
Getting Started with the webMethods Application
Platform API

Version 9.9

October 2015

This document applies to webMethods Application Platform Version 9.9 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2014-2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: AP-API-GS-99-20151015

http://documentation.softwareag.com/legal/
http://softwareag.com/licenses/
http://documentation.softwareag.com/legal/

M
Table of Contents

Getting Started with the webMethods Application Platform API Version 9.9 3

Table of Contents

About this Guide.. 5

Document Conventions...5

Online Information... 6

Introduction to the Application Platform API..7

About Application Platform API... 8

Publishing POJOs as OSGi Services.. 8
@Service...8
@Property... 9

Injecting Service Dependencies into Other Services...10
@ServiceReference.. 10

Looking up Services from the OSGi Registry.. 12
Configuring POJO Services Dynamically... 14

Exposing POJO classes as Integration Server Assets..14
@ExposeToIS... 15
@ExposedMethod...15
Example of Using the @ExposeToIS and the @ExposedMethod Annotations........................ 16

M
Even Header

Getting Started with the webMethods Application Platform API Version 9.9 4

M
Odd Header

Getting Started with the webMethods Application Platform API Version 9.9 5

About this Guide

This guide describes webMethods Application Platform API services. It provides
reference information for developers who want to build additional functionality on top
of their Application Platform projects.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods
Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace
font

Identifies text you must type or messages displayed by the
system.

{ } Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

| Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

... Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

M
Even Header

Getting Started with the webMethods Application Platform API Version 9.9 6

Online Information
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at hp://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at hps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at hp://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

M
Odd Header

Introduction to the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.9 7

1 Introduction to the Application Platform API

■ About Application Platform API .. 8

■ Publishing POJOs as OSGi Services .. 8

■ Injecting Service Dependencies into Other Services ... 10

■ Looking up Services from the OSGi Registry .. 12

■ Exposing POJO classes as Integration Server Assets .. 14

M
Even Header

Introduction to the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.9 8

About Application Platform API
webMethods Application Platform API enables you to build additional functionality to
your Application Platform projects. You can use the Application Platform API to execute
the following tasks:

Publish plain old Java objects (POJOs) as OSGi Services.

Inject service dependencies into other services.

Look up services from the OSGi registry.

Expose POJO classes as Integration Server assets.

Publishing POJOs as OSGi Services
Use the following annotations to publish POJOs as OSGi services.

@Service

Use this annotation to mark a POJO class to be exposed as an OSGi service. Specify
@Service on the class type.

For example:
@Service(name = "my-service", init = "start", destroy = "stop", ranking = "10",
interfaces = { "com.example.MyInterface" }, properties = { @Property(key =
"key1", values = {1, 2, 3}, valueType = "java.lang.Integer") })
public class MyService implements MyInterface {
}

interface MyInterface {
}

Properties of @Service

Property Default Value Description

name Simple name of
the annotated
class

String Optional. The name of the bean backing
this service. If you do not specify a value, this
property defaults to the simple name of the
bean class.

value Simple name of
the annotated
class

String Optional. An alternative way to specify
the name of the service bean. This property
is useful when you do not specify any other
aributes.

M
Odd Header

Introduction to the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.9 9

Property Default Value Description

ranking 0 Integer Optional. The ranking value to be
published as the service.ranking property for this
service to distinguish.

init "" String Optional. The method to invoke when
the bean that backs the service is initialized.

destroy "" String Optional. The method to invoke when
the bean that backs the service is destroyed.

interfaces The fully
qualified name
(FQN) of the
annotated class

String[] Optional. The list of interfaces, under
which the service will be published. If you
do not specify a value for this property, the
service will only be published under the name
of the implementation class.

dependsOn "" String Optional. Used to express a dependency
on another component that must be fully
initialized before this service can be initialized
and exported.

properties {} String Optional. The list of service properties to
be published with the service.

@Property

Use this annotation to declare the properties for the service. You can add more than one
value for the key. Optionally, you can also specify the type of the key and the type of the
values.

Properties of @Property

Property Default Value Description

key "" String Required. The name or
key of the property.

values {} Sting[] Required. The values
to be associated with the
property name.

M
Even Header

Introduction to the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.9 10

Property Default Value Description

valueType java.lang.Sring String Optional. The type of
the values of this property.

The following example shows the GreeterImpl POJO class registered as an OSGi service
under the name "greeter-impl", as well as two interfaces and one service property.
public interface IGreeter {
 public String greetMe(String name);
}

@Service(
 name="greeter-impl",
 interfaces = {"com.example.osgi.greet.api.IGreeter",
"org.osgi.service.cm.ManagedService"},
 properties = {@Property(key="service.pid", val-
ues="com.example.osgi.greet")}
)
public class GreeterImpl implements IGreeter, ManagedService {
 @Override
 public String greetMe(String name) {
 return "Hello, " + name;
}
}

Injecting Service Dependencies into Other Services
Use the following annotations to inject service dependencies into other services.

@ServiceReference

Use this annotation to inject a service from the runtime registry into another service
being published (using the @Service annotation). This provides a form of dependency
injection, in which the injected dependency is another POJO/bean already published in
the runtime as an OSGi service.

You must specify a seer method to set the injected POJO reference in the same class
that accompanies the field declaration. This is the class that contains the @ServiceReference
annotation.

Properties of @ServiceReference

Property Default Value Description

id "" String Required. A unique identifier for this
service reference. The specified id must not be
in conflict with any other implicit or explicit
@Service annotation name aribute value.

M
Odd Header

Introduction to the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.9 11

Property Default Value Description

interfaces {} String[] Required if the filter property is not
specified, otherwise it is optional. The interfaces
that the service reference proxy should
implement when it is wired in from the service
registry. A service that implements these
interfaces must be available in the registry.
At least one interface or class name must be
specified for this service reference.

filter "" String Required if the interfaces property is not
specified, otherwise it is optional. An OSGi filter
expression that constrains the service registry
lookup to only those services that match the
given filter. The filter string is in the following
format: (property-name = value). For example,
(asynchronous-delivery=true) restricts the service
lookup to those services that have a property
with name asynchronous-delivery that is set to true.

timeout 5000 ms Integer Optional. The amount of time (in
milliseconds) to wait for a backing service to
become available when an operation is invoked.
If no matching service becomes available
within this timeout period, an unchecked
ServiceUnavailableException is thrown.

componentName "" String Optional. A convenient shortcut
for specifying a filter expression
that matches the property named
org.eclipse.gemini.blueprint.bean.name that is
automatically advertised for beans, published
with the @Service annotation.

dependsOn "" String Optional. Specifies that the service
reference should not be looked up in the service
registry until the named dependent bean has
been instantiated.

availability Availability.
OPTIONAL

ServiceReference.Availability Optional. Indicates
the requirement for the availability of this
service reference. By default, the reference is
treated as an optional requirement. If set to
MANDATORY, then the @Service registration will

M
Even Header

Introduction to the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.9 12

Property Default Value Description
only succeed if the referenced service is already
available.

Important: Do not declare a mandatory reference to
a service that is also exported by the same
bundle. This can cause application context
creation to fail through either deadlock or
timeout.

The following example shows the GreeterImpl class published as an OSGi service that
depends on the ResourceUtil class that is in turn published as another OSGi service.
@Service(name = “greeter-impl”, interfaces =
{ “com.example.osgi.greet.api.IGreeter”,
 “org.osgi.service.cm.ManagedService” }, properties =
{ @Property(key = “service.pid”, values = “com.example.osgi.greet”) })
public class GreeterImpl implements IGreeter, ManagedService {
 public static final String KEY_HELLO = “hello”;
 private String key = KEY_HELLO;

 @ServiceReference(id = “resourceUtilRef”, interfaces =
{“com.example.osgi.greet.impl.ResourceUtil”})
 ResourceUtil resUtil;

 public void setResUtil(ResourceUtil resUtil) {
 this.resUtil = resUtil;
 }

 ...
}

@Service
public class ResourceUtil {
 ...
}

Looking up Services from the OSGi Registry

Class Description

com.softwareag.applatform.sdk.ServiceUtil A helper class that provides utility
methods when working with OSGi
services. Use this class to look up
registered services.

Public API Methods in ServiceUtil Class

The following table lists the public API methods in ServiceUtil class:

M
Odd Header

Introduction to the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.9 13

Method Name Return
Type

Method Arguments Description

getService T ServletContext
servletCtxClass<T>
serviceCls

Returns the
instance of the
OSGi service of
type serviceCls
from the specified
ServletContext. This
method looks for
an instance of
BundleContext in
the ServletContext
under the
aribute name
osgi-bundlecontext
and use the
obtained
BundleContext
to look up the
service.

getService T Class<T>
serviceClsBundleContext
bundleCtx

Gets the OSGi
service of given
serviceCls type
using the given
BundleContext. If
no service of the
serviceCls type is
registered, this
method returns a
null value.

getBundleContext BundleContext Class<?> bundleCls Gets the
BundleContext
from the bundle
containing the
given class.
If there is no
BundleContext
specified, this
method returns a
null value.

getService T Class<T> serviceCls Gets the OSGi
service for the

M
Even Header

Introduction to the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.9 14

Method Name Return
Type

Method Arguments Description

given service
class type. If no
service of the
specified type is
registered, this
method returns a
null value.

Configuring POJO Services Dynamically
Application Platform enables you to dynamically configure a published POJO service by
using the @Service annotation. For more information about the @Service annotation, see
"Publishing POJOs as OSGi Services" on page 8.

For information about how to enable dynamic service configuration in Application
Platform projects, see Application Platform User’s Guide.

The following table outlines the related API documentation:

Class Description

org.osgi.service.cm.ManagedService For information, see the OSGi
documentation.

The following methods must be implemented from the ManagedService interface:

Method
Name

Return
Type

Method Arguments Description

update void java.util.Dictionary<java.
lang.String,?>
properties

For information
about the
updated method,
see the OSGi
documentation.

Exposing POJO classes as Integration Server Assets
This section describes the annotations you can use for exposing POJO classes as
Integration Server assets.

M
Odd Header

Introduction to the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.9 15

@ExposeToIS

This annotation is used to identify a class that contains one or more methods to
be exposed as Integration Server services. It is combined with the @Service and
@ExposedMethod annotations to support the presentation of methods in a Java POJO
as IS services. Since the generated Integration Server assets assume that the Java class
is registered in OSGi as a service, this annotation must be used with the @Service
annotation.

For example:
@ExposeToIS(packageName="OrdersService")
public class OrdersServiceImpl implements OrdersService {
}

Properties of @ExposeToIS

Property Default Value Description

packageName "" String Optional. The name of the Integration
Server package where services from this class
are created. Note that this is the name of an
Integration Server package, not a Java package.
If no value is provided, when the Integration
Server service is generated, the value of the
@Service.name property will be used as the
Integration Server package name.

@ExposedMethod

This annotation identifies a method to be exposed as an Integration Server service. It is
valid only on public methods. Since Integration Server does not support service name
overloading, there are restrictions on exposing methods from a Java class. If the exposed
Java class defines methods using overloaded names, only one method with a given name
can be exposed.

This annotation has no properties.

For example:
@ExposedMethod
public String createReceipt(Order inOrder) {
}

M
Even Header

Introduction to the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.9 16

Example of Using the @ExposeToIS and the
@ExposedMethod Annotations
In the following example the OrdersServiceImpl class implements the OrdersService interface,
which declares several methods, including @ExposeToIS and @ExposeToIS. When this
POJO is published in an Application Platform project, several artifacts are created in the
Integration Server namespace.

As a result of the packageName property, an Integration Server package, named
OrdersService is created, if necessary. Based on the name of the Java package, where the
OrdersService interface is defined, a folder, named 'com.softwareag.demp.orders.api', is
created. This folder is located in the new Integration Server package.

Each of the exposed methods creates an Integration Server service in the new folder.
The service name matches the exposed method name. The signatures for these new IS
services match the method signatures. For example, the orderReceipt service signature
includes a String output and one input of type Document, named inItem, where the
document structure matches the properties of the Order POJO.
package com.softwareag.demo.orders.impl;

@Service(name="RegisteredOrdersService", interfac-
es={"com.softwareag.demo.orders.api.OrdersService"})
@ExposeToIS(packageName="OrdersService")
public class OrdersServiceImpl implements OrdersService {

 @Override
 @ExposedMethod
 public float calculateCharge(LineItem inItem) {

 }

 @Override
 @ExposedMethod
 public String createReceipt(Order inOrder) {
...
 }
 }

public interface OrdersService {
 public String createReceipt(Order inOrder);
 public float calculateCharge(LineItem inItem);
 ...
}

If the packageName property is omied from this example code, the package in the
Integration Server namespace will be named RegisteredOrdersService, based on the @Service
annotation.

	Table of Contents
	About this Guide
	Document Conventions
	Online Information

	Introduction to the Application Platform API
	About Application Platform API
	Publishing POJOs as OSGi Services
	@Service
	@Property

	Injecting Service Dependencies into Other Services
	@ServiceReference

	Looking up Services from the OSGi Registry
	Configuring POJO Services Dynamically

	Exposing POJO classes as Integration Server Assets
	@ExposeToIS
	@ExposedMethod
	Example of Using the @ExposeToIS and the @ExposedMethod Annotations

