystore provider, usually Oracle. For
more information, see the java.security.Provider Java doc.

Software AG Infrastructure Administrator’s Guide Version 9.9 72

Working with Web Services

Parameter Description
KEYSTORE_ Keystore type to use in case of a STS authentication. If not set
TYPE_STS the JVM uses the default keystore type, usually JKS. For more

information, see the java.security.KeyStore#getDefaultType()
method javadocs.

KEYSTORE_ Keystore file to use in case of a STS authentication.
FILE_STS

KEYSTORE_ Keystore password to use in case of a STS authentication.
PASSWORD_

STS

The configuration loading routine puts all those entries in the client options. You can
overwrite any of the parameters next time Rampart is to be executed. For example, all
security parameters can be specified programmatically using the Web Services Stack
client options:

//create the WS Stack client:IWSStaxClient client =

IWSOptions options =

client.getWSOptions () ;options.setProperty (WSClientConstants.KEYSTORE PASSWORD
SIGN,

"changeit") ;options.setProperty (WSClientConstants.KEYSTORE FILE SIGN,
"C:\\client.jks");//execute the clientclient.sendReceive(...);

The Rampart is afterwards configured through a Rampart assertion that is generated by
the RampartConfiglLoader handler. The Web Services Stack client takes care of engaging
that handler if Rampart itself is engaged. The function of the RampartConfigHandler

is basically to gather all the security configuration keys, build up the Rampart
configuration assertion, and put it as a property in the message context options where
Rampart can find it.

Set Up Transport-Level Security

You can set up transport-level security as follows:

m Configure Software AG Runtime to use SSL at the server side.
m Configure SSL at the client side.

® Configure SSL with client authentication

B

Configure HTTP basic authentication.

Configure Software AG Runtime to Use SSL at the Server Side

You set up Software AG Runtime to use the HTTPS transport for web service
communication by configuring an SSL connector.

Software AG Infrastructure Administrator’s Guide Version 9.9 73

Working with Web Services

Important: Normally when you use Axis 2 in a web container, you must define the
connector in the container and in the axis2.xml file. Software AG Runtime
automatically registers the transport listener for you based on the HTTPS
connector. If you define the use of HTTPS transport in the services.xml file,
do not define a transport listener in the axis2.xml file.

Go to the Software AG_directory/profiles/CTP/configuration/
com.softwareag.platform.config.propsloader directory, open the
com.softwareag.catalina.connector.https.pid-port .properties file, and set the properties

below.

Property Description

clientAuth Whether to require a certificate from the client. Valid
values are:
B true - require a valid certificate chain from the client

before accepting a connection.
B want - request a client certificate chain, but do not fail if
one is not presented.

m false (default) - do not require a certificate chain.

sslProtocol Version of SSL to use. The default is TLS.

SSLEnabled Whether to enable SecureSocketLayer protocol. Valid
values are true or falsel (default).

keystoreFile Path to the keystore file that contains the server certificate
to use to decrypt the requests and encrypt the responses.

keystorePass Password that provides access to the server certificate. If
you want to secure the password, replace keystorePass
with @secure.keystorePass.

keystoreType Type of keystore file to use for the server certificate. The
default is JKS.

keystoreAlias Alias that identifies the key pair in the keystore. If not
specified, the first key found in the keystore is used.

algorithm Certificate encoding algorithm to use.

port TCP port number on which this connector should create

a server socket and wait for incoming connections. If
not specified, the value is 10011. If you install another

Software AG Infrastructure Administrator’s Guide Version 9.9 74

Working with Web Services

Property Description

Software AG Runtime, the installer calculates a new port
for that installation that is not already in use.

scheme Configured scheme for the SSL. communication. Set the
value to https.

enableLookups When there are IP addresses that connect to the port
(before putting data in logs, for example), Tomcat may
try to reverse lookup the name of the IP. For example, for
IP=127.0.0.1, reversed lookup is localhost and localhost is
displayed in logs. Valid values are true or false (default).

secure Set this property to true.

minSpareThreads Number of request processing threads to create when this
connector is first started. The default is 10.

maxSpareThreads Maximum number of request processing threads to
create. The default is 75.

maxThreads Maximum number of request processing threads to
create. The default is 200.

acceptCount Maximum queue length for incoming connection requests
when all possible request processing threads are in use.
The default is 100.

maxHttpHeaderSize Maximum size of the request and response HTTP header,
specified in bytes. If not specified, this value is 4096 (4
KB).

disableUploadTimeout Allows the use of a different, longer connection timeout
in connectionUploadTimeout. If not specified, this value

is true.
connectionUpload Connection timeout, in milliseconds. The default is
Timeout 300000 milliseconds (5 minutes).

Below is an example of an SSL connector configuration.

clientAuth=false
sslProtocol=TLS
SSLEnabled=true
keystoreFile=c:\my store.jks
@secure.keystorePass=password

Software AG Infrastructure Administrator’s Guide Version 9.9 75

Working with Web Services

keystoreType=JKS

keystoreAlias=encryption key alias

algorithm=SunX509
scheme=https
enableLookups=false
secure=true
minSpareThreads=25
maxSpareThreads=75
maxThreads=150
acceptCount=100
maxHttpHeaderSize=8192
disableUploadTimeout=true
enabled=trueport=10011
alias=defaultHttps
server=SoftwareAG Runtime

description=Default HTTPS Connector

Note: The default value of the connector port is 10011. If you install another
Software AG Runtime, the installer calculates a new port for that installation
that is not already in use.

Configure SSL at the Client Side

The client must send a request to the HTTPS endpoint using the port specified at the
server side. You can configure SSL at the client side using either of the methods below.

m Set the properties in your security configuration file. You can configure this file as a
parameter in the axis2.xml configuration file:

<parametername="securityConfigFile">your client security config file

path</parameter>

For information on the axis2.xml configuration file, see "Configure the axis2.xml File"

on page 63.

If you do not define a security configuration file, the client uses information in the
wsclientsec.properties file in the current working directory.

m Use the Web Services Stack client API to set the required properties, as follows:

//create the WS Stack client:IWSStaxClient client =

IWSOptions options

client.getWSOptions () ;

options.setProperty (WSClientConstants.KEYSTORE PASSWO RD SIGN, "changeit");
options.setProperty (WSClientConstants.KEYSTORE FILE SIGN, "C:\\client.jks");
//execute the clientclient.sendReceive(...);

The table below shows the security properties at the client side that relate to the SSL
configuration. For more information, see the JSSE Reference Guide.

Property

Description

KEYSTORE_SSL_
LOCATION

Keystore file to use for SSL authentication.

This property corresponds to the JSSE
javax.net.ssl.keyStore system property. You need
only specify the keystore file if the remote SSL server
requires client authentication.

Software AG Infrastructure Administrator’s Guide Version 9.9 76

Working with Web Services

Property

Description

SSL_KEYSTORE_
PASSWORD

Password to use to access the keystore
file. This property corresponds to the JSSE
javax.net.ssl.keyStorePassword system property.

SSL_KEYSTORE_TYPE

Type of the keystore file.

TRUSTSTORE_SSL._
LOCATION

Truststore file to use for SSL authentication. The client
requires that the server's certificate is installed in this
truststore and it is trusted. This property corresponds
to the JSSE javax.net.ssl.trustStore system property.

If the property is not set, the client uses Java-home lib/
security/jssecacerts and Java-home /lib/security/cacerts,
in that order.

TRUSTSTORE_SSL._
PASSWORD

Password for the truststore file. This property
corresponds to the javax.net.ssl.trustStorePassword
system property.

Configure SSL with Client Authentication

On the server side, you can configure the Software AG Web Server based on Apache
Tomcat to use a client certificate to encrypt the transferred data using either of the

methods below.

® Go to the Software AG_directory/profiles/CTP/configuration/
com.softwareag.platform.config.propsloader directory and open the
com.softwareag.catalina.connector.https.pid-port .propertiesfile. Set the clientAuth
property to true, and set the keystoreand truststore properties.

®m Configure the truststore location of the Software AG Runtime by starting it with the
corresponding Java system property. If the truststore properties are not set in your
configuration, Software AG Web Server based on Apache Tomcat uses the default
Java trusted authority keystore. Specify these options in the Software AG_directory/
profiles/CTP/configuration/config.ini file and then start Software AG Runtime:

javax.net.ssl.trustStore=full path to truststore.jks
javax.net.ssl.trustStorePassword=password

Use the settings below to configure the truststore properties in the HTTPS connector.

Property Description

truststoreFile Truststore file to use to validate client certificates.

Software AG Infrastructure Administrator’s Guide Version 9.9 77

Working with Web Services

Property Description

truststorePass Password to use to access the truststore. The default ils
keystorePass. You can add @secure in front of truststorePass.

truststoreType ~ Add this property if you are using a different format for the
truststore than for the keystore.

Below is an example connector configuration.

clientAuth=true

sslProtocol=TLS

SSLEnabled=true

keystoreFile=C:\my key/truststore.jks
truststoreFile=C:\my key/truststore.jks
truststorePass=password
truststoreType=type

enabled=true

port=10011

keystorePass=password

keyAlias=key alias

scheme=https

enableLookups=false

secure=true

alias=defaultHttps

maxSpareThreads=75
maxThreads=150server=SoftwareAG-Runtime
keystoreType=JKS
disableUploadTimeout=true
description=Default HTTPS Connector
algorithm=SunX509

minSpareThreads=25

acceptCount=100
maxHttpHeaderSize=8192

On the client side, you can use a client certificate with the Web Services Stack client,
although additional work is needed to use the Java 1.4 -compatible HTTP sender
with Jakarta Commons HttpClient. To make Commons HttpClient use a client
certificate for the encryption, you must register a new HTTPS socket factory since the
default one does not handle the case with the client certificate. Commons HttpClient
does not provide the appropriate socket factory implementation, but you can use
AuthSSLProtocolSocketFactory in the commons-httpclient-contib package that is part of
the commons-httpclient project. You can set this as follows:

IWsStaxClient client =

ProtocolSocketFactory socketactory =

new AuthSSLProtocolSocketFactory(new File ("keystore.jks") .toURL(),
"keystorePassword", new File("truststore.jks").toURL(),
"truststorePassword") ;

Protocol authhttps = new Protocol ("https", socketactory, 8443);
client.getWSOptions () .setProperty (HITPConstants.CUSTOM PROTOCOL HANDLE, authhttps);

Configure HTTP Basic Authentication

With basic HTTP authentication, the server asks the client to provide its credentials in an
HTTP authorization header. The enforcement of the basic HTTP authentication request

Software AG Infrastructure Administrator’s Guide Version 9.9 78

Working with Web Services

can be delegated to the servlet container or can be left to the Web Services Stack security
module (that is, Rampart).

The Rampart security module validates the usage of basic HTTP authentication.
Rampart does not authenticate the user credentials sent in the HTTP header and only
asserts whether the credentials are available. To authenticate successfully, you can use
JAAS integration in Web Services Stack (see "Configure Client Authentication" on page
80).

To avoid malfunction of the functionality, Web Services Stack must be running inside a
servlet container or a server such as Integration Server. This is required because Rampart
must be able to interact with the actual transport layer by accessing the transport level
credentials and sending authorization request in case the basic HTTP authentication
header is missing.

To validate basic HTTP authentication, Rampart must be informed that the service is
secured by WS-SecurityPolicy. The following code sample denotes the basic HTTP
authentication requirement:

<service name="ExampleService" ...>...<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.ocasis-open.org/ws-sx/ws-securitypolicy/200702"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
wss-wssecurity-utility-1.0.xsd" wsu:Id="user">
<wsp:ExactlyOne>
<wsp:All>
<sp:TransportBinding xmlns:sp="http://docs.oasis-open.org/ws-sx/
ws-securitypolicy/200702">
<wsp:Policy>
<sp:TransportToken>
<wsp:Policy>
<sp:HttpsToken>
<wsp:Policy>
<sp:HttpBasicAuthentication />
</wsp:Policy>
</sp:HttpsToken>
</wsp:Policy>
</sp:TransportToken><sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256 />
</wsp:Policy>
</sp:AlgorithmSuite>
<sp:Layout>
<wsp:Policy>
<sp:Lax />
</wsp:Policy>
</sp:Layout>
<sp:IncludeTimestamp />
</wsp:Policy>
</sp:TransportBinding>. ..
</wsp:All>
</wsp:ExactlyOne>
</wsp:policy>
</service>

The sp:HttpBasicAuthentication assertion can appear only inside an sp:HttpsToken
assertion, which means that the server also requires the use of HTTPS transport. To use

this feature, you must engage Rampart for your web service by adding these lines to the
service descriptor in the services.xml file:

Software AG Infrastructure Administrator’s Guide Version 9.9 79

Working with Web Services

<service name="ExampleService" ...>...
<module ref="rampart"/>
</service>

Add a policy that contains the sp:HttpBasicAuthentication assertion to your web service.
Below is an example.
<service name="ExampleService" ...>...
<sp:HttpsToken>
<wsp:Policy>
<sp:HttpBasicAuthentication />
</wsp:Policy>
</sp:HttpsToken>...
</service>

To configure your web service client to use HTTP basic authentication, supply the
HttpTransportProperties. Authenticator object in your client Java code, and set the user
name and password to wssuser. Set this configuration as an option of the web service
client. Below is an example web service client implementation that uses HTTP basic
authentication.

IWSStaxClient client =

(IWsStaxClient)WsClientFactory.newClient (WSClientConstants.STAX WSCLIENT,
"C:/ut_asym xpath.wsdl", null, null, "C:/Software AG/WS-Stack/repository");
HttpTransportProperties.Authenticator auth =

new HttpTransportProperties.Authenticator();

auth.setUsername ("wssuser");auth.setPassword ("password"):;
auth.setPreemptiveAuthentication (true);

IWSOptions options = client.getWSOptions();
options.setProperty(org.apache.axis2.transport.http.HTTPConstants.
AUTHENTICATE, auth) ;

Configure Client Authentication

Web Services Stack provides a mechanism for authenticating clients in its runtime layer
using the JAAS security framework. Security Infrastructure provides you with JAAS-
based login modules for client authentication. When you log on using a JAAS login
context, a javax.security.auth.Subject is produced by the logon security module. That
subject contains Principals and credentials and is available to anyone on the execution
chain through the message context.

Web Services Stack collects all available security credentials from the client request

and populates them in Security Infrastructure SagCredentials (see "Define the Login
Modules" on page 33). After that, the logon process is performed in the policy validator
implementation of Rampart.

Configure JAAS

Before you can log on, you must configure JAAS. For instructions, see "Setting Up
Security" on page 31.

Security Credentials

Web Services Stack offers two types of user credentials for authentication:

Software AG Infrastructure Administrator’s Guide Version 9.9 80

Working with Web Services

B Message-level credentials. Web Services Stack can extract these credentials from
the SOAP security header. If you use UsernameToken with plain text password, it
can extract a user name and password. If there are signed parts or elements in the
message, it can extract the X509Certificate used for the signatures.

® Transport-level credentials - communication channel used for the message exchange;
they are specific to the type of transport you use. Web Services Stack extracts
these credentials from the HTTP(S) transport only. In the case of a basic HTTP
authentication, it extracts the user name and password. In the case of a client
certificate used for encryption of the transferred data, it extracts a client certificate
chain.

Implement Password Callback Handlers
User-implemented password callback handlers are used to:

B Retrieve passwords to be placed inside a UsernameToken that corresponds to a
given user name.

B Retrieve passwords to access user private keys from a keystore. The keystore
password itself is directly set in the Rampart configuration.

m Verify the password in the received UsernameToken.

The callback handlers can retrieve passwords from configuration files, databases, LDAP
servers, or other application components that are used for user management, such as
Security Infrastructure.

Web Services Stack has a predefined set of password callback handlers that facilitate
different scenarios for retrieving passwords. You can use these handlers directly or
you can develop your own password callback handlers from them. You can use the
password callback handlers below.

com.softwareag.wsstack.pwch.ConfigFilePasswordCallbackHandler

The password callback handler retrieves identifier-password pairs from a configuration
file and then loads the pairs which can be used to find the needed password for a
particular identifier. The configuration file must be in XML format and similar to the
axis2.xml file.

You can provide a configuration file to the callback handler by specifying it in the web
service archive. In the services.xml file, you add a PWCBConfigFile parameter, which
is set to point to the configuration file resource on the service class path. The class path
includes the service archive, the libraries which are in the service archive, the web
application class path (all jar files in WEB-INF/lib and the WEB-INF/classes class folder)
and so on.
<serviceGroup>
<service name="Sample Web Service">
<parameter name="PWCBConfigFileLocation"> configuration file location
</parameter>

</service>
</serviceGroup>

Software AG Infrastructure Administrator’s Guide Version 9.9 81

Working with Web Services

If you do not specify the configuration file resource, by default the callback handler
searches for a resource with name users.xml in the service class path. If it is not
available, a FileNotFoundException is thrown.

The same password callback handler is also available at the client side if there is no
service archive. Then, presumably, the configuration file is users.xml and is searched on
the class path of the client. Then it is loaded as a resource.

com.softwareag.wsstack.pwch.LdapPasswordCallbackHandler

The password callback handler retrieves identifier-password pairs from an LDAP server
and then loads the pairs which can be used to find the needed password for a particular
identifier. To retrieve data from the server, you set the URL of the LDAP server as well
as some more properties in the handler. These properties are passed to the handler in a
common properties file.

You can provide a common properties file to the callback handler by specifying the
location of the common properties file in the web service archive. In the services.xml file,
you add a PWCBLDAPPropFile parameter, which is set to point to the location of the
properties file. The location of the file can be any valid path from which the handler can
load the file (for example, conf/my-ldap.properties).
<serviceGroup>
<service name="Sample Web Service">
<parameter name="PWCBLDAPPropFileLocation"> common prop file location
</parameter>...

</service>
</serviceGroup>

If you do not specify a properties file in the services.xml file, the password callback
handler is configured to use a default properties file (Idap.properties) from the root
directory.

The file may be also placed in a Java archive (jar file) which resides in the WEB-INF/lib
(for example, pwcb-server.jar) or directly in WEB-INF/classes directory. If the password
callback handler does not discover the properties file in a pre-set directory, or in the
root directory of the web service archive, it searches for the file in a central location on
the class path of the handler and loads the properties file as a resource. If this process is
unsuccessful, a FileNotFoundException is thrown.

The same password callback handler is also available at the client side if there is no
service archive. Then, presumably, the configuration file is ldap.properties and is
searched on the class path of the client. Then it is loaded as a resource.

If you do not provide an explicit properties file in the services.xml file, the password
callback handler is configured to use a default properties file (Idap.properties) from the
root directory.

The file may be also placed in a Java archive (jar file) that resides in the WEB-INF/
lib (for example, pwcb-server.jar) or directly in the WEB-INF/classes directory. If the
password callback handler does not discover the properties file in a pre-set directory,
or in the root directory of the web service archive, it searches for the file in a central

Software AG Infrastructure Administrator’s Guide Version 9.9 82

Working with Web Services

location on the class path of the handler and loads the properties file as a resource. If this
process is unsuccessful, a FileNotFoundException is thrown.

The same password callback handler is also available at the client side if there is no
service archive. Then, presumably, the configuration file is ldap.properties and is
searched on the class path of the client. Then it is loaded as a resource.

Implement Policy Validation Callbacks

The wsstack-jaas.jar module offers ready-to-use policy validator implementations that
you can configure and use to log on. Below are examples implementations. To use one of
the callbacks, specify policyValidatorCbClass in the Rampart policy assertion.

B com.softwareag.wsstack.jaas.callback.SimpleSINPolicyValidatorCallback. Attempts
to log on with all available credentials (message-level credentials are with higher
priority over transport-level credentials) against the JAAS logon context. Specify the
login context name as a parameter under the key sin.jaas.login.context. The resulting
JAAS login subject is available as a property of the message context under the key
sin.jaas.subject.

B com.softwareag.wsstack.jaas.callback.ServletRequestLoginPolicyValidatorCallback.
Attempts to log on using the servlet request resource populated in the SIN
credentials list. Specify the login context name as a parameter under the key
sin.jaas.login.context. The resulting JAAS logon subject is available as a property of
the message context under the key sin.jaas.subject.

B com.softwareag.wsstack.jaas.callback.MultiLoginPolicyValidatorCallback. Attempts
to log on first with transport-level credentials and then again with message-
level credentials. Specify the login context name as a parameter under the key
sin.jaas.login.context. The name of the transport login context is available as a
parameter under the key sin.jaas.transport.login.context (default WSS_Transport_IS)
and for message-level credentials logging on under sin.jaas.msg.login.context
(default WSS_Message_IS). The resulting subjects are respectively populated as
properties of the message context under the keys sin.jaas.transport.subject and
sin.jaas.msg.subject.

These policy validator callbacks extend the standard callback that is provided
by Rampart. This means that all basic functionality for validating security policy
conformation is still present.

Authenticate Web Services

When you expose a web service, you might want to authenticate the user that is
executing the service (for example, via user name/pass word, Kerberos, or certificate).
This section describes how to configure the service to perform this authentication. For
information about the authentication steps listed here, see "Setting Up Security" on page
31

Configure the JAAS configuration file (see "Setting Up Security" on page 31). Then
configure a web service to do the following;:

Software AG Infrastructure Administrator’s Guide Version 9.9 83

Working with Web Services

®m Specify the policyValidatorCbClass in the Rampart configuration policy
assertion. Below is sample code for the Rampart policy assertion with specified
policy ValidatorCbClass:
<ramp:RampartConfig xmlns:ramp="http://ws.apache.org/rampart/policy">
<ramp:user>service</ramp:user>
<ramp:encryptionUser>client</ramp:encryptionUser>

<ramp:policyValidatorCbClass>com.softwareag.wsstack.jaas.callback
.MultiLoginPolicyValidatorCallback </ramp:policyValidatorCbClass>

®m Specify the login context name as a parameter on one of the web service levels
(global level in axis2.xml, service group level in services.xml, service level in
services.xml, operation level in services.xml, message level in services.xml).

®m To detect any changes in the configuration, the built-in policy validators provided
by Web Services Stack automatically refresh the JAAS configuration prior to each
login attempt. Since the configuration is shared for the entire Java virtual machine
instance, this detection results in increased synchronization wait time on the server
side. To improve the performance, you can disable the automatic refresh feature by
setting the autoRefreshJaasConfig parameter to false.

The parameter can be set globally in the axis2.xml configuration file or locally in the
services.xml service descriptor. The following excerpt outlines the configuration of
the parameter:

<parameter name="autoRefreshJaasConfig">false</parameter>

Configure Message Transports

Web Services Stack supports sending and receiving messages over HTTP or HTTPS,
TCP, JMS, or Mail. This section explains how to configure and activate or deactivate the
transports supported by Web Services Stack.

Configure HTTP and HTTPS Transport

By default, the HTTP transport is activated and the HTTPS transport is deactivated in
Web Services Stack.

The Default HTTPS Connector value is used by the Software AG Common Platform to
distinguish default connectors from other existing connectors, and is present by default
in the predefined Software AG Runtime HTTPS connector definition. Make sure the
description property is set to Default HTTPS Connector in at least one of your HTTPS
connectors, or the Software AG Runtime configuration will be invalid or corrupted the
next time you install or upgrade a product that uses Software AG Runtime.

If you disable a connector in Software AG Runtime, you must also disable the
corresponding transport sender and receiver in the Web Services Stack axis2.xml file, or
an error will occur in Web Services Stack.

Software AG Infrastructure Administrator’s Guide Version 9.9 84

Working with Web Services

Activate or Deactivate HTTP or HTTPS

1.

Go to the Software AG_directory /profiles/CTP/workspace/wsstack/repository/conf
directory and open the axis2.xml file.

Comment out the sections that define the transport receiver and transport sender
with name="http" or name="https":

<transportReceiver name="http" ... />
<transportSender name="http" ... />
<transportReceiver name="https" ... />
<transportSender name="https" ... />

Restart Web Services Stack.

Restart the Software AG Runtime Windows Service.

Activate or Deactivate HTTP or HTTPS in Software AG Runtime

1.

Go to the Software AG_directory /profiles/CTP/configuration/
com.softwareag.platform.config.propsloader directory.

Open the file that defines the connector to activate or deactivate (for example,
com.softwareag.catalina.connector.http.pid-identifier .properties).

Set the “enabled” property to true or false.

Save the properties file. The change will be automatically detected and Software AG
Runtime will update itself; no restart is required.

Configure TCP Transport

Activate TCP Transport on the Server Side

1.

2.
3.

Activate TCP transport as follows:

a. Go to the Software AG_directory [profiles/CTP/workspace/wsstack/repository/conf
directory and open the axis2.xml file.

b. Uncomment the sections that define the transport receiver and transport sender
with name="tcp":
<transportReceiver name="tcp" ... />
<transportSender name="tcp" ... />

The only parameter required for the transport receiver is its port number. The
suggested value is 6060.

Restart Web Services Stack.

Since the TCP transport has no application level headers (and no target endpoint
URI), you need WS-Addressing to dispatch the service. WS-Addressing may not
be enabled in the default Web Services Stack installation. Enable WS-Addressing as
follows:

Software AG Infrastructure Administrator’s Guide Version 9.9 85

Working with Web Services

a. Engage the WS-Addressing module globally by adding in the axis2.xml
configuration file the following line:

<module ref="addressing"/>

b. Engage the WS-Addressing module on a <service> level. Engagement is for the
service that is deployed on TCP transport.You can enable WS-Addressing in the
services.xml configuration file by adding the following line:
<service ...>

<transports>
<transport>tcp</transport>

</transports>
<module ref="addressing"/>

;}éervice>
c. Enable WS-Addressing by using the Web Services Stack plug-in to Software AG

Designer. To do so, select Enable WS-Addressing from the Modules list in the
Services tab. For more information, see Web Services Stack Help.

4. If not explicitly configured, a web service is deployed over all activated transports
in Web Services Stack. In this case, the web service is accessible at all enabled
endpoints. You may, however, want to restrict a web service to be accessible only
over TCP transport.

a. Configure the web service’s services.xml file by adding the following on the
<service> level:

<service ...>
<transports>
<transport>tcp</transport>
</transports>
</service>

b. Use Web Services Stack Designer plug-in at deployment time. To do this, select
TCP Transport from the list of transports in the Services tab.

Note: Since TCP transport has no application level headers, and thus no
target endpoint URI, you need WS-Addressing to dispatch the service.
If WS-Addressing is not globally enabled, you have to enable it for the
service.

Invoke a Web Service Over TCP Transport on the Client Side

1. Make sure the WS-Addressing module called addressing.mar exists in the /modules
directory in the client’s repository.

2. Uncomment the sections that define the transport receiver and transport sender with
name="tcp” in the client’s axis2.xml configuration file:

<transportReceiver name="tcp" ... />
<transportSender name="tcp" ... />

3. Engage globally the addressing.mar module in the client’s axis2.xml file:

<module ref="addressing"/>

Software AG Infrastructure Administrator’s Guide Version 9.9 86

Working with Web Services

Activate JMS Transport

Activate JMS Transport on the Server Side

1.

Go to the Software AG_directory [profiles/CTP/workspace/wsstack/repository/conf
directory and open the axis2.xml configuration file.

Uncomment the sections that define the transport receiver and transport sender with
name="jms":

<transportReceiver name="Jjms" ... />
<transportSender name="jms" ... />

Define the custom connection factories. You can define custom connection factories
as parameters under JMS transport receiver. They can be used by the services
deployed over JMS transport. Refer to the axis2.xml configuration file to see the
sample connection factories that the JMS transport receiver configuration includes.

Note: One of the connection factories is named as the default for use by services
that do not explicitly specity the connection factory they want to use in
their services.xml configuration file.

Each connection factory specifies parameters for an initial naming factory class, a
naming provider URL, and the JNDI name of an actual JMS connection factory. Web
Services Stack can run with the default configuration of Apache ActiveMQ, if you
use it. In this case, you only have to uncomment the JMS transport receiver and JMS
transport sender configuration in the axis2.xml file.

Note: You must always run the message broker before you start Web Services
Stack.

Force Deployment Over JMS Transport Only

If not explicitly configured, a web service is deployed over all activated transports

in Web Services Stack. However, you can restrict a web service to be deployed over

JMS transport only. You can also specify the destination where the service listens for
messages, as well as the name of the connection factory to be used. The service can use
one of the connection factories defined within the JMS transport receiver in the axis2.xml
configuration file.

Do one of the following:

Configure the web service’s services.xml file by adding the <transport>jms</
transport> element:

<service ...>
<transports>
<transport>jms</transport>
</transports>...
</service>

Software AG Infrastructure Administrator’s Guide Version 9.9 87

Working with Web Services

® Use the Web Services Stack plug-in to Software AG Designer at deployment time by
selecting JMS Transport from the list of transports in the Services tab.

Specify the Connection Factory Name

You can specify a name for the connection factory that the web service will use. This can
be done by modifying the services.xml file or by using the Web Services Stack plug-in

to Software AG Designer. The parameters that define the connection factory name are
optional. If they are not specified, the service uses the default connection factory (named
"default” in the configuration of the JMS transport receiver in the axis2.xml file) and
listens for messages on a JMS queue by the same name as the name of the service.

You can specify the connection factory name through the services.xml file by adding
the <parameter name> elements. The connection factory can be any of those defined in
axis2.xml and the destination name can be anything. transport.jms.ConnectionFactory
and myQueueConnectionFactory are sample parameter values.
<service ...>
<transports>
<transport>jms</transport>
</transports>
<parameter name="transport.jms.ConnectionFactory" locked="true">
myQueueConnectionFactory</parameter>
<parameter name="transport.jms.Destination" locked="true">
dynamicQueues/TestQueue</parameter>

</service>

1. In the Project Explorer view, select the web service archive that will use the connection
factory.

2. C(Click the Services tab.

3. Specify the connection factory. In the Properties section, click Add.
Type transport.jms.ConnectionFactory in the Name field, and type
myQueueConnectionFactory (or another connection factory defined in axis2.xml) in
the Value field. Then click OK.

4. In the Properties section, click Add. Type transport.jms.Destination in the Name field,
and type dynamicQueues/TestQueue (or other value of your choice) in the Value
field. Then Click OK.

The connection factory name is now set and visible in the Services.xml tab.

Invoke a Web Service Using JMS on the Client Side

1. Make sure the WS-Addressing module called addressing.mar exists in the /modules
directory in the client’s repository.

2. Uncomment the sections that define the transport receiver and transport sender with
name="jms” in the client’s axis2.xml configuration file:

<transportReceiver name="Jjms" ... />
<transportSender name="jms" ... />

Software AG Infrastructure Administrator’s Guide Version 9.9 88

Working with Web Services

3. Engage globally the addressing.mar module in the client’s axis2.xml file.

<module ref="addressing"/>

Configure Mail Transport

Set Up Apache James Server

The activation of mail transport in Web Services Stack requires the open source SMTP
and POP3 Apache Java Enterprise Mail Server (James) to transfer e-mail messages.
After you have installed and configured your the Apache James server, you must
create a mail account that represents the e-mail address of Web Services Stack. You can
create additional accounts to correspond to different clients. For more information on
configuring the Apache James mail server, see the Apache James documentation.

1. Install Apache James server as follows:

a. Download the archive with the binary distribution of the Apache James mail
server from the Apache James website.

b. Extract the files from the downloaded archive to a JAMES_HOME directory of
your choice.

c. Start and stop the mail server once so that it unpacks its configuration files.
2. Open the configuration files for editing as follows:
Open a command prompt and to go the JAMES_HOME/bin directory.

b. Run run.bat to start the server, then use the CTRL+C command to stop the mail
server.

c. Typethe ipconfig /all command to check your network configuration.
3. Configure the DNS servers in the mail server as follows:

a. Open the config.xml file under the JAMES_HOME/apps/james/SAR-INF
directory.

b. Find the tag dnsserver and enter the IP address of each DNS server from your
network configuration as shown in the following example:

<dnsserver>
<servers>
<server>[DNS.Server.IP.address]</server>

<server>...</server>
</servers>
...</dnsserver>
c. Start the mail server again.
4. Create accounts in the mail server as follows:

a. Start the Apache James mail server. To do so, run the console command prompt,
navigate to JAMES_HOME/bin directory and run run.bat.

Software AG Infrastructure Administrator’s Guide Version 9.9 89

Working with Web Services

b. Start the James Remote Manager Service. Run the console command prompt and

type the following telnet command:
telnet localhost 4555

Port number 4555 is the default port, where the Remote Manager Service starts.
It is configured in the James configuration file JAMES_HOME/apps/james/SAR-
INF/config.xml). If you have changed the default port number in a previous step,
use the new value in the preceding command.

c. Log on the Remote Manager. You are prompted for the logon ID and password.
They are configured in the James configuration file (JAMES_HOME/apps/james/
SAR-INF/config.xml). The initial values are "root" for both the login ID and the
password, unless you have changed them.

d. Create the account using the command adduser username password.
e. Type the command adduser server wsstack.
f. Exit the Remote Manager Service using the quit command.

After you have executed the commands in the command prompt, you get a result
similar to the following one:

>telnet localhost 4555

JAMES Remote Administration Tool 2.3.1
Login id:root

Password:root

Welcome root.

HELP....

quit

Bye

Activate Mail Transport on the Server Side

1.

Go to the Software AG_directory /profiles/CTP/workspace/wsstack/repository/conf
directory and open the axis2.xml file.

Find the contextRoot parameter. If it is commented out, uncomment it and make
sure its value is wsstack:

<parameter name="contextRoot" locked="false">wsstack</parameter>

Uncomment the sections that define the transport receiver and the transport sender
with name="mailto”:

<transportReceiver name="mailto" .. />
<transportSender name="mailto" .. />

The parameters under the transport receiver and the transport sender have default
values; verify these values.

Set the values on the required parameters for the transport receiver.

Parameter Description

mail.pop3.host Host name (or IP address) for the machine that hosts the
James mail server. If the server is running on the same

Software AG Infrastructure Administrator’s Guide Version 9.9 90

Working with Web Services

Parameter Description

machine as Web Services Stack, you can set the value to “If
the server is running on the same machine as Web Services
Stack, you can set the value to "localhost" or "127.0.0.1".

mail.pop3.user User name of a user registered in the James mail server.

transport. Password for the specified user name.
mail. pop3.

password

mail.store. Value must be "pop3".

protocol

transport.mail. =~ ® Supplies the endpoint reference for the response and
replyTo represents the server email address.

Address m Contains the user name specified in the mail.pop3.user

parameter and the server name of the James mail server,
separated by the @ sign.

The server name is configured in the JAMES_HOME/apps/
james/SAR-INF/config.xml configuration file. If you have not
specified a different one, the initial value is "1ocalhost".

transport. Interval, in milliseconds, at which to check the mail server
listener.interval for new messages. If you do not specify a value, the default is
3000 milliseconds.

Below is sample code that shows the usage of the required parameters for the
transport receiver.

<transportReceiver name="mailto" class="org.apache.axis2.transport.mail.SimpleMaillistener">
<parameter name="mail.pop3.host">localhost</parameter>
<parameter name="mail.pop3.user">server</parameter>
<parameter name="transport.mail.pop3.password">wsstack</parameter>
<parameter name="mail.store.protocol">pop3</parameter>
<parameter name="transport.mail.replyToAddress">server@localhost</parameter>
<parameter name="transport.listener.interval">3000</parameter>
</transportReceiver>

5. Set the values on the required parameters for the transport sender.

Parameter Description

mail.smtp.host Host name (or IP address) for the machine that hosts
the James mail server. The value corresponds to the
mail.pop3.host parameter under the transport receiver.

Software AG Infrastructure Administrator’s Guide Version 9.9 91

Working with Web Services

Parameter Description

mail.smtp.user ~ Corresponds to the value of the mail.pop3.user parameter of
the transport receiver.

transport.mail. ~ Corresponds to the value of the
smtp.password transport.mail.pop3.password parameter of the transport
receiver.

mail.smtp.from Corresponds to the value of the
mail.transport.replyToAddress parameter of the transport
receiver.

Below is sample code that shows the usage of the required parameters for the
transport sender.
<transportSender name="mailto" class="org.apache.axis2.transport.mail.
MailTransportSender">
<parameter name="mail.smtp.host" locked="false">localhost</parameter>
<parameter name="mail.smtp.user">server</parameter>
<parameter name="transport.mail.smtp.password">wsstack</parameter>
<parameter name="mail.smtp.from">server@localhost</parameter>
</transportSender>

Force Deployment Over Mail Transport Only

If not configured explicitly, a web service is deployed over all activated transports in
Web Services Stack. If you want to restrict a web service to be deployed only over Mail
transport, you must add this element in the web service’s services.xml file:
<service ...>
<transports>
<transport>mailto</transport>

</transports>...
</service>

Invoke a Web Service Over Mail Transport on the Client Side

In the client’s axis2.xml configuration file, find and uncomment the sections that define
the transport receiver and transport sender with name="mailto”. Check the parameters
under the mail transport receiver and the mail transport sender. You must configure the
user name, the password, and the e-mail address of a user registered in the James mail
server. That user must be different from the one configured in Web Services Stack.

Below is sample code for client configuration with a user that is registered in the James
mail server. The user name is "client" and the password is "pass".

<transportReceiver name="mailto" class="org.apache.axis2.transport.mail.SimpleMailListener">
<parameter name="mail.pop3.host">localhost</parameter>
<parameter name="mail.pop3.user">client</parameter>
<parameter name="mail.store.protocol">pop3</parameter>
<parameter name="transport.mail.pop3.password">pass</parameter >
<parameter name="transport.mail.replyToAddress">client@localhost</parameter>
<parameter name="transport.listener.interval">3000</parameter>

Software AG Infrastructure Administrator’s Guide Version 9.9 92

Working with Web Services

</transportReceiver>
<transportSender name="mailto" class="org.apache.axis2.transport.mail.MailTransportSender">
<parameter name="mail.smtp.host">localhost</parameter>
<parameter name="mail.smtp.user">client</parameter>
<parameter name="transport.mail.smtp.password">pass</parameter >
<parameter name="mail.smtp.from">client@localhost</parameter>
</transportSender>

Monitor SOAP Messages

Web Services Stack comes with a SOAP monitor you can use to monitor SOAP messages
that are exchanged between web service clients and web services running in Web
Services Stack.

The SOAP monitor shows SOAP messages with the structure they have after they
have passed all system phases in the Axis 2 engine. This means that the original SOAP
messages sent by a user can be visually different but are semantically equal to the ones
shown into the SOAP monitor. Examples of such a case are MTOM SOAP messages.
SOAP monitor shows the binary data exchanged “by value” (included into the SOAP
message itself). On the other hand, the original SOAP message has MIME parts in it.

For example, open TCPMon and extract the data of the exchanged message in binary
format. For ease of use, only the part of the message related to the MTOM-ized binary
data is shown:

<nsl:binaryData><xop:Include
href="cid:1l.urn:uuid:EFF202258F699D83131220514272228@apache.org"
xmlns:xop="http://www.w3.0rg/2004/08/x0op/include" /></nsl:binaryData>..——
MIMEBoundaryurn uuid EFF202258F699D83131220514272117Content-Type:
text/plainContent-Transfer-Encoding: binaryContent-ID:

<l.urn:uuid:EFF202258F699D83131220514272228@apache.org>text--
MIMEBoundaryurn uuid EFF202258F699D83131220514272117—

The binary data displayed by the SOAP monitor in the example above is shown below.
The binary data is shown “by value," because it was already processed by the system
phases of the Axis 2 engine.

<nsl:binaryData>dGV4dA==</nsl:binaryData>

For more information on the SOAP monitor configuration, see the Apache
documentation.

The SOAP monitor is disabled by default.

Enable the SOAP Monitor in the Web Services Stack

1. Go to the Software AG_directory \ profiles\ CTP\ workspace \ wsstack \ repository \ conf
directory and open the axis2.xml file.

2. Engage the soapmonitor Axis2 module globally in the axis2.xml or for a service in
the services.xml fileby adding this line:

<module ref="soapmonitor"/>

3. Add a soapMonitorPort parameter, which defines the port to use for communication
with the SOAP Monitor Applet

<parameter name="soapMonitorPort">5001</parameter>

Software AG Infrastructure Administrator’s Guide Version 9.9 93

Working with Web Services

Important: If you do not add this parameter, the SOAP Monitor servlet will not be
available.

4. Restart Web Services Stack.
5. Go to http://host :port [wsstack/SOAPMonitor to start using the SOAP monitor.

Configure Logging

Configure Logging in Web Services Stack

Web Services Stack uses Journal Logging as a logging mechanism. The Journal Logging
is delivered with the shared component bundle com.softwareag.sc.core and its
configuration file is located in the Software AG_directory/profiles/CTP/configuration/
logging directory in the log_config.xml file.

The Journal Logger is a wrapper around log4] and every Journal Logging logger wraps
a standard log4] logger. For this reason, the Journal Logger component delivers log4]
as part of its implementation. The Journal Logger configuration is a standard log4]
configuration that sets up the underlying log4] library. If necessary, you can use log4]
directly. You should add your log4] settings to the Journal Logger configuration file.
Basically, the format of the log_config.xml file is the same as the format of the log4]
XML configuration. The Journal Logger contains several additional appenders than the
standard log4] appenders.

To enable logging and configure the corresponding severity, open the log_config.xml file
and edit this excerpt as follows:
<root>

<level value="info" />

<appender-ref ref="Platform.Console" />

<appender-ref ref="Platform.RollingLogFile" />
</root>

Configure Logging for System Management Hub Agents

Web Services Stack provides a logging mechanism for its agent programs that use the
System Management Hub administration functionality. These agent programs are called
System Management Hub agents. They manipulate the Web Services Stack environment
under the System Management Hub web interface.

If you experience problems when using the administration tool, you must enable the
logging for the System Management Hub agents to see a detailed message log. The
output log file is written to the wsstack.log file in the Software AG_directory/WS-Stack/
argus directory.

It is recommended to use this logging mechanism only when you want to search for
faults in the operation of the system. Otherwise, the performance of your interface may
decline.

Software AG Infrastructure Administrator’s Guide Version 9.9 94

Working with Web Services

1. Start the web interface of System Management Hub in a web browser.
2. To open the registry editor, go to:

Managed Hosts > host > System Management Hub > Registry >
HKEY_LOCAL_MACHINE\SOFTWARE\ Software AG > System Management
Hub > Products > Web Services Stack release_number > Versions > release_number >
Parameters.

3. Right click the Parameters node, then click Modify Value.
4. Set the value of the registry parameter enableLog to 1, and then click OK.

Deploy Web Services Stack

Web Services Stack distributes the Bouncy Castle JCE provider. It is required by the
security module (Rampart) for retrieving cryptographic algorithms implementation
used in encryption and/or signing of messages.

The Bouncy Castle provider is added to the runtime list of Java security providers (when
required for the first time).

The Bouncy Castle provider might not be available to other web application if Web
Services Stack is deployed in a servlet container and the Bouncy Castle classes are
loaded from the Web Services Stack web application classloader. After it is added to
the global list of security providers, no other application running in the same virtual
machine will be able to add it again. In this case, if the Bouncy Castle is required

by other web application in the servlet container, place the Bouncy Castle JAR in a
common/shared lib directory of the servlet container and ensure it is loaded from there
and not by a web application classloader.

Note: If Web Services Stack is undeployed, it will take care of unregistering Bouncy
Castle from the Java security providers list (only in case it was loaded by the
Web Services Stack webapp classloader). In this case, you do not need to clean
up the security providers or restart JRE.

Manage Web Services

You can manage web services using the Axis 2 administration module. You can do the
following:

m Upload service
List available services and service groups
List available modules and globally engaged Axis 2 modules

List available phases

View global chains and operation-specific chains

Software AG Infrastructure Administrator’s Guide Version 9.9 95

Working with Web Services

® Engage Axis 2 module for all services, for a service group, for a service, and for an
operation

® Activate and deactivate services
®m Edit service parameters

For more information on the Axis 2 administration module, see the Apache Tomcat
documentation.

Note: This functionality is also available through System Management Hub. For
details, see the System Management Hub documentation.

Access the Administration Module

Access the Web Services Stack administration module at http://host :port /wsstack/axis2-
admin/

Change Logon Credentials

By default, the administration module is secured by the administrator logon credentials
configured in the axis2.xml file in the Software AG_directory/profiles/CTP/workspace/
wsstack/repository/conf directory. The default user name is admin and the default
password is axis2. If you do not change the defaults, you may be exposed to a security
threat through the administration module.

You can change the default user name with the userName parameter in the axis2.xml
configuration file. To change the password, log on to the administration module and
click Change Password in the administration page header. If the Web Services Stack
configuration file cannot be modified by the web application, you see the message
Password change is disabled. In this case, you must use the Web Services Stack
Reset Password Utility, below.

Note: If you want to connect to Web Services Stack from System Management Hub,
provide the logon credentials for the administration module.

Change the Administrator Password Using the Reset Password
Utility

The Reset Password Ultility is the resetPassword script stored in the

Software AG_directory\ WS-Stack \ bin directory. The script requires write permission over

the configuration file. After resetting the password, restart Web Services Stack for the
changes to take effect.

Change the Administrator password as follows:

1. Retrieve the axis2.xml configuration file on the server.

Software AG Infrastructure Administrator’s Guide Version 9.9 96

Working with Web Services

2. Run the resetPassword script in the Software AG_directory\ WS-Stack \ bin directory.
3. Replace the original configuration file.

4. Restart Web Services Stack.

Display Deployed Web Services Stack Libraries

You can use the administration module provides to list deployed Web Services Stack
libraries. The deployed libraries are JAR files that are installed with the Web Services
Stack installation. You might use the list of these libraries for troubleshooting.

Go to http://host :port [wsstack/ in your browser. The default port for the deployment
of Web Services Stack is 10010. Click the Validate link on the welcome page, then scroll
down the Web Services Stack validation page.

Software AG Infrastructure Administrator’s Guide Version 9.9

97

Software AG Infrastructure Administrator’s Guide Version 9.9

98

Configuring the Java Service Wrapper

5 Configuring the Java Service Wrapper

m Determine Whether Your Product Uses the Java Service Wrapper, and Which Version 100
m Edit Java Service Wrapper PrOPErtieScccoviiiciciccccee e 100
m Generate a Thread Dump Using the Java Service Wrapper Utilitycccoovvveeeiiiicciennns 101

Software AG Infrastructure Administrator's Guide Version 9.9 99

Configuring the Java Service Wrapper

Determine Whether Your Product Uses the Java Service
Wrapper, and Which Version

On the machine that hosts your Software AG products, open a command window and
go to the Software AG installation directory. If you see a directory named profiles,
one or more of your products uses the Java Service Wrapper. The names of directories
within the profile directory correspond to profile names for the products (that is,
Software AG_directory/profiles/profile_name). For example, the Software AG_directory/
profiles/CTP directory is for the Software AG Runtime.

You will need to refer to the Tanuki Software, Ltd. website for detailed information
about Java Service Wrapper properties listed in this guide. However, you will need to
know which version of the Java Service Wrapper your product uses. To determine the
version, go to the Software AG_directory/profiles/profile_name /bin directory and run the
command service -version.

Edit Java Service Wrapper Properties

Each Software AG runtime product that runs on the Software AG Common Platform has
two configuration files for the Java Service Wrapper.

® The wrapper.conf file contains the Java Service Wrapper property settings that are
installed with the product. Never edit the contents of this file unless instructed to do
so by Software AG.

B The custom_wrapper.conf file contains properties that override and modify the
settings in the wrapper.contf file. If you want to edit property settings for a product’s
Java Service Wrapper, this is the file in which to do so.

Important: Software AG products have different policies regarding the Java Service
Wrapper properties you can configure. See the administrator’s guide
for your product before changing any Java Service Wrapper property
settings.

To edit wrapper properties

1. Go to the Software AG_directory [profiles/profile_name directory for your product and
open the wrapper.conf and custom_wrapper.conf files in a text editor.

2. Go to the Java Service Wrapper product documentation on the Tanuki Software,
Ltd. website for detailed information about each property. Then go to the product
documentation for any product-specific instructions.

3. If the property you want to edit already exists in the custom_wrapper.conf file, edit
it in that file. If the property does not yet exist in the custom_wrapper.conf file, copy
the property from the wrapper.conf file and then edit it in the custom_wrapper.conf
file. If you are working with a sequenced attribute property, you must match the

Software AG Infrastructure Administrator’s Guide Version 9.9 100

Configuring the Java Service Wrapper

sequence of properties in the custom_wrapper.conf file to the sequence of properties
in the wrapper.conf file.

Important: Never edit the contents of the wrapper.conf file.

4. Save the custom_wrapper.conf file. Exit the wrapper.conf file without making any
changes.

5. Restart the product.

Generate a Thread Dump Using the Java Service Wrapper
Utility

A thread dump can help you locate thread contention issues that can cause thread
blocks or deadlocks. The Java Service Wrapper provides a utility that enables you to
generate thread dumps of the JVMs for Software AG products that are running as
Window services.

On the machine that hosts your Software AG products, open a command window, go
to the Software AG_directory/profiles/profile_name /bin directory, and run the command
service -dump. The Java Service Wrapper writes the thread dump to the wrapper.log
file in the Software AG_directory/profiles/profile_name /logs directory.

Software AG Infrastructure Administrator’s Guide Version 9.9 101

	Table of Contents
	About this Guide
	Document Conventions
	Online Information

	Concepts
	Software AG Common Platform
	Software AG Runtime
	Software AG Security Infrastructure
	Software AG Web Services Stack
	Java Service Wrapper

	Running Web Applications
	Configure Software AG Runtime Credentials
	Change the Default Software AG Runtime Keystore and Truststore
	Work with HTTP Connectors
	Use the Predefined HTTP Connector
	Configure a User-Defined HTTP Connector

	Work with HTTPS Connectors
	Use the Predefined HTTPS Connector
	Configure a User-Defined HTTPS Connector
	Server-Side Configuration
	Securing the HTTPS Connector Passwords

	Client-Side Configuration

	Predefined Connector
	Configure JNDI Resources
	Configure the JNDI Injection Framework
	Configure JNDI Resources
	Configure Environment Entries

	Configure the Software AG Runtime Java Service Wrapper
	Configure Software AG Runtime Log Settings
	Hot Configuration Update
	Use Path Tokens
	Start and Stop Software AG Runtime
	Start and Stop Software AG Runtime on a Windows System
	Start and Stop Software AG Runtime on a UNIX System

	Manage Software AG Runtime Security

	Setting Up Security
	Set Up the JAAS Configuration File
	Create the JAAS Configuration File
	Define a Login Context
	Define the Login Modules
	Verify JAAS Configuration

	Turn On Logging
	Make the JAAS Configuration File Active
	Create Technical User Credential Files
	Create or Edit Internal User Repository Files
	Create Login Modules
	Use the LDAP Framework
	Update the Single Sign-On System for Your Product
	Create Custom Keys and Certificates
	Develop a JAAS Client
	Troubleshoot Problems
	Verify the JAAS Configuration
	When Problems Persist

	Predefined Login Modules
	SagAbstractLoginModule
	InternalLoginModule
	LDAPLoginModule
	SAMLAssertValidatorLoginModule
	SAMLAssertIssuerLoginModule
	JMXDelegatedAuthLoginModule
	ServletHeaderLoginModule
	SimpleNameMappingLoginModule
	X509CertificateLoginModule
	SAMLArtifactLoginModule
	RoleLoginModule

	Working with Web Services
	Configure Web Services Stack
	Configure the Web Services Stack Runtime
	Configure the axis2.xml File

	Configure the Client
	Configure MTOM

	Configure Web Service Security
	Set Up Message-Level Security
	Configure the Server Side
	Specify settings in the axis2.xml or services.xml File
	Specify Settings in a Software AG Designer Web Service Client
	Example of Symmetric Binding Security Configuration in the Services.xml File

	Configure the Client Side

	Set Up Transport-Level Security
	Configure Software AG Runtime to Use SSL at the Server Side
	Configure SSL at the Client Side
	Configure SSL with Client Authentication
	Configure HTTP Basic Authentication

	Configure Client Authentication
	Configure JAAS
	Security Credentials
	Implement Password Callback Handlers
	com.softwareag.wsstack.pwcb.ConfigFilePasswordCallbackHandler
	com.softwareag.wsstack.pwcb.LdapPasswordCallbackHandler

	Implement Policy Validation Callbacks
	Authenticate Web Services

	Configure Message Transports
	Configure HTTP and HTTPS Transport
	Activate or Deactivate HTTP or HTTPS
	Activate or Deactivate HTTP or HTTPS in Software AG Runtime

	Configure TCP Transport
	Activate TCP Transport on the Server Side
	Invoke a Web Service Over TCP Transport on the Client Side

	Activate JMS Transport
	Activate JMS Transport on the Server Side
	Force Deployment Over JMS Transport Only
	Specify the Connection Factory Name
	Invoke a Web Service Using JMS on the Client Side

	Configure Mail Transport
	Set Up Apache James Server
	Activate Mail Transport on the Server Side
	Force Deployment Over Mail Transport Only
	Invoke a Web Service Over Mail Transport on the Client Side

	Monitor SOAP Messages
	Enable the SOAP Monitor in the Web Services Stack

	Configure Logging
	Configure Logging in Web Services Stack
	Configure Logging for System Management Hub Agents

	Deploy Web Services Stack
	Manage Web Services
	Access the Administration Module
	Change Logon Credentials
	Change the Administrator Password Using the Reset Password Utility
	Display Deployed Web Services Stack Libraries

	Configuring the Java Service Wrapper
	Determine Whether Your Product Uses the Java Service Wrapper, and Which Version
	Edit Java Service Wrapper Properties
	Generate a Thread Dump Using the Java Service Wrapper Utility

