
Emulation Behavior Tasks
ApplinX HTML Emulation provides a ready to use, fully functional Web emulation. It is part of ApplinX
installation and is available in JSP and .NET. It is a thin-client Web application and uses JavaScript and
HTML for configuration and fine-tuning.

To install a new HTML emulation refer to the Framework Manager or to the Eclipse Plug-in/Visual
Studio documentation. The emulation template is based on the new_application Web application. It is
possible to configure various features in the Framework Configuration Editor in the Emulation node. All
the emulation features are relevant both for instant and generated pages (that inherit from
GXDefaultLogicContext) unless otherwise displayed in the Emulation node in the Framework
Configuration Editor. Detailed below are some tasks which require configuring a number of parameters.

Customizing the Background Check for Host Screen Changes

Enabling the User to Control the Font Size

Opening Multiple Web Sessions

Printing a Capture of the Host Screen

Enabling Sending Dup and FieldMark Characters to the Host

Customizing the Background Check for Host Screen
Changes
Use the user exits in userExit.js.

GXHostScreenChecker.hostScreenSeqCheckBeforeRefresh(isDirty) > returns boolean

This user exit method is used to perform additional queries for this feature. For example to check whether
the data on the screen is saved. If it is not saved, return false to stop the browser from refreshing to
prevent data loss.)

Example:

/**
 * userExists.js prompt user if the screen is dirty
 */
function GXHostScreenChecker.hostScreenSeqCheckBeforeRefresh(isDirty) {
 //check
 if (isDirty) {
 //ask & get answer from user...
 alert("Host screen was updated. Data entered will be lost");
 return false; //stop refreshing
 }
 return true; //continue refreshing
}

GXHostScreenChecker.hostScreenSeqCheckSetTimer(ticks) > returns times

1

Emulation Behavior TasksEmulation Behavior Tasks

This user exit method is used to change the times for the checker timer. The user gets the current setting
time and can return a different value. For example: the user finds 3, 6, 12, 24 too frequent, so in order to
increase the time intervals he can return time*3 which results in 9, 18, 36, 72)

Example:

/**
 * userExists.js reset the timer
 */
function GXHostScreenChecker.hostScreenSeqCheckSetTimer(ticks) {
 return ticks*3;
}

Enabling the User to Control the Font Size
It is possible to enable the user to control the font size used in the Web application. The user will be able
to increase/decrease the font size by clicking on the plus/minus buttons in the Web application. The font
size is limited to be between 7 to 20 pixels.

 To enable user control of the font size:

1. Copy the plus/minus links from the page footer in the HTML emulation.

2. Set these links to call the gx_increaseFontSize() or the
gx_changeFontSize(<desired size in pixels>) JavaScript functions and the
gx_decreaseFontSize() JavaScript function.

Example:

<input type="button" value="+" onclick="gx_increaseFontSize(12);" />

3. Refer to Configuring your Framework and access the Framework Configuration Editor. In the
Instant node, Font size field, select the Dynamic by resolution option from the drop-down list.

Refer to the API:

gx_increaseFontSize

gx_decreaseFontSize

gx_changeFontSize

Opening Multiple Web Sessions
A known problem of Web servers is that it is not possible to open multiple Web sessions (against the same
Web application) from the same Web window (in a portal application for example). The ApplinX session
is dependant on the web session, therefore it is problematic to open multiple host sessions using ApplinX
Framework. To overcome this problem ApplinX provides an ActiveX component, which creates a new IE
process whenever a new Web window is required.

In index.aspx/jsp (in the emulation_template folder) uncomment the following line:

2

Enabling the User to Control the Font SizeEmulation Behavior Tasks

<OBJECT ID="gx_emulationComponent" CLASSID="CLSID:FE93BC5E-332E-41D7-9B36-EA36265998CA" CODEBASE="z_lib\GXOsApi.CAB#version=1,0,0,0"></OBJECT>

Note:
The following function already exists in the index.aspx/jsp file. Notice the use that the function does with
the "gx_emulationComponent" object.

function connect(){
 var newUrl = "z_resourceReader.aspx?res=pages/z_openFull.htm&gx_page=gxfirstpage.aspx";
 if (window.gx_emulationComponent){
 // If the ActiveX was loaded use it to open a new
 // Internet Explorer window with its own IE process.
 gx_openNewBrowser(newUrl);
 }
 else{
 // If the ActiveX wasn’t enabled open a window normally
 location.href=newUrl;
 }
}

Printing a Capture of the Host Screen
As in most terminal emulators, also ApplinX enables printing a snapshot of the current host screen. By
executing a JavaScript function a pop-up screen appears enabling users to print the current screen. This
window, unlike the Instant screen, does not include any changes (such as transformations) in the screen.

 To enable users to print a capture of the host screen:

Add a button/link to the application’s Master page (template.jsp/template.master.cs). You can place it
anywhere you see fit. Set it to call gx_printScreen() .

Example

<input type="button" id="printButton" onClick="gx_printScreen();" />

Refer to the API:

gx_printScreen

Enabling Sending Dup and FieldMark Characters to the
Host
Dup and FieldMark are special mainframe characters. In instant and generated pages, a user can send to
the host a not printable character in specific input fields.

 To enable sending Dup and FieldMark characters to the host:

1. Refer to Configuring your Framework and access the Framework Configuration Editor. In the
Emulation node, select the Support Dup and FieldMark host keys check box.

2. In the Keyboard mapping node, map two keys, for example:

Host action key: [dup]; Press a keyboard combination: CTRL+D

3

Emulation Behavior TasksPrinting a Capture of the Host Screen

Host action key: [fieldmark]; Press a keyboard combination: CTRL+F

3. You can also perform this mapping using JavaScript:

function pageOnLoad(){
 gx_engine.addKeyBoardMapping(
 GXAdditionalKey.CTRL,
 68 /* Character ’d’ Ascii code */ ,
 gx_dup(),
 true);
}

4. When pressing CTRL+D (dup) the field will be marked with an asterisk ("*") and the cursor will
move to the next field.

When pressing CTRL+F (fieldMark) the field will be marked with a semi colon (";").

Refer to the API:

gx_fieldmark

gx_dup

4

Enabling Sending Dup and FieldMark Characters to the HostEmulation Behavior Tasks

	Emulation Behavior Tasks
	Customizing the Background Check for Host Screen Changes
	Enabling the User to Control the Font Size
	
	Refer to the API:

	Opening Multiple Web Sessions
	Printing a Capture of the Host Screen
	
	Example
	Refer to the API:

	Enabling Sending Dup and FieldMark Characters to the Host
	
	Refer to the API:

