
Universal Messaging Administration Guide

Version 9.8

April 2015

This document applies to Universal Messaging Version 9.8 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: NUM-AG-98-20150415

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

M
Table of Contents

Universal Messaging Administration Guide Version 9.8 3

Table of Contents

Overview... 7

Universal Messaging Enterprise Manager.. 9
Introduction... 10

Getting Started.. 10
Tab-by-Tab Overview...11

Administration Using Enterprise Manager..14
Enterprise View..14
Realm Administration...15

Connecting to Multiple Realms.. 15
Disconnecting from Realms... 17
Editing Connection Information.. 19
Realm Profiles.. 21
Realm Federation...22
Realm Configuration...25

Zone Administration...53
Cluster Administration..56

Creating a Cluster.. 57
Deleting Clusters.. 61
Modifying Clusters..62
Cluster Channel Administration..64
Cluster Queue Administration.. 67
Viewing Cluster Information... 70
Manage Inter-Cluster Connections...72
Creating and Managing Clusters with Sites...75

Channel Administration..79
Channel Creation..80
Channel Editing.. 85
Copying Channels.. 88
Creating Channel Joins..90
Channel Snoop...93
Channel Publishing...95
Channel Named Objects.. 98

DataGroup Administration... 99
Creating DataGroups..100
Adding Existing DataGroups to DataGroups... 104
Removing DataGroups from DataGroups.. 106
Deleting DataGroups..107

Queue Administration.. 109
Creating Queues.. 109
Editing Queues...115

M
Table of Contents

Universal Messaging Administration Guide Version 9.8 4

Copying Queues...118
Queue Snoop... 120

Security.. 122
Nirvana Enterprise Manager - Security Groups... 123
Realm Entitlements.. 125
Channel Entitlements... 127
Queue Entitlements..129
P2P Service..131
Interface VIA Rules.. 133

Scheduling... 134
Universal Messaging Scheduling : Writing Schedule Scripts................................... 135
Universal Messaging Scheduling : Calendar Triggers Schedules............................139
Universal Messaging Scheduling : Conditional Triggers.. 141
Universal Messaging Scheduling : Tasks...154
Universal Messaging Scheduling: Editor..167
Scheduler Examples...173
Universal Messaging Scheduling : Example Realm Script...................................... 174
Universal Messaging Scheduling : Store Triggers Example.................................... 174
Universal Messaging Scheduling : Interface Triggers Example............................... 176
Universal Messaging Scheduling : Memory Triggers Example................................ 176
Universal Messaging Scheduling : Realm Triggers Example...................................176
Universal Messaging Scheduling : Cluster Triggers Example..................................177
Universal Messaging Scheduling : Counter Trigger Example.................................. 177
Universal Messaging Scheduling : Time Triggers Example..................................... 178
Universal Messaging Scheduling : Configuration Example......................................178

Integration with JNDI... 179
Universal Messaging Enterprise Manager Comms: TCP Interfaces, IP Multicast and
SHM... 185

Creating Interfaces... 187
Deleting Interfaces..190
SSL Interfaces..191
Stopping Interfaces...191
Starting Interfaces.. 192
Interface Configuration... 192
JavaScript Interface Panel... 195
Modifying Interfaces... 198
Interface plugins... 199
Interface VIA Rules.. 199
Multicast Configuration... 201
Shared Memory Configuration... 206
Creating an SSL network interface to a Universal Messaging Realm server........... 208
How to generate certificates for use.. 212

Plugins... 215
File Plugin...216
XML Plugin... 219

M
Table of Contents

Universal Messaging Administration Guide Version 9.8 5

Proxy Passthrough Plugin..224
REST Plugin...226
SOAP Plugin.. 244
Servlet Plugin... 248

XML Configuration: Overview..249
XML Configuration: Exporting To XML...250
XML Configuration: Importing From XML.. 251
XML Configuration: Sample XML File for EXPORT...252

Management and Monitoring Sections...256
Enterprise view.. 256
Management Information...258

Enterprise Summary...259
Clusters Summary..261
Clusters Status... 262
Realms Summary...264
Realm Status..266
Realm Monitoring... 268
Universal Messaging Enterprise Manager : Logs Panel.. 268
Realm Connections.. 272
Threads Status... 275
Top.. 277
Audit Panel... 280
Container Status...283
Container Monitor Panel.. 285
Channel Status...288
Data Group Status... 290
Channel Connections... 292
Queue Status... 295
Interface Status.. 297

Scheduler view.. 299
Channel view... 304
Queue view..310
Peer 2 Peer view...313

Universal Messaging Administration API..317
Introduction... 318
Administration API Package Documentation..320
Namespace Objects... 321

nRealmNode.. 321
nLeafNode (Channels and Queues)... 323
nServiceNode (P2P Services)...325
Realm Federation.. 326
Channel Join..327

Realm Server Management..328
Interfaces... 328

M
Table of Contents

Universal Messaging Administration Guide Version 9.8 6

Scheduling... 330
Config...331
Clustering...332
Multicast...334

Security... 335
Access Control Lists..335
Nirvana Admin API - Nirvana Security Groups... 336
Realm Access Control List (nACL)... 337
Channel Access Control List (nACL).. 338
Queue Access Control List..339
P2P Service Access Control List.. 339

Management Information..340
nRealmNode.. 340
nClusterNode... 343
nLeafNode... 344
nServiceNode.. 346
Connection Information..347

M
Odd Header

Universal Messaging Administration Guide Version 9.8 7

Overview

This administration guide covers the following areas:

"The Enterprise Manager" on page 9: a graphical user interface for management
of your Universal Messaging environment.

"The Administration API" on page 317: a powerful API that allows you to build
applications to manage your Universal Messaging environment programmatically.

M
Even Header

Universal Messaging Administration Guide Version 9.8 8

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 9

1 Universal Messaging Enterprise Manager

■ Introduction ... 10

■ Administration Using Enterprise Manager ... 14

■ Management and Monitoring Sections .. 256

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 10

Universal Messaging provides a powerful management tool that enables the capture of
extremely granular metrics, management and audit information from multiple Universal
Messaging realms. The enterprise realm manager also allows you to control, configure
and administer all aspects of any Universal Messaging realm or clusters of realms.

Universal Messaging's Enterprise Manager has been completely wrien using the
Universal Messaging management API and so any of its functionality can be easily
integrated into bespoke or 3rd party systems management services.

The Universal Messaging Enterprise Manager and administration API use in-band
management. This ensures that the flexibility of Universal Messaging connections is
also made available from a management / monitoring perspective. Universal Messaging
realms can be managed remotely over TCP/IP sockets, SSL enables sockets, HTTP and
HTTPS as well as through normal and user-authenticated HTTP/S proxies.

This guide contains information on all aspects of using the Universal Messaging
enterprise manager GUI.

Introduction

Getting Started
In order to start administering and monitoring your Universal Messaging Realm servers
you need to launch the Universal Messaging Enterprise Manager. The Enterprise
Manager is capable of connecting to multiple Universal Messaging realms at the same
time, whether these are part of a cluster / federated namespace or simple standalone
realms. A configuration file called realms.cfg is created in your home directory which
stores the Enterprise Manager's connection info, however the very first time you
launch it a bootstrap RNAME environment variable can be used to override the default
connection information. Subsequent launches will not depend on the environment
variable as long as you save your connection information (see "Realm Profiles" on page
21).

Launching on Windows platforms can be done by selecting the Enterprise Manager
shortcut in the start menu.

You can also open a client command prompt and type a command of the following form:
<UM_install_dir> \java\<UM_server_name> \bin\nenterprisemgr.exe

where <UM_install_dir> is the installation root location and <UM_server_name> is the
name of the Universal Messaging server.

Launching on Unix platforms can be done by executing the nenterprisemgr executable,
which you can find under the installation directory at the following location:

java/umserver/bin/nenterprisemgr

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 11

Logging In

When you start the Enterprise Manager, there is a login dialog in which you can enter
a user ID and password. The user ID and password are only required for logging in if
you have activated basic authentication. If you have not activated basic authentication,
the password is ignored, but the user ID is still subject to the usual ACL checks in the
Enterprise Manager.

See the section for information about seing up basic authentication.

Tab-by-Tab Overview
This document provides a high level overview of Enterprise Manager functionality
on a tab by tab basis, for each of the following node types (as displayed in Enterprise
Manager's left hand pane).

"Universal Messaging Enterprise" on page 11

"Realm Nodes" on page 11

"Container (Folder) Nodes" on page 13

"Channel Nodes" on page 13

"Queue Nodes" on page 13

Universal Messaging Enterprise View

Highlighting the Universal Messaging Enterprise node in the tree provides an Enterprise
Summary view of all realms to which Enterprise Manager is connected, and includes
information such the total number of realms, clusters, channels, queues, events
published and received, and more.

Realm Nodes

Highlighting a Realm Node in the navigation tree in the left hand panel will bring up a
context-sensitive set of tabs in the right hand panel:

Status Tab

Provides a snapshot and historical view of statistics such as the number of events
published or consumed, numbers of connections, and memory usage.

Monitoring Tab

A container for multiple panels that enable you to view live information on the
selected realm:

Logs

Provides a rolling view of Universal Messaging Logs and Plugin Logs including
Access and Error logs.

Connections

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 12

Provides a list of all current connections to the realm, along with details such as
protocol, user, and host. Allows connections to be "bounced" (forcing them to
reconnect).

Threads

Provides details such as the number of idle and active threads per thread pool,
task queue size per thread pool and a total number of executed tasks for the
respective thread pool. It also provides details of scheduled operations each task
has within the system.

Top

A "Unix top"-like view of realm memory usage, JVM GC stats, channel and
connection usage.

Audit

Displays the contents of the remote audit file and receives real time updates as
and when audit events are generated.

ACL Tab

Displays the realm ACL and the list of subjects and their associated permissions for
the realm. Permits editing of ACLs.

Comms Tab

Provides access to management tools for TCP interfaces, IP Multicast and Shared
Memory communication methods:

Interfaces

Management of TCP Interfaces (creation, deletion, starting/stopping) as well as
configuration of advanced interface properties.

Multicast

Management of IP Multicast Configurations (creation/deletion) and advanced
configuration tuning.

Shared Memory

Realms Tab

Provides a summary of memory, event and interface information for each realm to
which Enterprise Manager is connected.

Config Tab

Manage the seings for many groups of advanced realm configuration parameters.

Scheduler Tab

Permits the user to view, add, delete and edit scheduler scripts.

JNDI Tab

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 13

Enables the creation of references to JMS TopicConnectionFactory and
QueueConnectionFactory, as well as references to Topics and Queues.

Container (Folder) Nodes

Totals Tab

Provides status information for resources and services contained within the selected
container branch of the namespace tree.

Monitor Tab

A "Unix top"-like view of the usage of Channels or Queues found within the
container node.

Channel Nodes

Highlighting a Channel Node in the navigation tree in the left hand panel will bring up
a context-sensitive set of tabs in the right hand panel:

Status Tab

Provides a snapshot and historical view of statistics such as the number of events
published or consumed, rates, and event storage usage.

Joins Tab

Permits the user to view, add, delete and edit joins between Channels.

ACL Tab

Permits the user to add, remove or modify entries within the Channel ACL.

Named Objects

Enables the viewing and deletion of named objects (which provide state information
for durable consumers for the channel.

Snoop Tab

Permits snooping of events on the Channel

Connections

Enables the creation of references to JMS TopicConnectionFactory and
QueueConnectionFactory, as well as references to Topics and Queues.

Queue Nodes

Highlighting a Queue Node in the navigation tree in the left hand panel will bring up a
context-sensitive set of tabs in the right hand panel:

Status Tab

Provides a snapshot and historical view of statistics such as the number of events
published or consumed, rates, and event storage usage.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 14

Joins Tab

Permits the user to view, add, delete and edit joins from any Channels to this Queue.

ACL Tab

Permits the user to add, remove or modify entries within the Queue ACL.

Snoop Tab

Permits snooping (a non-destructive read) of events on the Queue.

Administration Using Enterprise Manager

Enterprise View
The enterprise view is the first screen you see whenever the Universal Messaging
enterprise manager is launched. The screen is designed to provide an overview of the
characteristics as well as current status of the set of Universal Messaging realms that
enterprise manager is currently connected with, your Universal Messaging enterprise.
This summary view will include any type of Universal Messaging realm you have added
to your connection information whether they are standalone development realms or
production clustered realms. Adding or removing Universal Messaging realms to the
enterprise manager's connection info will result in those realm's data to be also included
in this view (see "Connecting to Multiple Realms" on page 15 and "Disconnecting
from Realms" on page 17).

As you navigate through more specific parts of the Universal Messaging enterprise, you
can always return to this screen by selecting the root node of the navigation tree called
Universal Messaging Enterprise.

The top of the screen displays a large real time graph illustrating the total number of
events published (yellow) and consumed (red) across all Universal Messaging realms.
The boom of the screen displays 3 panels named Totals, Event Status and Connection
Status respectively. The Totals panel displays the total number of clusters, realms,
resources and peer 2 peer services across all Universal Messaging realms. The Event
Status panel displays the total number of events consumed, published as well as the
current consume and publish rates. Finally the Connection Status panel displays the
total number, the current number as well as the rate of connections (sessions), whether
application or administrative, across all Universal Messaging realms.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 15

Realm Administration

Connecting to Multiple Realms
An Enterprise Manager has the ability to connect to multiple Universal Messaging
realms at the same time. These realms can be standalone or clustered so developers and
administrators can now manage and monitor the whole Universal Messaging enterprise
infrastructure from a single instance of Enterprise Manager. Once connected to a set of
Universal Messaging realms, it is possible to save (see "Realm Profiles" on page 21)
the connection information so that Enterprise Manager automatically connects to all
those realms each time it starts.

A bootstrap RNAME environment variable is needed the very first time you run
Enterprise Manager or if your connection info file is empty. If you use the shortcut /
link created by the installation process this will be automatically set to point to the
locally installed realm's bootstrap interface so you don't need to take additional action.
If however you open a client command prompt and you wish to initially connect to a
realm other than the local one, then you need to change your RNAME environment
variable.

For more information on how to set the RNAME variable, see the section Communication
Protocols and RNAMEs in the Developer Guide.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 16

Please also note that once your realm connection information is saved, the RNAME
environment variable will be ignored.

Once your Enterprise manager is up and running, you have to select the Connect to
Realm menu option from the Connections menu, as shown in the figure below:

The menu option will open the Connect To Realm dialog as shown in the figure below:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 17

Simply fill in the RNAME that points to the interface of the Universal Messaging realm
you wish to connect to and click on the OK buon. The Enterprise Manager status bar
will display a message informing you where it is trying to connect to. If the connection is
successful, a new realm node will be rendered on the tree with the unique name of that
realm. You can manage and monitor the new realm by selecting that newly rendered
tree node.

If you enter an incorrect RNAME, if that realm is not running or if it is running but
the particular interface is not up the connection will fail. In that case a retry dialog will
appear like this one below:

If you had typed the correct RNAME this gives you the opportunity to start the
Universal Messaging realm or interface needed and click yes to retry the connection
without entering the information again. If however the RNAME entered was wrong or
you do not wish to retry then clicking no will close the dialog. Finally don't forget that to
make this connection get aempted each time you start Enterprise Manager you need to
save your connection information.

Disconnecting from Realms
Using the multiple realm connection functionality, the startup time of the Enterprise
manager is slightly increased each time you add a Universal Messaging realm to your
connection list. If you connect from a different location or network, if the development
phase of a Universal Messaging application completes or if you simply wish to have

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 18

faster startup times for Enterprise Manager, you may want to stop connecting to one or
more of your Universal Messaging realms.

This section explains how it is possible to disconnect from one of multiple realms that
your Universal Messaging Enterprise manager may be connected to. To do so, simply
select the Disconnect from Realm menu option in the Connections menu as shown in the
figure below:

This causes a disconnection dialog to appear like the one shown below:

The dialog lists the names of the currently connected Universal Messaging realms. Select
the realm you wish to disconnect from and click OK. The Enterprise manager will then

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 19

disconnect from that Universal Messaging realm and the realm node with all its sub
nodes will disappear from the namespace tree.

Disconnecting from a realm is not necessarily a permanent operation. If you disconnect
from a realm that was listed in your connection information, then the disconnect
is applicable for this Enterprise Manager session only, next time you start up the
connection will be aempted again. In order to make the disconnect permanent, please
save (see "Realm Profiles" on page 21) your connection information after you
disconnect.

Editing Connection Information
As mentioned in previous sections, Universal Messaging Enterprise manager can
connect to multiple Universal Messaging realms at the same time and allows saving
connection information in a configuration file. This configuration file can change in one
of 3 ways:

1. By selecting the Save Connection Info menu option (see "Realm Profiles" on
page 21) which replaces the configuration file contents with the list of current
connections.

2. When running the Enterprise manager, if a connection to a configured realm fails and
the user chooses not to retry, a second dialog appears that looks like the example in the
figure below:

If the user clicks Yes, then the configuration file remains the same. However if the
user chooses no, the failed connection is removed from the configuration file without
any further action required. The Enterprise manager will never try to connect to that
Universal Messaging realm again during startup.

3. By using the Edit Connection Info menu option, located under the File menu as shown
in the figure below:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 20

This causes the following dialog to appear:

The Realm name combo box contains the complete list of configured Universal
Messaging realms that had been connected during the last Save Connection Info
operation. If you have connected to additional realms that had not been saved, these
will not be included in this list. By selecting a particular Realm name, you can also see
the connection RNAME value containing the RNAME that Enterprise manager uses
to connect to it. Clicking on the delete buon will remove the currently selected realm
from the connection info file and this can be repeated many times until only the desired

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 21

realms are present in the list. When this is done, click on the Save buon to recreate the
connection info file.

Realm Profiles
The Universal Messaging Enterprise Manager enables administrators to group realms
and their respective connections into profiles for easy management and accessibility.
Any number of realms can be saved as part of a profile.

When profiles are reloaded the Universal Messaging Enterprise Manager automatically
connects to all realms defined within the loaded profile.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 22

Realm Federation
As well as clustering technology, Universal Messaging supports the concept of a
federated namespace which enables realm servers that are in different physical locations
to be viewed within one logical namespace.

If you consider that a Universal Messaging namespace consists of a logical
representation of the objects contained within the realm, such as resources and services:
a federated namespace is an extension to the namespace that allows remote realms to be
visible within the namespace of other realms.

For example, if we had a realm located in the UK (United Kingdom), and 2 other realms
located in the US (United States) and DE (Germany), we can view the realms located in
DE and US within the namespace of the UK realm. Federation allows us to access the
objects within the DE and US realms from within the namespace of the UK realm.

It is possible to add realms to a Universal Messaging namespace using the Universal
Messaging Administration API or by using the Enterprise Manger as described below.

Adding Realms

The first step in order to provide federation is to add the realms. Adding a realm to
another realm can be achieved 1 of 2 ways. The first way simply makes a communication

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 23

connection from one realm to another, so the realms are aware of each other and can
communicate. This allows you to join (see "Channel Join" on page 327) between these
realms. The second option also makes a new communication connection, however if you
specify a 'mount point', the realm you add will also be visible within the namespace of the
realm you added it to.

Mount Points

Providing a mount point for added realms is similar to the mount point used by file
systems when you mount a remote file system into another. It specifies a logical name
that can be used to access the resources within the mounted realm. The mount point is
therefore the entry point (or reference) within the namespace for the realm's resources
and services.

For example, if I have a realm in the UK, an wish to add to it a realm in the US, I could
provide a mount point of '/us' when adding the US realm to the UK realm. Using the
mount point of '/us', I can then access the channels within the US realm from my session
with the UK realm. For example, if I wanted to find a channel from my session with the
UK realm, and provided the channel name '/us/customer/sales', I would be able to get a
local channel reference to the '/customer/sales' channel within the US realm.

Using the Enterprise Manager to add realms

In order to add a realm to another realm, first of all you need to select the realm node
from the namespace that you wish to add the realm to. Then, right-click on the realm
node to display the menu options available for a realm node. One of the menu options is
labelled 'Add Realm to Namespace', clicking on this menu option will display a dialog
that allows you to enter the RNAME of the realm you wish to add and an optional
mountpoint. This dialog is shown in the image below.

The RNAME value in the dialog corresponds to the realm interface you wish the 2
realms to communicate using. The mount point corresponds to the point within the
namespace that the realm will be referenceable.

The image below shows the namespace for a realm that has had 2 realms mounted
within its namespace, called 'eur' and 'us' respectively. As you can see the resources

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 24

within both the mounted realms are also displayed as part of the namespace of the
'node1' realm.

Sessions connected to the 'node1' realm now have access to three channels. These are :

'/global/orders' which is a local channel

'/eur/orders' which is actually a channel on another Universal Messaging Realm
which has been added to this namespace under the mountpoint '/eur'

'/us/orders' which is actually a channel on another Universal Messaging Realm
which has been added to this namespace under the mountpoint '/us'

Example Use of Federation : Remote Joins

Once you have added the realms to one another, it is possible to create remote joins
between the channels of the realms. This is very useful when considering the physical
distance and communications available between the different realms. For example,
if you wish all events published to the /customer/sales channel in the UK realm to be
available on the /customer/sales channel in the US realm, one would create a join (see
"Channel Join" on page 327) from the /customer/sales channel in the UK to the /
customer/sales channel on the US realm, so all events published onto the uk channel
would be sent to the us channel.

Federation and remote joins provide a huge benefit for your organization. Firstly, any
consumers wishing to consume events from the uk channel would not need to do so
over a WAN link, but simply subscribe to their local sales channel in the us. This reduces
the required bandwidth between the us and uk for your organization, since the data
is only sent by the source realm once to the joined channel in the us, as opposed to
1...n times where n is the number of consumers in the us. Remote joins are much more

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 25

efficient in this respect, and ensure the data is available as close (physically) to the
consumers as possible.

Realm Configuration
Universal Messaging Realms can be configured based on a number of parameters that
are accessible both through the Universal Messaging Administration API as well as
the Universal Messaging Enterprise Manager. Any changes made to the configuration
parameters for a Universal Messaging realm are automatically sent to the realm and
implemented. This functionality offers major benefits to Administrators, since realms
can be configured remotely, without the need to be anywhere near the actual realm
itself. More importantly, multiple realms and clustered realms can also be automatically
configured remotely.

This section will describe the different configuration parameters that are available using
the Universal Messaging Enterprise Manager.

When you select a realm from the namespace, one of the available panels in the
Enterprise Manager is labelled 'Config'. Selecting this panel displays 20 sets of
configuration properties, with each set of properties relating to a specific area within
the Universal Messaging Realm. Each set of properties contains different values for
specific items. The image below shows the config panel for a selected realm within the
namespace.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 26

The 20 configuration groups are :

Audit Settings - Values relating to what information is stored by the audit process

Client Timeout Values - Values relating to client / server interaction

Cluster Config - Values specific to the clustering engine

Comet Config - Values relating to the configuration of Comet

Connection Config - Values relating to the client server connection

Data Stream Config - Values relating to the configuration of Data Streams

Environment Config - Read only configuration values that relate to the system
environment. These cannot be changed.

Event Storage - Values specific to how events are stored and retrieved on the server

Fanout Values - Values specific to the delivery of events to clients

Global Values - Values specific to the realm process itself

Inter-Realm Comms Config - Values relating to Inter-Realm communication

JVM Management - Values relating to the JVM the Realm Server is using

Join Config - Values specific to channel join management

Logging Config - Values specific to logging

MQTT Config - MQTT specific configs

Plugin Config - Values relating to Realm Plugins

Protobuf Config - Values relating to Protocol Buffers

RecoveryDaemon - Values relating to clients that are in recovery (i.e. replaying large
numbers of events)

Thread Pool Config - Values specific to the servers thread pools.

TransactionManager - Values specific to the transaction engine of the RealmServer

The table below describes each of the configuration groups and the items that can be
changed within each group. It also shows valid ranges of values and a description of
what each value actually represents.

Configuration Element Valid Parameters Description

Audit Settings

ChannelACL True or False Log to the audit file any
unsuccessful channel acl
interactions. Default is
true.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 27

Configuration Element Valid Parameters Description

ChannelFailure True or False Log to the audit file
any unsuccessful realm
interactions. Default is
true.

ChannelMaintenance True or False Log to the audit file any
channel maintenance
activity. Default is false.

ChannelSuccess True or False Log to the audit file
any successful channel
interactions. Default is
false.

InterfaceManagement True or False Log to the audit file any
interface management
activity. Default is true.

JoinFailure True or False Log to the audit file
any unsuccessful join
interactions. Default is
true.

JoinMaintenance True or False Log to the audit file any
join maintenance activity.
Default is true.

JoinSuccess True or False Log to the audit file any
successful join interactions.
Default is false.

QueueACL True or False Log to the audit file any
unsuccessful queue acl
interactions. Default is
true.

QueueFailure True or False Log to the audit file
any unsuccessful queue
interactions. Default is
true.

QueueMaintenance True or False Log to the audit file
any queue maintenance
activity. Default is false.

QueueSuccess True or False Log to the audit file
any successful queue

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 28

Configuration Element Valid Parameters Description
interactions. Default is
false.

RealmACL True or False Log to the audit file any
unsuccessful realm acl
interactions. Default is
true.

RealmFailure True or False Log to the audit file
any unsuccessful realm
interactions. Default is
true.

RealmMaintenance True or False Log to the audit file
any realm maintenance
activity. Default is true.

RealmSuccess True or False Log to the audit file
any successful realm
interactions. Default is
false.

ServiceACL True or False Log to the audit file any
unsuccessful service acl
interactions. Default is
true.

ServiceFailure True or False Log to the audit file any
unsuccessful service
interactions. Default is
true.

ServiceMaintenance True or False Log to the audit file any
service maintenance
activity. Default is true.

ServiceSuccess True or False Log to the audit file
any successful realm
interactions. Default is
false.

Client Timeout Values

EventTimeout 5000 to No Max The amount of ms the
client will wait for a

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 29

Configuration Element Valid Parameters Description
response from the server.
Default is 60000.

HighWaterMark 2 to No Max The high water mark for
the connection internal
queue. When this value
is reached the internal
queue is temporarily
suspended and unable to
send events to the server.
This provides flow control
between publisher and
server. Default is 200.

LowWaterMark 1 to No Max The low water mark for
the connection internal
queue. When this value
is reached the outbound
internal queue will again
be ready to push event to
the server. Default is 50.

QueueAccessWaitLimit 200 to No Max The maximum number of
milliseconds it should take
to gain access to a queue
to push events before
notifying listeners. Default
is 200

QueueBlockLimit 500 to No Max The maximum number of
milliseconds a queue will
have reached HWM before
notifying listeners, Default
is 500.

QueuePushWaitLimit 200 to No Max The maximum number of
milliseconds it should take
to gain access to a queue
and to push events before
notifying listeners. Default
is 200.

TransactionLifeTime 1000 to No Max The default amount of
time a transaction is valid
before being removed
from the tx store. Default
is 20000.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 30

Configuration Element Valid Parameters Description

Cluster Config

BufferSize 1400 to 1048576 Size in bytes of the inter
realm buffer to use

ClientQueueSize 10 to 10000 Size of the client request
queue

ClientQueueWindow 10 to 1000 The number of events
sent to an async queue
reader before the realm
will commit

ClientStateDelay 0 to 120000 The number of seconds
to delay the cluster
processing client requests
when a cluster state
change occurs

DisableHTTPConnections True or False Disable HTTP(s)
connections between
cluster nodes

DisconnectWait 1000 to 120000 Time to wait for the node
to form in the cluster

DisconnectWhenNotReady True or False If the node has not
formed in the cluster then
disconnect the client

EnableMulticast True or False Enables multicast

EnableSites True or False If enabled then the master
selection takes into
account the Prime Site

EnableStoreRecoveryRetry True or False Enables/Disables the
ability for the slave to
reaempt a recovery
of a store if it detects
changes to the store during
recovery

EnginePipelineSize 1 to 32 Size of the number of
concurrent pipeline

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 31

Configuration Element Valid Parameters Description
threads running within the
cluster engine

FastSlaveMode True or False If enabled the realm will
move to a slave state while
finializing the recovery of
local stores

FilterEventsDuringRecovery True or False Only Applicable to JMS
Engine Channels. Defines
if we recover events
that have already been
consumed.

FormationTimeout 60000 to 300000 The time to wait for
the state to move from
recovery to slave or master

HeartBeatInterval 1000 to 120000 Heart Beat interval in
milliseconds. Default is
120000.

InitialConnectionTimeout 5000 to 240000 The number of
milliseconds that the
server will wait while
trying to establish a
connection to a peer.

IsCommiedDelay 1000 to 30000 When a slave processes a
IsCommied request and
it is still recoverying the
Transaction store, it will
block the clients request
for this timeout period.

MasterVoteDelay 1000 to 60000 When a node has
requested to be master
it will wait this timeout
period in milliseconds for
the peers to agree.

MasterWaitTimeout 1000 to 600000 When the master is lost
from the cluster and the
remaining peers detect
that the master has the
latest state they will wait
for this time period for the

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 32

Configuration Element Valid Parameters Description
master to reconnect. If the
master fails to reconnect
in this time period a new
master is elected

PublishQueueEnabled True or False If enabled the slaves will
queue publish requests
prior to commiing them
to the cluster

QueueSize 100 to 1000 Number of events
outstanding to be
processed by the clusters
internal queue before
sending flow control
requests back

SecureHandshake True or False If true, when peers connect
they will peform a secure
handshake to ensure
the connection is valid.
This is the prefered and
secure option. Disabling
this would only be
recommended in debug
mode.

SeperateLog True or False Create a seperate log file
for cluster events. Default
is false.

StateChangeScan 10000 to No Max When a realm loses master
or slave state then after
this timeout all cluster
based connections will be
disconnected. If the realm
reenters the cluster then
the disconnect timeout is
aborted.

SyncPingSize 100 to 10000 Number of events sent
before a cluster sync
occurs

TransactionSync True or False Make all transactional
based events sync across
the cluster

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 33

Configuration Element Valid Parameters Description

Comet Config

BufferSize 1024 to 102400 The buffer size for comet
request.

EnableLogging True or False Enables logging of all
comet queries

Timeout 10000 to No Max The timeout for a comet
connection.

Connection Config

AllowBufferReuse True or False If set to true then buffers
will be allocated from
the buffer pool and once
finished with returned to
the pool. If set to false then
buffers are allocated on
the fly and then left for
the system to free them. It
is best to leave this set to
true.

BufferManagerCount 1 to 256 The number of Buffer
Managers that the server
will allocate. This is used
during startup to size
and manage the netowrk
buffers.

BufferPoolSize 100 to 10000 The underlying Universal
Messaging IO utilizes
buffers from a pool. By
default we preload the
pool with this number
of buffers. As the reads/
writes require buffers
they are allocated from
this pool, then once used
are cleared and returned.
If the size is too small
we end up creating and
destroying buffers, if too

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 34

Configuration Element Valid Parameters Description
large we have a pool of
buffers which are not used
taking up memory.

BufferQueueSize 10 to 1000 Number of buffers to
queue before we stop
reading from the socket.

BufferSize 1024 to 1048576 This specifies the default
size of the network buffers
that Universal Messaging
uses for its NIO. If
small, then Universal
Messaging will require
more buffers (up to the
maximum specified by
BufferPoolSize) to send
an event. If too large,
then memory may be
wasted on large, unused
buffers. These buffers are
reused automatically by
the server, and are used
to transfer data from the
upper application layer
to the network. So, for
example, the server might
use all BufferPoolSize
buffers to stream from 1
application level buffer
(depending on the relative
sizes of the buffers). An
efficient size would be
about 40% more than the
average client event, or 5K
(whichever is largest).

CometReadTimeout 1000 to 120000 Specifies the time the
server will wait for a client
to complete sending the
data

ConnectionDelay 10 to 60000 When the server has
exceeded the connection
count, how long to hold on
to the connection before

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 35

Configuration Element Valid Parameters Description
disconnecting. Default is
60000.

FlexKeepAlive 5000 to 60000 The number of
milliseconds the server
will wait before sending a
heartbeat for Adobe Flex
clients. Default is 25000.

HandshakeTimeout 1000 to No Max The number of
milliseconds that the
server will wait for the
session to be established.
Default is 1000, i.e. 1
second

IdleDriverTimeout 120000 to No Max Specifies the time in
milliseconds that a
communications driver
can be idle before being
deemed as inactive. When
this happens the server
will automatically close
and remove the driver

IdleSessionTimeout 10000 to No Max If there has been no
communication from a
client for the configured
number of milliseconds,
the client is deemed idle
and is disconnected. This
typically occurs when
there are network issues
between a client and the
server.

KeepAlive 5000 to No Max The number of
milliseconds the server
will wait before sending a
heartbeat. Default is 60000.

MaxBufferSize 1024 to No Max The maximum buffer size
that the server will accept.
Default is 1048576.

MaxNoOfConnections -1 to No Max Sets the maximum
concurrent connections to

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 36

Configuration Element Valid Parameters Description
the server, -1 indicates no
restriction, default is -1.

MaxWriteCount 5 to 100 When writing many events
to a client the write pool
thread may continue to
send the events before
returning to the pool
to process other clients
requests. So, for example if
its set to 5, then the thread
will send 5 events from
the clients queue to the
client before returning to
the pool to process another
request.

NIOSelectArray True or False Specifies that the low level
processing will use an
array and not an iterator

NetworkMonitorThreads 2 to 100 The number of threads to
allocate to flushing client
data, Please note this will
only take effect after a
restart

OutputBlockSize 100 to No Max The size of the application-
level buffer used when
streaming events. If
the size is exceeded
during streaming, the
buffer is immediately
emptied, and its contents
transmied over the
network. Typically, each
connection has its own
buffer for outbound
streaming. Default is 1400.

PriorityReadSpinLockMaxConnections0 to 8 Maximum number of
clients allowed to allocate
high priority spin locks

PriorityReadSpinLockTime 1 to 10000 Maximum number of
clients allowed to allocate
high priority spin locks

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 37

Configuration Element Valid Parameters Description

PriorityReadType 0 to 2 If enabled then high
priority sessions will be
enabled to run spin locks
waiting to read

QueueHighWaterMark 2 to No Max The number of events in a
client output queue before
the server stops sending
events. Default is 100.

QueueLowWaterMark 1 to No Max The number of events in
the clients queue before
the server resumes sending
events. Default is 50.

ReadCount 1 to 20 Number of times the
thread will loop around
waiting for an event to be
delivered before returning

UseDirectBuffering True or False If true the server will
allocate DirectByteBuffers
to use for network I/O,
else the server will use
HeapByteBuffers, the
main difference is where
the JVM will allocate
memory for the buffers the
DirectByteBuffers perform
beer

WriteHandlerType 1 to 5 Specifies the type of write
handler to use

whEventThresholdCount 1 to 2000 Number of events
to exceed in the
whEventThresholdTime to
detect a peak

whEventThresholdTime 1 to 2000 Number of milliseconds
to sample the event rate to
detect peaks

whMaxEventsBeforeFlush 1 to 10000 Total number of events
that can be sent before a
flush must be done

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 38

Configuration Element Valid Parameters Description

whMaxEventsPerSecond No Min to No
Max

Specifies the total number
of events per second that a
realm will send to clients
before switching modes
into peak mode

whMaxTimeBetweenFlush 1 to 1000 Total number of
milliseconds to wait before
a flush is done

whPeakTrailDelay 100 to 5000 When a peak is detected
how long to stay in this
state before returning to
normal

Data Stream Config

FanoutTaskQueueSize 32 to 1024 Sets the number of tasks
that the FanOut Executor
will have outstanding

FanoutTraversalType 0 to 2 The method to use when
traversing connections.

MaxSessionIdSize 5 to 30 Maximum size of the
session Id used to
uniquely identify the
clients

MonitorTimer 1000 to 120000 Time interval in
milliseconds to scan the
data group configuration
looking for idle /
completed streams

OffloadMulticastWrite True or False If true then all multicast
writes will be performed
by the parallel fanout
engine.

ParallelFanoutThreshold 10 to 10000 Number of streams when
the server will use parallel
fanout

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 39

Configuration Element Valid Parameters Description

ParallelWorkers 1 to 64 Number of threads to
allocate for the fanout
executor,

SendInitialMapping True or False When any stream
registered client
connect sends the entire
DataGroup Name to Id
mapping

Environment Config

AvailableProcessors READ ONLY Number of CPU's available

JavaVendor READ ONLY Vendor of Java Virtual
Machine

JavaVersion READ ONLY Virtual Machine Version

NanosecondSupport READ ONLY Nano second support
available through JVM on
Native OS

OSArchitecture READ ONLY Operating System
Architecture

OSName READ ONLY Operating System Name

OSVersion READ ONLY Operating System Version

ProcessId READ ONLY Process ID

ServerBuildDate READ ONLY Universal Messaging
Server Build Date

ServerBuildNumber READ ONLY Universal Messaging
Server Build Number

ServerVersion READ ONLY Universal Messaging
Server Build Version

TimerAdjustment READ ONLY The size of the Operating
Systems quatum

Event Storage

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 40

Configuration Element Valid Parameters Description

ActiveDelay 100 to No Max The time in milliseconds
that an active channel
will delay between scans.
Default is 1000.

AutoDeleteScan 1000 to 500000 Specifies the number of
milliseconds between
scans on AutoDelete stores
to see if they should be
deleted

AutoMaintenanceThreshold 0 to 100 Sets the percentage
free before an auto
maintenance is performed,
applies to internal stores
only

CacheAge 1000 to No Max The time in ms that cached
events will be kept in
memory for. Default is
86400000.

EnableStoreCaching True or False If true the server will
try and cache events in
memory after they have
been wrien/read

EnableStoreReadBuffering True or False If true the server will
buffer the reads from the
store. This will increase
replay performance greatly

IdleDelay 5000 to No Max The time in milliseconds
that an idle channel will
delay between scans.
Default is 60000.

JMSEngineAutoPurgeTime 5000 to 600000 Defines the interval
between clean up of JMS
Engine resources

PageSize 10 to 100000 The size in page size to use
for the event store

QueueDeliveryPersistencePolicy 0 to 2 Sets the Queue Delivery
Persistence Policy

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 41

Configuration Element Valid Parameters Description

StoreReadBufferSize 1024 to 2097152 Size of the buffer to use
during reads from the
store

SyncBatchSize 1 to 1000 Specifies the maximum
size before the sync call is
made

SyncServerFiles True or False If true the server will sync
each file operation for its
internal files

SyncTimeLimit 1 to 1000 Specifies the maximum
time in milliseconds that
will be allowed before the
sync is called

ThreadPoolSize 1 to 4 The number of threads
allocated to perform the
management task on the
channels. Default is 1.

Fanout Values

ConnectionGrouping True or False If true allows the server
to group connections
with the same selector
providing improved
performance

JMSQueueMaxMultiplier 1 to 10 The multiplier used on the
High Water mark when
processing events from a
JMS Engine Queue/Topic

MaximumDelayInWrite 1 to 5000 The number of
milliseconds an event will
wait in a queue before it
will be processed

ParallelBatchSize 50 to 10000 Specifies the number of
connections to process
in one batch per parallel
thread

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 42

Configuration Element Valid Parameters Description

ParallelThreadPoolSize 2 to 64 Specifies the number of
threads to use within
the thread pool. Restart
Required

ParallelThreshold 1 to 10000 Specifies the number of
connections to a channel
before the server will use
the parallel fanout engine

ParallelUseGlobalPool True or False If true all channels use
a common pool else all
channel have there own
pool. Restart required

PeakPublishDelay 0 to No Max When clients start to hit
high water mark how long
to delay the publisher to
allow the client time to
catch up

PublishDelay 0 to No Max How long to delay
the publisher when
subscribers queue start
to fill, in milliseconds.
Default is 10.

PublishExpiredEvents True or False Publish expired events at
server startup. Default is
true.

RoundRobinDelivery True or False Use a round robin
approach to event
delivery. Default is false.

SendEndOfChannelAlways True or False Always send a End Of
Channel, even if we find
no matches within the
topic

SendPubEventsImmediately True or False Send publish events
immediately

SyncQueueDelay 10 to 3600000 Maximum number of
milliseconds the queue
publisher will be delayed

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 43

Configuration Element Valid Parameters Description

SyncQueuePublisher True or False If true then the queue
publisher will be sync with
the queue consumers

Global Values

AllowRealmAdminFullAccess True or False Any subject with Admin
ACL applied has full
access to all objects within
the realm.

CacheJoinInfoKeys True or False If enabled we cache join
key information between
events passed over joins.
This reduces the number
of objects created

DisableExplicitGC True or False If enabled the server will
call the Garbage Collector
at regular intervals to keep
memory usage down

EnableDNSLookups True or False If enabled the server will
aempt to perform a DNS
lookup when a client
connects to resolve the IP
address to a hostname.
In some instances this
may slow down the initial
connection.

ExtendedMessageSelector True or False If true, allows the server to
use the extended message
selector syntax. Default is
false.

HTTPCookieSize 14 to 100 The size in bytes to be
used by nhp(s) cookies

NHPScanTime 5000 to No Max The number of
milliseconds that the
server will wait before
scanning for client
timeouts. Default is 5000,
i.e. 5 seconds

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 44

Configuration Element Valid Parameters Description

NHPTimeout 2000 to No Max The number of
milliseconds the server
will wait for client
authentication. Default is
120000, i.e. 2 minutes.

NanoDelayBase 10000 to 1000000 This number represents
the number of nano
seconds in a millisecond.
Typically this is 1,000,000
however, it can be used to
increase or decrease the
internal delays used by
Universal Messaging.

OverrideEveryoneUser True or False Override the *@*
permission for channels /
queues with explicit acl
entry permissions.

SendRealmSummaryStats True or False If true sends the realms
status summary updates.
Default is false.

ServerStateFlush 50 to 1000 Specifies the time in
milliseconds between
scans to save the servers
state files

ServerTime True or False Allow the server to send
the current time to the
clients. Default is true.

StampDictionary True or False Place Universal Messaging
details into the dictionary,
default is false.

StampHost True or False Stamps the header with
the publishing host (true/
false)

StampTime True or False Stamps the header with
the current time (true/
false)

StampTimeUseHPT True or False If this is set to true then the
server will use an accurate

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 45

Configuration Element Valid Parameters Description
ms clock, if available, to
stamp the dictionary

StampTimeUseHPTScale 0 to 2 This has 3 values, milli,
micro or nano accuracy

StampUser True or False Stamps the header with
the publishing user (true/
false)

StatusBroadcast 2000 to No Max The number of ms
between status events
being published. Default is
5000, i.e. every 5 seconds.

StatusUpdateTime 2000 to No Max The number of ms
between status events
being wrien to disk.
Status events provide
a history of the realm's
state, the default for this
is Long.MAX_VALUE, i.e.
never wrien to disk.

SupportOlderClients True or False Allow the server to
support older clients.
Default is true.

Inter-Realm Comms Config

EstablishmentTime 10000 to 120000 Time for an inter realm
link to be initially
established.

KeepAliveInterval 1000 to 120000 Time interval where if
nothing is sent a Keep
Alive event is sent

KeepAliveResetTime 10000 to 180000 If nothing has been
received for this time the
connection is deemed
closed

MaximumReconnectTime 1000 to 50000 The maximum number
of milliseconds to wait

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 46

Configuration Element Valid Parameters Description
before trying to reestablish
a connection.

MinimumReconnectTime 100 to 10000 The minimum time to
wait before establishing a
connection.

Timeout 60000 to 180000 If no events received
within this time limit the
link is assumed dead and
will be closed.

WriteDelayOnFail True or False If true the comms will wait
for the link to re establish.

WriteDelayTimeout 1000 to 60000 The maximum time to wait
in a write of the link has
dropped.

JVM Management

AutoThreadDumpOnExit True or False Defines if a thread dump is
produced when the server
exits.

EmergencyThreshold 80 to 99 The memory threshold
when the server starts
to aggressively scan for
objects to release. Default
is 94, i.e. 94%

EnableJMX True or False Enable JMX beans within
the server

ExitOnDiskIOError True or False If true, the server will exit
if it gets a I/O Exception.
Default is true

ExitOnInterfaceFailure True or False If true and for any reason
an interface cannot be
started when the realm
initialises, the realm will
shutdown.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 47

Configuration Element Valid Parameters Description

ExitOnMemoryError True or False If true, the server will exit
if it gets an out of memory
exception. Default is true.

IORetryCount 2 to 100 Number of times an file
I/O operation will be
aemptd before aborting

IOSleepTime 100 to 60000 Time between disk I/O
operations if it fails

JMXRMIServerURLString String JNDI Lookup URL for the
JMX Server to use.

MemoryMonitoring 60 to 30000 Number of milliseconds
between monitoing
memory usage on the
realm. Default is 2000.

ThroleAllPublishersAtThreshold True or False Defines if publishers
will be throled back
when memory emergency
threshold is reached

WarningThreshold 70 to 95 The memory threshold
when the server starts to
scan for objects to release.
Default is 85, i.e. 85%.

Join Config

ActiveThreadPoolSize 1 to No Max The number of threads to
be assigned for the join
recovery. Default is 2.

IdleThreadPoolSize 1 to No Max The number of threads
to manage the idle and
reconnection to remote
servers. Default is 1.

MaxEventsPerSchedule 1 to No Max Number of events that
will be sent to the remote
server in one run. Default
is 50.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 48

Configuration Element Valid Parameters Description

MaxQueueSizeToUse 1 to No Max The maximum events that
will be queued on behalf
of the remote server.
Default is 100.

UseQueuedLocalJoinHandler True or False Specifies whether to use a
queued join event handler.
True will enable source
channels and destination
channels to be process
events independently

Logging Config

DefaultLogSize No Min to No
Max

The default size of the log
in bytes

EmbedTag True or False Whether to include the
type tag in the log message

EnableLog4J True or False If enabled will intercept
log messages and pass to
Log4J as well

LogManager 0 to 3 The Log manager to use

RolledLogFileDepth No Min to No
Max

The number of log files to
keep on disk when using
log rolling. Oldest entries
will be deleted when new
files are created.

customAuditTag String The tag to mark Audit log
entries with

customFailureTag String The tag to mark Failure log
entries with

customFatalTag String The tag to mark Fatal log
entries with

customInformativeTag String The tag to mark
Informative log entries
with

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 49

Configuration Element Valid Parameters Description

customLogTag String The tag to mark Log log
entries with

customSecurityTag String The tag to mark Security
log entries with

customSuccessTag String The tag to mark successful
log entries with

customWarningTag String The tag to mark Warning
log entries with

fLoggerLevel 0 to 7 The server logging level,
between 0 and 7 with 0,
indicating very verbose,
and 7 inidicating very
quiet. Default is 1.

MQTTConfig

Timeout 1000 to 60000 The number of
milliseconds over the
timeout value before
the server will close the
connection

Plugin Config

EnableAccessLog True or False Defines if plugin access log
produced

EnableErrorLog True or False Defines if plugin error log
produced

EnablePluginLog True or False Defines if plugin status log
produced

MaxNumberOfPluginThreads 10 to 10000 Maximum number of
threads to allocate to the
plugin manager

PluginTimeout 1000 to 30000 Time in milliseconds that
the plugin will read from a
client

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 50

Configuration Element Valid Parameters Description

Protobuf Config

CacheEventFilter True or False Hold the Protocol Buffer
filter cache in memory.
Default true

FilterProtobufEvents True or False Allows the server to
filter on Protocol Buffers.
Default is true

MaximumProtobufBuilders No Min to No
Max

The maximum amount of
builders per descriptor file.
Default 4

MinimumProtobufBuilders No Min to No
Max

The minimum amount of
builders per descriptor file.
Default 2

ProtobufDescriptorsInputDir String The folder to search for
Protocol Buffer descriptor
files to parse incoming
messages.

ProtobufDescriptorsOutputDir String The folder for the server to
put the combined Protocol
Buffer descriptor file for
serving out to clients.

UpdateDescriptorsInterval 1000 to No Max The time in milliseconds
between checking the
Protocol Buffer directory
for updates. Default is
60000

RecoveryDaemon

EventsPerBlock 1 to No Max The number of events to
send in one block

ThreadPool 1 to No Max Number of threads to use
for client recovery

Thread Pool Config

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 51

Configuration Element Valid Parameters Description

CommonPoolThreadSize 5 to 1000 Maximum number of
thread to allocate to the
common thread pool

ConnectionThreadPoolMaxSize 10 to No Max The maximum number
of threads allocated to
establish client connections

ConnectionThreadPoolMinSize 4 to 100 The minimum number
of threads allocated to
establish client connections

ConnectionThreadWaitTime 10000 to 300000 The time for the thread
to wait for the client to
finalise the connection

EnableConnectionThreadPooling True or False If true then if NIO is
available it will be
available for interfaces to
use it and then all reads/
writes will be done via the
Read/Write thread pools. If
NIO is not available then a
limited used write thread
pool is used.

ReadThreadPoolMaxSize 4 to No Max The maximum number
of threads that will be
allocated to the read pool.
If NIO is not available
this should be set to the
maximum number of
clients that is expected to
connect. If NIO is available
then this number would be
best to keep under 20.

ReadThreadPoolMinSize 4 to No Max This is the number of
threads that will always be
present in the read thread
pool. If this is too small
then the thread pool will
be requesting new threads
from the idle queue more
often.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 52

Configuration Element Valid Parameters Description

SchedulerPoolSize 1 to 100 The number of threads
assigned to the scheduler,
default is 2.

ThreadIdleQueueSize 5 to 50 When threads are released
from various pools since
they no longer need them
they end up in the idle
queue. If this idle queue
exceeds this number the
threads are destroyed. By
specifying this number
to be large enough to
accommodate enough
idle threads so that if any
thread pool requires to
expand then they can be
reused.

WriteThreadPoolMaxSize 5 to No Max The maximum number
of threads that will be
allocated to the write pool.
If NIO is not available
this should be set to the
maximum number of
clients that is expected to
connect. If NIO is available
then this number would be
best to keep under 20.

WriteThreadPoolMinSize 5 to No Max This is the number of
threads that will always be
present in the write thread
pool. If this is too small
then the thread pool will
be requesting new threads
from the idle queue more
often.

TransactionManager

MaxEventsPerTransaction 0 to No Max The maximum number of
events per transaction, a 0
indicates no limit

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 53

Configuration Element Valid Parameters Description

MaxTransactionTime 1000 to No Max Time in milliseconds that
a transaction will be kept
active

TTLThreshold 1000 to 60000 The minimum time in
milliseconds, below which
the server will not store
the Transaction ID

Double-clicking on the item you wish to modify in the configuration group will provide
you with a dialog window where the new value can be entered. Configuration items will
be validated to check whether they are within the correct range of values. If you enter an
incorrect value you will be notified.

Zone Administration
Overview of Zone Administration

The Enterprise Manager provides menu items for performing the administrative
functions on zones.

For general information about using zones, refer to the Architecture section of the
Universal Messaging Concepts guide.

Zone administrative functionality is offered in the Enterprise Manager menu bar and in
the navigation tree:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 54

The Zone tab in the menu bar allows you to perform operations on zones, such as
creating and deleting zones.

The Zones node in the navigation tree is the parent node of any zones you create.

The zone administration operations that you can perform are described in the following
sections.

Creating a Zone

To create a zone and define it with an initial set of realms or clusters, proceed as follows:

1. Open the dialog for creating a zone.

You can do this in one of the following ways:

In the Menu bar, select Zone > Create Zone, or

In the navigation tree, select the Zones node, and from the context menu choose
Create Zone.

2. In the dialog, specify a name that will be assigned to the zone.

3. Add realms or clusters to the zone.

If you select the radio buon for realms, you see all of the realms that you can add to
the zone. If you select the radio buon for clusters, you see all of the clusters that you
can add to the zone.

Specify the realms or clusters you want to add to the zone, then click Add.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 55

4. Click OK to create the zone and close the dialog.

The newly created zone is now displayed under the Zones node in the navigation tree.

If you expand the node of the new zone, you will see the realms that belong to the zone.

Note: 1. A zone can contain either realms or clusters, but not a mixture of realms
and clusters.

2. A zone cannot be empty; it must contain at least one realm or cluster.

Modifying the set of realms or clusters in a zone

To modify the set of realms or clusters in a zone, proceed as follows:

1. Under the Zones node in the navigation tree, select the node representing the
required zone. In the context menu, select Modify Zone Members.

This displays the realms/clusters that are currently members of the zone, and also
the realms/clusters that are currently not members but which are available to become
members.

2. As required, add realms/clusters to the zone's existing members, or remove existing
members.

3. Click OK to save the modified zone and close the dialog.

Deleting a zone

To delete a zone, proceed as follows:

1. Select the Zones node in the navigation tree, then in the context menu, select Delete
Zone.

Alternatively, select Zone > Delete Zone from the menu bar.

2. Select the required zone from the displayed list and click OK to delete the zone.

Creating a channel/queue in a zone

You can create a channel or queue for a zone, and the channel/queue will be
automatically created on all realms/clusters in the zone.

To create a channel or queue in a zone, proceed as follows:

1. Select the node for the zone in the navigation pane. Then, in the context menu of the
node, select Create Channel or Create Queue as required.

2. In the Add Channel or Add Queue dialog, specify the aributes of the channel or queue
that you wish to create.

3. Click OK to complete the dialog and create the channel or queue.

The Enterprise Manager now creates the channel on all realms or channels in the zone.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 56

Modifying a channel/queue in a zone

If you wish to modify the aributes of a channel or queue that was created in a zone via
Create Channel or Create Queue, you must modify the aributes for the channel/queue in
each of the zone members (realms, clusters) individually.

Note: Any changes you make to the channel/queue definition for a realm/cluster in
a zone are NOT propagated automatically to the other zone members. If you
wish to keep all zone members in sync, you have to update the other zone
members individually.

To modify a channel or queue on one realm/cluster in a zone, proceed as follows:

1. Select the node for the channel/queue under the node for the realm/cluster on which
the channel/queue is defined.

2. In the context menu of the channel/queue, select Edit Channel or Edit Queue.

3. In the Modify Channel or Modify Queue dialog, make your changes and click OK to
complete the dialog.

General notes on using zones

This section summarizes some operational aspects of using zones.

If a zone member (a realm or cluster) is not active (e.g. the server is down), no
Enterprise Manager operations will be allowed on the zone until all zone members
are available again.

Any given realm or cluster cannot be a member of more than one zone at the same
time.

Cluster Administration
This section describes the process of creating a Universal Messaging cluster. Universal
Messaging Clusters enables the replication of resources across the cluster. The state of a
clustered resource is maintained across all realms within the cluster. For example if an
event is popped from a clustered queue it is popped from all nodes within the cluster.

Creating a cluster of Universal Messaging realms ensures that applications either
publishing / subscribing to channels, or pushing / popping events from queues can
connect to any of the realms and view the same state. If one of the realms in the cluster
is unavailable client applications can automatically reconnect to any of the other cluster
realms and carry on from where they were.

For more information on how to use the Enterprise Manager to manage Universal
Messaging Clusters please see:

"Creating Realm Clusters" on page 57

"Deleting Realm Clusters" on page 61

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 57

"Modifying Cluster Members" on page 62

"Creating Cluster Channels" on page 64

"Creating Cluster Queues" on page 67

"Viewing and Monitoring Cluster Information" on page 70

"Manage Inter-Cluster Connections" on page 72

For more information on how to use the Enterprise Manager to manage Universal
Messaging Clusters with Sites please see:

"Creating and Managing Clusters with Sites" on page 75

Creating a Cluster
This section describes the process of creating a Universal Messaging Cluster . Clusters
allow a group of Universal Messaging Realm Servers to replicate resources between
them, and to maintain the state for those objects across all realms within the cluster.

Creating a cluster of Universal Messaging realms ensures that applications which
publish/subscribe to channels, or which push/pop events from queues, can connect
to any of the realms and view the same state. If one of the realms in the cluster is
unavailable, client applications can automatically reconnect to any of the other cluster
realms and carry on from where they were.

Universal Messaging's clustering technology provides an unsurpassed level of reliability. Client
applications can seamlessly switch between any cluster realm if any problems - such as
network or hardware failures - occur with the realm to which they are connected. This
also provides an exceptional ability to load balance clients between realm servers.

Viewing Clusters in Enterprise Manager

The Enterprise Manager's top level view shows a tree node labelled "Universal
Messaging Enterprise" (see "Enterprise Summary" on page 259). One level below this
is a tree node labelled "Clusters ", which contains any known clusters.

If you use the Enterprise Manager to connect to a realm which is a member of an
existing cluster, then the cluster will automatically be displayed under the above-
mentioned "Clusters " tree node. When a cluster node is found, the Enterprise Manager
will also automatically connect to all of the cluster member realms (if not already
connected by default as a result of having loaded realm connection information in a
custom Enterprise Manager Connection Profile (see "Connecting to Multiple Realms" on
page 15).

Preparing to Create a Cluster

Firstly, before a cluster can be created, the Enterprise Manager need to connect to those
realms (see "Connecting to Multiple Realms" on page 15) that will form the cluster.
If any realms cannot be connected to, or you receive a 'Security Alert' message when you
click on the realm node, you may want to check that the realm is running, and check the
permissions (see "Realm Entitlements" on page 125) on the realm. If the realms you

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 58

are connecting to are running on different machines, you need to ensure that all realm
machines are given full permissions to connect to the other realms in the cluster. Each
realm communicates with the other cluster realms via its own connection. The subject of
each connection is as follows:

realm-realmname@ip_address

For example, in the following example, there are 3 realms that will form part of a cluster,
each realm subject needs to exists in the other realms ACLs, for example, the following
realm subjects need to be added to the acl for each realm in our example:

realm-realm1@10.140.1.1realm-realm2@10.140.1.2realm-realm3@10.140.1.3

The permissions given for each realm need to be 'Access Realm'. As well as this, each
realm must have a valid entry for the user@host that corresponds to the user that will
create the cluster using the Enterprise Manager. The permissions for this user must be
sufficient in order to create the cluster object. Temporarily it is often beer to provide the
@ default subject 'Full' privileges to facilitate seing up a realm and clusters.

Creating a cluster

If you select the 'Clusters' node under the 'Universal Messaging Enterprise' node, you
will be shown a pop up menu with a number of options. One of the options is to create a
cluster. The image below shows this menu option as described.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 59

When you select the 'Create Cluster' menu option, you are presented with the cluster
dialog. The cluster dialog allows you to select which of the realms that the Enterprise
Manager is connected to will become members of the cluster. One of the selected realms
will become the master during the cluster creation. The master realm will controls
synchronizing the state between the other realms and acts as the authoritative source for
this information.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 60

The cluster dialog contains a text box for you to input the name of the cluster. Below
the name, are the details of the cluster members. The available realms are shown on the
left hand side of the dialog. The right hand side shows those realms that are members.
When you double-click on a realm name, or click on a realm name and click on the 'Add'
buon, the realm will be added to the Cluster Members list. You can remove any realm
from either the Cluster Members list by either double clicking on the realm from the list
or by selecting the realm name, and clicking on the 'Remove' Buon.

When you have finished selecting your cluster members, clicking on the 'OK' buon
in the Cluster dialog will create the cluster. A new cluster node will appear under the
'Clusters' node and the realms that have been selected as members will be rendered
beneath the cluster.

Checking the cluster state

When a cluster has been created, you can monitor its state by selecting the cluster node.
The 'Cluster Summary' tab will show the state of all cluster members, and which realm
is current cluster master. The image below shows the state of a cluster when it has been
created and all realms within the cluster are fully online.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 61

Creating cluster channels (see "Cluster Channel Administration" on page 64) and
cluster queues (see "Cluster Queue Administration" on page 67) is not permied if
any of the cluster realms are offline.

Deleting Clusters
When a Universal Messaging cluster needs to be deleted, all cluster resources that
exist in all cluster member realms will also be deleted. Removal of a cluster is a simple
operation that can be achieved using the Enterprise Manager. This section will describe
the process of removing a cluster.

In order to remove a Universal Messaging Realm cluster, you must first of all select the
'Clusters' node from the Enterprise Manager. Right-clicking on this node will present a
pop up menu, as shown in the image below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 62

Selecting the menu option 'Delete Cluster' will prompt you with a dialog that asks you
to select a cluster node from a list. This list will contain all known clusters within the
realms you have connected to. This dialog is shown in the image below.

Clicking on the 'OK' buon once you have selected the cluster you wish to delete will
prompt you to answer a question. This question gives you 2 choices with regard to the
cluster resources that may exist within the cluster. These are:

Delete all cluster wide resources from each cluster realm

Convert all cluster wide resources to local within each realm

Choosing to delete all cluster resources will not remove any locally created channels,
only those created for the cluster.

Choosing to convert each one to local, will keep any data that may be contained with the
resources .

This dialog is shown in the image below. Choosing 'Yes' will remove the cluster objects,
'No' will make them all local, 'Cancel' will take no action at all.

Modifying Clusters
The Universal Messaging Enterprise Manager enables you to modify clusters. By
'Modify' we mean adding new realms to the cluster or removing existing cluster
members.

To add a new realm to a cluster, you must first of all ensure that you have connected
to (see "Connecting to Multiple Realms" on page 15) the realm you wish to add.
Removing realms is accomplished by selecting the realm you wish to remove from the
cluster. This will be discussed in more detail further on.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 63

If for example, you have a cluster with two realms, and wish to add a third realm to the
cluster, it is possible to do so. Similarly, if you have a cluster with three (or any number
of realms) and wish to remove a realm from the cluster, this is also possible.

Adding Cluster Members

In order to add a realm to a cluster, you must first ensure that you have created a cluster
(see "Creating a Cluster" on page 57). Once you have a cluster, then also ensure you
have connected to (see "Connecting to Multiple Realms" on page 15) the realm you
wish to add to your cluster. Select the cluster node from the namespace and right-click
on the node. This will present you with a pop-up menu. Select the menu item labelled
'Modify Cluster Members'.

The dialog this presents you displays the current members of your cluster as well as
any realms you are not connected to that are not cluster members. This dialog is shown
below:

The dialog shows the name of the cluster, a list of realms which are not currently
members of the cluster (shown as a list on the left hand side), and a list of current cluster
members (on the right hand side).

As you can see from the above example, currently there are three realms within the
cluster 'TestCluster'.

Double-clicking on any non-member realm, or selecting it from the list and clicking the
'Add' buon will enable you to add the realm as a member.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 64

When you have added the realms you wish to add as cluster members, click on the
buon labelled 'OK'. This will add all realms in the right-hand list to the cluster. All
cluster resources will also be created on the newly added realms once the realms have
successfully been added to the cluster.

Removing Cluster Members

Removing cluster realms is achieved by again selecting the cluster node, right-clicking
on the node and choosing the 'Modify Cluster Members' menu item. This presents the
same dialog as shown above.

To remove a realm, double-click on the realm from the 'Cluster Members' list or select
the realm and click the 'Remove' buon. This will remove the realm from the list and
add it back into the non-members list.

Clicking on the buon labelled 'OK' will then prompt you to answer a question. This
question allows you to select one of 2 options:

Delete all cluster wide resources from each the removed realm members

Convert all cluster wide resources to local within the removed realm members

Choosing to delete all cluster resources will not remove any locally created channels,
only those created for the cluster within the realms you are removing.

Choosing to convert each one to local, will keep any data that may be contained within
the cluster resources for the realms you wish to remove.

Adding and Removing Cluster Members

Cluster members can be added and removed in the same operation. For example, if you
have a cluster with 'realm1' and 'realm2' but want to remove 'realm2' and add 'realm3',
you would simply remove 'realm2' and add 'realm3' from the 'Cluster Members' list
in the 'Modify Cluster' dialog. The Enterprise Manager will work out which realms to
add and which to remove for you and perform the necessary channel conversion and
deletions you choose.

Cluster Channel Administration
This section describes the process of creating channels on a Universal Messaging
Realm cluster. Channels are the logical rendezvous point for data that is published
and subscribed. Each channel that is created consists of a physical object within each
Universal Messaging realm within the cluster as well as its logical reference within each
realm's namespace.

Creating channels using the Enterprise Manager creates the physical object within each
cluster realm. Once created, references to the cluster channels can be obtained using the
Universal Messaging Client and Admin APIs, as you would with normal channels that
are not cluster wide channels. Clustered channels can also be monitored and managed
using the Enterprise Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager, all
resources and services found within each realm's namespace are displayed in a tree

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 65

structure under each realm node. Each cluster node also displays the member realms
that make up the cluster.

Creating Cluster Channels

To create new cluster channels, you must first create a cluster if one does not already
exist.

Secondly, in order to create a cluster channel, you must select the cluster node from
the namespace tree where the channel will be created. For example, if there is a cluster
called 'TestCluster', which contains 3 realms called 'realm1', 'realm2' and 'realm3' and
you want to create a channel called '/eur/gbp' within that cluster of realms, you would
need to first of all click on the cluster node called 'TestCluster'. Then, by right-clicking on
cluster node a pop-up menu will be displayed that shows a number of menu items (as
shown in the image below).

By clicking on the menu item 'Create Cluster Channel', you will be prompted with a
dialog box that allows you to enter the details of the cluster channel you wish to create.
Cluster channels have exactly the same set of aributes assigned to them as normal
channels when they are created.

The create channel dialog for cluster channels allows you to input values for each of
these aributes. The only difference is that the channel will be created across all of the

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 66

realms within the cluster and the same state will be maintained between all instances of
that channel by the cluster realms. This means, for example, that if an event is published
to a clustered channel it becomes available on all clusters simultaneously.

In order to create a transient cluster channel called '/eur/gbp' the following seings
would be configured:

Clicking on the 'OK' buon will create the channel '/eur/gbp' across all realms within
the cluster 'TestCluster' and render the channel object in the namespace tree of the
Enterprise Manager. The image below shows how the namespace tree looks after the
cluster channel has been created, fully expanded.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 67

As you can see from the image above, each realm node now contains the the channel
node in its namespace tree under a folder (which we call a container node) called '/eur'.
The icon used for a cluster channel is different to that of normal channel and is denoted
by the small leer 'c' in the icon, whereas the normal channel icon does not contain the
'c'.

Cluster Queue Administration
This section describes the process of creating queues on a cluster of Universal Messaging
realm servers. Each cluster queue that is created consists of a physical object within each
Universal Messaging realm within the cluster as well as its logical reference within each
realm's namespace.

Creating queues using the Enterprise Manager creates the physical object within each
cluster realm. Once created, references to the cluster queues can be obtained using the
Universal Messaging Client and Admin APIs, as you would with normal queues that are
not cluster wide queues. Clustered queues can also be monitored and managed using
the Enterprise Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager, all
resources and services found within each realm's namespace are displayed in a tree

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 68

structure under each realm node. Each cluster node also displays the member realms
that make up the cluster.

Creating Cluster Queues

To create new cluster queues, you must first create a cluster (see "Creating a Cluster" on
page 57) if you have not already done so.

Secondly, in order to create a cluster queue, you must select the cluster node from the
namespace tree where the queue will be created. For example, if i have a cluster called
'TestCluster', which contains 3 realms called 'realm1', 'realm2' and 'realm3' and i want
to create a queue called /eur/orders within that cluster of realms, i would need to first of
all click on the cluster node called 'TestCluster'. Then, by right-clicking on cluster node
a pop-up menu will be displayed that shows a number of menu items (as shown in the
image below).

By clicking on the menu item 'Create Cluster Queue', you will be prompted with a
dialog box that allows you to enter the details of the cluster queue you wish to create.

Cluster queues have exactly the same set of aributes assigned to them as normal
queues when they are created. The create queue dialog for cluster queues allows you
to input values for each of these aributes. The only difference will be that the queue

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 69

will be created across all of the realms within the cluster and the same state will be
maintained between all instances of that queue by the cluster realms.

In order to create a cluster queue called '/eur/orders' aributes you would add the
aributes as shown below:

Clicking on the 'OK' buon will create the queue '/eur/orders' across all realms within
the cluster 'TestCluster' and render the queue object in the namespace tree of the
Enterprise Manager, both under each realm under each realm in the cluster as well as
each realm underneath the realms container node. The image below shows how the
namespace tree looks after the cluster queue has been created, fully expanded.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 70

As you can see from the image above, each realm node now contains the the queue node
in its namespace tree under a folder (which we call a container node) called '/eur'. The
icon used for a cluster queue is different to that of normal queue and is denoted by a 'c'
in the icon, whereas the normal queue icon does not have a 'c'. queue.

Viewing Cluster Information
The Enterprise Manager provides Cluster information through the following four tabs:

Cluster Summary

Connections

Logfile

Sites

Cluster Summary

The Cluster Summary tab provides an overview of all realms in the Cluster. It identifies
the current Master realm, and also shows each realm's perception of the state of all other
realms.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 71

The Cluster Summary Tab.

Connections

The Connections tab shows all connections to realms in the Cluster. In this example, it
shows a single user connected to three realms in the Cluster:

The Cluster Connections Tab.

Remote Cluster Connections

The Remote Cluster Connections tab shows all remote cluster connections for this
Cluster. Clusters can be remotely connected together providing the ability to create joins
between channels in different clusters:

The Remote Cluster Connections Tab.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 72

Logfile

The Logfile tab shows a real-time Cluster-specific log, and provides the option to stream
the log output to a file:

The Cluster Logfile Tab.

Sites

The Sites tab shows any site configurations (see "Creating and Managing Clusters with
Sites" on page 75) for the current cluster. Clusters that have Site configurations are
known as Universal Messaging Clusters with Sites. (Those without are known as Universal
Messaging Clusters):

The Cluster Sites Tab.

Manage Inter-Cluster Connections

Creating Inter-Cluster Connections

Inter cluster connections can be created through the Enterprise Manager. To do this,
firstly connect to a realm in each cluster. Then, once both clusters are displayed in the
Enterprise Manager, click on the "Inter-Cluster Connections" tab under one of the cluster
panels.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 73

Next, select "Add" and choose the remote cluster from the dropdown list in the popup
dialog which will now appear:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 74

The inter-cluster connections should now be established, and inter-cluster joins can
now be formed through the Enterprise Manager (see "Channel Join" on page 327) or
programmatically.

Deleting Inter-Cluster Connections

To delete an inter-cluster connection, simply select the connection from the list and click
"Delete".

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 75

Creating and Managing Clusters with Sites
This section describes the process of modifying a Universal Messaging Cluster into a
Universal Messaging Cluster with Sites. Clusters with Sites allow a standard Universal
Messaging Cluster to operate with as lile as 50% of the active cluster members, and
provides administrators with a mechanism to prevent the split brain scenario that would
otherwise be introduced when using exactly half of a cluster's realms.

Viewing Site Information in Enterprise Manager

The Enterprise Manager's top level view shows a tree node labelled "Universal
Messaging Enterprise" (see "Enterprise Summary" on page 259). One level below this
is a tree node labelled "Clusters ", which contains any known clusters.

After creating your cluster (see "Creating a Cluster" on page 57) and selecting the
cluster's icon in the Enterprise Manager, click the Sites tab:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 76

Sites Tab in Cluster View. No Sites have yet been created for the above cluster.

Creating a Primary Site for a Cluster

Click the New buon to create the first Site. We'll assume the site is named Production.
Follow the prompts and pick a Realm to include in the site, for example realm1:

Creation of a "Production" Site.

Addition of an Initial Member to "Production" Site.

At this point, the new Site will appear in the Sites tab:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 77

The "Production" Site with its initial member realm is shown.

Note that the table will contain a column for all realms in the cluster. In this example
we have only added one realm to the Production Site. Checking and unchecking the
appropriate checkboxes will add or remove clustered realms from the corresponding
Sites.

Creating a Backup Site for a Cluster

Next, follow the same steps to create the second Site, which in this example we shall
assume is named : Disaster Recovery

Creation of a "Disaster Recovery" Site and addition of an initial site member realm.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 78

Addition of an Initial Member to "Disaster Recovery" Site.

The new Disaster Recovery Site will now also appear in the Sites tab:

Sites Tab in Cluster View. The "Production" and "Disaster Recovery" Sites are both shown.

Setting a Site's IsPrime Flag

Administrators use the Sites isPrime flag to determine which site will contain a cluster's
Master realm. Typically, the Disaster Recovery Site will be set to be Prime, allowing
the Production site to fully fail and allowing the Disaster Recovery Site to vote a
new master. Should the Disaster Recovery Site fail, the administrators would set the

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 79

Production Site to be Prime, which permits the election of a new Master without the
usual 51% quorum requirement:

Setting the Disaster Recovery Site to be Prime by checking its isPrime checkbox.

Channel Administration
The links below describe the Channel management features available within Universal
Messaging's Enterprise Manager

"Creating Channels" on page 80

"Editing Channels" on page 85

"Copying Channels" on page 88

"Channel Joins" on page 327

"Channel Snoop" on page 93

"Publishing Events Onto Channels" on page 95

"Named Object Administration" on page 98

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 80

Channel Creation
This section describes the process of creating a Universal Messaging channel on
Universal Messaging realm servers. Channels are the logical rendezvous point for data
that is published and subscribed. If you are using Universal Messaging Provider for JMS
then channels are the equivalent of JMS topics.

Each channel that is created consists of a physical channel within the Universal
Messaging realm as well as its logical reference within a namespace that may be made
up of resources that exist across multiple Universal Messaging realm servers. Creating
channels using the Enterprise Manager creates the physical object within the realm.
Once created, references to channels can be obtained using the Universal Messaging
Client and Admin APIs. Channels can also be monitored and managed using the
Enterprise Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager,
all resources and services found within the realm namespace are displayed in a
tree structure under the realm node itself. It is possible to view multiple Universal
Messaging realm servers from a single enterprise manager instance.

Creating Channels on a Universal Messaging Realm

To create new Universal Messaging channels, the Enterprise Manager provides a
number of options. Firstly, in order to create a channel, the branch where the channel
will exist needs to be selected within the namespace tree.

For example, to create a channel called '/eur/rates' on a Universal Messaging realm
called 'nirvana' simply right-click on the realm node to display a pop-up menu which
contains a 'Create Channel' option.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 81

After selecting 'Create Channel', an Add channel dialog box appears. Channels have
a set of aributes assigned to them when they are created. The create channel dialog
allows you to input values for each of these aributes.

In order to create the channel '/eur/rates' please fill in the name and choose the channel
type as well as any other aributes.

Universal Messaging channels can be of the following types:

persistent

mixed

reliable

simple

transient

off-heap

paged

For information about these types, see the summary of channel aributes in the
Commonly Used Features section of the Universal Messaging Developer's Guide.

In the example below, a channel type of Simple and a TTL of 7 seconds have been given
to the channel.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 82

Clicking on the 'OK' buon will create the channel '/eur/rates' on the Universal
Messaging realm 'nirvana' and render the channel object in the namespace tree of the
Enterprise Manager underneath the realm node. This is shown in the image below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 83

There are also a number of Storage Properties associated with the channel which can be
configured by clicking the "Edit..." buon to the right of "Storage Properties".

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 84

As you can see from the image above, the channel node in the tree has been created
under a folder (which we call a container node) called '/eur' under the realm 'nirvana'.

It is also possible to create channels directly underneath container nodes. For example,
if we wished to create another channel called '/eur/trades', we could repeat the process
described above using the full absolute name of the channel. This would again create
a channel called trades under the container node /eur. Alternatively, we can select
the /eur node and create the new channel using its relative name /trades. Selecting the
container node and right-clicking on the node, shows another pop-up menu of options
for container nodes. One of the options is 'Create Channel'. The image below shows this
menu as it appears when the container is right-clicked.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 85

By selecting the menu item, 'Create Channel' from the container node, you are once
again presented with the create channel dialog. This dialog looks like the dialog
used previously, except the dialog shows that the channel will be created under the
container /eur.

Channel Editing
This section describes the process of editing the aributes of a Universal Messaging
channel.

Editing channels using the Enterprise Manager enables you to change specific aributes
for a channel, such as name, event time to live (TTL), capacity, channel keys or even the
realm on which the channel exists.

When a channel is edited, its aributes and any events found on the channel will be
copied into a temporary channel, the old channel is then removed and then the new
channel is created. The original events are then copied from the temporary channel onto
the new channel.

In order to edit a channel select it in the namespace and then after right-clicking on the
node, a menu will be displayed with the various options for a channel node. The image
below shows this menu.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 86

By selecting the 'Edit Channel' option, you will be presented with a dialog that allows
you to modify the details of the channel. These details not only include the channel
aributes, but also the realm to which the channel exists. The image below shows the
edit channel dialog.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 87

The image shows a drop down list containing all the names of the realms that the
enterprise manager is currently connected to. By selecting a realm name from the list, it
is possible to move the selected channel to any of the available realms. Clicking on the
'OK' buon will perform the edit operation on the channel.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 88

There are also a number of Storage Properties associated with the channel which can be
configured by clicking the "Edit..." buon to the right of "Storage Properties".

Copying Channels
This section describes the process of copying channels in Universal Messaging realms.

Copying channels using the Enterprise Manager enables you to duplicate channels
automatically across realms. When a channel is copied, its aributes and any events
found on the channel will be copied over onto the new channel copy.

Firstly, by selecting the channel in the namespace that you wish to copy and right-
clicking on the node, you will be presented with a menu that shows you the various
options for a channel node. The image below shows this menu.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 89

By selecting the 'Copy Channel' option, you will be presented with a dialog that allows
you to input the details of the new channel copy. These details not only include the
channel aributes, but also the realm to which the channel will be copied to. The image
below shows the copy channel dialog.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 90

The image shows a drop down list containing all the names of the realms that the
enterprise manager is currently connected to. By selecting a realm name from the list,
it is possible to create a copy of the selected channel in that realm. Clicking on the 'OK'
buon will create the channel on the selected realm and the channel will then appear in
the namespace tree.

Creating Channel Joins
This section describes the process of joining channels on Universal Messaging realms.
Channels are the logical rendezvous point for data that is published and subscribed .

Channels can be joined programmatically or by using the Universal Messaging
Enterprise Manager as described below.

Joining channels using the Enterprise Manager creates a physical link between 2
channels, a source channel and a destination channel. Once created, any events
published to the source channel will be republished onto the destination channel.

Joins can be created using filters , so that only specific events published to the source
channel that match a criteria will be routed to the destination channel.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 91

Joins can also be created in several configurations, firstly joins may be created between
channels on a realm and a stores on another realm federated with the source realm.
Alternatively joins can be created from channels on a clustered realm to stores within
the same cluster. Non-clusterwide channels can be joined to cluster-wide stores, (but
not vice versa). Additionally, channels can be joined from channels on one cluster to
channels on another cluster by using inter-cluster joins (see "Inter-Cluster Joins" on page
93).

Universal Messaging also supports joins where the destination (incoming) is a queue.
Universal Messaging does not support joins where the source of the join is a queue.

The image below shows a set of realms that is part of a cluster 'productioncluster'. There
exists within this cluster, a cluster channel called '/eur/rates'.

By selecting the cluster channel '/eur/rates' on the productionmaster realm, and right-
clicking you can select the 'Join Channel' menu option, you will be presented with the
join dialog. This allows you to create a join between the clustered channel and any other
channel in any realm.

In this example, the realm 'productionmaster' contains a channel called /local/rates. If we
select this channel as the channel we wish to join to as shown in the join dialog below,
with a filter of CCY='EUR' this will ensure that only those events with the event property
CCY equals to 'EUR' will be published to the '/local/rates' channel.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 92

Clicking on the 'OK' buon will create the join. By selecting the 'Joins' tab panel for the
'/eur/rates' channel you will be presented with a panel that shows the join just created,
as shown in the image below. Selecting the newly created join will also show you any
relevant filtering criteria that the join has been created with.

The table that shows the joins for a channel will indicate in the 'Type' column whether
the join is 'Outgoing' or 'Incoming'. An outgoing join indicates that the selected channel
is the source for the join, whereas 'Incoming' will indicate the selected channel is the
destination channel.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 93

It is also possible to delete the join by selecting a join from the joins table, and clicking
the 'Delete Join' buon. Joins can only be deleted in the Enterprise Manager from the
source (outgoing) channel. If the destination channel (incoming) is selected, the 'Delete
Join' buon will be disabled.

Inter-Cluster Joins

To add a joins between channels on different clusters, first create an inter-cluster
connection between the two clusters. Next, simply select a realm in the desired
destination cluster as the join destination in the dropdown menu, as below:

As with non-inter-cluster joins, these joins can be specified with filters and hop-counts.
If realms in the destination cluster go down, the join will failover and will continue to
deliver events so long as the destination cluster is formed.

Inter-cluster joins can also be formed programmatically .

Channel Snoop
This section will describe how to snoop a Universal Messaging channel. Channels are
the logical rendezvous point for data that is published and subscribed.

Snooping a channel using the Universal Messaging enterprise manager allows the
display of the contents of events contained within that channel. Each channel node in the

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 94

namespace tree of a Universal Messaging realm, when selected, displays a snoop panel
that provides you with a means of subscribing to the channel so that the events' contents
can be displayed in a graphical panel.

You can select where on the channel you wish to subscribe from and to, based on the
event id, and you can also provide a filter that enables you to select specific events that
match a certain criteria.

First of all, by selecting the channel you wish to snoop in the namespace tree, the
Enterprise Manager will display a number of panels in a tabbed pane. One of these tabs
is labeled 'Snoop'. Selecting the snoop tab will display a panel like the one shown in the
image below.

The snoop panel is split up into a number of different sections. Firstly, the 3 text fields at
the top of the panel allow you enter an event id range to and from, and a selector string
that will be used to filter events being snooped on the channel. Clicking the 'Start' buon
will begin the channel snoop, and start displaying any events that are published onto the
channel using whatever values you have input into the text fields.

When events are published, they are added to the main table below the text field input.
This main table shows 4 columns of summary information about each event: the event
id, event tag, time to live, and whether the event is persistent. By clicking on any event
shown as a row in the main table, more information on the event is shown in the boom
3 panels. As shown in the image below.

The Top 2 remaining panels show a Hexadecimal view of the event data and an ASCII
representation of the same event data. The panel below that shows the contents of
the event properties (if one exists for the event) listed within a table. Each property is
displayed as a row in the table. The table columns show the name of the property, the
type, and the value.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 95

The buon labeled 'Pause' will temporarily suspend receipt of any new message being
received into the snoop panel for the selected channel. The 'Stop' buon will stop
snooping events and clear all the panels and tables.

In order to snoop the contents of a Universal Messaging queue (see "Queue Snoop" on
page 120) please see that section of the enterprise .

Channel Publishing
This section will describe how to publish events to a Universal Messaging channel from
the Enterprise Manager.

Events can be published either from scratch, or by duplicating events already published
onto a channel from within the snoop (see "Channel Snoop" on page 93) panel view.
Both options allow you to add and remove event properties, set the event TTL, the event
persistence, the event tag and the number of times the event will be published to the
channel.

The event data can be either manually input, obtained from an xml Document file or any
other binary file.

Firstly, to publish a new event from scratch, select the desired channel you wish to
publish an event onto, and then right-click on the same node and choose the 'Publish'
menu option. This will display a dialog as shown below where you can construct the
event.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 96

In the image above, the data for the event is simply a string. The properties are added
by entering a property key, a value and a type and then clicking on the 'Add Property'.
Once added, the properties are displayed in the table at the boom of the panel. To
remove a property entry, click on the property within the table view and select the
'Remove Property' menu option. Properties can also be edited by clicking on the
property from the table and double-clicking in the cell you wish to change. Once you hit
return, the value will be updated in the table.

To add an XML document as the event data, click on the 'Open' buon in the top right
hand corner of the dialog, and choose your xml file from the file chooser. Once opened,
the contents of the file will be displayed within the event data section of the dialog and
will be non-editable. An example of this is shown in the image below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 97

To publish the contents of any other file within the event data, repeat the above steps for
XML and select a non-xml file. The contents of the file will not be displayed, however the
file will be read in binary format when the 'Publish' buon is clicked and published to
the channel. Once again, when a file is selected for publishing the event data section is
non-editable.

Clicking on the 'Clear' buon will cancel any file that has previously been selected and
allow you to once again select a file or manually enter the event data.

In order to duplicate or modify and republish an event that has already been published
to a channel, you must first of all select the snoop panel (see "Channel Snoop" on page
93) for the channel in question, and snoop the channel. Once events are displayed
in the snoop panel, select the event you wish to duplicate or modify and republish from
the table of events. Right-clicking on the event will display a menu with 2 options. The
first option allows you to purge an individual event from a channel. The second menu
option will open the event publish dialog with the details of the event already filled in,
including the event properties, TTL and persistence.

Properties can be added / removed from the duplicate event as well as modified. To
modify a property, double-click in the cell of the property you wish to change and then
modifying its contents. With the republish option, you can also choose to purge the
original event from the channel by checking the 'Purge Original Event' checkbox. Once
the 'Publish' buon is clicked, the duplicate event will be published onto the channel.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 98

The number of publishes depends on the amount entered in the 'Num Of Publishes'
field. The image below shows the publish dialog for a JMS Message published onto a
Universal Messaging channel.

The publish option is also available for queues. The republish option is also available
from the snoop panel for queues.

Channel Named Objects
This section describes how to manage named objects stored by a realm server against a
Universal Messaging channel. Named objects are stored by the server and provide state
information for durable consumers mapped to specific names on channels. These named
objects are stored by the server, and so every time a consumer uses the named object, it
will always begin consuming from where the previous consumer finished.

The Universal Messaging apis provide methods for managing named objects
programmatically, in Java and C#.

The Enterprise Manager also provides a method to remove named objects from
channels.

In order to retrieve and remove any named objects present on a channel, firstly you
need to select the channel. This will present a set of panels within a tabbed pane for
the channel in question. One of these is labeled 'Named Objects'. When you first select

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 99

the 'Named Object' tab, this table will be empty. If you click on the buon labeled 'Get
Names', this will populate the table with any named objects found for that channel. The
image below shows the named object table for the /eur/rates channel has a named object
for the name 'administrator'.

The named object table shows each named object as a row in the table. The columns of
the table show the name, current event id (as known by the server), whether the named
object is cluster wide and whether it is persistent (when a realm is restarted the named
object state is read from disk as opposed to being held in memory where it would be lost
after a restart).

By highlighting a named object in the table, you can remove it by clicking on the 'Delete
Name' buon. This buon will remove the named object from the server.

DataGroup Administration
The links below describe the DataGroup management features available within
Universal Messaging's Enterprise Manager

"Creating DataGroups" on page 100

"Adding Existing DataGroups to DataGroups" on page 104

"Removing DataGroups from DataGroups" on page 106

"Deleting DataGroups" on page 107

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 100

Creating DataGroups
Universal Messaging DataGroups provide a very lightweight grouping structure that
allows developers to manage user subscriptions remotely and transparently.

Each DataGroup is a resource that exists within the Universal Messaging realm server,
or within a cluster of multiple realm servers. Creating a DataGroup - in this case using
the Enterprise Manager - creates the physical object within the realm. Once created,
references to the DataGroup can be obtained using the Universal Messaging Client and
Admin APIs. DataGroups can also be monitored and managed using the Enterprise
Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager,
all resources and services found within the realm namespace are displayed in a
tree structure under the realm node itself. It is possible to view multiple Universal
Messaging realm servers from a single enterprise manager instance.

Creating a DataGroup

In Enterprise Manager, the Data Groups node exists within the realm node. Locate the
Data Group Node, and right click on it to bring up a context menu:

Create the DataGroup - in this example, we'll call it EURUSD_Gold :

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 101

The new DataGroup can now be seen in Enterprise Manager:

Publishers with the Publish to DataGroups ACL permission can now publish messages to
the new DataGroup programmatically.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 102

Creating a Nested DataGroup

Choose the DataGroup that is going to contain a new DataGroup. In this example, we'll
choose the EURUSD_Gold DataGroup we created earlier.

Right-click its icon, and the following context menu appears:

Add the nested DataGroup:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 103

The nested DataGroup can now be seen in the tree:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 104

Adding Existing DataGroups to DataGroups
We've already seen how to use Enterprise Manager to create a new DataGroup and add
it to an existing DataGroup (see "Creating DataGroups" on page 100). In this section,
we will add an existing DataGroup to a DataGroup.

Assume that in the following example structure of DataGroups, we would like to
add the existing Customer_Desk_A DataGroup, which itself already a member of the
EURUSD_Gold DataGroup, to the GBPUSD_Gold DataGroup too.

First, choose the DataGroup that is going to contain a new DataGroup. In this case, it's
the GBPUSD_Gold DataGroup we created earlier.

Right-click its icon, and the following context menu appears:

Click the "Add A DataGroup to GBPUSD_Gold" context menu option, then type in the
name of the DataGroup we wish to add as a member - in this case, Customer_Desk_A:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 105

Because this DataGroup already exists (and was a member of EURUSD_Gold), it now
appears as a member of two DataGroups (and thus appears twice in the tree of
DataGroup nodes):

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 106

Now, any events published to the DataGroups EURUSD_Gold or GBPUSD_Gold, or directly
to the DataGroup Customer_Desk_A, will be delivered to any DataStreams which are
members of the Customer_Desk_A DataGroup.

Removing DataGroups from DataGroups
In this section, we will remove an existing DataGroup from a DataGroup.

Assume that in the following example structure of DataGroups, we would like to
remove the existing Customer_Desk_C DataGroup from the EURUSD_Silver DataGroup.

First, choose the DataGroup that is going to be removed from its "parent" DataGroup. In
this case, it's the Customer_Desk_C DataGroup we created earlier.

Right-click its icon, and the following context menu appears:

Click the "Remove Customer_Desk_C from EURUSD_Silver" context menu option, then
click OK on the confirmation dialog.

The DataGroup, having been removed, will either:

Be moved to the top level DataGroups node if it has no other parent DataGroups, or

Appear in other nodes in the tree if it has at least one other parent DataGroup.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 107

In this example, the Customer_Desk_C DataGroup was not a member of any other
DataGroups, so having been removed from the EURUSD_Silver DataGroup, it now
appears in the top level DataGroups node.

Deleting DataGroups
There are two ways of deleting a DataGroup using the Enterprise Manager:

1. by navigating the DataGroups tree

2. by typing in its name

Note that if a deleted DataGroup is a member of more than one parent DataGroup, then
it will be deleted from all of them, and will no longer be defined for use elsewhere.

Deleting by Navigating the DataGroups Tree

In Enterprise Manager, locate the Data Group Node (in this example, EURUSD_Gold), and
right click on it to bring up a context menu:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 108

Click OK on the confirmation dialog, and the DataGroup will be deleted.

Deleting by Typing in the DataGroup Name

In Enterprise Manager, right-click the DataGroups node and select the "Delete A
DataGroup" context menu option:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 109

In the resulting dialog box, type in the name of the DataGroup to be deleted:

Click OK on the confirmation dialog, and the DataGroup will be deleted.

Queue Administration
The links below describe the queue management features available within Universal
Messaging's Enterprise Manager

"Creating Queues" on page 109

"Editing Queues" on page 115

"Copying Queues" on page 118

"Queue Snoop" on page 120

Creating Queues
This section describes how to create queues on Universal Messaging realms. Each queue
that is created consists of a physical object within the Universal Messaging realm as well
as its logical reference within the namespace.

Creating queues using the Enterprise Manager creates the physical object within
the realm. Once created, references to queues can be obtained using the Universal
Messaging Client and Admin APIs. Queues can also be monitored and managed using
the Enterprise Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager, all
resources and services found within the realm namespace are displayed in a tree
structure under the realm node itself.

Creating Realm Queues

To create new realm queues, the Enterprise Manager provides you with a number of
options.

In order to create a queue called '/eur/requests' on a realm called 'nirvana' simply right-
click on the realm node called 'nirvana' to display a pop-up menu containing an option
called 'Create queue' (as shown in the image below).

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 110

By clicking on the menu item 'Create Queue', you will be prompted with a dialog box
that allows you to enter the queue aributes. Queues have a set of aributes assigned to
them when they are created. The create queue dialog allows you to input values for each
of these aributes.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 111

Clicking on the 'OK' buon will create the queue '/eur/requests' on the Universal
Messaging realm 'nirvana' and render the queue object in the namespace tree of the
Enterprise Manager underneath the realm node. This is shown in the image below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 112

As you can see from the image above, the queue node in the tree has been created under
a folder (container node) called '/eur' under the realm 'nirvana'.

There are also a number of Storage Properties associated with the queue which can be
configured by clicking the "Edit..." buon to the right of "Storage Properties".

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 113

Queues can also be created from the context of a container nodes by specifying a relative
queue name.

For example, to create another queue called '/eur/orders', you can select the '/eur' node
and create the new queue using its relative name '/orders'. Selecting the container node
and right-clicking on the node, shows another pop-up menu of options for container
nodes. One of the menu is 'Create Queue'. The image below shows this menu as it
appears when the container is right-clicked.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 114

By selecting the menu item, 'Create Queue' from the container node, you are once
again presented with the create queue dialog. This dialog looks like the dialog used
previously, except the title of the dialog shows that the queue will be created under the
container '/eur', as shown in the image below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 115

Editing Queues
This section describes the process of editing queues in Universal Messaging realms. Each
queue that is created consists of a physical object within the Universal Messaging realm
as well as its logical reference within the namespace.

Editing queues using the Enterprise Manager enables you to change specific aributes
for a queue, such as name, l, capacity or even the realm on which the queue exists.
When a queue is edited, its aributes and any events found on the queue will be copied
into a temporary queue, the old queue is then removed and then the new queue is
created and the events are then copied from the temporary queue onto the new queue.

Firstly, by selecting the queue in the namespace that you wish to edit and right-clicking
on the node, you will be presented with a menu that shows you the various options for a
queue node. The image below shows this menu.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 116

By selecting the 'Edit Queue' option, you will be presented with a dialog that allows you
to modify the details of the queue. These details not only include the queue aributes,
but also the realm to which the queue exists. The image below shows the edit queue
dialog.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 117

The image shows a drop down list containing all the names of the realms that the
enterprise manager is currently connected to. By selecting a realm name from the list,
it is possible to move the selected queue to any of the available realms. Clicking on the
'OK' buon will perform the edit operation on the queue.

There are also a number of Storage Properties associated with the queue which can be
configured by clicking the "Edit..." buon to the right of "Storage Properties".

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 118

Copying Queues
This section will describe the process of copying queues in Universal Messaging realms.
Each queue that is created consists of a physical object within the Universal Messaging
realm as well as its logical reference within the namespace.

Copying queues using the Enterprise Manager enables you to duplicate queues
automatically across realms. When a queue is copied, its aributes and any events found
on the queue will be copied over onto the new queue copy.

Firstly, by selecting the queue in the namespace that you wish to copy and right-clicking
on the node, you will be presented with a menu that shows you the various options for a
queue node. The image below shows this menu.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 119

By selecting the 'Copy Queue' option, you will be presented with a dialog that allows
you to input the details of the new queue copy. These details not only include the queue
aributes, but also the realm to which the queue will be copied to. The image below
shows the copy queue dialog.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 120

The image shows a drop down list containing all the names of the realms that the
enterprise manager is currently connected to. By selecting a realm name from the list,
it is possible to create a copy of the selected queue in that realm. Clicking on the 'OK'
buon will create the queue on the selected realm and the queue will then appear in the
namespace tree.

Queue Snoop
This section will describe how to snoop a Universal Messaging queue. Each queue that is
created consists of a physical object within the Universal Messaging realm as well as its
logical reference within the namespace.

Snooping a queue allows you to view the events contained on a queue. Each queue node
in the namespace tree of a Universal Messaging realm, when selected, displays a snoop
panel that provides you with a means of browsing the queue and present the events on
the queue in a graphical panel.

You can also provide a filter that enables you to select specific events that match a certain
criteria.

First of all, by selecting the queue you wish to snoop in the namespace tree, the
Enterprise Manager will display a number of panels in a tabbed pane. One of these tabs
is labelled 'Snoop'. Selecting the snoop tab will display a panel like the one shown in the
image below.

The snoop panel is split up into a number of different sections. Firstly, the 3 text fields at
the top of the panel allow you enter an event id range to and from, and a selector string
that will be used to filter events being snooped on the queue. For queues, the event id
ranges are disabled. Clicking the 'Start' buon will begin the queue snoop, and start

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 121

displaying any events that are published onto the queue using whatever values you
have input into the text fields.

When events are published, they are added to the main table below the text field input.
This main table shows 4 columns of basic information about each event: the event id,
event tag, time to live, and whether the event is persistent. By clicking on any event
shown as a row in the main table, more information on the event is shown in the boom
3 panels. As shown in the image below.

The top 2 remaining panels show a Hexidecimal view of the event data and an ASCII
representation of the same event data. The panel below that shows the contents of
the event properties (if one exists for the event) listed within a table. Each property is
displayed as a row in the table. The table columns show the name of the property, the
type, and the value.

The buon labelled 'Pause' will temporarily suspend receipt of any new message
being received into the snoop panel for the selected queue. The 'Stop' buon will stop
snooping events and clear all the panels and tables.

Channels can also be snooped using the snoop panel (see "Channel Snoop" on page
93).

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 122

Security
Adding ACLs

The Enterprise Manager allows Access Control Lists (ACLs) to be controlled via the ACL
panel which is displayed for each object within the namespace. These panel allows users
to add entries to the ACL, as well as remove the selected entry. The image below shows
the dialog for adding an ACL entry.

Clicking on the 'OK' buon will add the subject to the selected objects ACL list.

Similarly, once they have been defined, Security Groups (see "Nirvana Admin API -
Nirvana Security Groups" on page 336) may be added into ACL Lists by clicking the
"Add Group" buon and selecting the desired group as shown:

When an entry is selected from the ACL panel, and the 'Delete' buon is selected, you
will be prompted to confirm the deletion.

After any changes made to the ACLs, only when the 'Apply' buon is clicked will those
changes be sent to the realm server for processing. Clicking the 'Cancel' buon will
discard any changes made and revert back to the state the Realm server has for the ACL.

To read more about the entitlements for each object, follow the links below:

"Security Groups" on page 336

"Realm ACL" on page 125

"Channel ACL" on page 127

"Queue ACL" on page 129

"Service ACL" on page 131

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 123

"Interface VIA ACL" on page 133

Nirvana Enterprise Manager - Security Groups
Security groups contain a list of subjects (username & host pairs) and, in addition, may
contain other Security Groups. Once a Security group is defined, the group can be added
to ACL lists like normal subject(user@host) entries are added and permissioned. This
allows for "sets" of users to be defined and granted permissions through a single entry in
an ACL list, rather than each user having an entry.

Before adding a Security Group to an ACL, it must first be created. This can be done
programmatically or via the Enterprise Manager, as shown below.

Once the group has been created, user@host subjects can be added to the group using
the "Add Member" buon:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 124

Alternatively, groups can be added as members of other groups by using the "Add
Group" buon. This will present you with a dropdown list of existing groups to choose
from:

Membership of Security Groups can be altered dynamically, and the changes will be
reflected in the permissions for all ACL lists where the security group is an entry in the
ACL list.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 125

As with all ACLs in Nirvana, privileges are cumulative. This means that, for example,
if a user is in a group which has publish permissions on a channel, but not subscribe
permissions, the user will no be able to subscribe on the channel. Then, if an ACL entry
is added on the channel for his specific username/host pair, with subscribe but no
publish permissions, the user will then be able to both subscribe(from the non-group
ACL permission), and publish (from the group ACL permission).

Realm Entitlements

Realm ACLs

As mentioned in the security introduction (see "Security" on page 122), in order to
perform operations within a Realm clients connecting to the realm must be given the
correct entitlements.

In order for a client to connect to a Universal Messaging Realm server there must be a
Realm ACL which allows them to do so. A Realm ACL contains a list of subjects and
their entitlements (i.e. what operations they can perform within the realm).

Using the Enterprise manager, one can add to, remove or modify entries within a realm
ACL.

ACLs can also be managed via the Universal Messaging administration API.

To view a Realm ACL, click on a realm node within the namespace of the Enterprise
Manager, and select the 'ACL' tab. This will display the realm ACL and the list of
subjects and their associated permissions for the realm. The following image displays
and example of a realm acl.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 126

As you can see above, the realm ACL has a number of subject entries and operations that
each subject is able to perform on the realm. The operations that can be performed on a
realm are described below in the order in which they appear in the acl panel above:

Manage ACL - Allows the subject to manage the list of ACL entries

Full - Has complete access to the secured object

Access - Can actually connect to this realm

Configure - Can set run time parameters on the realm

Channels - Can add/delete channels on this realm

P2P - Can create/destroy P2P services

Realm - Can add / remove realms from this realm

Admin API - Can use the nAdminAPI package

Manage DataGroups - Can add / remove data groups from this realm

Pub DataGroups - Can publish to data groups (including default) on this realm

Own DataGroups - Can add / delete publish to data groups even when they were not
created by the user

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 127

The green check icon shows that a subject is permied to perform the operation.
For example, the subject *@* is shown as having no permissions for this realm. The
minimum requirement for a client to use a realm is the 'Access' privilege. Without this
privilege for the *@* subject, any Universal Messaging client aempting to connect,
who's subject does not appear in the ACL list will not be able to establish a session with
the Realm Server.

In order to modify the permissions for a subject, you simply need to click on the cell in
the ACL table for the subject and the operation you wish to modify permissions for. For
example, if i wanted grant the *@* user the 'Access' realm privilege, i would simply click
on the *@* row at the column labelled 'access'. This would turn the cell from blank to a
green check icon.

After making any changes, you then need to click on the 'Apply' buon which will
notify the Realm Server of the ACL change.

Any ACL changes that are made by other Enterprise Manager users, or from any
programs using the Universal Messaging Admin API to modify ACLs will be received
by all other Enterprise Managers. This is because ACL changes are automatically sent to
all Universal Messaging Admin API clients, the Enterprise Manager being one of those
clients.

Any changes made to a realm ACL where the realm is part of a cluster will be replicated
to all other cluster realms.

Channel Entitlements

Channel ACLs

Once clients have established a session with a Universal Messaging Realm server,
and they have successfully been authenticated and the subject has the correct user
entitlements, in order to perform operations on channel objects, the correct entitlements
must be granted to the subject on the required channels. Each channel has an associated
ACL that contains a list of subjects and a set of privileges the subject is given for
operations on the channel.

Using the Enterprise Manager, one can add to, remove or modify entries within the
channel ACL

To view a channel ACL, click on a channel node within the namespace of the Enterprise
Manager, and select the 'ACL' tab. This will display the channel ACL and the list of
subjects and their associated permissions for the channel. The following image displays
and example of a channel acl.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 128

As you can see above, the channel ACL has a number of subject entries and operations
that each subject is able to perform on the channel. The operations that can be performed
on a channel are described below in the order in which they appear in the acl panel
above:

Manage ACL - Allows the subject to get manage the list of ACL entries

Full - Has complete access to the secured object

Purge - Can delete events on this channel

Subscribe - Can subscribe for events on this channel

Publish - Can publish events to this channel

Named - Can the user connect using a named (durable) subscriber

The green check icon shows that a subject is permied to perform the operation. For
example, the subject *@* is shown as having only subscribe permissions for this channel.
This means that any client who has successfully established a session and has obtained a
reference to this channel within their application code can only subscribe to the channel
and read events.

In order to modify the permissions for a subject, you simply need to click on the cell
in the ACL table for the subject and the operation you wish to modify permissions for.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 129

For example, if I wanted remove the subscribe permission for the *@* subject I would
simply click on the *@* row at the column labelled 'subscribe'. This would turn the cell
from blank to a green check icon. This would also ensure that only those subjects listed
in the ACL and with sufficient privileges, would be able to perform any operations on
the channel.

After making any changes, you then need to click on the 'Apply' buon which will
notify the Realm Server of the ACL change for that channel.

Any ACL changes that are made by other Enterprise Manager users, or from any
programs using the Universal Messaging Admin API to modify ACLs will be received
by all other Enterprise Managers. This is because ACL changes are automatically sent to
all Universal Messaging Admin API clients, the Enterprise Manager being one of those
clients.

Any changes made to a channel ACL where the channel is a cluster channel will be
replicated to all other instances of the cluster channel in all other cluster realms.

Queue Entitlements

Queue ACLs

Once clients have established a session with a Universal Messaging Realm server,
and they have successfully been authenticated and the subject has the correct user
entitlements, in order to perform operations on queue objects, the correct entitlements
must be granted to the subject on the required queue. Each queue has an associated ACL
that contains a list of subjects and a set of privileges the subject is given for operations on
the queue.

Using the Enterprise Manager, one can add to, remove or modify entries within the
queue ACL.

To view a queue ACL, click on a queue node within the namespace of the Enterprise
Manager, and select the 'ACL' tab. This will display the queue ACL and the list of
subjects and their associated permissions for the queue. The following image displays
and example of a queue acl.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 130

As you can see above, the queue ACL has a number of subject entries and operations
that each subject is able to perform on the queue. The operations that can be performed
on a queue are described below in the order in which they appear in the acl panel above:

Manage ACL - Allows the subject to get manage the list of ACL entries

Full - Has complete access to the secured object

Purge - Can delete events on this channel

Peak - Can snoop this queue (non destructive read)

Push - Can publish events to this queue

Pop - Can Consume events on this queue (destructive read)

The green check icon shows that a subject is permied to perform the operation. For
example, the subject *@* is shown as having only peek permissions for this queue. This
means that any client who has successfully established a session and has obtained a
reference to this queue within their application code can only subscribe to the queue and
read events.

In order to modify the permissions for a subject, you simply need to click on the cell in
the ACL table for the subject and the operation you wish to modify permissions for. For
example, if I wanted remove the peek permission for the *@* subject I would simply click

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 131

on the *@* row at the column labelled 'peek'. This would turn the cell from blank to a
green check icon. This would also ensure that only those subjects listed in the ACL and
with sufficient privileges, would be able to perform any operations on the queue.

After making any changes, you then need to click on the 'Apply' buon which will
notify the Realm Server of the ACL change for that queue.

Any ACL changes that are made by other Enterprise Manager users, or from any
programs using the Universal Messaging Admin API to modify ACLs will be received
by all other Enterprise Managers. This is because ACL changes are automatically sent to
all Universal Messaging Admin API clients, the Enterprise Manager being one of those
clients.

Any changes made to a channel ACL where the queue is a cluster queue will be
replicated to all other instances of the cluster queue in all other cluster realms.

P2P Service

Service ACLs

Once clients have established a session with a Universal Messaging Realm server,
and they have successfully been authenticated and the subject has the correct user
entitlements, in order to perform operations on service objects, the correct entitlements
must be granted to the subject on the required services. Each service has an associated
ACL that contains a list of subjects and a set of privileges the subject is given for
operations on the service.

Using the Enterprise Manager, one can add to, remove or modify entries within the
service ACL.

To view a service ACL, click on a service node within the namespace of the Enterprise
Manager, and select the 'ACL' tab. This will display the service ACL and the list of
subjects and their associated permissions for the service. The following image displays
and example of a service acl.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 132

As you can see above, the service ACL has a number of subject entries and operations
that each subject is able to perform on the service. The operations that can be performed
on a service are described below in the order in which they appear in the acl panel
above:

Manage ACL - Allows the subject to get a list of ACL entries

Full - Has complete access to the secured object

Connect - Can access this service

The green check icon shows that a subject is permied to perform the operation. For
example, the subject *@* is shown as not having any permissions for this service. This
means that any client who has successfully established a session will not be allowed to
connect to the p2p service unless the subject exists in the ACL.

In order to modify the permissions for a subject, you simply need to click on the cell in
the ACL table for the subject and the operation you wish to modify permissions for. For
example, if I wanted to allow any client to connect to this service I would simply click
on the *@* row at the column labelled 'connect'. This would turn the cell from blank to a
green check icon. This would also ensure that only those subjects listed in the ACL and
with sufficient privileges, would be able to connect to the service.

After making any changes, you then need to click on the 'Apply' buon which will
notify the Realm Server of the ACL change for that service.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 133

Any ACL changes that are made by other Enterprise Manager users, or from any
programs using the Universal Messaging Admin API to modify ACLs will be received
by all other Enterprise Managers. This is because ACL changes are automatically sent to
all Universal Messaging Admin API clients, the Enterprise Manager being one of those
clients.

Interface VIA Rules
Each interface defined within a Universal Messaging Realm server can have an
associated ACL list, known as a VIA list.

The VIA list enables list of users to be defined who are entitled to connect to the
Universal Messaging realm using a specific protocol 'via' a specific interface.

If for example, a realm has an HTTP (nhp) interface running on port 10000, and we
also want a sockets (nsp) interface running on port 15000, and you want all external
clients to connect using the nhp interface, and all internal clients to connect using the
nsp interface, this can be achieved by providing the nhp and nsp interfaces with a list of
subjects that are able to connect via the different interfaces.

This ensures that any user that tries to connect via the nsp interface who is not part
of the nsp interface VIA list but exists in the nhp via list will be rejected and will not
be able to establish a connection via nsp. The same will apply for the nhp interface.
Alternatively, by simply adding a list of via entries to the nhp interface (and leaving
the nsp via list empty), any user trying to connect via nsp interface who is found in any
other interface via list will be rejected. This allows you to tie specific users to specific
interfaces.

The default behaviour for all interfaces is that when no VIA lists exist on any defined
interfaces, all users can connect on any interface (Realm ACLs permiing, see "Realm
Entitlements" on page 125). When a user subject exists on an interface, that subject
cannot use any other interface other than the one they are listed in.

This is an extra level of security that allows administrators of Realm Servers to define a
strict approach to who can connect to the realm via specific protocols. This is particularly
useful if for example you run many services on a single Universal Messaging realm
server and wish to ensure that specific clients / groups of clients are using completely
separate interfaces.

Interface ACL (VIA List)

In order to view the VIA list for an interface, select the realm where the interface
is running, and then select the 'Interfaces' tab in the Enterprise Manager. From the
interface list for the realm, select the interface from the table of interfaces, and choose
the tab labelled 'VIA' from the boom of the interface panel. The image below shows the
result of an acl entry being added to the default socket interface running on port 9000.
By adding this entry, the user johnsmith@192.168.1.2 can only use the nsp0 interface
which is using the sockets protocol on port 9000.

As with all Universal Messaging ACLs wildcards are fully supported so that for
example, *@192.168.1.2 or johnsmith@* are both relevant enforceable VIA rules.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 134

Interface VIA entries can be added to by clicking on the 'Add' buon from the VIA panel
and entering the subject. Entries can be removed by selecting the entry and clicking the
'Delete' buon.

Any changes to the interface VIA list will not take effect at the server until the 'Apply'
buon has been clicked on the VIA panel. Changes can also be disregarded without
updating the server by clicking on the 'Cancel' buon on the VIA list panel.

Scheduling
Universal Messaging provides a sophisticated scheduling engine that enables tasks to
be executed on a Realm Server at specific times or when certain conditions occur within
the realm. This enables realm servers to automate important tasks, enabling them to self-
manage without the need for intervention by administrators or externally scheduled
tasks.

Administrators of Universal Messaging Realm servers can provide scripts that outline
the conditions and tasks to be performed which are then interpreted by the server. The
server converts the scripts into the actual tasks to be completed, and executes them
under the correct conditions.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 135

This section will guide you through the basics of Universal Messaging Scheduling. From
the links found below you can learn the basic tasks that can be executed by a Realm
Server, time based scheduling and conditional triggers, as well as how to write, modify
and deploy scheduling scripts.

"Writing Scripts" on page 135

"Time Based Scheduling" on page 139

"Conditional Triggers" on page 141

"Tasks" on page 154

"The Universal Messaging Enterprise Manager Schedule Editor" on page 167

"Example Scheduling Scripts" on page 173

Universal Messaging Scheduling : Writing Schedule Scripts
Universal Messaging scheduling works by interpreting scripts wrien using a simple
grammar. Administrators of realms can deploy as many scheduling scripts as they wish
to each Realm Server.

This section will cover the basic structure of a Universal Messaging scheduling script,
and then show how to write a script and deploy it to the Realm Server.

Follow the links below to view the guide for each of these:

"Scheduling Grammar" on page 135

"Declarations" on page 137

"Initial Tasks" on page 138

"Every Clause" on page 138

"When Clause" on page 139

"Else Clause" on page 139

Scheduling Grammar

The grammar for scheduling scripts is extremely simple to understand. The script
must conform to a predefined structure and include elements that map to the grammar
expected by the Realm Server Scheduler Engine.

In its simplest form the Universal Messaging scheduler syntax starts with the command
'scheduler'. This tells the parser that a new scheduler task is being defined. This is
followed by the name of the scheduler being defined, this is a user defined name. For
example:
scheduler myScheduler {
}

Within this structure, triggers and tasks are defined. A task is the actual operation the
server will perform, and it can be executed at a certain time or frequency, or when a

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 136

condition occurs. Within the scheduler context the following verbs can be used to define
tasks to be executed.

declare : Used to define the name of a trigger for later user

initialise : Is the first thing run when a scheduler is started (also run when the realm
server starts up)

every : Used to define a time/calendar based event

when : Used to define a conditional trigger and the list of tasks to execute when it
fires

else : Used after a conditional trigger that will fire if the condition evaluates to false

The following shows the basic grammar and structure of a scheduling script.
/*
Comment block
*/
scheduler <User defined Name> {
declare <TRIGGER_DECLARATION>+
initialise {
<TASK_DECLARATION>+
}
/*
Time based tasks
*/
every <TIME_EXPRESSION> {
<TASK_DECLARATION>+
}
when (<TRIGGER_EXPRESSION>) {
<TASK_DECLARATION>+
} else {
<TASK_DECLARATION>+
}

where :

TRIGGER_DECLARATION ::= <TRIGGER> <NAME>
(<TRIGGER_ARGUMENT_LIST>)

TRIGGER ::= Valid trigger. Learn more about triggers at "Universal Messaging
Scheduling : Conditional Triggers" on page 141.

TRIGGER_ARGUMENT_LIST ::= Valid comma separated list of arguments for the
trigger

TASK_DECLARATION ::= Valid task. Learn more about tasks at "Universal
Messaging Scheduling : Tasks" on page 154.

TRIGGER_EXPRESSION ::=

<TRIGGER_EXPRESSION> <LOGICAL_OPERATOR> <TRIGGER_EXPRESSION> |
<TRIGGER> | <NAME> <COMPARISON_OPERATOR> <VALUE>

TIME_EXPRESSION ::=

<HOURLY_EXPRESSION> | <DAILY_EXPRESSION> | <WEEKLY_EXPRESSION> |
<MONTHLY_EXPRESSION> | <YEARLY_EXPRESSION>

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 137

HOURLY_EXPRESSION ::= <MINUTES>

DAILY_EXPRESSION ::= <HOUR> <COLON> <MINUTES>

WEEKLY_EXPRESSION ::= <DAYS_OF_WEEK> <SPACE> <HOUR> <COLON>
<MINUTES>

MONTHLY_EXPRESSION ::= <DAY_OF_MONTH> <SPACE> <HOUR> <COLON>
<MINUTES>

YEARLY_EXPRESSION ::= <DAY_OF_MONTH> <HYPHEN> <MONTH> <SPACE>
<HOUR> <COLON> <MINUTES>

MINUTES ::= Minutes past the hour, i.e. a value between 00 and 59

HOUR ::= Hour of the day, i.e. a value between 00 and 23

DAYS_OF_WEEK ::=

<DAY_OF_WEEK> | <DAY_OF_WEEK> <SPACE> <DAY_OF_WEEK>

DAY_OF_WEEK ::= Mo | Tu | We | Th | Fr | Sa | Su

DAY_OF_MONTH ::= Specific day of the month to perform a task, i.e. a value
between 01 and 28

MONTH ::= The month of the year, JAN, FEB, MAR etc.

NAME ::= The variable name for a trigger

COMPARISON_OPERATOR ::= > | => | < | <= | == | !=

LOGICAL_OPERATOR ::= AND | OR

COLON ::= The ":" character

SPACE ::= The space character

HYPHEN ::= The "-" character

+ ::= indicates that this can occur multiple times

VALUE ::= Any valid string or numeric value.

Declarations

The declarations section of the script defines any triggers and assigns them to local
variable names. The grammar notation defined above specifies that the declaration
section of a schedule script can contain multiple declarations of triggers. For example,
the following declarations section would be valid based on the defined grammar:
declare Config myGlobalConfig ("GlobalValues");
declare Config myAuditConfig ("AuditSettings");
declare Config myTransConfig ("TransactionManager");

The above declarations define 3 variables that refer to the the Config trigger. The
declared objects can be used in a time based trigger declaration, conditional triggers and
to perform tasks on.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 138

Initialise

The initialise section of the schedule script defines what tasks are executed straight away
by the server when the script is deployed. These initial tasks are also executed every
time the Realm Server is started. An example of a valid initialise section of a schedule
script is shown below:
initialise {
Logger.report("Realm optimisation script and monitor startup initialising");
myAuditConfig.ChannelACL("false");
myAuditConfig.ChannelFailure("false");
myGlobalConfig.MaxBufferSize(2000000);
myGlobalConfig.StatusBroadcast(2000);
myGlobalConfig.StatusUpdateTime(86400000);
myTransConfig.MaxTransactionTime(3600000);
Logger.setlevel(4);
}

The example above ensures that each time a server starts, the tasks declared are
executed. Using the variables defined in the declarations section, as well as the Logger
task, the server will always ensure that the correct configuration values are set on the
server whenever it starts.

Every Clause

The every clause defines those tasks that are executed at specific times and frequencies
as defined in the grammar above. Tasks can be executed every hour at a specific time pas
the hour, every day at a certain time, every week on one or more days at specific times or
day, every month on a specific day of the month and a specific day of the year.

The grammar above defines how to declare an every clause. Based on this grammar the
following examples demonstrate how to declare when to perform tasks :
Hourly Example (Every half past the hour, log a message to the realm server log)
every 30 {
Logger.report("Hourly - Executing Tasks");
}
Daily Example (Every day at 18:00, perform maintenance on the customerSales channel)
every 18:00 {
Logger.report("Daily - performing maintenance");
Store.maintain("/customer/sales");
}
Weekly Example (Every week, on sunday at 17:30, purge the customer sales channel)
every Su 17:30 {
Logger.report("Weekly - Performing Purge");
Store.purge("/customer/sales");
}
Monthly Example (Every 1st of the month, at 21:00, stop all interfaces and start them again)
every 01 21:00 {
Logger.report("Monthly - Stopping interfaces and restarting");
Interface.stopAll();
Interface.startAll();
}
Yearly Example (Every 1st of the January, at 00:00, stop all interfaces and start them again)
every 01-Jan 00:00 {
Logger.report("Yearly - Stopping interfaces and restarting");
Interface.stopAll();
Interface.startAll();
}

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 139

When Clause

The when clause defines a trigger that evaluates a specific value and executes a task if
the evaluation result is 'true'. The grammar for the when clause is defined above. The
following example shows a valid when clause :
when (MemoryManager.FreeMemory < 30000000) {
Logger.report("Memory below 30M, performing some clean up");
FlushMemory(true);
}

The above example will trigger the Realm Server JVM to call garbage collection when
the amount of free memory drops to below 30MB.

Else Clause

The else clause defines an alternative action to the when clause if the when clause
evaluates to 'false'. The grammar for the else clause is defined above. The following
example shows a valid when clause :
when (MemoryManager.FreeMemory < 30000000) {
Logger.report("Memory below 30M, performing some clean up");
FlushMemory(true);
} else {
Logger.report("Memory not below 30M, no clean up required");
}

The above example will trigger the Realm Server JVM to call garbage collection when
the amount of free memory drops to below 30MB.

To view a sample scheduling script, see the section "Scheduler Examples" on page
173.

Universal Messaging Scheduling : Calendar Triggers Schedules
Calendar schedules are triggered at specific times, either hourly, daily, weekly, monthly
or yearly. Each calendar trigger is declared using the 'every' keyword. For basic
information on the grammar for calendar schedules, please read the section on time
based triggers in the writing scripts help file (see "Universal Messaging Scheduling :
Writing Schedule Scripts" on page 135). The calendar, or time based triggers are
signified by using the 'every' keyword. The values entered after the keyword represent
hourly, daily, weekly, monthly or yearly frequency that the defined tasks will be
executed. See "Hourly Triggers" on page 139, "Daily Triggers" on page 140,
"Weekly Triggers" on page 140, "Monthly Triggers" on page 140, "Yearly Triggers"
on page 141.

This section will describe in more detail the variations of the calendar trigger grammar.

Hourly Triggers

Hourly triggers have the simplest grammar. The value after the 'every' keyword
represents the minutes past the hour that the tasks will be executed. For example,
specifying '00' means that the tasks are executed on the hour, every hour. If you specify
'30' the tasks will be executed at half past the hour every hour:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 140

/*
 Execute every hour on the hour
*/
every 00 {
}
/*
 Execute every hour at half past the hour
*/
every 30 {
}

Daily Triggers

Daily triggers are executed every day at a specific time. The time of day is wrien as
'HH:MM', in a 24 hour clock format and represents the exact time of day that the tasks
are executed. For example, specifying '18:00' means the tasks are executed every day at
6pm. If you specify '08:30' the tasks will be executed at 8.30am every morning.
/*
 Execute day at 6pm
*/
every 18:00 {
}
/*
 Execute day at 8.30am
*/
every 08:30 {
}

Weekly Triggers

Weekly triggers are executed on specific days of the week at a specific time, in the format
'DD HH:MM' . The days are represented as a 2 character string being one of : Su; Mo;
Tu; We; Th; Fr; Sa, and you can specify more than one day. The time of day is wrien as
'HH:MM', in a 24 hour clock format and represents the exact time on each given day that
the tasks are executed. For example, specifying 'Fr 18:00' means the tasks are executed
every friday at 6pm. If you specify 'Mo Tu We Th Fr 18:30' the tasks will be executed
every week day at 6.30pm.
/*
 Execute every friday at 6pm
*/
every Fr 18:00 {
}
/*
 Execute every week day at 6.30pm
*/
every Mo Tu We Th Fr 18:30 {
}

Monthly Triggers

Monthly triggers are executed on a specific day of the month at a specific time, in the
format 'DD HH:MM' . The day is represented as a 2 digit number between 1 and 28. The
time of day is wrien as 'HH:MM', in a 24 hour clock format and represents the exact
time on the given day of the month that the tasks are executed. For example, specifying
'01 18:00' means the tasks are executed on the 1st of every month at 6pm.
/*

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 141

 Execute on the first of every month at 6pm
*/
every 01 18:00 {
}

Yearly Triggers

Yearly triggers are executed on a specific day and month of the year at a specific time,
in the format 'DD-MMM HH:MM'. The day of the month is represented as a 2 digit
number between 1 and 31, and the month is represented as a 3 character string being one
of : Jan; Feb; Mar; Apr; May; Jun; Jul; Aug; Sep; Oct; Nov; Dec. The time of day is wrien
as 'HH:MM', in a 24 hour clock format and represents the exact time on the given day
and month of the year that the tasks are executed. For example, specifying '01-Jan 18:00'
means the tasks are executed on the 1st of January every year at 6pm.
/*
 Execute on the first of january every year at 6pm
 */
every 01-Jan 18:00 {
}

Universal Messaging Scheduling : Conditional Triggers
Conditional triggers execute tasks when specific conditions occur. Each defined trigger
has a number of aributes that can be used as part of the trigger expression and
evaluated to determine whether the tasks are executed. For basic information on the
grammar for conditional triggers, please read the section on conditional triggers in
the writing scripts help file (see "Universal Messaging Scheduling : Writing Schedule
Scripts" on page 135). The conditional triggers are signified by using the 'when'
keyword. The expression entered after the keyword represent the trigger object(s) and
the values to be checked against.

This section will describe in detail the triggers that are available and how to use them
within a trigger expression :

"Trigger Expressions" on page 142

"Store Triggers" on page 142

"Interface Triggers" on page 143

"Memory Triggers" on page 144

"Realm Triggers" on page 144

"Cluster Triggers" on page 145

"Counter Triggers" on page 145

"Timer Triggers" on page 146

"Config Triggers" on page 146

To view examples of scheduling scripts, see "Scheduler Examples" on page 173.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 142

Trigger Expressions

A trigger expression is constructed from the definition of the trigger object(s) to
be evaluated and the values that will be used in the comparison. The trigger used
in the expression can be either the actual trigger object, or the declared name of
the trigger from the declarations section of the script (see "Universal Messaging
Scheduling : Writing Schedule Scripts" on page 135). Multiple triggers can be used in
the expression using conditional operators (AND | OR).

For example, the following expression can be used to evaluate when a Realm's Interface
accept threads are exhausted 5 times. When this happens, the accept threads will be
increased by 10. This schedule will continually monitor the state of the interface and self-
manage the accept threads so the realm server is always able to accept connections from
clients.
scheduler realmInterfaceSchedule {
declare Interface myNHP ("nhp0");
declare Counter myCounter("myExhaustedThreads");
when (myNHP.idleThreads == 0) {
Logger.report("NHP0 Interface has no idles Threads");
myCounter.inc();
}
when (myCounter >= 5) {
Logger.report("Increasing the accept thread count on NHP0");
myNHP.threads("+10");
myCounter.reset();
}
}

The above schedule will monitor the number of times the accept threads are exhausted
and when the counter trigger hits 5 times, the number of threads will be increased by 10.

The next section will describe the available trigger objects and the available triggers on
those objects that can be used within

Store Triggers - Channel / Queue based triggers

Store triggers are declared using the following syntax as an example:
declare Store myChannel("/customer/sales");

The table below lists those triggers that can be evaluated on a Store object, such that the
trigger expression will look like :
when (myChannel.connections > 100) {
}

Trigger Object Parameters Description

connections None Trigger on the number
of connections for the
channel or queue

freeSpace None Trigger on the amount of
free space available in the

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 143

Trigger Object Parameters Description
store (used space - size of
all purged events)

usedSpace Trigger on the amount of
used space available in the
store (size of all event on
disk or memory)

numOfEvents None Trigger on the number of
events on the channel /
queue

filter Valid filter String Trigger when an event
that matches the filter is
published to the channel /
queue

Interface Triggers - Universal Messaging Interface based triggers

Interface triggers are declared using the following syntax as an example:
declare Interface myNHP("nhp0");

The table below lists those triggers that can be evaluated on an Interface object, such that
the trigger expression will look like :
when (myNHP.connections > 100) {
}

Trigger Object Parameters Description

connections None Trigger on the number
of connections for the
interface

authentication None Trigger on the average
authentication time for
clients on an interface

failedConnections None Trigger on the number
of failed authentication
aempts

exhaustedTime None Trigger on the average
amount of time the
interface accept thread
pool has been exhausted

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 144

Trigger Object Parameters Description

idleThreads None Trigger on the number of
idle interface accept pool
threads

exhaustedCount None Trigger on the number of
times an interface accept
thread pool is exhausted
(i.e. idle == 0)

state None Trigger when an interface
is in a certain state

MemoryManager Triggers - Universal Messaging JVM Memory Management based triggers

MemoryManager triggers are declared using the following syntax as an example:
declare MemoryManager mem;

The table below lists those triggers that can be evaluated on the memory management
object, such that the trigger expression will look like :
when (mem.freeMemory < 1000000) {
}

Trigger Object Parameters Description

freeMemory None Trigger when the realm
server's JVM has a certain
amount of free memory

totalMemory None Trigger when the realm
server's JVM has a certain
amount of total memory

outOfMemory None Trigger when the realm
server JVM runs out of
memory

Realm Triggers - Universal Messaging Realm based triggers

Realm triggers are declared using the following syntax as an example:
declare Realm myRealm("productionmaster");

The table below lists those triggers that can be evaluated on the realm object, such that
the trigger expression will look like :
when (realm.connections > 1000) {
}

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 145

Trigger Object Parameters Description

connections None Trigger when the realm
server current connections
reaches a certain number

eventsSentPerSecond None Trigger when the realm
server's events per second
sent rate reaches a certain
value

eventsReceivedPerSecond None Trigger when the realm
server's events per second
sent received reaches a
certain value

Cluster Triggers - Universal Messaging Cluster based triggers

Cluster triggers are declared using the following syntax as an example, assuming a
cluster is made up of 4 realms:
declare Cluster myNode1("realm1");
declare Cluster myNode2("realm2");
declare Cluster myNode3("realm3");
declare Cluster myNode4("realm4");

The table below lists those triggers that can be evaluated on the cluster object, such that
the trigger expression will look like :
when (Cluster.isOnline("realm1") == true){
}

Trigger Object Parameters Description

hasQuorum None Trigger when cluster has
quorum == true or false

isMaster None Trigger when a cluster
realm is voted master

nodeOnline None Trigger when a cluster
realm is online or offline

Counter Triggers - Counter value based triggers

Counter triggers allow you to keep a local count of events occurring with the
Universal Messaging scheduler engine. The values of the Counters can be incremented
decremented and reset within the tasks section of a trigger declaration. Counter triggers
are declared using the following syntax as an example:
declare Counter counter1 ("myCounter");

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 146

The counter trigger can be evaluated by referencing the Counter object itself, such that
the trigger expression will look like :
when (counter1 > 5) {
}

Timer Triggers - Timer based triggers

Timer triggers allow you to start a timer that will keep track of how long (in seconds) it
has been running and then evaluate the running time within a trigger expression. Time
triggers are declared using the following syntax as an example:
declare Timer reportTimer ("myTimer");

The timer trigger can be evaluated by referencing the timer object itself, such that the
trigger expression will look like :
when (reportTimer == 60) {
}

Config Triggers -Universal Messaging configuration triggers

Config triggers refer to any of the configuration values available in the Config panel
for a realm. Any configuration value can be used as part of a trigger expression. Config
triggers are declared using the following syntax as an example (below example refers to
the 'GlobalValues' configuration group:
declare Config myGlobal ("GlobalValues");

The table below lists those triggers that can be evaluated on a Config object, such that
the task expression will look like :
when (myGlobal.MaxNoOfConnections == -1) {
}

Trigger Object Parameters Description

GlobalValues

SchedulerPoolSize None The number of threads
assigned to the scheduler

MaxNoOfConnections None Sets the maximum
concurrent connections to
the server, -1 indicates no
restriction

StatusUpdateTime None The number of ms
between status events
being wrien to disk

StatusBroadcast None The number of ms
between status events
being published

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 147

Trigger Object Parameters Description

fLoggerLevel None The server logging level

NHPTimeout None The number of
milliseconds the server
will wait for client
authentication

NHPScanTime None The number of
milliseconds that the
server will wait before
scanning for client
timeouts

HandshakeTimeout None The number of
milliseconds that the
server will wait for the
session to be established

StampDictionary None Place Universal Messaging
details into the dictionary
(true/false)

ExtendedMessageSelector None If true, allows the server to
use the extended message
selector syntax (true/false)

ServerTime None Allow the server to send
the current time to the
clients (true/false)

SecureHandshake None Performs a security
handshake when
connecting into a cluster

ConnectionDelay None When the server has
exceeded the connection
count, how long to hold on
to the connection before
disconnecting

SupportVersion2Clients None Allow the server to
support older clients (true/
false)

SendRealmSummaryStats None If true sends the realms
status summary updates
(true/false)

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 148

Trigger Object Parameters Description

AuditSettings

RealmMaintenance None Log to the audit file any
realm maintenance activity

InterfaceManagement None Log to the audit file any
interface management
activity

ChannelMaintenance None Log to the audit file any
channel maintenance
activity

QueueMaintenance None Log to the audit file
any queue maintenance
activity

ServiceMaintenance None Log to the audit file any
service maintenance
activity

JoinMaintenance None Log to the audit file any
join maintenance activity

RealmSuccess None Log to the audit file
any successful realm
interactions

ChannelSuccess None Log to the audit file
any successful channel
interactions

QueueSuccess None Log to the audit file
any successful queue
interactions

ServiceSuccess None Log to the audit file
any successful realm
interactions

JoinSuccess None Log to the audit file any
successful join interactions

RealmFailure None Log to the audit file
any unsuccessful realm
interactions

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 149

Trigger Object Parameters Description

ChannelFailure None Log to the audit file any
unsuccessful channel
interactions

QueueFailure None Log to the audit file
any unsuccessful queue
interactions

ServiceFailure None Log to the audit file any
unsuccessful service
interactions

JoinFailure None Log to the audit file
any unsuccessful join
interactions

RealmACL None Log to the audit file any
unsuccessful realm acl
interactions

ChannelACL None Log to the audit file any
unsuccessful channel acl
interactions

QueueACL None Log to the audit file any
unsuccessful queue acl
interactions

ServiceACL None Log to the audit file any
unsuccessful service acl
interactions

ClientTimeoutValues

EventTimeout None The amount of ms the
client will wait for a
response from the server

DisconnectWait None The maximum amount
of time to wait when
performing an operation
when disconnected before
throwing session not
connected exception

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 150

Trigger Object Parameters Description

TransactionLifeTime None The default amount of
time a transaction is valid
before being removed
from the tx store

KaWait None The amount of time
the client will wait for
keep alive interactions
between server before
acknowledging
disconnected state

LowWaterMark None The low water mark for
the connection internal
queue. When this value
is reached the outbound
internal queue will again
be ready to push event to
the server

HighWaterMark None The high water mark for
the connection internal
queue. When this value
is reached the internal
queue is temporarily
suspended and unable to
send events to the server.
This provides flow control
between publisher and
server.

QueueBlockLimit None The maximum number of
milliseconds a queue will
have reached HWM before
notifying listeners

QueueAccessWaitLimit None The maximum number of
milliseconds it should take
to gain access to a queue
to push events before
notifying listeners

QueuePushWaitLimit None The maximum number of
milliseconds it should take
to gain access to a queue

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 151

Trigger Object Parameters Description
and to push events before
notifying listeners

ClusterConfig

HeartBeatInterval None Heart Beat interval in
milliseconds

SeparateLog None Create a separate log file
for cluster events

EventsOutStanding None Number of events
outstanding

EventStorage

CacheAge None The time in ms that cached
events will be kept in
memory for

ThreadPoolSize None The number of threads
allocated to perform the
management task on the
channels

ActiveDelay None The time in milliseconds
that an active channel will
delay between scans

IdleDelay None The time in milliseconds
that an idle channel will
delay between scans

FanoutValues

ConcurrentUser None The number of client
threads allowed to execute
concurrently in the server

KeepAlive None The number of
milliseconds between the
server will wait before
sending a heartbeat

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 152

Trigger Object Parameters Description

QueueHighWaterMark None The number of events in a
client output queue before
the server stops sending
events

QueueLowWaterMark None The number of events
in the clients queue
before the server resumes
sending events

MaxBufferSize None The maximum buffer size
that the server will accept

OutputBlockSize None The size of the output
block size

PublishDelay None How long to delay
the publisher when
subscribers queue start to
fill, in milliseconds

RoundRobinDelivery None Use a round robin
approach to event delivery
(true/false)

PublishExpiredEvents None Publish expired events at
server startup (true/false)

JVMManagement

MemoryMonitoring None Number of milliseconds
between monitoring
memory usage on the
realm

WarningThreshold None The memory threshold
when the server starts to
scan for objects to release

EmergencyThreshold None The memory threshold
when the server starts
to aggressively scan for
objects to release

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 153

Trigger Object Parameters Description

ExitOnMemoryError None If true, the server will exit
if it gets an out of memory
exception

ExitOnDiskIOError None If true, the server will exit
if it gets a I/O Exception

JoinConfig

MaxEventsPerSchedule None Number of events that
will be sent to the remote
server in one run

MaxQueueSizeToUse None The maximum events that
will be queued on behalf
of the remote server

ActiveThreadPoolSize None The number of threads to
be assigned for the join
recovery

IdleThreadPoolSize None The number of threads
to manage the idle and
reconnection to remote
servers

RecoveryDaemon

ThreadPool None Number of threads to use
for client recovery

EventsPerBlock None The number of events to
send in one block

TransactionManager

MaxTransactionTime None Time in milliseconds that
a transaction will be kept
active

MaxEventsPerTransaction None The maximum number of
events per transaction, a 0
indicates no limit

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 154

Trigger Object Parameters Description

TTLThreshold None The minimum time in
milliseconds, below which
the server will not store
the Transaction ID

Universal Messaging Scheduling : Tasks
Tasks are executed by either time based (calendar, see "Universal Messaging
Scheduling : Calendar Triggers Schedules" on page 139) or conditional triggers (see
"Universal Messaging Scheduling : Conditional Triggers" on page 141). There are a
number of tasks that can be executed by the Universal Messaging Scheduling engine.
Each task corresponds to a unit of work that performs an operation on the desired object
within a Universal Messaging realm.

This section will discuss the available tasks that can be declared within a Universal
Messaging scheduling script :

"Task Expressions" on page 154

"Store Tasks" on page 155

"Interface Tasks" on page 156

"Memory Tasks" on page 157

"Counter Tasks" on page 157

"Timer Tasks" on page 158

"Config Tasks" on page 158

To view examples of scheduling scripts, see "Scheduler Examples" on page 173.

Task Expressions

Task expressions are comprised of the object on which you wish to perform the
operation, and the required parameters. For more information on the grammar for
task expressions, please see the writing scripts help file (see "Universal Messaging
Scheduling : Writing Schedule Scripts" on page 135). The following sections will
describe the task objects and the parameters required to perform them. The example
below demonstrates both Interface, Logger and Counter tasks.
scheduler realmInterfaceSchedule {
declare Interface myNHP ("nhp0");
declare Counter myCounter("myExhaustedThreads");
when (myNHP.idleThreads == 0) {
Logger.report("NHP0 Interface has no idles Threads");
myCounter.inc();
}
when (myCounter >= 5) {
Logger.report("Increasing the accept thread count on NHP0");
myNHP.threads("+10");
myCounter.reset();
}

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 155

}

Store Tasks - Channel / Queue operations

Store tasks can be used by first of all declaring the desired object as in the following
syntax:
declare Store myChannel("/customer/sales");

The table below lists those tasks available on a Store object, such that the task expression
will look like :
when (myChannel.numOfEvents < 100) {
myChannel.maintain();
}

Task Object Syntax Description

maintain
Store.maintain("*");
Store.maintain("/customer/sales");
myChannel.maintain();

Perform maintenance
on a channel so that
any purged events
are removed from the
channel or queue event
store.

publish
myChannel.publish("Byte array data",
 "tag", "key1=value1:key2:value2"); Publish an event to the

channel / queue, using
the given byte array,
event tag and event
dictionary values.

purge
myChannel.purge();
myChannel.purge(0, 100000);
myChannel.purge(0, 10000,
 "key1 = 'value1'");

Purge all events on
a channel, or events
between a start and end
eid, or using a purge
filter.

createChannel
myChannel.createChannel(0, 0, "P");

Create the channel
using the name it
was declared as, and
the l, capacity and
type specified in the
parameters

createQueue
myChannel.createQueue(0, 0, "P");

Create the queue
using the name it
was declared as, and
the l, capacity and
type specified in the
parameters

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 156

Interface Tasks - Universal Messaging Interface operations

Interface tasks are operations that can be performed on all interfaces or individually
declared interfaces. To declare an interface use the following syntax as an example:
declare Interface myNHP("nhp0");

The table below lists those tasks that can be executed on an Interface object, such that the
task expression will look like :
when (myNHP.connections > 1000) {
myNHP.threads("+10");
}

Task Object Syntax Description

stop
myNHP.stop();
Interface.stop("nhp0"); Stop the interface

start
myNHP.start();
Interface.start("nhp0"); Start The interface

stopAll
Interface.stopAll();

Stop all interfaces
on the realm

startAll
Interface.startAll();

Start all interfaces
on the realm

authTime
myNHP.authTime(20000);
myNHP.authTime("+10000"); Set the interface

authentication
time to a value, or
increase / decrease
it by a value.

backlog
myNHP.backlog(200);
myNHP.backlog("+100"); Set the interface

backlog time to a
value, or increase /
decrease it by a
value.

autoStart
myNHP.autoStart("true");
myNHP.autoStart("false"); Set whether

an interface is
automatically
started when the
realm is started.

advertise
myNHP.advertise("true");
myNHP.advertise("false"); Set whether

an interface is
available to clients
using the admin
API.

certificateValidation
myNHP.certificateValidation("true");
myNHP.certificateValidation("false"); Set whether an

interface (SSL)

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 157

Task Object Syntax Description
requires clients
to provide a
certificate to
authenticate.

threads
myNHP.threads(10);
myNHP.threads("+10"); Set the interface

accept threads to a
value or increase /
decrease it by a
value.

MemoryManager Triggers - Universal Messaging JVM Memory Management operations

MemoryManager triggers are declared using the following syntax as an example:
declare MemoryManager mem;

The table below lists those triggers that can be evaluated on the memory management
object, such that the task expression will look like :
when (mem.freeMemory < 1000000) {
}

Task Object Syntax Description

flush
mem.flush(true);
mem.flush(false); Cause the JVM to call

garbage collection, and
optionally release used
memory

Counter Tasks - Counter tasks

Counter tasks allow you to increment, decrement, set and reset a local counter within
the Universal Messaging scheduling engine. Counter tasks are declared using the
following syntax as an example:
declare Counter counter1 ("myCounter");

The counter task can be executing by referencing the Counter object itself, and calling
one of a number of available tasks. The basic counter task expression will look like :
when (counter1 > 5) {
counter1.reset();
}

The table below shows the tasks that can be executed on the Counter task.

Task Object Syntax Description

dec counter1.dec() Decrement the counter by
1

inc counter1.inc() Increment the counter by 1

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 158

Task Object Syntax Description

set counter1.set(5) Set the counter to a value

reset counter1.reset() Reset the counter to 0

Timer Tasks - Timer operations

Timer tasks allow you to start, stop and reset the timer. Time tasks are declared using
the following syntax as an example:
declare Timer reportTimer ("myTimer");

The timer task can be executed by referencing the timer object itself, such that the task
expression will look like :
when (reportTimer == 60) {
reportTimer.reset();
}

The table below shows the tasks that can be executed on the Counter task.

Task Object Syntax Description

start reportTimer.start() Start the timer

inc reportTimer.stop() Stop the timer

reset reportTimer.reset() Reset the timer

Config Tasks - Channel / Queue based triggers

Config tasks can be used to set any configuration value available in the Config panel for
a realm. Any configuration value can be used as part of a trigger task expression. Config
tasks are declared using the following syntax as an example (below example refers to the
'GlobalValues' configuration group:
declare Config myGlobal ("GlobalValues");
declare Config myAudit ("AuditSettings");
declare Config myClientTimeout ("ClientTimeoutValues");
declare Config myCluster ("ClusterConfig");
declare Config myEventStorage ("EventStorage");
declare Config myFanout ("FanoutValues");
declare Config myJVM ("JVMManagement");
declare Config myJoinConfig ("JoinConfig");
declare Config myRecovery ("RecoveryDaemon");
declare Config myTXMgr ("TransactionManager");

The table below lists those tasks that can be evaluated on a config object, such that the
task expression will look like :
when (myGlobal.MaxNoOfConnections == -1) {
myGlobal.MaxNoOfConnections(1000);
}

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 159

Trigger Object Syntax Description

GlobalValues

SchedulerPoolSize myGlobal.SchedulerPoolSize(2); The number of
threads assigned to
the scheduler

MaxNoOfConnections myGlobal.MaxNoOfConnections(-1); Sets the maximum
concurrent
connections to the
server, -1 indicates
no restriction

StatusUpdateTime myGlobal.StatusUpdateTime(60000); The number of ms
between status
events being
wrien to disk

StatusBroadcast myGlobal.StatusBroadcast(2000); The number of ms
between status
events being
published

fLoggerLevel myGlobal.fLoggerLevel(4); The server logging
level

NHPTimeout myGlobal.NHPTimeout(2000); The number of
milliseconds
the server will
wait for client
authentication

NHPScanTime myGlobal.NHPScanTime(10000); The number of
milliseconds that
the server will wait
before scanning for
client timeouts

HandshakeTimeout myGlobal.HandshakeTimeout(12000); The number of
milliseconds that
the server will wait
for the session to be
established

StampDictionary myGlobal.StampDictionary(true); Place Universal
Messaging details

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 160

Trigger Object Syntax Description
into the dictionary
(true/false)

ExtendedMessageSelector myGlobal.ExtendedMessageSelector
(true);

If true, allows the
server to use the
extended message
selector syntax
(true/false)

ServerTime myGlobal.ServerTime(true); Allow the server
to send the current
time to the clients
(true/false)

SecureHandshake myGlobal.SecureHandshake(true); Performs a security
handshake when
connecting into a
cluster

ConnectionDelay myGlobal.ConnectionDelay(2000); When the server
has exceeded
the connection
count, how long
to hold on to the
connection before
disconnecting

SupportVersion2Clients myGlobal.SupportVersion2Clients
(true);

Allow the server
to support older
clients (true/false)

SendRealmSummaryStats myGlobal.SendRealmSummaryStats
(true);

If true sends the
realms status
summary updates
(true/false)

AuditSettings

RealmMaintenance myAudit.RealmMaintenance (false); Log to the audit
file any realm
maintenance
activity

InterfaceManagement myAudit.InterfaceManagement
(false);

Log to the audit
file any interface

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 161

Trigger Object Syntax Description
management
activity

ChannelMaintenance myAudit.ChannelMaintenance
(false);

Log to the audit
file any channel
maintenance
activity

QueueMaintenance myAudit.QueueMaintenance (false); Log to the audit
file any queue
maintenance
activity

ServiceMaintenance myAudit.ServiceMaintenance
(false);

Log to the audit
file any service
maintenance
activity

JoinMaintenance myAudit.JoinMaintenance(false); Log to the audit
file any join
maintenance
activity

RealmSuccess myAudit.RealmSuccess(false); Log to the audit
file any successful
realm interactions

ChannelSuccess myAudit.ChannelSuccess(false); Log to the audit
file any successful
channel interactions

QueueSuccess myAudit.QueueSuccess(false); Log to the audit
file any successful
queue interactions

ServiceSuccess myAudit.ServiceSuccess(false); Log to the audit
file any successful
realm interactions

JoinSuccess myAudit.JoinSuccess(false); Log to the audit file
any successful join
interactions

RealmFailure myAudit.RealmFailure(false); Log to the audit file
any unsuccessful
realm interactions

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 162

Trigger Object Syntax Description

ChannelFailure myAudit.ChannelFailure(false); Log to the audit file
any unsuccessful
channel interactions

QueueFailure myAudit.QueueFailure(false); Log to the audit file
any unsuccessful
queue interactions

ServiceFailure myAudit.ServiceFailure(false); Log to the audit file
any unsuccessful
service interactions

JoinFailure myAudit.JoinFailure(false); Log to the audit file
any unsuccessful
join interactions

RealmACL myAudit.RealmACL(false); Log to the
audit file any
unsuccessful realm
acl interactions

ChannelACL myAudit.ChannelACL(false); Log to the audit file
any unsuccessful
channel acl
interactions

QueueACL myAudit.QueueACL(false); Log to the
audit file any
unsuccessful queue
acl interactions

ServiceACL myAudit.ServiceACL(false); Log to the audit file
any unsuccessful
service acl
interactions

ClientTimeoutValues

EventTimeout myClientTimeout.EventTimeout
(10000);

The amount of ms
the client will wait
for a response from
the server

DisconnectWait myClientTimeout.DisconnectWait
(30000);

The maximum
amount of time
to wait when

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 163

Trigger Object Syntax Description
performing an
operation when
disconnected before
throwing session
not connected
exception

TransactionLifeTime myClientTimeout.TransactionLifeTime
(10000);

The default
amount of time
a transaction is
valid before being
removed from the
tx store

KaWait myClientTimeout.KaWait(10000); The amount of
time the client
will wait for keep
alive interactions
between
server before
acknowledging
disconnected state

LowWaterMark myClientTimeout.LowWaterMark
(200);

The low water
mark for the
connection internal
queue. When this
value is reached the
outbound internal
queue will again be
ready to push event
to the server

HighWaterMark myClientTimeout.HighWaterMark
(500);

The high water
mark for the
connection internal
queue. When this
value is reached
the internal queue
is temporarily
suspended and
unable to send
events to the server.
This provides flow
control between
publisher and
server.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 164

Trigger Object Syntax Description

QueueBlockLimit myClientTimeout.QueueBlockLimit
(5000);

The maximum
number of
milliseconds a
queue will have
reached HWM
before notifying
listeners

QueueAccessWaitLimit myClientTimeout.QueueAccessWaitLimit
(10000);

The maximum
number of
milliseconds it
should take to gain
access to a queue to
push events before
notifying listeners

QueuePushWaitLimit myClientTimeout.QueuePushWaitLimit
(12000);

The maximum
number of
milliseconds it
should take to gain
access to a queue
and to push events
before notifying
listeners

ClusterConfig

HeartBeatInterval myCluster.HeartBeatInterval
(60000);

Heart Beat interval
in milliseconds

SeparateLog myCluster.SeparateLog(true); Create a separate
log file for cluster
events

EventsOutStanding myCluster.EventsOutStanding (10); Number of events
outstanding

EventStorage

CacheAge myEventStorage.CacheAge(360000); The time in ms that
cached events will
be kept in memory
for

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 165

Trigger Object Syntax Description

ThreadPoolSize myEventStorage.ThreadPoolSize(2); The number of
threads allocated
to perform the
management task
on the channels

ActiveDelay myEventStorage.ActiveDelay(1000); The time in
milliseconds that
an active channel
will delay between
scans

IdleDelay myEventStorage.IdleDelay(60000); The time in
milliseconds that
an idle channel
will delay between
scans

FanoutValues

ConcurrentUser myFanout.ConcurrentUser(5); The number of
client threads
allowed to execute
concurrently in the
server

KeepAlive myFanout.KeepAlive(60000); The number of
milliseconds
between the server
will wait before
sending a heartbeat

QueueHighWaterMark myFanout.QueueHighWaterMark(500);The number of
events in a client
output queue
before the server
stops sending
events

QueueLowWaterMark myFanout.QueueLowWaterMark(200);The number of
events in the clients
queue before the
server resumes
sending events

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 166

Trigger Object Syntax Description

MaxBufferSize myFanout.MaxBufferSize(1024000); The maximum
buffer size that the
server will accept

OutputBlockSize myFanout.OutputBlockSize(200); The size of the
output block size

PublishDelay myFanout.PublishDelay(100); How long to delay
the publisher when
subscribers queue
start to fill, in
milliseconds

RoundRobinDelivery myFanout.RoundRobinDelivery(true); Use a round robin
approach to event
delivery (true/false)

PublishExpiredEvents myFanout.PublishExpiredEvents(true);Publish expired
events at server
startup (true/false)

JoinConfig

MaxEventsPerSchedule myJoinConfig.MaxEventsPerSchedule
(200);

Number of events
that will be sent to
the remote server in
one run

MaxQueueSizeToUse myJoinConfig.MaxQueueSizeToUse
(50);

The maximum
events that will be
queued on behalf of
the remote server

ActiveThreadPoolSize myJoinConfig.ActiveThreadPoolSize
(4);

The number of
threads to be
assigned for the join
recovery

IdleThreadPoolSize myJoinConfig.IdleThreadPoolSize
(2);

The number of
threads to manage
the idle and
reconnection to
remote servers

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 167

Trigger Object Syntax Description

RecoveryDaemon

ThreadPool myRecovery.ThreadPool(5); Number of threads
to use for client
recovery

EventsPerBlock myRecovery.EventsPerBlock(300); The number of
events to send in
one block

TransactionManager

MaxTransactionTime myTXMgr.MaxTransactionTime
(1000);

Time in
milliseconds that a
transaction will be
kept active

MaxEventsPerTransaction myTXMgr.MaxEventsPerTransaction
(1000);

The maximum
number of events
per transaction, a 0
indicates no limit

TTLThreshold myTXMgr.TTLThreshold(1000); The minimum time
in milliseconds,
below which the
server will not store
the Transaction ID

Universal Messaging Scheduling: Editor
The Universal Messaging Enterprise Manager provides a scheduler panel that enables
the user to view, add, delete and edit scheduler scripts. To view the scheduler panel,
select the realm from the namespace and click on the 'Scheduler' tab.

The scheduler panel displays all scripts that have been deployed to the server within a
table. This table shows the name of the schedule, as defined within the script, the user
name of the person the script will be executed using (i.e. the user name of the Enterprise
Manager user who deployed the script, as well as whether the script is to be deployed
cluster wide (i.e. to all realms within the cluster node).

The image below shows the scheduler panel with no scheduling entries.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 168

The buon labelled 'Add New' when clicked will display a dialog containing a script
editing panel that has been designed to assist with the creation of scheduling scripts.
The scheduling grammar is discussed in more detail in the writing scripts section (see
"Universal Messaging Scheduling : Writing Schedule Scripts" on page 135), as well
as the calendar, triggers and tasks sections (see "Universal Messaging Scheduling :
Calendar Triggers Schedules" on page 139, "Universal Messaging Scheduling :
Conditional Triggers" on page 141 and "Universal Messaging Scheduling : Tasks" on
page 154). The image below shows the script editor panel.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 169

Once your script is complete, in order to deploy the schedule to the server, you need to
click on the 'OK' buon. Once clicked, if there are any errors or problems with the script,
you will be presented with a dialog similar to the image below.

If the script does not contain any errors, the script editor panel will close and the new
scheduler script will then appear within the scheduler table. Clicking on the newly
created scheduler within the table will enable you to delete, vew and edit the schedule.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 170

The image below shows the newly created scheduler script once selected. There are
4 scheduler panels available for each scheduler selected from the table. Each panel
is represented by a tab on the boom half of the main scheduler panel. Each of these
panels is discussed below.

Script Editor Panel

The script editor panel is denoted by the tab labelled 'Script Editor' and provides the
same editor view found when you first add a new script. This panel is a simple editor
pane that enables you to modify the scheduler triggers and tasks. The image below
shows this panel selected from the available tabs.

Initial Tasks Panel

The initial tasks panel is denoted by the tab labelled 'Initial Tasks' and represents those
tasks defined within the initialisation section of the scheduler script. Each initial task
is represented as a row in a table with 3 columns. Column 1 labelled 'Task' is the task
object (see "Universal Messaging Scheduling : Tasks" on page 154). Column 2 labelled
'Function / Object' represents the details of the task, fo example, if the task was to purge
a channel, column 2 would show 'purge'. Column 3 labelled 'Parameter' shows any
parameters listed in the scheduler script for the given task. The image below shows an
example of the Initial Tasks tab being selected.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 171

Triggered Tasks

The triggered tasks panel is denoted by the 'Triggered Tasks' tab. This panel displays
those tasks that are triggered based on some conditional triggers. Each conditional
trigger is shown as a row in the table within this panel. Selecting a trigger from this table
will then display the tasks to be executed when this trigger is fired. Each task is shown
in a table similar to that found in the Initial Tasks panel. The image below shows the
triggered tasks panel being selected.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 172

Calendar Tasks

The final panel is the calendar tasks panel and is denoted by the 'Calendar Tasks' tab.
This panel shows the tasks that are scheduled to run at specific times. Each calendar
task is shown as a row within a table. This table has a total of 11 columns. The first 2
columns show the frequency and time. The frequency is either 'Hourly', 'Daily', 'Weekly',
'Monthly' or 'Yearly' and the time is specified as HH:MM. For hourly schedules, the HH
(hours) will be displayed as XX which denotes every hour.

Columns 3 to 9 represent which days of the week the task will run, starting from
Monday ('Mo'). A green circle means the task will run on that day. The last 2 columns
represent the Day and Month the task will run.

Selecting one of the rows in the table will display the actual tasks that will be executed
in a similar table to that found in the triggered tasks panel. The image below shows the
calendar tasks panel with a task selected.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 173

Any changes made to the schedule within the script editor panel can either be deployed
to the realm server by clicking on the 'Apply Changes' buon or discarded by clicking
on the 'Undo Changes' buon.

Schedule entries can be deleted from the server by selecting them from the main
scheduler table and clicking on the 'Delete' buon.

Scheduler Examples
Below is a list of example scheduling scripts that can help you become accustomed to
writing Universal Messaging Scheduling scripts.

"Generic Example" on page 174

"Store Triggers" on page 174

"Interface Triggers" on page 176

"Memory Triggers" on page 176

"Realm Triggers" on page 176

"Cluster Triggers" on page 177

"Counter Triggers" on page 177

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 174

"Timer Triggers" on page 178

"Config Triggers" on page 178

Universal Messaging Scheduling : Example Realm Script
/*
Comments must be enclosed in /* and */ sections
This is an example scheduler script
*/
scheduler realmSchedule {
 declare Config myGlobalConfig ("GlobalValues");
 declare Config myAuditConfig ("AuditSettings");
 declare Config myTransConfig ("TransactionManager");
 initialise {
 Logger.report("Realm optimisation script and monitor startup initialising");
 myAuditConfig.ChannelACL("false");
 myAuditConfig.ChannelFailure("false");
 myGlobalConfig.MaxBufferSize(2000000);
 myGlobalConfig.StatusBroadcast(2000);
 myGlobalConfig.StatusUpdateTime(86400000);
 myTransConfig.MaxTransactionTime(3600000);
 Logger.setlevel(4);
 }
 every 30 {
 Logger.report("Hourly - Executing Tasks");
 }
 every 18:00 {
 Logger.report("Daily - performing maintenance");
 Store.maintain("/customer/sales");
 }
 every We 17:30 {
 Logger.report("Weekly - Performing Purge");
 Store.purge("/customer/sales");
 }
 every 01 21:00 {
 Logger.report("Monthly - Stopping interfaces and restarting");
 Interface.stopAll();
 Interface.startAll();
 }
 every 01-Jan 00:00 {
 Logger.report("Yearly - Stopping interfaces and restarting");
 Interface.stopAll();
 Interface.startAll();
 }
 when (MemoryManager.FreeMemory <30000000) {
 Logger.report("Memory below 30M, performing some clean up");
 MemoryManager.FlushMemory("true");
 } else {
 Logger.report("Memory not below 30M, no clean up required");
 }
}

Universal Messaging Scheduling : Store Triggers Example
scheduler myStore {
 declare Store myPubChannel("myChannel");
 declare Store myPubQueue("myQueue");
/*
Create the channels if they do not exist on the server
*/

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 175

 initialise{
 myPubChannel.createChannel(0, 0, "P");
 myPubQueue.createQueue(0, 0, "M");
 myPubChannel.publish("Data to store in the byte array", "tag info",
 "key1=value1:key2=value2");
 myPubQueue.publish("Data to store in the byte array", "tag info",
 "key1=value1:key2=value2");
 }
/*
At 4:30 each morning perform maintenance on the stores to release unused space
*/
 every 04:30 {
 myPubQueue.maintain();
 myPubChannel.maintain();
 }
/*
Every hour publish an event to the Channel
*/
 every 0 {
 myPubChannel.publish("Data to store in the byte array", "tag info",
 "key1=value1:key2:value2");
 myPubQueue.publish("Data to store in the byte array", "tag info",
 "key1=value1:key2:value2");
 }
/*
Every 1/2 hour purge the channels/queue
The purge takes 3 optional parameters
 StartEID
 EndEID
 Filter string
So it could be
 myPubChannel.purge(0, 100000);
or
 myPubChannel.purge(0, 10000, "key1 = 'value1'");
*/
 every 0 {
 myPubChannel.purge();
 myPubQueue.purge();
 }
/*
 When the number of events == 10 we purge the channel
*/
 when(myPubChannel.numOfEvents == 10){
 myPubChannel.purge();
 }
/*
 When the free space is greater then 60% perform maintenance
*/
 when(myPubChannel.freeSpace> 60){
 myPubChannel.maintain();
 }
/*
 When the number of connections on a channel reach 20 log an entry
*/
 when(myPubChannel.connections == 20){
 Logger.report("Reached 20 connections on the channel");
 }
/*
 Maintain all channels and queues at midnight every night
*/
 every 00:00 {
 Store.maintain("*");
 }

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 176

}

Universal Messaging Scheduling : Interface Triggers Example
scheduler realmInterfaceSchedule {
 declare Interface myNHP ("nhp0");
 declare Counter myCounter("myExhaustedThreads");
 when (myNHP.idleThreads == 0) {
 Logger.report("NHP0 Interface has no idles Threads");
 myCounter.inc();
 }
 when (myCounter>= 5) {
 Logger.report("Increasing the accept thread count on NHP0");
 myNHP.threads("+10");
 myCounter.reset();
 }
}
}

Universal Messaging Scheduling : Memory Triggers Example
scheduler myMemory {
/*
 Declare the MemoryManager task/trigger. Not really required to do
*/
declare MemoryManager mem;
/*
 Just using the MemoryManager task / trigger and not the declared mem as an example.
*/
 when (MemoryManager.freeMemory <10000000){
 MemoryManager.flush(false);
 }
/*
 Now when the Free Memory on the realm drops below 1000000 bytes force the
 realm to release ALL available memory
*/
 when (mem.freeMemory <1000000){
 mem.flush(true);
 }
/*
 This is the same as the one above, except not using the declared name.
*/
 when (MemoryManager.freeMemory <1000000){
 MemoryManager.flush(true);
 }
/*
 totalMemory available on the realm
*/
 when (MemoryManager.totalMemory <20000000){
 Logger.report("Declared Memory too small for realm");
 }
/*
 Out Of Memory counter, increments whenever the realm handles an out of memory exception
*/
 when (MemoryManager.outOfMemory> 2){
 Logger.report("Realm has run out of memory more then the threshold allowed");
 }
}

Universal Messaging Scheduling : Realm Triggers Example

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 177

scheduler realmSchedule {
 declare Realm myRealm ("productionmaster");
 declare Config myGlobalConfig ("GlobalValues");
 when (Realm.connections> 1000) {
 Logger.report("Reached 1000 connections, setting max connections");
 myGlobalConfig.MaxNoOfConnections(1000);
 }
 when (Realm.eventsSentPerSecond> 10000) {
 Logger.report("Reached 10000 events per second, reducing max connection count by 100");
 myGlobalConfig.MaxNoOfConnections("-100");
 }
}

Universal Messaging Scheduling : Cluster Triggers Example
/*
This script tests the cluster triggers. It is assumed the cluster is created with 4 realms
named realm1, realm2, realm3, realm4
*/
scheduler myCluster{
 declare Cluster myNode1("realm1");
 declare Cluster myNode2("realm2");
 declare Cluster myNode3("realm3");
 declare Cluster myNode4("realm4");
/*
 This will trigger when realm1 is online to the cluster
*/
 when (myNode1.isOnline == true){
 Logger.report("Realm1 online");
 }
/*
 This can also be written as
*/
 when (Cluster.isOnline("realm1") == true){
 Logger.report("Realm1 online");
 }
 when (myNode2.isOnline == true){
 Logger.report("Realm2 online");
 }
 when (myNode3.isOnline ==true){
 Logger.report("Realm3 online");
 }
 when (myNode4.isOnline == true){
 Logger.report("Realm4 online");
 }
 when (Cluster.hasQuorum == true){
 Logger.report("Cluster now has quorum and is running");
 }
 when (Cluster.isMaster == true){
 Logger.report("This local realm is the master realm of the cluster");
 }
}

Universal Messaging Scheduling : Counter Trigger Example
scheduler myCounter{
/*
 Define some new counters
*/
 declare Counter counter1 ("myCounter");
 declare Counter counter2 ("myAdditional");
/*

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 178

 When the counter reaches 5 reset it to 0;
*/
 when(counter2> 5){
 counter2.reset();
 }
/*
 If counter1 is less then 3 then increment the value
*/
 when(counter1 <3){
 counter1.inc();
 counter2.dec();
 }
/*
 if Counter2 equals 0 then set counter1 to 5
*/
 when(counter2 == 0){
 counter1.set(5);
 }
}

Universal Messaging Scheduling : Time Triggers Example
scheduler myTimers{
/*
 Define some new timers
*/
 declare Timer reportTimer ("myTimer");
 declare Timer testTimer ("myDelay");
initialise{
 testTimer.stop();
}
/*
In 60 seconds log a report and start the second timer
*/
 when(timer == 60){
 Logger.report("Timer has fired!");
 testTimer.start();
 }
/*
When the second timer hits 30 seconds, log it and reset all timers to do it again
*/
 when(testTimer == 30){
 Logger.report("Test dela fired, resetting timers");
 testTimer.reset();
 testTimer.stop();
 timer.reset();
 }
}

Universal Messaging Scheduling : Configuration Example
scheduler myConfig {
/*
 Declare a local name for the Config(GlobalValues) config group and call it myGlobal.
 Can be used for both triggers and tasks
*/
 declare Config myGlobal ("GlobalValues");
/*
 When this scheduler task is initialised, set the Realms log level to 2
*/
 initialise{
 myGlobal.fLoggerLevel(2);

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 179

 }
/*
 Then if the log level is ever set to 0, automatically reset it to 2.
*/
 when(myGlobal.fLoggerLevel == 0){
 myGlobal.fLoggerLevel(2);
 }
/*
 If the maximum number of connections on the realm is less than 0,
 implying no limit, then set it to 100.
*/
 when(myGlobal.MaxNoOfConnections <0){
 myGlobal.MaxNoOfConnections(100);
 }
}

Integration with JNDI
Universal Messaging supports integration with JNDI through its own provider for
JNDI. Universal Messaging's provider for JNDI enables clients using Universal Messaging
Provider for JMS to locate references to JMS administered objects.

As with all Java APIs that interface with host systems, JNDI is independent of the
system's underlying implementation. In the case of the Universal Messaging product,
the JNDI provider stores object references in the Universal Messaging channel /naming/
defaultContext, which is the channel representing the Universal Messaging Initial
Context for JNDI, and locates the references to the objects using a channel iterator. Note
that if a realm is part of a cluster, the channel will be created on all cluster realm servers.
This ensures that any object references bound into the context are available on each
realm server in the cluster. See the section “Creating The Initial Context” for information
about how and when the channel for the Initial Context is created.

Setting Up the Context and Connection Factories for JNDI

The provider for JNDI can be managed using the Enterprise Manager tool, by selecting
any realm node from the namespace tree, and then clicking on the JNDI tab in the right
hand panel. The JNDI panel enables the creation of the provider and Initial Context for
JNDI, and of TopicConnectionFactory and QueueConnectionFactory references for JMS,
as well as references to Topics and Queues.

Creating The Initial Context

When you select a realm node from the namespace tree, one of the tabs on the right hand
side of the Enterprise Manager will be labelled 'JNDI'. Selecting this tab will display
the default JNDI panel for a realm. At this point there will be nothing drawn within the
JNDI NameSpace tree.

The image below shows the default JNDI panel:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 180

The JNDI panel at this point does not contain any JNDI context information (as can be
seen by the empty Namespace section of the panel).

By default, the 2 text fields labelled JNDI Context Factory and JNDI Provider URL will
already contain information:

The JNDI Context Factory will default to com.pcbsys.nirvana.nSpace.NirvanaContextFactory,
which is the class that provides the Universal Messaging context factory
functionality for JNDI.

The JNDI provider URL is the RNAME used when creating each JNDI connection
reference. Note that for a realm server that is part of a cluster, the Provider URL for
JNDI will be a comma separated list of the RNAMEs for each realm server that is a
member of the cluster. This ensures that not only will the JNDI context be the same
within all cluster realms, but also that any JMS client using this Universal Messaging
Context Factory will be able to use any of the realm servers specified in the Provider
URL.

To actually create the Initial Context, you must click the Apply buon.

The Initial Context uses the (potentially clustered) Universal Messaging context
channel to store all JNDI references. This channel is called /naming/defaultContext. The
channel is not created when the Initial Context is created; instead, the channel is created
when the first client aempts to perform a JNDI bind using the Initial Context. Full

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 181

permissions are assigned to this first client and to all other users and clients who wish to
use the channel.

Removing/destroying the Initial Context is as simple as deleting the /naming/
defaultContext channel. This will of course result in the loss of all existing JNDI references
(so make sure you don't accidentally delete this channel).

If the Initial Context no longer exists, then clicking Apply on this screen will recreate it
(though it will not contain any of its previous JNDI entries/references). Subsequently,
the /naming/defaultContext channel must also be recreated, as described above.

Viewing the JNDI Namespace

Whenever you click Apply on the JNDI Panel, Enterprise Manager will enable display
of the JNDI Namespace. The JNDI Namespace is displayed as a tree structure within
the Namespace section of the panel. The root of this tree will be the JNDI Provider URL (in
the case of a cluster, the comma-separated list of RNAME values for each server in the
cluster). Double clicking on the root node in the JNDI namespace will render 6 "folders":

Connection Factories

Queue Connection Factories

Queues

Topic Connection Factories

Topics

XA Connection Factories

The image below shows this view after the Apply buon has been clicked and the JNDI
namespace tree has been double-clicked to expand it:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 182

Creating Topic and Queue Connection Factories

In order to allow JMS clients to use the Universal Messaging Context Factory to
reference objects via JNDI, we first of all need to create Topic and Queue connection
factories. To do this, right click on the tree node labelled Topic Connection Factories and
select the menu option New Topic Connection Factory. This will display a dialog box
allowing you to enter the name for the connection factory. Enter any name (in this
example, we will use the name TopicConnectionFactory). Click on OK when you've entered
the name, and you will see that a new node will have been created under the Topic
Connection Factories folder with the same name as you entered. The image below shows
the JNDI namespace with a newly created topic connection factory:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 183

The Topic Connection Factory object you just created is actually stored as an event,
published onto the /naming/defaultContext channel. This event is what will be referenced
by JMS clients when they aempt to find the details for the connection factory.

When JMS clients use the Universal Messaging Initial Context for JNDI, they also
reference the topics and queues from the same Initial Context. In order for these clients
to access these objects we need to create references to each topic and queue. Creating
such references will also create the underlying channel or queue if it does not already
exist; note that channels or queues created in this way will have the same default
permissions as channels or queues created manually.

In this example, we will add a new topic into the JNDI namespace that corresponds
to a Universal Messaging channel that already exists as a cluster channel. To do this,
first, right-click on the folder called Topics within the JNDI namespace, and select the
menu option New Topic. If we enter the name /customer/sales, then a new object will
be created under the Topics folder called /customer/sales. This is because, under the
covers, a corresponding event was published to the /naming/defaultContext channel. JMS
clients can thus look up the reference to this topic (channel) and begin using it within
their application. The following image shows the newly created Topic within the JNDI
namespace for the existing topic /customer/sales:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 184

Once we have created both the topic connection factory and the topic, we can snoop
(see "Channel Snoop" on page 93) the /naming/defaultContext channel to view the
individual events that represent these references. If you click the /naming/defaultContext
channel within the Enterprise Manager namespace, then the Snoop panel, and click
Start, you will see the events representing the JNDI entries that have been created. By
selecting any of the events you will see the content of each event on the channel and the
corresponding JNDI context information given to the JMS applications that will require
it.

The image below shows an example of the Topic Connection Factory created earlier
using the JNDI panel:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 185

Universal Messaging Enterprise Manager Comms: TCP Interfaces, IP
Multicast and SHM
Using Enterprise Manager, you can configure communication mechanisms including
TCP Interfaces, IP Multicast and Shared Memory (SHM):

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 186

TCP Interfaces

Interfaces within a Universal Messaging Realm Server define a protocol, a network
interface and a port number. When a Universal Messaging client connects to a realm
using an RNAME, they are actually connecting to an Interface that has been created on
the Universal Messaging Realm.

If a machine that is running a Universal Messaging Realm has multiple physical network
interfaces, with different IP addresses, it is possible to bind specific protocols to specific
ports. This way you are able to segment incoming network traffic to specific clients.

For example, if a realm is running on a machine that has an external internet facing
network interface, as well as an internal interface, you can create a Universal Messaging
interface that uses nhp or nhps on port 80 or 443 respectively using the external facing
interface.

If on the other hand when there are multiple network interfaces, and you do not wish
to segment network traffic for specific protocols, you can specify to bind to all known
network interfaces to the specified protocol and port.

The default realm seing when you first install Universal Messaging creates a Universal
Messaging Socket Protocol Interface that binds to port 9000, on all known network
interfaces.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 187

Once this basic understanding of Universal Messaging interfaces is understood, you
can then set about performing a number of operations using the Universal Messaging
Enterprise Manager:

"Creating Interfaces" on page 187

"Deleting Interfaces" on page 190

"Creating SSL Interfaces" on page 191

"Stopping Interfaces" on page 191

"Starting Interfaces" on page 192

"Interface Configuration" on page 192

"JavaScript Interface Panel" on page 195

"Modify Interfaces" on page 198

"Interface Plugins" on page 199

"Interface VIA rules" on page 133

IP Multicast

"IP Multicast Configuration" on page 334

Shared Memory (SHM)

"Shared Memory Configuration" on page 206

Creating Interfaces
In order to create an interface (see "Universal Messaging Enterprise Manager Comms:
TCP Interfaces, IP Multicast and SHM" on page 185), you need to select the realm
node from the namespace tree that you want to create an interface for. Once this node is
selected, there will be a tab in the tabbed pane on the right hand side of the Enterprise
Manager labelled 'Interfaces'. Selecting this tab will present the user with a table
containing all of the available interfaces on a the selected realm.

The default interface is nsp (Universal Messaging Socket Protocol) and it binds to 0.0.0.0
(i.e. all known interfaces) on port 9000.

Please note that adding an SSL enabled interface (see "Creating an SSL network interface
to a Universal Messaging Realm server" on page 208) for either SSL enabled sockets
or HTTPS requires some additional steps.

The image below shows the interfaces tab containing the default realm interface. When
selected, an interface will be highlighted in yellow as shown below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 188

The interfaces table consists of 5 columns, each of which is described below:

Name : defined as protocol + n, where n is a unique number of interfaces for that
protocol

Status : whether the interface is 'Running', 'Stopped' or 'Error' where the interface has
not been started due to an error

Adapter : the physical network interface to bind to, 0.0.0.0 defines all known interfaces

Port : the port to bind to

Threads : indicator for the number of accept threads the interface has free to accept
connections, full green denotes all are free

To add a new interface, simply click on the 'Add Interface' buon, which will show a
dialog that allows you to choose the protocol, the adapter, the port as well as whether
the interface should be started automatically when it is created and also when the server
restarts. This dialog is shown below:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 189

In the example above, we have chosen to add a Universal Messaging HTTP Interface
(nhp) that will be bound to all known network interfaces (0.0.0.0) on port 80. With the
'Auto Start' checked as above, clicking on the 'OK' buon means that when the interface
is created in the realm server, it will automatically be started. 'Auto Start' will also cause
that interface to be started whenever the Realm is restarted. Once the interfaces has been
created it will appear in the interfaces table as shown in the image below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 190

Further instructions on configuring Universal Messaging interfaces are also available in
the enterprise manage guide (see "Interface Configuration" on page 192).

In addition a VIA rule (see "Interface VIA Rules" on page 133) can be added to
interfaces as a security enhancement.

HTTP / HTTPS Interface

The Javascript tab allows configuration of Comet delivery and is available for HTTP /
HTTPS (nhp / nhps) interfaces.

Deleting Interfaces
Interfaces can be deleted by simply selecting the realm node where the interface you
want to delete is running, and select the 'Interfaces' tab. From the table of configured
interfaces, you can simply select the interface you want to delete and click the 'Delete
Interface' buon.

This will prompt you with a question to confirm the deletion of the selected interface.
Clicking yes will stop the interface, closing all clients connected to the interface, then it
will remove the interface from the realm. The image below shows the confirm dialog.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 191

SSL Interfaces
Universal Messaging supports ssl encryption by providing 2 ssl enabled protocols. These
protocols enable clients to connect to a Universal Messaging Realm Server running a
specific protocol on a port using all or specific physical network interfaces.

Defining an ssl enabled interface ensures that clients wishing to connect to a Realm
Server can do so only after presenting the correct SSL credentials and authenticating
with the server.

SSL authentication occurs within the Universal Messaging handshake which uses
the JVMs JSSE provider. This ensures that any unauthorised connections are SSL
authenticated prior to any Universal Messaging specific operations can be performed.

Creating an ssl enabled interface is the same as creating a non-ssl interface (see "Creating
Interfaces" on page 187) except there are a number of ssl related aributes in addition
to the basic aributes (see "Interface Configuration" on page 192).

For information on how to create an ssl interface (see "Creating an SSL network interface
to a Universal Messaging Realm server" on page 208) using the Universal Messaging
enterprise manager, please see the Universal Messaging FAQ.

Stopping Interfaces
Interfaces can be stopped by selecting the realm node where the interface you want
to stopped is running, and select the 'Interfaces' tab. From the table of configured
interfaces, select the interface you want to stop and double-click on the row.
Alternatively, you can click on the 'Status' column for the interface. Both will have the
same effect, and will present you with a dialog for stopping the selected interface. This
dialog is shown in the image below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 192

Clicking on the 'Stop' buon, will stop the interface on the realm server.

Starting Interfaces
Interfaces can be started by selecting the realm node where the interface you want to
start is running, and select the 'Interfaces' tab. From the table of configured interfaces,
select the interface you want to start and double-click on the row. Alternatively, you
can click on the 'Status' column for the interface. Both will have the same effect, and will
present you with a dialog for starting the selected interface. This dialog is shown in the
image below.

Clicking on the 'Start' buon, will start the interface on the realm server.

Interface Configuration
Each interface on a Universal Messaging Realm has a number of configurable aributes
that determine the interface behaviour. Some of these aributes are standard across all
types of interface protocols, and some are specific to the actual protocol.

This section will describe those aributes that are common for interfaces of all types.

For additional information on specific interfaces types, see "Universal Messaging
Enterprise Manager Comms: TCP Interfaces, IP Multicast and SHM" on page 185.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 193

Basic Interface Attributes

When an interface is selected from the table of interfaces on the interfaces tab, there are
a number of aributes that are configurable for the interface. Below the interfaces table,
there are a set of 2 or more tabs, one of which is labelled 'Basic', as shown in the image
below.

The basic interface configuration panel shows 6 configurable aributes. These are each
explaned in the following section:

Autostart Interface

The autostart aribute specifies whether the interface is started automatically when
the Universal Messaging Realm Server is started. When this option is not selected, the
interface must be started manually in order for it to be used by connecting clients. Please
note that if autostart is not set it must be started either manually or using the Universal
Messaging Administration API whenever after the Realm is started.

If Autostart is selected then the interface will be started once the Apply buon is
pressed.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 194

Auth Time

The auth time aribute corresponds to the amount of time a client connection using this
interface can take to perform the correct handshake with the Realm Server. For example,
the default is 10000 milliseconds, but for some clients connecting on slow modems, and
who are using the nhps (hps) protocol, this default auth time may need to be increased.
If any client connection fails to perform the handshake in the correct timeframe, the
connection is closed by the Realm Server.

Accept Threads

Each Universal Messaging realm interface contains a server socket. The accept threads
aribute corresponds to the number of threads that are able to perform the accept() for
a client connection. The accept() operation on a Universal Messaging interface performs
the handshake and authentication for the client connection. For more heavily utilised
interfaces, the accept threads will need to be increased. For example, on an nhp (hp)
or nhps (hps) interface, each client request corresponds to a socket accept() on the
interface, and so the more requests being made, the busier the interface will be, so
the accept threads needs to be much higher than that of say an nsp (socket) interface.
Socket interfaces maintain a permanent socket connection, and so the accept() is only
performed once when the connection is first authenticated.

Send Buffersize

This specifies the size of the send buffer on the socket.

Receive Buffersize

This specifies the size of the receive buffer on the socket

Select Threads

The select thread option specifies the number of threads allocated to monitor socket
reads/writes on the interface if NIO is enabled. When a socket needs to be read, these
threads will fire and pass on the request to the read thread pool. While if the socket is
blocked during a write, then when the socket is available to be wrien to, these threads
will fire and the request passed on to the write thread pool. The number of select threads
should not typically exceed the number of cores available.

Enable NIO

Specify whether NIO should be used for this interface.

Advertise Interface

All interfaces that are advertised by a realm server are available to users (with the
correct permissions) of the Universal Messaging Admin API. This property specifies
whether the interface is indeed advertised to such users.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 195

Backlog

The backlog aribute specifies the size of the IP socket queue. This value specifies
the maximum size of the incoming socket request queue. The operating system the
Realm Server is running on may specify a maximum value for this property. When the
maximum queue size is reached the operating system will refuse incoming connections
until the request queue reduces in size and more requests can be serviced. For more
information on this value, please see the System administration documentation for your
Operating System.

Alias

Each interface on a Universal Messaging Realm Server can have an associated alias in
the form of host:port. This alias can be specified here.

For information on interface plugins please see "Interface plugins" on page 199.

For information on adding VIA rules for an interface please see "Interface VIA Rules" on
page 133.

When you change any of these aributes, the changes need to be applied by clicking the
'Apply' buon. For more information, refer to the modifying interfaces documentation
(see "Modifying Interfaces" on page 198).

JavaScript Interface Panel
Universal Messaging HTTP and HTTPS (nhp and nhps) interfaces have configuration
options specific to their communication with web clients using JavaScript. These options
are accessible through the JavaScript panel when viewing an nhp or nhps interface.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 196

The Interface Panel

JavaScript Interface Properties

Option Name Description

Enable JavaScript Recommended Seing: Enabled

Allows JavaScript clients to connect on
this interface.

Enable WebSockets Recommended Seing: Enabled

Toggles the ability for clients to
communicate with the server using
the HTML WebSocket Protocol on this
interface.

CORS Allow Credentials Recommended Seing: Enabled

Toggles the server sending an "Access-
Control-Allow-Credentials: true"
header in response to XHR-with-

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 197

Option Name Description
CORS requests from the client. This is
required if the application, or website
hosting the application, or intermediate
infrastructure such as reverse proxy
servers or load balancers, uses cookies.

Leave this enabled unless recommended
otherwise by support. Disabling this will
in most environments prevent all CORS-
based drivers from working correctly.

CORS Allowed Origins Recommended Seing: *

A comma separated list of the host names
(and IP addresses, if they appear in
URLs) of the server/s which host your
JavaScript application's HTML. Use an *
(asterisk) as a wildcard value if you do
not wish to limit the hosts that can serve
applications to clients. This server will
accept and respond with the required
Access-Control-Allow-Origin header
when requests originate from a hostname
in this list. This header allows CORS
enabled transport mechanism to bypass
cross site security restrictions in modern
browsers.

It is important that this is set
appropriately, or approximately half of
the communication drivers available to
JavaScript clients will fail.

Enable GZIP for LongPoll Recommended Seing: Enabled

This will allow the server to gzip
responses sent to LongPoll clients. This
can reduce network utilization on servers
with many LongPoll clients. It increases
CPU resource utilization.

GZIP Minimum Threshold Recommended Seing: 1000

The minimum message size is bytes
required for the server to begin
compressing data sent to LongPoll
clients.

Long Poll Active Delay Recommended Seing: 100

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 198

Option Name Description

The time between clients sending
long poll requests to the server in
milliseconds. Reducing this may reduce
latency up to a certain threshold but will
increase both client and server memory,
cpu and network usage.

Long Poll Idle Delay Recommended Seing: 25000

The time between clients sending long
poll when the client is in idle mode.
A client is put in idle mode when no
communication takes place between
client and server for a period of time.
Reducing this may be necessary if a
client is timing out owing to local TCP/
IP seings, proxy seings, or other
infrastructure seings, but will result
in higher memory, CPU and network
usage on both the client and the server.
It is however vital that this value is
lower than the timeouts used in any
intermediate proxy server, reverse proxy
server, load balancer or firewall. Since
many such infrastructure components
have default timeouts of as lile as 30
seconds, a value of less than 30000 would
be prudent. If long polling client sessions
continually disconnect and reconnect,
then lower this value.

Custom Header Config Header Key/Value pairs which are sent in
the HTTP packets to the client.

Modifying Interfaces
Each interface within a Universal Messaging realm has a number of configuration
aributes (see "Interface Configuration" on page 192) that can be modified using the
Enterprise Manager. Once modified, these can be applied to the interface on the fly.
Modifying an interface will cause it to restart, closing all connections to the interface.
However, since Universal Messaging clients will automatically reconnect to the realm
server, the service disruption should be minimal.

When you have modified the configuration aributes for the selected interface, the
Interfaces panel contains a buon labelled 'Apply'. Clicking on this buon will send
the modified aributes to the realm server and apply them to the interface, causing

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 199

it to restart. If there are any clients connected to the interface they will automatically
reconnect after restart.

The image below shows the Interfaces panel and the apply buon.

Interface plugins
Universal Messaging supports the concept of plugins that actively process client
requests made to nhp and nhps interfaces. There are currently 4 plugins, File (Web
Server like behaviour), XML (Browse resources and events in XML), SOAP (Browse
channels, queues and events using SOAP protocol) and Proxy Passthrough (Enable hp/
s requests for specific urls to be forwarded to another host:port).

The plugins are discussed in more detail in the plugins section of this guide.

Interface VIA Rules
Each interface defined within a Universal Messaging Realm server can have an
associated ACL list, known as a VIA list.

The VIA list enables list of users to be defined who are entitled to connect to the
Universal Messaging realm using a specific protocol 'via' a specific interface.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 200

If for example, a realm has an HTTP (nhp) interface running on port 10000, and we
also want a sockets (nsp) interface running on port 15000, and you want all external
clients to connect using the nhp interface, and all internal clients to connect using the
nsp interface, this can be achieved by providing the nhp and nsp interfaces with a list of
subjects that are able to connect via the different interfaces.

This ensures that any user that tries to connect via the nsp interface who is not part
of the nsp interface VIA list but exists in the nhp via list will be rejected and will not
be able to establish a connection via nsp. The same will apply for the nhp interface.
Alternatively, by simply adding a list of via entries to the nhp interface (and leaving
the nsp via list empty), any user trying to connect via nsp interface who is found in any
other interface via list will be rejected. This allows you to tie specific users to specific
interfaces.

The default behaviour for all interfaces is that when no VIA lists exist on any defined
interfaces, all users can connect on any interface (Realm ACLs permiing, see "Realm
Entitlements" on page 125). When a user subject exists on an interface, that subject
cannot use any other interface other than the one they are listed in.

This is an extra level of security that allows administrators of Realm Servers to define a
strict approach to who can connect to the realm via specific protocols. This is particularly
useful if for example you run many services on a single Universal Messaging realm
server and wish to ensure that specific clients / groups of clients are using completely
separate interfaces.

Interface ACL (VIA List)

In order to view the VIA list for an interface, select the realm where the interface
is running, and then select the 'Interfaces' tab in the Enterprise Manager. From the
interface list for the realm, select the interface from the table of interfaces, and choose
the tab labelled 'VIA' from the boom of the interface panel. The image below shows the
result of an acl entry being added to the default socket interface running on port 9000.
By adding this entry, the user johnsmith@192.168.1.2 can only use the nsp0 interface
which is using the sockets protocol on port 9000.

As with all Universal Messaging ACLs wildcards are fully supported so that for
example, *@192.168.1.2 or johnsmith@* are both relevant enforceable VIA rules.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 201

Interface VIA entries can be added to by clicking on the 'Add' buon from the VIA panel
and entering the subject. Entries can be removed by selecting the entry and clicking the
'Delete' buon.

Any changes to the interface VIA list will not take effect at the server until the 'Apply'
buon has been clicked on the VIA panel. Changes can also be disregarded without
updating the server by clicking on the 'Cancel' buon on the VIA list panel.

Multicast Configuration
Universal Messaging delivers 'ultra-low latency' to a large number of connected clients
by including IP Multicast functionality for both the delivery of events to Data Group
consumers as well as between inter-connected realms within a Universal Messaging
cluster.

This section assumes the reader has some knowledge of IP Multicast.

Universal Messaging Multicast Architecture

Each Universal Messaging interface that you configure on a Universal Messaging Realm
binds to one or all of the available physical Network adapters present on the host
machine. In order to successfully configure Multicast on a Universal Messaging Realm
you must ensure that you know the IP addresses of each of these network adapters

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 202

(including virtual addresses if running on a virtual host), and which physical network
adapter and it's address is capable of supporting IP Multicast. This information allows
the correct network adapter to be selected and bound to by the Multicast configuration.
Once this information is known, you then need to ensure that the physical network
infrastructure including switches and routers can support Multicast. Once validated, the
next step is to select an available Multicast address which can be used.

Universal Messaging servers can use IP Multicast either to deliver Data Group events
to its consumers or between Universal Messaging realms within a cluster. If you wish
to enable IP Multicast delivery to Data Group consumers, you can create a Multicast
configuration and select it for use with Data Groups. Once you have configured a
Multicast adapter, when you create a Data Group with the enable Multicast flag set,
the Universal Messaging realm will automatically begin delivering the events via
Multicast when published to that Data Group. The client application requires no extra
setup to begin receiving Multicast. When a client Data Stream is added to a Multicast
enabled Data Group, the client will transparently receive the information it needs to
begin consuming Multicast for that Data Group. The client will at first both consume
the Unicast Data Group events, and if Multicast is possible, also consume the Multicast
events. When both Unicast and Multicast are in sync after a period of time, the Universal
Messaging Server will stop sending Unicast events for that Data Stream to the client. The
Universal Messaging server will track whether each client is in fact able to process the
Multicast packets and if any client does not successfully acknowledge safe receipt of the
Multicast events, it will simply continue to consume the Unicast events.

With this model, the client is able to seamlessly interact with the Universal Messaging
server and begin consuming Multicast events with no changes to the Client application
required.

Setting Up Multicast for Data Group Delivery

The first step in configuring a Universal Messaging Realm for Multicast Data Group
delivery is to create the Multicast adapter configuration. Once you have the information
described in the previous section, and your Universal Messaging realm is running, start
the Enterprise Manager and connect to your realm. Once connected, select the realm
node from the tree, and choose the Multicast tab in the right hand panel, as shown
below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 203

Clicking on the "Add Multicast Config" buon opens a dialog that enables you to enter
the Multicast IP Address, as well as the Network Adapter Address of your multicast
configuration, as shown below.

When you click on ok in the dialog, the new Multicast configuration will appear in the
table. You then need to select that the multicast configuration is to be used for Data
Groups by clicking on the "Use for DataGroups" check box. Then click the "Apply"
buon and the configuration will be sent to the server. The completed multicast
Configuration is shown in the table as seen in the image below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 204

Now you have created the Multicast configuration, you need to create your Multicast
enabled Data Groups. To do this, simply click on the Data Groups node in the tree,
and right click "Create Data Group". This will open up the standard create Data Group
dialog but with an additional check box for enabling Multicast. This is shown in the
image below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 205

Now your data group is ready to be used for Multicast Delivery. If you are familiar with
Universal Messaging Data Groups, you will be familiar with our example Data Group
programs which you can use to test this out, or you may have your own Data Group
setup that you can use. If your Data Groups are created programmatically, then the key
thing to remember is that when you call the nSession.createDataGroup, you now need to
also pass in an additional boolean that marks the Data Group as Multicast enabled.

Setting Up Multicast for Cluster Inter Realm Communication

If you have a clustered setup, and you wish to setup Multicast between your realms
for the inter realm communication, the setup is the same, however on each realm that
you create a Multicast Configuration, the configuration itself needs to set the "Use for
Clusters" checkbox. The Multicast address can be the same for all realms, or you can
choose a different Multicast Address per realm. With this feature enabled, each realm
will know the Multicast address for each of the other realms in the cluster and will listen
on these addresses for inter realm cluster communication.

Advanced Multicast Settings

The default seings for the Multicast configurations you create are aimed at providing
the lowest possible latency. With this in mind, the configuration is such that the
multicast client will ack every 1 second, and the server will maintain a list of un-acked
events (default 9000). Should the publish rate exceed 9000 per second, you may notice
that the delivery rates might be quite irregular. This is down to the fact that the client
will only acknowledge every 1 second, and so the server will automatically back off the
delivery until it receives an acknowledgement from the client and can therefore clear
its unacknowledged queue. If this happens, you can change both the Unacked Window

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 206

Size to be > 9000 and the Keep Alive Interval (ack interval) to be less than 1 second (see
image of the Advanced Seings tab below). In future releases of Universal Messaging 7.0
we will be changing this configuration so that there can be different modes of delivery
where you have a choice of either no acks, therefore the publisher is free to move as
fast as it can regardless of any loss, as well as a more guaranteed level of service where
events are acknowledged.

Shared Memory Configuration
In order to create a Shared Memory (SHM) interface you will need to select the realm
node from the namespace tree to which you wish to add the interface, then in the
right hand tabbed area there will be a tab labeled "Comms". Select it, and you will be
presented with the "Shared Memory" tab:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 207

Now select "Add SHM Config" and you be presented with the below configuration box,
it contains three parameters

1. Path: This is the directory within which the files needed for SHM communication
will be created. (Please note that when choosing a path, ensure that the local user id
of the server can access this directory, for example, /dev/shm will require root / super
user access, or shm communication will not work)

2. Buffer Size: This is the size of the allocated memory in bytes a connection will use, it
will also create a file of the same size which is used for mapping.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 208

3. Timeout: This is the idle timeout for a connection, if no activity is detected on the
connection it is closed.

Once you press okay the driver is created and ready to go. If you wish to edit any of
those values you can edit them by double clicking any on the field you wish to change
and then applying them with the apply buon or reseing them by pressing cancel.

Creating an SSL network interface to a Universal Messaging Realm server
Network Interfaces can be added to a Universal Messaging Realm using the Universal
Messaging Administration API or by using the Universal Messaging Enterprise
Manager.

To add an ssl interface using the Enterprise Manager GUI follow the steps below:

Step 1: Click on the interfaces panel for a Realm. In the example below an interface is
being added to the nirvana1 Realm. An interface could also be added however to any
other realm shown in the enterprise manager. This ability makes centralised remote
administration very easy using Universal Messaging.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 209

Step 2: Click on the Add buon in order to bring up the Add Interface dialog box. In the
dialog choose the network protocol you would like to use for this interface. The choices
are Sockets, Secure Sockets, HTTP and HTTPS. Choose either Secure Sockets or Secure
HTTPS to add an SSL interface.

In this example HTTPS is chosen as the protocol and the interface is added to the
network adapter 192.168.1.5. This will run the network interface on that IP Address.
Alternatively, you could add a hostname that will resolve to the IP address of the
chosen interface, or you can also specify 127.0.0.1 for localhost or 0.0.0.0 for all network
interfaces on this machine.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 210

Step 3: When a new interface is added if the Auto Start option is not clicked the realm
interface will not start automatically when a realm starts, and it will have to be started
manually.

After the interface has been added you should see the following in your interfaces panel:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 211

In this example you can see that this Realm now has 2 network interfaces and that the
one just added has been started.

If you did not choose to start the interface automatically, then in order to start the
interface you need to click on the line containing the stopped traffic light. This will
populate the tabs at the boom with details for this interface.

Click on the Certificates tab. You will see that the first 2 text boxes have been
automatically filled in. In the Universal Messaging download, we provide a utility called
Certificate Generator (see "How to generate certificates for use" on page 212) that can
generate sample .jks files containing certificates bound to localhost, for the server, the
client and the truststore used by jsse. In this example we are going to use the sample jks
files in order to demonstrate creating an SSL interface.

If you would like instructions on generating your own certificates (see "How to generate
certificates for use" on page 212) for use with Universal Messaging please see our
FAQ.

The text field titled 'Key store path' should contain something similar to:

c:\Universal Messaging 6.0.XXXX\server\Universal Messaging\bin\server.jks

which should be the path to the sample Java keystore for the server, bound to localhost.
The text field 'Trust store path' should contain something similar to the following:

c:\Universal Messaging 6.0.XXXX\server\Universal Messaging\bin\nirvanacacerts.jks

Next, fill in the entries for the 'Key Store Passwd' and 'CA Store Passwd' with
'password'. This is the password for both the server keystore and the CA (truststore)
keystore.

Next select the 'Basic' tab and click on the autostart interface checkbox. Clicking on this
box means that the interface will be started automatically when the Universal Messaging
Realm server is started.

Then click on apply and the Interface will be started. It will also start it now.

Alternatively if you do not wish to autostart then double click on the line with the
stopped traffic light. This will bring up a dialog which allows you to start that network
interface.

If the network interface fails to start then please inspect the Universal Messaging log file
via the messages tab. Please contact your software supplier if any other issues arise.

Similarly, if you wish to stop an interface, simply double-click on the interface you want
to stop from the interface table, and click on the 'stop' buon.

There is no limit to the number of network interfaces that can be added to a Realm and
each can have its own configuration such SSL chains etc applied. This allows you to
isolate customers from each other while still using only one Universal Messaging Realm
server.

In this example we have used our own sample Java keystores which will only work
when using the loopback interface of your realm server host. If you wish to provide
SSL capabilities for remote connections, you must ensure you have your own keystores

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 212

and valid certificate chains. For related information on topics such as creating your own
certificate chains and using the Java keytool, you can visit external links such as the
following:

hp://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html

How to generate certificates for use

Generating Demo / Development certificates

In order to generate a demo SSL certificate you can use the Java keytool utility or the
Universal Messaging Certificate Generator utility.

The Java keytool utility can be used to create and handle certificates. Keytool stores all
keys and certificates in a keystore. For a detailed description of Java's keytool please
see its documentation at hp://docs.oracle.com/javase/7/docs/technotes/tools/windows/
keytool.html.

The Universal Messaging Certificate Generator utility can be used to generate a self
signed server certificate, a self signed client certificate and a trust store for the above
two.

You can run the Certificate Generator from the Start Menu on Windows by selecting the
server/<realm name>/Create Demo SSL Certificates

Alternatively you can open a server Command Prompt and run the utility as required
for your platform:

Win32:

CerficateGenerator.exe

Linux/Solaris/Generic Unix:

./CerficateGenerator

OSX:

./CerficateGenerator.command

This will generate 3 files:

client.jks : Self signed certificate you could use if you have client certificate
authentication enabled.

server.jks : Self signed certificate with a CN=localhost . Please note: You can only
connect to interfaces using this by specifying a localhost RNAME due to the HTTPS
protocol restrictions.

nirvanacacerts.jks: Keystore that contains the public certificate part of the 2 key pairs
above. This should be used as a trust store by servers and clients.

It is also possible to customize some elements of these certificates stores such as the
password, the host bound to the server CN aribute and they key size.This can be done
by passing the following optional command line arguments to the Certificate Generator:

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 213

Win32:

CerficateGenerator.exe <password> <host> <key size>

Linux/Solaris/Generic Unix:

./CerficateGenerator <password> <host> <key size>

OSX:

./CerficateGenerator.command <password> <host> <key size>

Generating Production certificates

In order to obtain a real SSL Certificate, you must first generate a CSR (Certificate
Signing Request). A CSR is a body of text that contains information specific to your
company and domain name. This is a public key for your server.

The Java keytool utility can be used to create and handle certificates. Keytool stores all
keys and certificates in a keystore. For a detailed description of keytool please see its
documentation.

Step 1: Create a keystore

Use the keytool to create a keystore with a private/public keypair.

keytool -genkey -keyalg "RSA" -keystore keystore -storepass password -
validity 360

You will be prompted for information about your organisation. Please note that when
it asks for "User first and last name", please specify the hostname that Universal
Messaging will be running on (e.g. www.yoursite.com).

Step 2: Create a certificate request

Use the keytool to create a certificate request.

keytool -certreq -keyalg "RSA" -file your.host.com.csr -keystore keystore

This will generate a file containing a certificate request in text format. The request itself
will look someting like this :
-----BEGIN NEW CERTIFICATE REQUEST-----
 MIIBtTCCAR4CAQAwdTELMAkGA1UEBhMCVVMxDzANBgNVBAgTBmxvbmRvbjEPMA0GA1UEBxMGbG9u
 ZG9uMRQwEgYDVQQKEwtteS1jaGFubmVsczEMMAoGA1UECxMDYml6MSAwHgYDVQQDExdub2RlMjQ5
 Lm15LWNoYW5uZWxzLmNvbTCBnzANBeddiegkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAycg0MJ7PXkQM9sLj
 1vWa8+7Ce0FDU4tpcMXlL647dwok3uUGXuaz72DmFtb8OninjawingsjxrMBDK9fXG9hqfDvxWGyU0DEgbn+Bg
 O3XqmUbyI6eMzGdf0vTyBFSeQIinigomontoyaU9Ahq1T7C6zlryJ9n6XZTW79E5UcbSGjoNApBOgVOCPKBs7/CR
 hZECAwEAAaAAMA0GCSqGSIb3DQEBBAUAA4GBAB7TkFzQr+KvsZCV/pP5IT0c9tM58vMXkds2J7TY
 Op3AueMVixRo14ruLq1obbTudhc385pPgHLzO7QHEKI9gJnM5pR9yLL72zpVKPQ9XOImShvO05Tw
 0os69BjZeW8LTV60v4w3md47IeGE9typGGxBWscVbXzB4sgVlv0JtE7b
 -----END NEW CERTIFICATE REQUEST-----

Step 3: Submit your certificate request to a certificate supplier

Certificate vendors will typically ask you to paste the certificate request into a weborder
form. This will be used as a public key to generate you private key. Please include the
(BEGIN and END) tags when you paste the certificate request.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 214

Please note that a cert of PKCS #7 format is required so that it can be imported back into
keytool. (step 4)

The certificate vendor will then provide you with a certificate which that will look
something like this:

Please paste this certificate into a file called your.host.com.cer [Note. please include the
(BEGIN and END) tags]
-----BEGIN PKCS #7 SIGNED DATA-----
 MIIFpAYJKoZIhvcNAQcCoIIFlTCCBZECAQExADALBgkqhkiG9w0BBwGgggV5MIIC
 2DCCAkGgAwIBAgICErYwDQYJKoZIhvcNAQEEBQAwgYcxCzAJBgNVBAYTAlpBMSIw
 IAYDVQQIExlGT1IgVEVTVElORyBQVVJQT1NFUyBPTkxZMR0wGwYDVQQKExRUaGF3
 dGUgQ2VydGlmaWNhdGlvbjEXMBUGA1UECxMOVEVTVCBURVNUIFRFU1QxHDAaBgNV
 BAMTE1RoYXd0ZSBUZXN0IENBIFJvb3QwHhcNMDQwOTA2MTYwOTIwWhcNMDQwOTI3
 MTYwOTIwWjB1MQswCQYDVQQGEwJVUzEPMA0GA1UECBMGbG9uZG9uMQ8wDQYDVQQH
 EwZsb25kb24xFDASBgNVBAoTC215LWNoYW5uZWxzMQwwCgYDVQQLEwNiaXoxIDAe
 BgNVBAMTF25vZGUyNDkubXktY2hhbm5lbHMuY29tMIGfMA0GCSqGSIb3DQEBAQUA
 A4GNADCBiQKBgQDJyDQwns9eRAz2wuPW9Zrz7sJ7QUNTi2lwxeUvrjt3CiTe5QZe
 5rPvYOYW1vw6PGswEMr19cb2Gp8O/FYbJTQMSBuf4GA7deqZRvIjp4zMZ1/S9PIE
 VJ5AhT0CGrVPsLrOWvIn2fpdlNbv0TlRxtIaOg0CkE6BU4I8oGzv8JGFkQIDAQAB
 o2QwYjAMBgNVHRMBAf8EAjAAMDMGA1UdHwQsMCowKKAmoCSGImh0dHA6Ly93d3cu
 dGhhd3RlLmNvbS90ZXN0Y2VydC5jcmwwHQYDVR0lBBYwFAYIKwYBBQUHAwEGCCsG
 AQUFBwMCMA0GCSqGSIb3DQEBBAUAA4GBAHGPR6jxU/h1U4yZGt1BQoydQSaWW48e
 r7slod/2ff66LwC4d/fymiOTZpWvbiYFH1ZG98XjAvoF/V9iNpF5ALfIkeyJjNj4
 ZryYjxGnbBa77GFiS4wvUk1sngnoKpaxkQh24t3QwQJ8BRHWnwR3JraNMwDWHM1H
 GaUbDBI7WyWqMIICmTCCAgKgAwIBAgIBADANBgkqhkiG9w0BAQQFADCBhzELMAkG
 A1UEBhMCWkExIjAgBgNVBAgTGUZPUiBURVNUSU5HIFBVUlBPU0VTIE9OTFkxHTAb
 BgNVBAoTFFRoYXd0ZSBDZXJ0aWZpY2F0aW9uMRcwFQYDVQQLEw5URVNUIFRFU1Qg
 VEVTVDEcMBoGA1UEAxMTVGhhd3RlIFRlc3QgQ0EgUm9vdDAeFw05NjA4MDEwMDAw
 MDBaFw0yMDEyMzEyMTU5NTlaMIGHMQswCQYDVQQGEwJaQTEiMCAGA1UECBMZRk9S
 IFRFU1RJTkcgUFVSUE9TRVMgT05MWTEdMBsGA1UEChMUVGhhd3RlIENlcnRpZmlj
 YXRpb24xFzAVBgNVBAsTDlRFU1QgVEVTVCBURVNUMRwwGgYDVQQDExNUaGF3dGUg
 VGVzdCBDQSBSb290MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC1fZBvjrOs
 fwzoZvrSlEH81TFhoRPebBZhLZDDE19mYuJ+ougb86EXieZ487dSxXKruBFJPSYt
 tHoCin5qkc5kBSz+/tZ4knXyRFBO3CmONEKCPfdu9D06y4yXmjHApfgGJfpA/kS+
 QbbiilNz7q2HLArK3umk74zHKqUyThnkjwIDAQABoxMwETAPBgNVHRMBAf8EBTAD
 AQH/MA0GCSqGSIb3DQEBBAUAA4GBAIKM4+wZA/TvLItldL/hGf7exH8/ywvMupg+
 yAVM4h8uf+d8phgBi7coVx71/lCBOlFmx66NyKlZK5mObgvd2dlnsAP+nnStyhVH
 FIpKy3nsDO4JqrIgEhCsdpikSpbtdo18jUubV6z1kQ71CrRQtbi/WtdqxQEEtgZC
 JO2lPoIWMQA=
 -----END PKCS #7 SIGNED DATA-----

Step 4: Store the certificate in your keystore

Use the keytool to store the generated certificate :

keytool -keystore keystore -keyalg "RSA" -import -trustcacerts -file
your.host.com.cer

Once step 4 is completed you now have a Universal Messaging server keystore and can
add an SSL interface (see "Creating an SSL network interface to a Universal Messaging
Realm server" on page 208).

Please note that if you completed steps 1 to 4 for test certificates then you will also need
to create a store for the CA root certificate as Universal Messaging will not be able to
start the interface until it validates where it came from. Certificate vendors typically
provide test root certificates which are not recognised by browsers etc. In this case you
will need to add that cert to another store and use that as your cacert. When specifying

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 215

certificates for a Universal Messaging SSL interface this would be specified as the Trust
Store Path in the certificates tab.

If you are using anonymous SSL then you will have to provide this cacert to clients also
as this will not be able to validate the Universal Messaging certificate without it. Please
see the Security section of our Concepts guide for more information on configuring
Universal Messaging clients to use certificates.

Plugins
The Universal Messaging Realm Server supports the concept of Plugins within the
context of the NHP or NHPS protocols. The plugins are initiated when the underlying
Universal Messaging driver receives a n HTTP/S packet which is not part of the
standard Universal Messaging protocol. At this point it passes the request over to the
Plugin Manager to see if there is any registered plugins interested with the packets
URL. If there is, then the request is forwarded to this Plugin for processing. There are
several plugins supported by Universal Messaging 3.1. Please see below for available
documentation. :

"File Plugin" on page 216

"XML Plugin" on page 219

"Proxy passthrough Plugin" on page 224

"REST Plugin" on page 226

"SOAP Plugin" on page 244

"Servlet Plugin" on page 248

Configuration

Configuration of a plugin can be done programmatically with the Administration API
supplied with Universal Messaging or it can be done with the EnterpriseManager
application. For the rest of this document the EnterpriseManager will be used.

In order to add a plugin, first of all you need to have created the nhp or nhps interface
(see "Creating Interfaces" on page 187) that will use the plugin within the realm
where you wish to run the plugin. Once the interface is created, select the interface from
the table of configured interfaces for the chosen realm, and then select the tab labelled
'Plugins' from the interface configuration panels. Clicking on the 'Add Plugin' buon
will present you with a dialog that enables you to choose which plugin you wish to add.
The diagram below shows a new File Plugin about to be added to the known interface
NHP0.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 216

URL Path

When you configure a plugin, you are required to add a URL Path. The URL Path
is what the realm server used to determine if the request if destined for a plugin. If
the server matches the URLPath portion of the URL supplied within the request to
a configured plugin, then this request is passed to the correct configured plugin for
processing. For example:

If a request with a URL of http://realmServer/pluginpath/index.html is made to
the server, the file path will be extracted , i.e. pluginpath/index.html, and the configured
plugins will be scanned for a match. If we had a File Plugin configured with a URL Path
as pluginpath, then this plugin will get a request for index.html.

Similarly:

If a request with a URL of http://realmServer/pluginpath/pictures/pic1.jpg is
received, then the same File Plugin would get a request for pictures/pic1.jpg.

File Plugin
The file plugin enables the Universal Messaging Realm Server to vendor static Web
pages. This can be used for example to have the server vendor applets and supported
files without the need for a dedicated web server. For example, if I was running a File

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 217

plugin on my realm server host called 'webhost', on an nhp interface running on port 80,
I could type in a url within a web browser hp://webhost/index.html which will return
the index page defined within the file plugin root file directory.

This enables the Realm Server to act as a webserver and can even be used to vend
applets to client browsers that may directly communicate with the Realm Server and
publish and consume events from channels.

Configuration

Once you have created the file plugin on the interface you require it on, you can then
select it from the plugins panel for the selected interface and enter values as you wish for
the configuration parameters.

The file plugin requires configuration information relating its behaviour as well as the
location of the files it is required to vend to the clients. Below is a table that shows each
configuration parameter and describes what it is used for.

Parameter Name Description Default Value

BufferSize Size of the internal buffer
to use to send the data.

1024

BasePath Path used to locate the
files.

<serverPath>/plugins/
htdocs

DefaultName If no file name is specified
which file should be
returned.

index.html

FileNotFoundPage Name of the file to send
when file can not be
located

None.

UserFile Name of the file
containing the usernames
and passwords.

None.

Security Realm Name of the
authentication realm

None.

MimeType Name of the file to load
the mime type information
from. The format of
this file is : <mimetype>
<fileExtension>

Built in types used.

CachedObjects Number of objects to store
in the cache

100

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 218

Parameter Name Description Default Value

CacheObjectSize Size in bytes that can be
stored in the cache

20K

SeparateAccessandErrorLogs Choose true to have
separate log files for the
access and error logs.

FALSE

The image below shows the enterprise manager interface panel with an nhp interface
running on port 8080. This interface has a File Plugin configured with the default
seings and its URL path is /docs. The default BasePath seing is <serverPath>/
plugins/htdocs, which is your local install server directory/plugins/htdocs. The default
installation places the Universal Messaging API docs within the htdocs directory. Once
the plugin is created, you can hit the apply buon which will restart the interface and
enable the new file plugin.

From a browser, it is now possible to enter the url http://localhost:8080/docs/
which will then render the default index.html page for the API docs. The image below
demonstrates the browser view from a Realm that has a file plugin on an nhp interface
on port 8080, and displaying the default API docs found in the htdocs directory.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 219

XML Plugin
The XML Plugin can be used to query the Realm Server, its queues and channels and
returns the data in XML format. This plugin also supports style sheets, so the XML can
be transformed into HTML or any format required. For example, a client can publish
XML data onto a Universal Messaging Realm channel, then using a standard Web
browser, get the server to transform the XML into HTML via a stylesheet thereby
enabling Web browser to view events on the Realm.

This functionality enables realm data to be viewed from a channel without any
requirement for a Java client. All that is required is for the client to have a browser.

Configuration

Once you have created the xml plugin on the interface you require it on, you can then
select it from the plugins panel for the selected interface and enter values as you wish for
the configuration parameters.

The xml plugin requires configuration information relating its behavior as well as the
entry point in the namespace for the channels you wish to make available to vend to the

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 220

clients. Below is a table that shows each configuration parameter and describes what it is
used for.

Parameter Name Description Default Value

ChannelRoot Name of the channel or
folder to render.

/

Security Realm Name of the
authentication realm

None.

StyleSheet Name of the style sheet
file to use to process the
resulting XML.

None.

UserFile Name of the file
containing the usernames
and passwords

None.

The image below shows the enterprise manager interface panel with an nhp interface
running on port 8080. This interface has a XML Plugin configured with the xml2html
stylesheet and its URL path as /xml. The default ChannelRoot seing is /, which is the
root of the namespace, i.e. all channels. Once the plugin is created, you can hit the apply
buon which will restart the interface and enable the new xml plugin.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 221

From a browser, it is now possible to enter the url 'hp://localhost:8080/xml/' which will
render the realm information page using the stylesheet. The image below demonstrates
the browser view from a Realm that has an xml plugin on an nhp interface on port
8080. The realm information is displayed at the top of the page, and the information
on resources is shown beneath. The stylesheet 'xml2html.xsl' that renders this within
the browser is supplied with the download under the <server>/plugins/htdocs/style
directory and can be modified as you wish.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 222

As you can see above, each resource is shown as a link within a table showing the
information obtainable from the XML plugin. Clicking on a channel link, will then take
you to another page that has been rendered by the xml plugin which will show you the
list of events on a channel. The image below shows the event list for the JNDI naming
channel.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 223

The xml plugin will determine whether the events on the channel contain byte data,
dictionaries or XML documents and return the relevant elements within the xml
document. The stylesheet applied to the xml document then examines each element
to find out how to render it within the browser. Each event on the channel or queue is
shown in the table with event id, its size in bytes and links to either the byte data, the
dictionary or the xml data. These links are generated by the stylesheet. Clicking on the
data or dictionary links will again return an xml document from the xml plugin that will
be rendered to either show the base64 encoded event data, or the event dictionary.

If any events contain xml documents, these will be returned directly from the xml
plugin. The stylesheet provided will not render event xml documents, since the structure
of these is unknown. You will need to provide your own style sheet to render your own
xml event documents.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 224

Proxy Passthrough Plugin
The Proxy Plugin can be used to forward hp(s) requests from specific urls to another
host. For example, if you want to forward requests from one realm to another realm, or
to another web server, you can use the proxy pass through plugin.

This functionality enables realms to act as a proxy to forward URL requests to any host
that accepts hp(s) connections.

Configuration

Once you have created the proxy plugin on the interface you require it on, you can then
select it from the plugins panel for the selected interface and enter values as you wish for
the configuration parameters.

The proxy plugin requires configuration information relating to the host and port that
requests will be forwarded to. Below is a table that shows each configuration parameter
and describes what it is used for.

Parameter Name Description Default Value

HostName Host name of the process
that requests for the URL
will be forwarded to

www.Terracoa.com

Port Port on which the requests
will be sent to the host

80

The image below shows the enterprise manager interface panel with an nhp interface
running on port 9005 on the realm called 'node1'. This interface has a proxy Plugin
configured to redirect requests from this interface using the URL path of "/" and will
forward these requests to the File and XML plugins located on the 'productionmaster'
realm nhp0 interface running on port 80.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 225

From a browser, it is now possible to enter the url 'hp://localhost:9005/xml/' which will
redirect this request to the interface on the productionmaster realm interface running on
port 8080. This will actually display the details of the productionmaster realm delivered
through the XML plugin defined within the XML Plugin (see "XML Plugin" on page
219) help page. The image below demonstrates the browser view of the hp request
made and the results of the redirect to the productionmaster realm.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 226

REST Plugin
The Universal Messaging REST plugin allows access to the REST API, and can be
enabled on any HTTP or HTTPS (NHP or NHPS) interface.The Universal Messaging
REST API is designed for publishing, purging and representing events published on
channels and queues in 2 initial representations: JSON and XML.

The Universal Messaging REST API supports three different HTTP commands. GET is
used for representations of events, POST for publishing and PUT for purging. Both XML
and JSON support byte arrays, XML and Dictionary events for publishing, which map to
native Universal Messaging event types. There are two MIME types available: text and
application.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 227

Configuration

Once you have created the REST plugin on the interface you require it on, you can then
select it from the plugins panel for that interface and enter values as desired for the
configuration parameters.

Parameter Name Description Default Value

AddUserAsCookie Add the username to the
session's cookies.

Blank

AuthParameters A list of key=value strings,
which are passed to the
Authenticator's init()
function.

Blank

Authenticator Classname of
Authenticator to use. If
blank, no authentication is
used.

Blank

EnableStatus Enables Realm status
details. Default is disabled,
for security reasons.

False

GroupNames A comma separated list of
groups. The user must be
a member of at least one in
order to be granted access.

Blank

IncludeTypeInfo Includes type information
for event dictionaries.

False

NamespaceRoot Name of the namespace
folder to be used as root.

Blank

ReloadUserFileDynamically If set to true and
authentication is enabled,
fAuthenticator.reload() is
called on each request.

True

RoleNames A comma-separated list
of names. The user must
have at least one to gain
access.

Blank

Security Realm Name of the
authentication realm.

Blank

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 228

Parameter Name Description Default Value

SessionTimeout Time in seconds to time-
out inactive hp sessions.

300

The Universal Messaging REST plugin supports WADL documentation which is
accessible through the HTTP OPTIONS command. Once you have completed seing up
your REST plugin, you can verify it works by opening a browser to the NHP interface in
the mount URL path, and appending the query string ?method=options. For example,
for an NHP interface running on port 9000 on localhost, and having the plugin mounted
on "/rest", open a browser to hp://localhost:9000/rest/API?method=options.

Following this will display an HTML version of the full Universal Messaging REST
API documentation which is generated by applying an XSL processor to the WADL
XML document. The XML document itself can be obtained by accessing the plugin URL
without the ?method=options query string. For example, the curl command line tool
can be used as follows:
curl -XOPTIONS http://localhost:9000/rest/API

What follows is a summary of the three HTTP commands for both XML and JSON, and
what functionality each provides, as well as detailed examples of requests and responses
for each command.

XML: GET

Provides XML representations of channels/queues or events in a channel or queue as
specified by the ChannelOrQueue parameter. The parameter is represented by the URI
Path following the REST Plugin mount.

If the value supplied corresponds to a Universal Messaging namespace container, the
representation returned is a list of channels and queues present in the container. If the
value supplied corresponds to a channel or queue then the representation returned is a
list of events. Finally if the value supplied does not correspond to either a container or a
channel / queue a 404 response will be returned with no body.

Available response representations:

"text/xml" on page 230

"application/xml" on page 230

XML: POST

Allows publishing of an event to a channel or queue specified by the ChannelOrQueue
parameter, which is represented by the URI Path following the REST Plugin mount. For
example hp://localhost:9000/rest/API/xml/testchannel expects an XML byte, XML or
dictionary event to be published to channel testchannel.

Acceptable request representations:

"text/xml" on page 234

"application/xml" on page 234

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 229

Available response representations:

"text/xml" on page 238

"application/xml" on page 238

XML: PUT

Allows purging of 1 or more events already published on a channel or queue specified
by the ChannelOrQueue parameter, which is represented by the URI Path following the
REST Plugin mount. For example hp://localhost:9000/rest/API/xml/testchannel expects
a request to purge events to be published to channel testchannel. Purging can be specified
by EID and selector.

Acceptable request representations:

"text/xml" on page 238

"application/xml" on page 238

Available response representations:

"text/xml" on page 238

"application/xml" on page 238

JSON: GET

Provides JSON representations of channels/queues or events in a channel or queue as
specified by the ChannelOrQueue parameter. The parameter is represented by the URI
Path following the REST Plugin mount.

If the value supplied corresponds to a Universal Messaging namespace container, the
representation returned is a list of channels and queues present in the container. If the
value supplied corresponds to a channel or queue then the representation returned is a
list of events. Finally if the value supplied does not correspond to either a container or a
channel / queue a 404 response will be returned with no body.

Available response representations:

"application/json" on page 238

JSON: POST

Allows publishing of an event to a channel or queue specified by the ChannelOrQueue
parameter, which is represented by the URI Path following the REST Plugin mount. For
example hp://localhost:9000/rest/API/json/testchannel expects a JSON byte, XML or
dictionary event to be published to channel testchannel.

Acceptable request representations:

"application/json" on page 241

Available response representations:

"application/json" on page 243

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 230

JSON: PUT

Allows purging of 1 or more events already published on a channel or queue specified
by the ChannelOrQueue parameter, which is represented by the URI Path following the
REST Plugin mount. For example hp://localhost:9000/rest/API/json/testchannel expects
a request to purge events to be published to channel testchannel. Purging can be specified
by EID and selector.

Acceptable request representations:

"application/json" on page 243

Available response representations:

"application/json" on page 243

Representation: XML

XML REPRESENTATION : An XML representation of channels/queues or events in a channel
or queue as specified by the ChannelOrQueue parameter.

Should the parameter point to an existing container, the response code is 200 and the
response looks like this:
<Universal Messaging-RealmServer-ChannelList NumberOfChannels="2">
 <!--Constructed by my-channels Universal Messaging REST-Plugin :
 Wed Mar 02 16:07:28 EET 2011-->
 <Channel EventsConsumed="0" EventsPublished="0" LastEventID="-1"
 Name="testqueue" NumberEvents="0"
 fqn="http://localhost:8080/rest/API/xml/testqueue"/>
 <Channel EventsConsumed="0" EventsPublished="2" LastEventID="223"
 Name="testchannel" NumberEvents="2"
 fqn="http://shogun:8080/rest/API/xml/testchannel"/>
</Universal Messaging-RealmServer-ChannelList>

If the REST plugin is configured to include realm status, some additional information
about the realm is presented:
<Universal Messaging-RealmServer-ChannelList NumberOfChannels="2">
 <!--Constructed by my-channels Universal Messaging REST-Plugin :
 Wed Mar 02 16:07:28 EET 2011-->
 <Channel EventsConsumed="0" EventsPublished="0" LastEventID="-1"
 Name="testqueue" NumberEvents="0"
 fqn="http://localhost:8080/rest/API/xml/testqueue"/>
 <Channel EventsConsumed="0" EventsPublished="2" LastEventID="223"
 Name="testchannel" NumberEvents="2"
 fqn="http://shogun:8080/rest/API/xml/testchannel"/>
 <RealmStatus FreeMemory="498101048" RealmName="nirvana6" Threads="87"
 TotalConnections="0" TotalConsumed="0"
 TotalMemory="530186240" TotalPublished="2"/>
</Universal Messaging-RealmServer-ChannelList>

Should the parameter point to an existing channel or queue, the response code is 200
and the response looks like this:
<Universal Messaging-RealmServer-EventList>
 <!--Constructed by my-channels Universal Messaging REST-Plugin :
 Wed Mar 02 16:10:57 EET 2011-->
 <Details ChannelName="http://localhost:8080/rest/API/xml/testsrc"
 FirstEvent=

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 231

 "http://localhost:8080/rest/API/xml/testsrc?Data=Dictionary&EID=first"
 LastEID="223"
 LastEvent=
 "http://localhost:8080/rest/API/xml/testsrc?Data=Dictionary&EID=last"
 NextLink="http://localhost:8080/rest/API/xml/testsrc?EID=224" StartEID="222"/>
 <Event ByteLink="http://localhost:8080/rest/API/xml/testsrc?Data=Byte&EID=222"
 DataSize="9" EID="222" Tag="Test Tag" hasByte="true"/>
 <Event
 DictionaryLink=
 "http://localhost:8080/rest/API/xml/testsrc?Data=Dictionary&EID=223"
 EID="223" hasDictionary="true"/>
</Universal Messaging-RealmServer-EventList>

You can follow the provided links to view individual events. If you choose to look at an
individual byte event, the response code is 200 and the response looks like this:
<Universal Messaging-RealmServer-RawData>
 <!--Constructed by my-channels Universal Messaging REST-Plugin :
 Wed Mar 02 16:13:17 EET 2011-->
 <EventData ChannelName="http://localhost:8080/rest/API/xml/testsrc" EID="222">
 <Data>
 <![CDATA[VGVzdCBCb2R5]]>
 </Data>
 <Tag>
 <![CDATA[Test Tag]]>
 </Tag>
 </EventData>
</Universal Messaging-RealmServer-RawData>

If you choose to look at an individual XML event, the response code is 200 and the
response looks like this:
<Universal Messaging-RealmServer-XMLData>
 <!--Constructed by my-channels Universal Messaging REST-Plugin :
 Wed Mar 02 16:13:17 EET 2011-->
 <EventData ChannelName="http://localhost:8080/rest/API/xml/testsrc" EID="222"
 isDOM="true">
 <Data>
 <myUserDataTag>
 Some User Data
 </myUserDataTag>
 </Data>
 <Tag>
 <![CDATA[Test Tag]]>
 </Tag>
 </EventData>
</Universal Messaging-RealmServer-XMLData>

If you choose to look at an individual Dictionary event, the response code is 200 and the
response looks like this:
<DictionaryData isPersistent="true" TTL="0">
 <Data Key="testdouble">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 <Dictionary Key="testdictionary">
 <Data Key="testdouble">
 <![CDATA[1.0]]>

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 232

 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 <Data Key="testlong">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testcharacter">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean">
 <![CDATA[true]]>
 </Data>
 </Dictionary>
 <Data Key="testlong">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testcharacter">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean">
 <![CDATA[true]]>
 </Data>
 <DataArray Key="teststringarray">
 <ArrayItem Index="0">
 <![CDATA[one]]>
 </ArrayItem>
 <ArrayItem Index="1">
 <![CDATA[two]]>
 </ArrayItem>
 <ArrayItem Index="2">
 <![CDATA[three]]>
 </ArrayItem>
 </DataArray>
 <DataArray Key="testbytearray">
 <ArrayItem Index="0">
 <![CDATA[YSBib2R5]]>
 </ArrayItem>
 </DataArray>
 <DataArray Key="testdictionaryarray">
 <ArrayItem Index="0">
 <Data Key="testdouble">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 <ArrayItem Index="1">
 <Data Key="testdouble">
 <![CDATA[1.0]]>

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 233

 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 </DataArray>
</DictionaryData>

If the rest plugin is configured to include type information in representations, dictionary
event representations will include them. In this case, responses looks like this:
<DictionaryData isPersistent="true" TTL="0">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 <Dictionary Key="testdictionary">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 <Data Key="testlong" Type="1">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat" Type="5">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testcharacter" Type="6">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean" Type="3">
 <![CDATA[true]]>
 </Data>
 </Dictionary>
 <Data Key="testlong" Type="1">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat" Type="5">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testcharacter" Type="6">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean" Type="3">
 <![CDATA[true]]>
 </Data>
 <DataArray ArrayType="0" Key="teststringarray">
 <ArrayItem Index="0">
 <![CDATA[one]]>
 </ArrayItem>
 <ArrayItem Index="1">

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 234

 <![CDATA[two]]>
 </ArrayItem>
 <ArrayItem Index="2">
 <![CDATA[three]]>
 </ArrayItem>
 </DataArray>
 <DataArray ArrayType="7" Key="testbytearray">
 <ArrayItem Index="0">
 <![CDATA[YSBib2R5]]>
 </ArrayItem>
 </DataArray>
 <DataArray ArrayType="9" Key="testdictionaryarray">
 <ArrayItem Index="0">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 <ArrayItem Index="1">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 </DataArray>
</DictionaryData>

Finally, should the parameter point to a non existing container or channel / queue, the
response code is 404 without a response body

XML PUBLISH REQUEST

XML Byte events can be represented as follows:
<EventData isDom="false" isPersistent="true" TTL="0">
 <Data>
 <![CDATA[YSBib2R5]]>
 </Data>
 <Tag>
 <![CDATA[YSB0YWc=]]>
 </Tag>
</EventData>

Important: data and tag should always be submied in base64 encoded form.

XML DOM events can be represented as follows:
<EventData isDom="true" isPersistent="true" TTL="0">
 <Data>
 <![CDATA[YSBib2R5]]>
 </Data>
 <Tag>
 <![CDATA[YSB0YWc=]]>

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 235

 </Tag>
</EventData>

Important: data and tag should always be submied in base64 encoded form.

XML Dictionary events can be represented as follows:
<DictionaryData isPersistent="true" TTL="0">
 <Data Key="testdouble">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 <Dictionary Key="testdictionary">
 <Data Key="testdouble">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 <Data Key="testlong">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testcharacter">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean">
 <![CDATA[true]]>
 </Data>
 </Dictionary>
 <Data Key="testlong">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testcharacter">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean">
 <![CDATA[true]]>
 </Data>
 <DataArray Key="teststringarray">
 <ArrayItem Index="0">
 <![CDATA[one]]>
 </ArrayItem>
 <ArrayItem Index="1">
 <![CDATA[two]]>
 </ArrayItem>
 <ArrayItem Index="2">
 <![CDATA[three]]>
 </ArrayItem>
 </DataArray>

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 236

 <DataArray Key="testbytearray">
 <ArrayItem Index="0">
 <![CDATA[YSBib2R5]]>
 </ArrayItem>
 </DataArray>
 <DataArray Key="testdictionaryarray">
 <ArrayItem Index="0">
 <Data Key="testdouble">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 <ArrayItem Index="1">
 <Data Key="testdouble">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 </DataArray>
</DictionaryData>

Optionally, dictionary events can include type information (see "Types" on page 244).
This allows the Universal Messaging REST API to preserve these types when publishing
the event. The types are defined as byte constants to keep typed dictionary events
compact in size.

XML Dictionary events (with type information) can be represented as follows:
<DictionaryData isPersistent="true" TTL="0">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 <Dictionary Key="testdictionary">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 <Data Key="testlong" Type="1">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat" Type="5">
 <![CDATA[1.0]]>

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 237

 </Data>
 <Data Key="testcharacter" Type="6">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean" Type="3">
 <![CDATA[true]]>
 </Data>
 </Dictionary>
 <Data Key="testlong" Type="1">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat" Type="5">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testcharacter" Type="6">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean" Type="3">
 <![CDATA[true]]>
 </Data>
 <DataArray ArrayType="0" Key="teststringarray">
 <ArrayItem Index="0">
 <![CDATA[one]]>
 </ArrayItem>
 <ArrayItem Index="1">
 <![CDATA[two]]>
 </ArrayItem>
 <ArrayItem Index="2">
 <![CDATA[three]]>
 </ArrayItem>
 </DataArray>
 <DataArray ArrayType="7" Key="testbytearray">
 <ArrayItem Index="0">
 <![CDATA[YSBib2R5]]>
 </ArrayItem>
 </DataArray>
 <DataArray ArrayType="9" Key="testdictionaryarray">
 <ArrayItem Index="0">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 <ArrayItem Index="1">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 </DataArray>
</DictionaryData>

Important: byte[] types should always be submied in base64 encoded form.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 238

XML PUBLISH RESPONSE : A XML representation to indicate the status of aempting to
publish an event to the channel or queue specified by the ChannelOrQueue parameter.

Should the publish call be successful, the response code is 201 and the response looks
like this:
<Universal Messaging-RealmServer-PublishRequest>
 <response value="ok"/>
</Universal Messaging-RealmServer-PublishRequest>

Should the publish call fail for any reason, the response code is 400 and the response
looks like this:
<Universal Messaging-RealmServer-Error>
 <response value="failInput"/>
 <errorcode value="ErrorCode"/>
 <errormessage value="Error Message"/>
</Universal Messaging-RealmServer-Error>

XML PURGE REQUEST : A XML representation of a Purge Request that indicates the
event(s) to purge.

A XML purge request looks as follows:
<Universal Messaging-RealmServer-PurgeRequest startEID="10" endEID="20" purgeJoins="false">
 <selector>
 <![CDATA[]]>
 </selector>
</Universal Messaging-RealmServer-PurgeRequest>

XML PURGE RESPONSE : A XML representation to indicate the status of aempting to
purge an event to the channel or queue specified by the ChannelOrQueue parameter.

Should the purge call be successful, the response code is 200 and the response looks like
this:
<Universal Messaging-RealmServer-PurgeRequest>
 <response value="ok"/>
</Universal Messaging-RealmServer-PurgeRequest>

Should the purge call fail for any reason, the response code is 400 and the response looks
like this:
<Universal Messaging-RealmServer-Error>
 <response value="failInput"/>
 <errorcode value="ErrorCode"/>
 <errormessage value="Error Message"/>
</Universal Messaging-RealmServer-Error>

Representation: JSON

JSON REPRESENTATION : A JSON representation of channels/queues or events in a
channel or queue as specified by the ChannelOrQueue parameter.

Should the parameter point to an existing container, the response code is 200 and the
response looks like this:
{
 "Channels":
 [{
 "EventsConsumed": "0",
 "EventsPublished": "0",

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 239

 "LastEventID": "-1",
 "Name": "testqueue",
 "NumberEvents": "0",
 "fqn": "http://localhost:8080/rest/API/json/testqueue"
 }, {
 "EventsConsumed": "0",
 "EventsPublished": "0",
 "LastEventID": "212",
 "Name": "testchannel",
 "NumberEvents": "0",
 "fqn": "http://localhost:8080/rest/API/json/testchannel"
 }],
 "Comment": "Constructed by my-channels Universal Messaging REST-Plugin :
 Wed Mar 02 11:38:30 EET 2011",
 "Name":
 "Universal Messaging-RealmServer-ChannelList",
 "NumberOfChannels": "2",
}

If the REST plugin is configured to include realm status, some additional information
about the realm is presented:
{
 "Channels":
 [{
 "EventsConsumed": "0",
 "EventsPublished": "0",
 "LastEventID": "-1",
 "Name": "testqueue",
 "NumberEvents": "0",
 "fqn": "http://localhost:8080/rest/API/json/testqueue"
 }, {
 "EventsConsumed": "0",
 "EventsPublished": "0",
 "LastEventID": "212",
 "Name": "testchannel",
 "NumberEvents": "0",
 "fqn": "http://localhost:8080/rest/API/json/testchannel"
 }],
 "Comment": "Constructed by my-channels Universal Messaging REST-Plugin :
 Wed Mar 02 11:38:30 EET 2011",
 "Name": "Universal Messaging-RealmServer-ChannelList",
 "NumberOfChannels": "2",
 "Realm": {
 "FreeMemory": "503291048",
 "RealmName": "nirvana6",
 "Threads": "104",
 "TotalConnections": "1",
 "TotalConsumed": "0",
 "TotalMemory": "530186240",
 "TotalPublished": "0"
 }
}

Should the parameter point to an existing channel or queue, the response code is 200
and the response looks like this:
{
 "ChannelName": "http://localhost:8080/rest/API/json/testsrc",
 "Comment": "Constructed by my-channels Universal Messaging REST-Plugin : Wed
 Mar 02 12:19:22 EET 2011",
 "Events":
 [{
 "ByteLink": "http://localhost:8080/rest/API/json/testsrc?Data=Byte&EID=213",

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 240

 "DataSize": "9",
 "EID": "213",
 "Tag": "Test Tag",
 "hasByte": "true"
 }, {
 "DictionaryLink":
 "http://localhost:8080/rest/API/json/testsrc?Data=Dictionary&EID=214",
 "EID": "214",
 "hasDictionary": "true"
 }],
 "FirstEvent": "http://localhost:8080/rest/API/json/testsrc?Data=Dictionary&EID=first",
 "LastEID": "214",
 "LastEvent": "http://localhost:8080/rest/API/json/testsrc?Data=Dictionary&EID=last",
 "Name": "Universal Messaging-RealmServer-EventList",
 "NextLink": "http://localhost:8080/rest/API/json/testsrc?EID=215",
 "StartEID": "213"
}

You can follow the provided links to view individual events. If you choose to look at an
individual byte event, the response code is 200 and the response looks like this:
{
 "ChannelName": "http://localhost:8080/rest/API/json/testsrc",
 "Comment": "Constructed by my-channels Universal Messaging REST-Plugin :
 Wed Mar 02 12:21:46 EET 2011",
 "Data": "VGVzdCBCb2R5",
 "EID": "213",
 "Name": "Universal Messaging-RealmServer-RawData",
 "Tag": "Test Tag"
}

If you choose to look at an individual XML event, the response code is 200 and the
response looks like this:
{
 "ChannelName": "http://localhost:8080/rest/API/json/testsrc",
 "Comment": "Constructed by my-channels Universal Messaging REST-Plugin :
 Wed Mar 02 12:21:46 EET 2011",
 "Data": "VGVzdCBCb2R5",
 "EID": "213",
 "Name": "Universal Messaging-RealmServer-XMLData",
 "Tag": "Test Tag"
}

If you choose to look at an individual Dictionary event, the response code is 200 and the
response looks like this:
{
 "dictionary":
 {
 "testboolean": [true],
 "testcharacter": ["a"],
 "testdictionary": [
 {
 "testboolean": [true],
 "testcharacter": ["a"],
 "testdouble": [1],
 "testfloat": [1],
 "testinteger": [1],
 "testlong": [1],
 "teststring": ["teststringvalue"]
 }],
 "testdouble": [1],
 "testfloat": [1],

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 241

 "testinteger": [1],
 "testlong": [1],
 "teststring": ["teststringvalue"],
 "teststringarray": [[
 "one",
 "two",
 "three"
]]
 },
 "isPersistent": true
}

If the rest plugin is configured to include type information in representations, dictionary
event representations will include them. In this case, responses looks like this:
{
 "dictionary":
 {
 "testboolean": [true, 3],
 "testcharacter": ["a", 6],
 "testdictionary":
 [{
 "testboolean": [true, 3],
 "testcharacter": ["a", 6],
 "testdouble": [1, 2],
 "testfloat": [1, 5],
 "testinteger": [1, 4],
 "testlong": [1, 1],
 "teststring": ["teststringvalue", 0]
 }, 9],
 "testdouble": [1, 2],
 "testfloat": [1, 5],
 "testinteger": [1, 4],
 "testlong": [1, 1],
 "teststring": ["teststringvalue", 0],
 "teststringarray":
 [[
 "one",
 "two",
 "three"
], 100, 0]
 },
 "isPersistent": true
}

Finally, should the parameter point to a non existing container or channel / queue, the
response code is 404 without a response body

JSON PUBLISH REQUEST

JSON Byte events can be represented as follows:
{
 "data": "VGVzdCBCb2R5",
 "isPersistent": true,
 "tag": "VGVzdCBUYWc="
}

Important: data and tag should always be submied in base64 encoded form.

JSON DOM events can be represented as follows:
{
 "data": "VGVzdCBCb2R5",

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 242

 "isDOM": true,
 "isPersistent": true,
 "tag": "VGVzdCBUYWc="
}

Important: data and tag should always be submied in base64 encoded form.

JSON Dictionary events can be represented as follows:
{
 "dictionary":
 {
 "testboolean": [true],
 "testcharacter": ["a"],
 "testdictionary":
 [{
 "testboolean": [true],
 "testcharacter": ["a"],
 "testdouble": [1],
 "testfloat": [1],
 "testinteger": [1],
 "testlong": [1],
 "teststring": ["teststringvalue"]
 }],
 "testdouble": [1],
 "testfloat": [1],
 "testinteger": [1],
 "testlong": [1],
 "teststring": ["teststringvalue"],
 "teststringarray":
 [[
 "one",
 "two",
 "three"
]]
 },
 "isPersistent": true
}

Optionally, dictionary events can include type information (see "Types" on page 244).
This allows the Universal Messaging REST API to preserve these types when publishing
the event. The types are defined as byte constants to keep typed dictionary events
compact in size.

Dictionary events (with type information) can be represented as follows:
{
 "dictionary":
 {
 "testboolean": [true, 3],
 "testcharacter": ["a", 6],
 "testdictionary":
 [{
 "testboolean": [true, 3],
 "testcharacter": ["a", 6],
 "testdouble": [1, 2],
 "testfloat": [1, 5],
 "testinteger": [1, 4],
 "testlong": [1, 1],
 "teststring": ["teststringvalue", 0]
 }, 9],
 "testdouble": [1, 2],
 "testfloat": [1, 5],

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 243

 "testinteger": [1, 4],
 "testlong": [1, 1],
 "teststring": ["teststringvalue", 0],
 "teststringarray":
 [[
 "one",
 "two",
 "three"
], 100, 0]
 },
 "isPersistent": true
}

Important: byte[] types should always be submied in base64 encoded form.

JSON PUBLISH RESPONSE : A JSON representation to indicate the status of aempting to
publish an event to the channel or queue specified by the ChannelOrQueue parameter.

Should the publish call be successful, the response code is 201 and the response looks
like this:
{
 "Response": "OK"
}

Should the publish call fail for any reason, the response code is 400 and the response
looks like this:
{
 "errorcode": "ErrorCode",
 "errormessage": "Error Message",
 "response": "failInput"
}

JSON PURGE REQUEST : A JSON representation of a Purge Request that indicates the
event(s) to purge.

A JSON purge request looks as follows:
{
 "endEID": 20,
 "purgeJoins": false,
 "selector": "",
 "startEID": 10
}

JSON PURGE RESPONSE : A JSON representation to indicate the status of aempting to
purge an event to the channel or queue specified by the ChannelOrQueue parameter

Should the purge call be successful, the response code is 200 and the response looks like
this:
{
 "Response": "OK"
}

Should the purge call fail for any reason, the response code is 400 and the response looks
like this:
{
 "errorcode": "ErrorCode",
 "errormessage": "Error Message",
 "response": "failInput"

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 244

}

Types

Type ID

String 0

Long 1

Double 2

Boolean 3

Integer 4

Float 5

Character 6

Byte 7

Short 8

Dictionary 9

Array 100

SOAP Plugin
The Universal Messaging SOAP Plugin utilises the advanced HTTP/HTTPS stack
capabilities of the Universal Messaging server to provide an implementation of a SOAP
1.2 based client API. Any SOAP toolkit can use the provided WSDL to generate client
stubs for any SOAP compliant language. This way Universal Messaging functionality
is offered to programming languages that were previously unsupported and all this
without the need for any additional infrastructure component (SOAP server, web server
etc).

The plugin can be configured to expose complete Universal Messaging namespaces or
subsets, support username/password authentication, control web service listing and
other options further explained in the section below.

Configuration

Once you have created the SOAP plugin on the interface you require it on, you can then
select it from the plugins panel for the selected interface and enter values as you wish for
the configuration parameters.

The SOAP plugin requires configuration details regarding the entry point in the
namespace for the channels you wish to make available to vend to the clients, as well

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 245

as web-services specific configuration. Below is a table that shows each configuration
parameter and describes what it is used for.

Parameter Name Description Default Value

URL File Path The mount URL path for
the SOAP plugin to be
invoked.

None (/soap needed for
samples)

ChannelRoot Universal Messaging
namespace node (channel
or folder) to expose
through soap

/

UserFile Name of the file
containing the usernames
and passwords

None.

Security Realm Name of the
authentication realm

None.

AachmentDir Name of the directory to
find the AXIS aachments

<ServerPath>/plugins/
aachments/

EnableList Enable or disable the
listing of web services
wsdl files. This is
necessary if you want to
generate client stubs.

false.

WebRootDir Name of the file
containing the usernames
and passwords

<ServerPath>/plugins/

WSDLEncoding Type of encoding to be
used for WSDL, valid
values are document, rpc,
wrapped

rpc

Once you have completed seing up your SOAP plugin, you can verify it works by
opening a browser to the NHP interface in the mount URL path. For example for an
NHP interface running on port 80 on localhost and having the plugin mounted on /soap,
open a browser to hp://localhost/soap/ and you should see something like:

Universal Messaging Supported Services
urn:nirvanasRealm (wsdl)
getRealmName
getStatus
getChannelDetails
getChannelCount
urn:nirvanasChannel (wsdl)

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 246

getLastEID
publish
getEvents
getEventCount

The image below shows the enterprise manager interface panel with an nhp interface
running on port 80. This interface has a SOAP Plugin configured with its URL path as /
soap. The default ChannelRoot seing is /, which is the root of the namespace, i.e. all
channels. Once the plugin is created, you can hit the apply buon which will restart the
interface and enable the new SOAP plugin.

From a browser, it is now possible to enter the url 'hp://localhost:8080/soap/' which
shows the available services exposed via SOAP as well as links to the WSDL documents
required to generate client stubs. The image below demonstrates the browser view from
a Realm that has a SOAP plugin on an nhp interface on port 80.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 247

Samples

The Universal Messaging installation includes a few samples for perl src/soap directory.
The applications use the SOAP::Lite Perl module and were tested under cygwin for
windows. Please note that all the samples included assume that you have an NHP
interface running on port 80 on the local machine and having a SOAP plugin configured
under /soap. Furthermore the getEvent.pl sample requires you to have a channel called
test with at least 1 event inside.

For example to execute getChannelDetails.pl, open a cygwin (or other) shell and type:
$ perl getChannelDetails.pl

firstEid=-1
ttl=0
name=Universal Messaging-p2p/serviceinfo
eventCount=0
type=Simple
capacity=0
lastEid=-1

firstEid=0
ttl=0
name=test

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 248

eventCount=10
type=Reliable
capacity=0
lastEid=9

Servlet Plugin
The Servlet plugin enables the Universal Messaging Realm Server to vendor Java
servlets.

Configuration

Once you have created the Servlet plugin on an interface, you can then select it from the
plugins panel for the interface and configure the plugin parameters.

The Servlet plugin requires configuration information relating its behavior, as well as the
location of the Servlets it is required to vend to the clients. Below is a table that shows
each configuration parameter and describes what each is used for.

To ensure security, the EnforceConfigFile option can be set to true, this allows
only those classes specified in the config file to be loaded. Alternatively, the
EnforceStrictClassLoader option can be set. This prevents classes being loaded from
different class loaders to that of the servlet, and thereby also prevents arbitrary classes
from being loaded.

Parameter Name Description Default Value

AddUserAsPlugin Add the username to the session
cookies.

false

AuthParameters List of key=value string which is
passed to authenticators init function.

AddUserAsPlugin Classname of authenticator to use,
leave blank for default

(default)

EnableClassReload Automatically reload servlet class if it
changes

true

EnforceConfigFile If true, only servlets within the
ServletConfigFile will be executed.

true

EnforceStrictClassLoader If true, only servlets loaded by the
initial class loader will be executed.
Any classes loaded by parent loader
will be ignored.

true

GroupNames A comma separated list of groups to
which a user must be a member of to
be granted access.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 249

Parameter Name Description Default Value

MimeType Name of the file to load the mime type
information from. The format of the file
is same as the apache mime types.

Properties File containing the servlet properties.
The file should be a java properties
file that contains one property per
line prefixed with the full class
name. For example for a servlet
class com.example.Servlet defining
a property called RNAME you
should have a line as follows:
com.example.Servlet.RNAME=nsp://
localhost:9000

ReloadUserFileDynamically If true, the user file will get reloaded on
each auth request.

true

RoleNames A comma separated list of groups
to which a user must have one to be
granted access.

Security Realm Name of the authentication realm.

Servlet Config File File which contains all the valid
servlets which will run. The file
should be a text file containing one full
servlet class name per line, indicating
only these should be allowed to run.
For example having a single line
com.example.Servlet would mean that
only that servlet will be allowed to run
irrespective of how many exist in the
server classpath.

Servlet Path Directory in which to locate servlet
classes

SessionTimeout Time in seconds before timeout of
servlet session not in use.

XML Configuration: Overview
The Universal Messaging Enterprise Manager allows you to export specific elements of
the realm or the entire realm structure into an XML representation. The exported XML
can contain all clusters, realm ACLs, channels, queues and their ACLs, configuration

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 250

parameters, JNDI assets, interfaces, plugins and scheduling information. Once exported,
the XML can then be imported into any other realm, which is useful when you wish to
clone realms and their internal structures. Importing the xml will automatically create
and configure those objects selected for the import from the XML file.

The export and import marshals the realm objects from their Administration API
representation into XML and back again. This provides a very powerful way of
automatically configuring a realm based on a standard structure.

See the links below to view more about the import and export mechanism available in
the Universal Messaging Enterprise Manager:

"XML Configuration: Exporting To XML" on page 250

"XML Configuration: Importing From XML" on page 251

XML Configuration: Exporting To XML
The ability to export an entire realm or specific elements of a realm's structure is a
powerful enabler for managing the configuration of multiple realms within your
enterprise. This section will discuss how to export realm elements to their xml
representation.

Firstly, to export a realm to xml, you need to select the realm you wish to export from
the Enterprise Manager namespace. Right-clicking on the realm node will present a
menu for the options available on a realm node. One of those menu options is labelled
'Export Realm to XML'. Selecting this menu option will present a dialog as shown in the
image below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 251

The dialog above shows the list of export options available for the realm, and the name
and location of the file that will be exported. The 'Export to' field is the name and
location of the file to export which can either be typed manually, or chosen by selecting
the buon with the folder icon that shows a file chooser dialog.

There are a large number of options for what can be exported from a realm. The check
boxes indicated on the dialog can all be selected individually for specific elements of a
realm to be exported, or by clicking on the 'Export All' buon all options will be selected.

Clicking on the 'OK' buon will export the realm to xml into the file and location
specified.

To view an example of the XML produced from the export, see "XML Configuration:
Sample XML File for EXPORT" on page 252.

XML Configuration: Importing From XML
The ability to import realm elements from XML is a powerful enabler for managing the
configuration of multiple realms within your enterprise. This section will discuss how to
import realm elements from the xml representation.

Firstly, to import a realm to xml, you need to have first made sure you have the
desired elements you wish to import within an XML file. For help on export, see "XML
Configuration: Exporting To XML" on page 250. To import XML, select the realm you
wish to import the realm data to from the Enterprise Manager namespace. Right-clicking

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 252

on the realm node will present a menu for the options available on a realm node. One of
those menu options is labelled 'Import Realm to XML'.

Selecting this menu option will present a dialog as shown in the image below.

The dialog above shows the list of import options available for the realm, and the name
and location of the file that will be used for the import. The 'Import from' field is the
name and location of the file to import from which can either be typed manually, or
chosen by selecting the buon with the folder icon that shows a file chooser dialog.

There are a large number of options for what can be imported from XML into a realm.
The check boxes indicated on the dialog can all be selected individually for specific
elements of a realm to be imported, or by clicking on the Import All' buon all options
will be selected.

Clicking on the 'OK' buon will import the xml into the realm from file and location
specified, and then aempt to create the objects and set the configuration elements
defined within the XML.

To view an example of the XML produced from the export, see "XML Configuration:
Sample XML File for EXPORT" on page 252.

XML Configuration: Sample XML File for EXPORT
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Universal MessagingRealm comment="Realm configuration from productionmaster"
 exportDate="2005-01-06+00:00" name="productionmaster">

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 253

 <RealmConfiguration>
 <ConfigGroup name="AuditSettings">
 <ConfigItem name="ChannelACL" value="true"/>
 <ConfigItem name="ChannelFailure" value="true"/>
 <ConfigItem name="ChannelMaintenance" value="false"/>
 <ConfigItem name="ChannelSuccess" value="false"/>
 <ConfigItem name="InterfaceManagement" value="true"/>
 <ConfigItem name="JoinFailure" value="true"/>
 <ConfigItem name="JoinMaintenance" value="true"/>
 <ConfigItem name="JoinSuccess" value="false"/>
 <ConfigItem name="QueueACL" value="true"/>
 <ConfigItem name="QueueFailure" value="true"/>
 <ConfigItem name="QueueMaintenance" value="false"/>
 <ConfigItem name="QueueSuccess" value="false"/>
 <ConfigItem name="RealmACL" value="true"/>
 <ConfigItem name="RealmFailure" value="true"/>
 <ConfigItem name="RealmMaintenance" value="true"/>
 <ConfigItem name="RealmSuccess" value="false"/>
 <ConfigItem name="ServiceACL" value="true"/>
 <ConfigItem name="ServiceFailure" value="true"/>
 <ConfigItem name="ServiceMaintenance" value="true"/>
 <ConfigItem name="ServiceSuccess" value="false"/>
 </ConfigGroup>
 <ConfigGroup name="ClientTimeoutValues">
 <ConfigItem name="DisconnectWait" value="120000"/>
 <ConfigItem name="EventTimeout" value="60000"/>
 <ConfigItem name="HighWaterMark" value="200"/>
 <ConfigItem name="KaWait" value="60000"/>
 <ConfigItem name="LowWaterMark" value="50"/>
 <ConfigItem name="QueueAccessWaitLimit" value="200"/>
 <ConfigItem name="QueueBlockLimit" value="500"/>
 <ConfigItem name="QueuePushWaitLimit" value="200"/>
 <ConfigItem name="TransactionLifeTime" value="20000"/>
 </ConfigGroup>
 <ConfigGroup name="ClusterConfig">
 <ConfigItem name="EventsOutStanding" value="10"/>
 <ConfigItem name="HeartBeatInterval" value="120000"/>
 <ConfigItem name="SeperateLog" value="false"/>
 </ConfigGroup>
 <ConfigGroup name="EnvironmentConfig">
 <ConfigItem name="JavaVendor" value="Sun Microsystems Inc."/>
 <ConfigItem name="JavaVersion" value="1.4.1_02"/>
 <ConfigItem name="OSArchitecture" value="x86"/>
 <ConfigItem name="OSName" value="Windows XP"/>
 <ConfigItem name="OSVersion" value="5.1"/>
 <ConfigItem name="ServerBuildDate" value="01-Jan-2005"/>
 <ConfigItem name="ServerBuildNumber" value="4000"/>
 <ConfigItem name="ServerVersion" value="$Name: $ - $Revision: 1.1 $"/>
 </ConfigGroup>
 <ConfigGroup name="EventStorage">
 <ConfigItem name="ActiveDelay" value="1000"/>
 <ConfigItem name="CacheAge" value="86400000"/>
 <ConfigItem name="IdleDelay" value="60000"/>
 <ConfigItem name="ThreadPoolSize" value="1"/>
 </ConfigGroup>
 <ConfigGroup name="FanoutValues">
 <ConfigItem name="ConcurrentUser" value="5"/>
 <ConfigItem name="KeepAlive" value="60000"/>
 <ConfigItem name="MaxBufferSize" value="1048576"/>
 <ConfigItem name="OutputBlockSize" value="1400"/>
 <ConfigItem name="PublishDelay" value="10"/>
 <ConfigItem name="PublishExpiredEvents" value="true"/>
 <ConfigItem name="QueueHighWaterMark" value="100"/>

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 254

 <ConfigItem name="QueueLowWaterMark" value="50"/>
 <ConfigItem name="RoundRobinDelivery" value="false"/>
 </ConfigGroup>
 <ConfigGroup name="GlobalValues">
 <ConfigItem name="ConnectionDelay" value="60000"/>
 <ConfigItem name="ExtendedMessageSelector" value="false"/>
 <ConfigItem name="HandshakeTimeout" value="5000"/>
 <ConfigItem name="MaxNoOfConnections" value="-1"/>
 <ConfigItem name="NHPScanTime" value="5000"/>
 <ConfigItem name="NHPTimeout" value="120000"/>
 <ConfigItem name="SchedulerPoolSize" value="2"/>
 <ConfigItem name="SecureHandshake" value="true"/>
 <ConfigItem name="SendRealmSummaryStats" value="false"/>
 <ConfigItem name="ServerTime" value="true"/>
 <ConfigItem name="StampDictionary" value="false"/>
 <ConfigItem name="StatusBroadcast" value="5000"/>
 <ConfigItem name="StatusUpdateTime" value="9223372036854775807"/>
 <ConfigItem name="SupportVersion2Clients" value="true"/>
 <ConfigItem name="fLoggerLevel" value="1"/>
 </ConfigGroup>
 <ConfigGroup name="JVMManagement">
 <ConfigItem name="EmergencyThreshold" value="94"/>
 <ConfigItem name="ExitOnDiskIOError" value="true"/>
 <ConfigItem name="ExitOnMemoryError" value="true"/>
 <ConfigItem name="MemoryMonitoring" value="100"/>
 <ConfigItem name="WarningThreashold" value="85"/>
 </ConfigGroup>
 <ConfigGroup name="JoinConfig">
 <ConfigItem name="ActiveThreadPoolSize" value="2"/>
 <ConfigItem name="IdleThreadPoolSize" value="1"/>
 <ConfigItem name="MaxEventsPerSchedule" value="50"/>
 <ConfigItem name="MaxQueueSizeToUse" value="100"/>
 </ConfigGroup>
 <ConfigGroup name="RecoveryDaemon">
 <ConfigItem name="EventsPerBlock" value="500"/>
 <ConfigItem name="ThreadPool" value="4"/>
 </ConfigGroup>
 <ConfigGroup name="TransactionManager">
 <ConfigItem name="MaxEventsPerTransaction" value="0"/>
 <ConfigItem name="MaxTransactionTime" value="86400000"/>
 <ConfigItem name="TTLThreshold" value="1000"/>
 </ConfigGroup>
 </RealmConfiguration>
 <RealmPermissionSet>
 <RealmACLEntry addremoveChannels="false" addremoveJoins="false"
 addremoveRealms="false" changeRealmConfig="false" connectToRealm="true"
 createP2PService="false" fullControl="false" host="*"
 listACLEntries="false" modifyACLEntries="false" name="*"
 overrideConnectionCount="false" useAdminAPI="false"/>
 <RealmACLEntry addremoveChannels="true" addremoveJoins="true"
 addremoveRealms="true" changeRealmConfig="true" connectToRealm="true"
 createP2PService="true" fullControl="true" host="192.168.1.2"
 listACLEntries="true" modifyACLEntries="true" name="johnsmith"
 overrideConnectionCount="true" useAdminAPI="true"/>
 <RealmACLEntry addremoveChannels="false" addremoveJoins="false"
 addremoveRealms="false" changeRealmConfig="false" connectToRealm="false"
 createP2PService="false" fullControl="true" host="localhost"
 listACLEntries="false" modifyACLEntries="false" name="johnsmith"
 overrideConnectionCount="false" useAdminAPI="false"/>
 <RealmACLEntry addremoveChannels="false" addremoveJoins="false"
 addremoveRealms="false" changeRealmConfig="false" connectToRealm="true"
 createP2PService="false" fullControl="false" host="192.168.1.2"
 listACLEntries="false" modifyACLEntries="false"

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 255

 name="realm-productionmaster" overrideConnectionCount="false"
 useAdminAPI="false"/>
 <RealmACLEntry addremoveChannels="false" addremoveJoins="false"
 addremoveRealms="false" changeRealmConfig="false" connectToRealm="true"
 createP2PService="false" fullControl="false" host="192.168.1.2"
 listACLEntries="false" modifyACLEntries="false"
 name="realm-productionslave1" overrideConnectionCount="false"
 useAdminAPI="false"/>
 <RealmACLEntry addremoveChannels="false" addremoveJoins="false"
 addremoveRealms="false" changeRealmConfig="false" connectToRealm="true"
 createP2PService="false" fullControl="false" host="192.168.1.2"
 listACLEntries="false" modifyACLEntries="false"
 name="realm-productionslave2" overrideConnectionCount="false"
 useAdminAPI="false"/>
 </RealmPermissionSet>
 <ClusterSet>
 <ClusterEntry name="productioncluster">
 <ClusterMember name="productionmaster" rname="nsp://192.168.1.1:9000/"/>
 <ClusterMember name="productionslave1" rname="nsp://192.168.1.2:9000/"/>
 <ClusterMember name="productionslave2" rname="nsp://192.168.1.3:9000/"/>
 </ClusterEntry>
 </ClusterSet>
 <ChannelSet>
 <ChannelEntry>
 <ChannelAttributesEntry EID="0" TTL="0" capacity="0" clusterWide="true"
 name="/customer/sales" type="MIXED_TYPE"/>
 <ChannelPermissionSet>
 <ChannelACLEntry fullControl="false" getLastEID="false" host="*"
 listACLEntries="false" modifyACLEntries="false" name="*" publish="false"
 purgeEvents="false" subscribe="true" useNamedSubcription="false"/>
 <ChannelACLEntry fullControl="true" getLastEID="true" host="192.168.1.2"
 listACLEntries="true" modifyACLEntries="true" name="johnsmith"
 publish="true" purgeEvents="true" subscribe="true"
 useNamedSubcription="false"/>
 </ChannelPermissionSet>
 </ChannelEntry>
 <ChannelEntry>
 <ChannelAttributesEntry EID="0" TTL="0" capacity="0" clusterWide="true"
 name="/naming/defaultContext" type="MIXED_TYPE"/>
 <ChannelPermissionSet>
 <ChannelACLEntry fullControl="false" getLastEID="true" host="*"
 listACLEntries="false" modifyACLEntries="false" name="*" publish="false"
 purgeEvents="false" subscribe="true" useNamedSubcription="true"/>
 <ChannelACLEntry fullControl="true" getLastEID="true" host="192.168.1.2"
 listACLEntries="true" modifyACLEntries="true" name="johnsmith"
 publish="true" purgeEvents="true" subscribe="true"
 useNamedSubcription="false"/>
 </ChannelPermissionSet>
 <ChannelKeySet>
 <ChannelKeyEntry keyDepth="1" keyName="alias"/>
 </ChannelKeySet>
 </ChannelEntry>
 <ChannelEntry>
 <ChannelAttributesEntry EID="0" TTL="0" capacity="0" clusterWide="true"
 name="/partner/sales"
 type="MIXED_TYPE"/>
 <ChannelPermissionSet>
 <ChannelACLEntry fullControl="false" getLastEID="true" host="*"
 listACLEntries="false" modifyACLEntries="false" name="*" publish="false"
 purgeEvents="false" subscribe="true" useNamedSubcription="true"/>
 <ChannelACLEntry fullControl="true" getLastEID="true" host="192.168.1.2"
 listACLEntries="true" modifyACLEntries="true" name="johnsmith"
 publish="true" purgeEvents="true" subscribe="true"

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 256

 useNamedSubcription="false"/>
 </ChannelPermissionSet>
 </ChannelEntry>
 </ChannelSet>
 <QueueSet>
 <QueueEntry>
 <ChannelAttributesEntry EID="0" TTL="0" capacity="0" clusterWide="true"
 name="/customer/queries" type="MIXED_TYPE"/>
 <QueuePermissionSet>
 <QueueACLEntry fullControl="false" host="*" listACLEntries="false"
 modifyACLEntries="false" name="*" peek="true" pop="false" purge="false"
 push="false"/>
 <QueueACLEntry fullControl="true" host="192.168.1.2" listACLEntries="true"
 modifyACLEntries="true" name="johnsmith" peek="true" pop="true"
 purge="true" push="true"/>
 </QueuePermissionSet>
 </QueueEntry>
 <QueueEntry>
 <ChannelAttributesEntry EID="0" TTL="0" capacity="0" clusterWide="true"
 name="/partner/queries" type="MIXED_TYPE"/>
 <QueuePermissionSet>
 <QueueACLEntry fullControl="false" host="*" listACLEntries="false"
 modifyACLEntries="false" name="*" peek="true" pop="false" purge="false"
 push="false"/>
 <QueueACLEntry fullControl="true" host="192.168.1.2" listACLEntries="true"
 modifyACLEntries="true" name="johnsmith" peek="true" pop="true" purge="true" push="true"/>
 </QueuePermissionSet>
 </QueueEntry>
 </QueueSet>
 <RealmInterfaces>
 <RealmNSPInterface>
 <RealmInterface acceptThreads="2" adapter="0.0.0.0" advertise="true"
 authtime="10000" autostart="true" backlog="100" name="nsp0" port="9000"/>
 <InterfacePermissionSet>
 <InterfaceACLEntry host="192.168.1.2" name="johnsmith"/>
 </InterfacePermissionSet>
 </RealmNSPInterface>
 <RealmNHPInterface>
 <RealmInterface acceptThreads="2" adapter="0.0.0.0" advertise="true"
 authtime="10000" autostart="true" backlog="100" name="nhp0" port="80"/>
 </RealmNHPInterface>
 </RealmInterfaces>
</Universal MessagingRealm>

Management and Monitoring Sections

Enterprise view
Universal Messaging Enterprise Manager facilitates centralised summary view for a set
of Universal Messaging realm servers whether standalone or defined in a cluster setup.

"Enterprise Summary" on page 257

"Cluster Summary" on page 257

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 257

Enterprise Summary

The Universal Messaging Enterprise Manager provides a summary view of all Universal
Messaging realms whether clustered or standalone, publish and consume event /
connection totals and rates across the entire set of Realms that the instance of the
Enterprise Manager is connected to.

For more information on these screens please see the Management Information section.

Cluster Summary

The Universal Messaging Enterprise Manager tool provides a summary view for each
cluster defined, showing a real-time cluster status as well as publish and consume
event / connections totals and rates.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 258

Management Information
Each Universal Messaging Administration API client, (the Enterprise Manager is an
admin API client) connects to one or more realms and asynchronously consumes status
events on all of the objects within each realm.

Status events are sent periodically (between configurable intervals, see "Realm
Configuration" on page 25) and contain information pertaining to those objects
where activity has occurred.

As each status event is received, the Enterprise Manager is updated with the relevant
values and these are displayed on the status panels for each object within the
namespace.

Selecting an object from the namespace automatically renders a set of panels to the
right of the selected node, one of which is the 'Status' panel. The status panels and their
contents are described in the links below.

The Universal Messaging enterprise manager has been wrien entirely with the
Universal Messaging admin API and so the functionality seen in these screens can easily
be added to any bespoke administration or monitoring tools.

"Enterprise Summary" on page 259

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 259

"Clusters Summary" on page 261

"Cluster Status" on page 262

"Realms Summary" on page 264

"Realm Status" on page 266

"Realm Monitoring" on page 268

"Container Status" on page 283

"Container Monitor Panel" on page 285

"Channel Status Information" on page 288

"Data Group Status Information" on page 290

"Channel Connections" on page 292

"Queue Status Information" on page 295

"Interface Status Information" on page 297

For more information on other functionality provided in the enterprise manager please
refer to the Enterprise Manager guide.

Enterprise Summary
The enterprise view is the first screen you see whenever the Universal Messaging
enterprise manager is launched. The screen is designed to provide an overview of the
characteristics as well as current status of the set of Universal Messaging realms that
enterprise manager is currently connected with

This section describes the type of status information that can be observed from the
Enterprise level view.

The top of the screen displays a large real time graph illustrating the total number of
events published (yellow) and consumed (red) across all Universal Messaging realms.

The boom of the screen displays 3 panels named Totals, Event Status and Connection
Status. These panels and the information displayed are described below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 260

Totals

The Totals section describes 5 values :

Clusters- The number of clusters defined within the enterprise manager and its realm
nodes

Realms- The number of realms known by the enterprise manager

Channels- The number of channels that exist across all known realms

Queues- The number of queues that exist across all known realms

Data Groups- The number of Data Groups that exist across all known realms

Services- Total number of services that exist across all known realms

Event Status

The Event Status section describes 4 values:

Published - The total number of events being published to all channels, queues and
services across all realms

Consumed - The total number of events being consumed from all channels, queues
and services across all realms

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 261

Published/Sec - The number of events being published to all channels, queues and
services, per second across all realms

Consumed/Sec - The number of events being consumed from all channels, queues and
services, per second across all realms

Connection Status

The Connection Status section describes 3 values :

Total - The total number of connections made to all realms

Current - The current number of events across all realms

Rate - The number of connections being made per second across all realms at this
point in time

Clusters Summary
The clusters view is designed to provide an overview of the characteristics as well
as current status of the set of Universal Messaging clustered realms that enterprise
manager is aware of.

This section describes the type of status information that you can observe from the
Clusters Summary view.

The top of the screen displays a large real time graph illustrating the total number of
events published (yellow) and consumed (red) across all Universal Messaging clusters.

The boom of the screen displays 3 panels named Totals, Event Status and Connection
Status. These panels and the information displayed are described below.

Totals

The Totals section describes the following :

Clusters- The number of clusters defined within the enterprise manager and its realm
nodes

Realms- The number of realms known by the enterprise manager

Channels- The number of channels that exist across all known realms

Queues- The number of queues that exist across all known realms

Data Groups- The number of Data Groups that exist across all known realms

Services- Total number of services that exist across all known realms

Event Status

The Event Status section describes the following :

Published - The total number of events published to all channels, queues and services
across all realms within known clusters

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 262

Consumed - The total number of events consumed from all channels, queues and
services across all realms within known clusters

Published/Sec - The number of events published to all channels, queues and services,
per second across all realms within known clusters

Consumed/Sec - The number of events consumed from all channels, queues and
services, per second across all realms within known clusters

Connection Status

The Connection Status section describes the following :

Total - The total number of connections made to all realms within known clusters

Current - The current number of events across all realms within known clusters

Rate - The number of connections being made per second across all realms within
known clusters

Clusters Status
The cluster status view provides an overview of the characteristics as well as current
status of a selected Universal Messaging cluster.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 263

This section will describe the type of status information that you can observe from the
Cluster Status view.

The top of the screen displays a large real time graph illustrating the total number of
events published (yellow) and consumed (red) across all Universal Messaging clusters.

The boom of the screen displays 3 panels named Totals, Event Status and Connection
Status. These panels and the information displayed are described below.

Totals

The Totals section describes the following :

Realms- The number of realms within the cluster

Channels- The number of channels that exist across all realms within the cluster

Queues- The number of queues that exist across all realms within the cluster

Services- Total number of services that exist across all realms within the cluster

Event Status

The Event Status section describes the following :

Published - The total number of events published to all channels, queues and services
across all realms within the cluster

Consumed - The total number of events consumed from all channels, queues and
services across all realms within the cluster

Published/Sec - The number of events published to all channels, queues and services,
per second across all realms within the cluster

Consumed/Sec - The number of events consumed from all channels, queues and
services, per second across all realms within the cluster

Connection Status

The Connection Status section describes the following :

Total - The total number of connections made to all realms within the cluster

Current - The current number of events across all realms within the cluster

Rate - The number of connections being made per second across all realms within the
cluster

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 264

Realms Summary
The realms view is designed to provide an overview of the characteristics as well as
current status of the set of Universal Messaging realms that enterprise manager is aware
of.

This section will describe the type of status information that you can observe from the
Realms Summary view.

The top of the screen displays a large real time graph illustrating the total number of
events published (yellow) and consumed (red) across all Universal Messaging realms.

The boom of the screen displays 3 panels named Totals, Event Status and Connection
Status respectively. These panels and the information displayed are described below.

Totals

The Totals section contains the following values :

Realms- The number of realms known by the enterprise manager

Channels- The number of channels that exist across all known realms

Queues- The number of queues that exist across all known realms

Data Groups- The number of Data Groups that exist across all known realms

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 265

Services- Total number of services that exist across all known realms

Event Status

The Event Status section contains the following :

Published - The total number of events published to all channels, queues and services
across all known realms

Consumed - The total number of events consumed from all channels, queues and
services across all known realms

Published/Sec - The number of events published to all channels, queues and services,
per second across all known realms

Consumed/Sec - The number of events consumed from all channels, queues and
services, per second across all known realms

Connection Status

The Connection Status section contains the following :

Total - The total number of connections made to all known realms

Current - The current number of events across all known realms

Rate - The number of connections being made per second across all known realms

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 266

Realm Status
The realm status view provides an overview of the characteristics as well as current
status of a selected Universal Messaging realm. When you select a Realm node from the
namespace, the status panel is displayed by default for the realm.

This section will describe the type of status information that you can observe from the
Realm Status view.

The top of the screen displays a panel containing 4 values. These values are :

Name - The name of the selected realm

Threads - Number of threads within the Realm Server's JVM

Realm Up Time - How long the realm has been running for

Last Update - The time that the last status update was sent by the realm

The top of the Status panel contains 2 large real time graphs illustrating the total number
of events published (yellow) and consumed (red) across the Universal Messaging Realm,
as well as the JVM memory status for the selected realm.

The boom of the screen displays 4 panels named Event Status, Totals, Connection Status
and Memory Usage. These panels and the information displayed are described below.

Event Status

The Event Status section describes 4 values :

Published - The total number of events published to all channels, queues and services
within the realm

Consumed - The total number of events consumed from all channels, queues and
services within the realm

Published/Sec - The number of events published to all channels, queues and services,
per second within the realm

Consumed/Sec - The number of events consumed from all channels, queues and
services, per second within the realm

Totals

The Totals section describes the following values :

Realms- The number of realms mounted within this realm's namespace

Channels- The number of channels that exist within this realm

Queues- The number of queues that exist within this realm

Data Groups- The number of Data Groups that exist within this realm

Services- Total number of services that exist within this realm

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 267

Connection Status

The Connection Status section contains the following values :

Total - The total number of connections made to this realm

Current - The current number of connections to this realm

Rate - The number of connections being made per second to this realm

Allowed - The permied number of concurrent connections

Memory Usage(MB)

The Memory Usage section contains the following values :

Total - The total amount of MB allocated to the Realm JVM, specified by the -Xmx
value for the JVM

Free - The amount of JVM memory available for the Realm

Used - The amount of JVM memory used by the Realm

Used/sec - The amount of memory used per second by the Realm between newest
update and previous update

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 268

Realm Monitoring
In Universal Messaging 7 we have reorganized the panels associated with Realm nodes.
When you select a Universal Messaging realm node from the namespace, one of the
available panels to select is labeled 'Monitoring'. This panel is a container for multiple
panels that enable you to view live information on the selected realm

There are 5 tabs available under the Monitoring section, as shown in the image below.

"Logs" on page 268

"Realm Connections" on page 272

"Threads Panel" on page 275

"Top" on page 277

"Audit" on page 280

Universal Messaging Enterprise Manager : Logs Panel
Each Universal Messaging Realm Server has a log file within the data directory called
nirvana.log. The Enterprise Manager provides a panel that displays real time log
messages as they are wrien to the log file. This enables you to remotely view the
activity on a realm as it is happening. The Universal Messaging Administration API also

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 269

provides the ability to consume the log file entries from an nRealmNode. See the code
example "Realm Log and Audit Listener" for an illustration of usage.

The Universal Messaging log file will contain useful information about various activities,
such as connection aempts, channels being located and subscribed to as well as status
and warning information.

The Logs Panel

The Enterprise Manager provides a panel for each realm where the log files can be
viewed. To view the log files, click on the realm node from the namespace and select
the panel labeled 'Monitor' and then select the 'Logs' tab. This will show the live log
messages for the selected realm. The log panel will automatically replay the last 20 log
entries from the Realm Server and then each entry thereafter. The image below shows an
example of the log panel for a selected realm:

The log panel also provides the ability to stream the log messages to a local file. Clicking
on the buon labeled 'Start Stream' from the log panel will prompt you to enter the
name of the file you wish to stream the log messages to. The stream can be stopped by
clicking the same buon again.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 270

Understanding the log file

When a server is started, the initial entries in the log file contain useful information
about the server's configuration. The following text is an excerpt from a Realm Server
log during startup:
[Wed Jun 20 09:37:39 BST 2012],==
[Wed Jun 20 09:37:39 BST 2012], Copyright . All rights reserved
[Wed Jun 20 09:37:39 BST 2012],Start date = Wed Jun 20 09:37:39 BST 2012
[Wed Jun 20 09:37:39 BST 2012],Process ID = 3216
[Wed Jun 20 09:37:39 BST 2012],
[Wed Jun 20 09:37:39 BST 2012],Realm Server Details :
[Wed Jun 20 09:37:39 BST 2012], Realm Server name = realm1
[Wed Jun 20 09:37:39 BST 2012], Realm Server version = $Name: $ - $Revision: 1.7 $
[Wed Jun 20 09:37:39 BST 2012], Build Number = Build 11248
[Wed Jun 20 09:37:39 BST 2012], Build Date = June 19 2012
[Wed Jun 20 09:37:39 BST 2012], Data Directory =
 C:\\Universal Messaging 7.0.11248\\server\\realm1\data
[Wed Jun 20 09:37:39 BST 2012], Extension Directory =
 C:\Universal Messaging 7.0.11248\server\realm1\plugins\ext
[Wed Jun 20 09:37:39 BST 2012], Low Latency Executor = false
[Wed Jun 20 09:37:39 BST 2012], Realm(s) Reloaded = 1
[Wed Jun 20 09:37:39 BST 2012], Channels Reloaded = 8
[Wed Jun 20 09:37:39 BST 2012], Queues Reloaded = 0
[Wed Jun 20 09:37:39 BST 2012], Interfaces Reloaded = 1
[Wed Jun 20 09:37:39 BST 2012],
[Wed Jun 20 09:37:39 BST 2012],Operating System Environment :
[Wed Jun 20 09:37:39 BST 2012], OS Name = Windows 7
[Wed Jun 20 09:37:39 BST 2012], OS Version = 6.1
[Wed Jun 20 09:37:39 BST 2012], OS Architecture = x86
[Wed Jun 20 09:37:39 BST 2012], Available Processors = 4
[Wed Jun 20 09:37:39 BST 2012],
[Wed Jun 20 09:37:39 BST 2012],Java Environment :
[Wed Jun 20 09:37:39 BST 2012], Java Vendor = Sun Microsystems Inc.
[Wed Jun 20 09:37:39 BST 2012], Java Vendor URL = http://java.sun.com/
[Wed Jun 20 09:37:39 BST 2012], Java Version = 1.6.0_30
[Wed Jun 20 09:37:39 BST 2012], Memory Allocation = 494 MB
[Wed Jun 20 09:37:39 BST 2012], Memory Warning = 420 MB
[Wed Jun 20 09:37:39 BST 2012], Memory Emergency = 465 MB
[Wed Jun 20 09:37:39 BST 2012], Clock Adjustment = 0ms
[Wed Jun 20 09:37:39 BST 2012],Startup: Starting Realm status monitoring
[Wed Jun 20 09:37:39 BST 2012], Nanosecond delay = Supported
[Wed Jun 20 09:37:39 BST 2012], Time Zone = Greenwich Mean Time
[Wed Jun 20 09:37:39 BST 2012],Startup: Stored Certificate and private key
 in servers keystore
[Wed Jun 20 09:37:39 BST 2012],Startup: Completed Realm Public and Private RSA Key
[Wed Jun 20 09:37:39 BST 2012], Security Provider 0 = SUN version 1.6
[Wed Jun 20 09:37:39 BST 2012],Startup: Reloading Realm Public for realm1
[Wed Jun 20 09:37:39 BST 2012],Startup: Cluster cryptograhic initialisation, complete
[Wed Jun 20 09:37:39 BST 2012], Security Provider 1 = SunRsaSign version 1.5
[Wed Jun 20 09:37:39 BST 2012], Security Provider 2 = SunJSSE version 1.6
[Wed Jun 20 09:37:39 BST 2012], Security Provider 3 = SunJCE version 1.6
[Wed Jun 20 09:37:39 BST 2012], Security Provider 4 = SunJGSS version 1.0
[Wed Jun 20 09:37:39 BST 2012], Security Provider 5 = SunSASL version 1.5
[Wed Jun 20 09:37:39 BST 2012], Security Provider 6 = XMLDSig version 1.0
[Wed Jun 20 09:37:39 BST 2012], Security Provider 7 = SunPCSC version 1.6
[Wed Jun 20 09:37:39 BST 2012], Security Provider 8 = SunMSCAPI version 1.6
[Wed Jun 20 09:37:39 BST 2012],==

The above sequence of log entries can be found at the beginning of the Universal
Messaging log file, and shows information such as when the realm was started, the build

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 271

number and build date of the Universal Messaging Server, as well as environmental
information like, OS, Java version, timezone.

Each log entry contains a date, the log level as well as the log message itself, in the
format:

[DATE_TIME],LOG_LEVEL,Message

The Universal Messaging log level is a level from 0 to 7 that determines what
information is wrien to the log. Log level 0 is the most verbose level of logging and on
a heavily utilised server will produce a lot of log output. Log level 7 is the least verbose
level, and will produce low levels of log output. The log level of each log message
corresponds to a value from 0 to 7. The following list explains the log file messages
levels and how they correspond to the values:

0 - Success (Log level 0 will output any log entries with a level of 0 or above)

1 - Informative (Log level 1 will output any log entries with a level of 1 or above)

2 - Warning (Log level 2 will output any log entries with a level of 2 or above)

3 - Failure (Log level 3 will output any log entries with a level of 3 or above)

4 - Fatal (Log level 4 will output any log entries with a level of 4 or above)

5 - Security (Log level 5 will output any log entries with a level of 5 or above)

6 - Audit (Log level 6 will output any log entries with a level of 6 or above)

7 - Log (Log level 7 will output only log entries with a level of 7)

Log levels can be changed dynamically on the server by using the Config Panel (see
"Realm Configuration" on page 25). The log file has a maximum size associated
with it. When the maximum file size is reached, the log file will automatically roll, and
rename the old log file to _old and create a new log file . The maximum size for a log
file is set to 10000000 bytes (approximately 10MB). This value can be changed within
the nserver.lax file in the server/bin directory of your install. You need to modify the -
DLOGSIZE property within this file to change the size.

The Log Manager

Universal Messaging has 3 different log managers for archiving old log files. When
a log file reaches its maximum size, the log manager will aempt to archive it, and a
new log file will become active. Options such as the number of log files to keep, and the
maximum size of a log file are configurable through the logging section of the Config
Panel (see "Realm Configuration" on page 25). When a log file is archived and a new
log file created, realm specific information such as Universal Messaging version number
will be printed to the start of the new log in a similar way to when a realm is started.
Each log manager uses a different method to store log files once they are not the active
logs for the realm.

ROLLING_OLD : This log manager uses 2 log files. The active log file is stored
with the default log name, and the most recently rolled log file is stored with _old
appended to the log name. e.g. nirvana.log and nirvana.log_old

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 272

ROLLING_DATE : The rolling date manager stores a configurable number of log
files (RolledLogFileDepth). Rolled log files are stored with the date they were rolled
appended to the active log file name. e.g. nirvana.logWed-Sep-14-02-31-40-117-
BST-2011.

ROLLING_NUMBER : The numbered log manager stores a configurable number
of log files (RolledLogFileDepth). Rolled log files are stored with a numbered index
appended to the file name e.g. nirvana.log3 is the 3rd oldest log file

Realm Connections
When a Universal Messaging client connects to a Realm Server, the server maintains
information on the connection (see "Connection Information" on page 347) that is
available through the Universal Messaging Administration API. The API also provides
mechanisms for receiving notification when connections are added and deleted (see the
code example "Connection Watch" for an illustration of using this in the Administration
API).

The Universal Messaging Enterprise Manager allows you to view the connections on a
realm as well as drilldown and view specific information about each connection, such
as the last event sent or received, and the rate of events sent and received from each
connection.

To view the current realm connections, simply select a realm node from the namespace,
and select the 'Connections' tab from within the 'Monitoring' tab of the selected realm
node. This will display a panel containing a table of connections, as shown in the image
below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 273

The connections table has 4 columns:

Protocol - The protocol used in the connection

User - The name of the user connected

Host - The host machine that the user is connecting from

Connection - The local connection id, defined as hostname:local_port

The highlighted connection above shows that the user has connection using the nhp
protocol, to localhost. In this example, the nhp interface is running on port 80, so the
RNAME of this connection was nhp://localhost:80/

When a connection is highlighted, there a number of things that can be shown for a the
connection.

Firstly, connections can be disconnected by clicking on the 'Disconnect' buon.

Secondly, by double-clicking on a connection from the table, or by clicking on the 'Show
Details' buon, you are presented with a panel that contains a more detailed look at the
activity for the selected connection. The connection details panel is shown in the image
below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 274

Connection Details

You will see that there are 2 separate information panels above the graphs once you have
drilled down into a connection. The first of which is labelled Connection Details. This
information contains information about the user connection, such as user name, host
protocol.

Client Environment

Next to this you will see a panel that shows details regarding the client environment for
this user. These includes API language / Platform, Host OS and Universal Messaging
build number

The two graphs, labeled 'Tx Event History' and 'Rx Event History' show the total
(yellow) and rates (red) for events received from the server (TX) and sent to the server
(RX) for the selected connection.

The boom of the connection details panel shows 3 sections of information for the
selected connection, 'Events Sent', 'Events Received' and 'Status'. Each of these are
described below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 275

Events Sent

The Events Sent section contains the values:

Total - The total number of events sent by the realm server to this connection

Rate - The rate at which events are being sent by the realm server to this connection

Max - The maximum rate at which events have been sent by the realm server to this
connection

Last Event Type - The type of the last event sent from the realm server

Bytes - Total bytes sent by the realm server to this connection

Events Received

The Events Received section contains the following values:

Total - The total number of events sent by this connection to the realm server

Rate - The rate at which events are being sent by connection to the realm server

Max - The maximum rate at which events have been sent by this connection to the
realm server

Last Event Type - The type of the last event sent from the connection to the realm
server

Bytes - Total bytes sent by this connection to the realm server

Status

The Events Sent section contains the following values:

Connect Time - The amount of time this connection has been connected to the realm
server

Queue Size - The number of events in the outbound queue of this connection (i.e.
events waiting to be sent to the realm server)

Last Tx - The time since the last event was received by this connection from the realm
server

Last Rx - The time since the last event was sent to the server from this connection

Clicking on the 'Show List' buon will take you back to the connections table.

Threads Status
The threads tab found within the Enterprise Manager offers 2 statistical views, thread
pools and scheduler tasks.

The thread pool display shows the number of idle and active threads per thread pool as
well as the task queue size per thread pool and a total number of executed tasks for the
respective thread pool

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 276

The Scheduler provides information pertaining to the number of scheduled operations
each task has within the system.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 277

Top
Within the 'Monitoring' panel of a selected Realm node you will find a panel called 'Top'.
This provides a view not unlike 'top' for unix systems or task manager for windows
based systems. Its main purpose is to present the user with a high level view of realm
usage, both from a connection perspective and also from a channel perspective.

The Top panel comprises 2 sections. The top most section contains 2 real time graphs
illustrating the realm memory usage in the same way the Realm Status panel (see
"Realm Status" on page 266) displays memory usage, as well as displaying JVM GC
stats. This section also contains a summary showing the number of mounted realms, the
number of resources and the number of services.

The boom section of the Monitor panel displays a series of tabs, showing channel and
connection usage throughout the realm.

Channel Usage

The middle section of the Monitor panel displays a table showing multiple columns
and rows. This table represents channel usage throughout the realm. Each row in the
table represents a channel. Channel usage can be measured a number of ways. Each
measurement corresponds to a column within the table. By clicking on one of the

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 278

column headers, all known channels will be sorted according to their value for the
selected column. For example, one of the columns is 'Connections', i.e. the number
of current consumers on the channel. By clicking on the column header labelled
'Connections', the table will be sorted according to the number of consumers each
channel has. The channel with the most number of consumers will appear at the top of
the table.

Channel usage measurements are described below:

Connections - The number of consumers the channel has

Published - The rate of events published per status interval

Consumed - The rate of events consumed per status interval

Memory (bytes) - The number of bytes the channel uses from the JVM memory

% Memory - The percentage of overall JVM memory used by this channel

Disk - The amount of disk space used by this channel, only relevant for persistent /
mixed channels

Connection Usage

The boom section of the monitor panel shows a similar table to that of the channel
usage table described above, except that this table represents connection usage. Each

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 279

row represents a connection. A connection corresponds to the physical aspect of a
Universal Messaging Session. Connection usage, like channel usage can be measured in
a number of different ways. Each column in the table represents a type of measurement
for a realm connection. Clicking on one of the column headers will cause the table of
connections to be sorted according to the value of the selected column. For example,
one of the columns is 'Events In', i.e. the number of events sent to the server by the
connection. By clicking on the column header labeled 'Events In', the table will be sorted
according to the number of events each connection has sent to the server. The connection
with the most 'Events In' count will appear at the top of the table.

Connection usage measurements are described below:

Queued- The number of event in the connections outbound queue

Events In - The rate of events sent by the connection to the realm server

Bytes In - The rate of bytes sent by the connection to the realm server

Events Out - The rate of events consumed by the connection from the realm server

Bytes Out - The rate of bytes consumed by the connection from the realm server

Latency - The measured time it takes the connection to consume events from the
server, i.e. time taken between leaving the realm server and being consumed by the
connection.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 280

Monitor Graphs

The monitor panel provides a method of graphing both channel and connection usage. It
uses a 3D graph package from sourceforge (hp://sourceforge.net/projects/jfreechart/) to
display the items in each table as columns in a 3D vertical bar chart. The bar charts can
be update live as the values in the tables are updated. Once a column is selected, simply
click on the buon labeled 'Bar Graph' under either the channel or connections table and
a graph panel will appear, as shown in the image below showing a graph of the number
of events published for channels within a realm..

Right-clicking anywhere within the graph will show a pop-up menu of options. One
of the options is labeled 'Start Live Update', which will ensure the graph consumes
updates as and when they occur to the table. Once the live update is started, you can
also stop the live update by once again right clicking on the graph and selecting 'Stop
Live Update'.

You can also print the graph, and save the graph image as a '.png' file, as well as alter the
properties of the graph and its axis.

Audit Panel
Universal Messaging Realm Servers log administration operations performed on the
realm to a file. These events are called Audit Events and are stored in a local file called
Universal MessagingAudit.mem. These audit events are useful for tracking historical
information about the realm and who performed what operation and when. The
Universal Messaging Administration API provides the ability to consume the audit file

http://sourceforge.net/projects/jfreechart/

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 281

entries from an nRealmNodeM. See the code example "Realm Log and Audit Listener"
for an illustration of usage.

The Universal Messaging Enterprise Manager provides an Audit Panel that displays the
contents of the remote audit file and receives real time updates as and when audit events
are generated. The audit events that are wrien to the audit file are determined by the
configuration specified in the Config Panel (see "Realm Configuration" on page 25)
of the Universal Messaging Enterprise Manager.

Audit Events

Each audit event corresponds to an operation performed on an object within a realm.
The audit event contains the date on which it occurred, the object and the operation that
was performed on the object.

The list below shows the objects that audit events correspond to as well as the operations
performed on them which are logged to the audit file:

Realm - CREATE, DELETE, ACCESS

Interfaces - CREATE, DELETE, MODIFY, START, STOP

Channels - CREATE, DELETE, MODIFY

Queues - CREATE, DELETE, MODIFY

Services - CREATE, DELETE

Joins - CREATE, DELETE

Realm

ACL - CREATE, DELETE, MODIFY

Channel ACL - CREATE, DELETE, MODIFY

Queue ACL - CREATE, DELETE, MODIFY

Service ACL - CREATE, DELETE, MODIFY

Audit Panel

The audit panel displays audit events for a realm server. You can view the audit panel
by clicking on the realm you wish to view the audit file for within the namespace and
selecting the panel labeled 'Audit' from within the 'Monitoring' panel of the selected
realm. The image below shows an example of the audit panel for a Universal Messaging
Realm.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 282

When you first connect to a realm, the audit panel will display the last 20 audit events
from its history. Audit files can become quite large over time on a heavily utilised realm,
so the initial load is limited to just the last 20. After that all subsequent audit events will
be shown in the audit panel.

Each audit event is shown as a row in a table. The table has 5 columns:

Date - The time at which the audit event occurred on the server

Originator - Who performed the operation

Type - What type of object was the action performed on

Action - What action was performed

Object - The name of the object

If the object type is an ACL for either realm, resource or service, selecting the entry from
the table will also display the ACL changes in the boom section of the audit panel. For
modified ACLs, each acl permission that has been granted or removed will be displayed
as a green '+', or a red '-' respectively.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 283

Audit Stream

The audit panel provides a buon that enables you to stream the remote audit events
from the realm to a local file. This also provides you with the option of replaying the
entire audit file.

Clicking on the 'Start Stream' buon will prompt you with a file chooser dialog to select
the location and name of the file that the audit events will be streamed to. Once you
have selected this file, you will be prompted whether you wish to replay the entire audit
file into the stream or just the last 20 audit entries. The image below shows this dialog:

The text below is an exert from a sample audit file than has been streamed from a
server. Each entry that relates to a modified ACL shows the permissions that have been
changed, and the permissions that are granted by either a + or -. For permissions that
have remained the same, the leer 'N' for not change will be placed after the permission.
Fri Jan 21 15:43:40 GMT 2005,CHANACL,/customer/sales:*@*,MODIFY,paul weiss@localhost,
 Full(-), Last Eid(N),Purge(-),Subscribe(N),Publish(-),Named Sub(N),Modify Acls(-),
 List Acls(-),
Fri Jan 21 15:43:40 GMT 2005,QUEUEACL,/partner/queries:*@*,MODIFY,
 paul weiss@localhost,Full(-),Purge(-), Peek(N),Push(-),Pop(-),Modify Acls(-),
 List Acls(-),
Fri Jan 21 15:43:40 GMT 2005,QUEUEACL,/partner/queries:paul weiss@localhost,MODIFY,
 paul weiss@localhost, Full(N),Purge(N),Peek(N),Push(N),Pop(N),Modify Acls(N),
 List Acls(N),
Fri Jan 21 16:13:10 GMT 2005,INTERFACE,nhp0,CREATE,paul weiss@localhost,
Fri Jan 21 16:15:31 GMT 2005,INTERFACE,nhp0,MODIFY,paul weiss@localhost,

Archive Audit

The audit panel provides a buon that enables you to archive the audit file. As
mentioned before, depending on what is being logged to the audit file, the file can
grow quite large. As it's an audit and provides historical data, there is no automatic
maintenance of the file it is down to the realm administrators when the file is archived.
The 'Archive Audit' buon when clicked will simply rename the existing audit file to a
name with the current date, and start a new audit file.

Container Status
When you select a container (folder) from the namespace, one of the available panels to
select is labeled 'Totals'.

The Totals panel for a container provides status information for resources and services
contained within the selected container branch of the namespace tree.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 284

The status information shown within this panel is explained below.

The Totals panel is split into 2 main sections. The top most section of this panel shows 2
graphs, one demonstrates Event History, and the other Storage Usage History.

The event history graph shows the rates that events are published (red) and consumed
(yellow) across all channels, queues and services found within the selected container.

The storage usage history graph shows the total amount of storage space used by each
channel, queue and service found within the selected container.

Both graphs are updated every time a status event is received from the realm in which
the container exists. The image below demonstrates the Container status graphs as
described.

The boom section of the panel displays 4 sections of information, Event Status, Totals,
Connection Status and Storage Usage. These panels and the information displayed are
described below.

Event Status

The Event Status section describes the following :

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 285

Published - The total number of events published to all channels, queues and services
within the container

Consumed - The total number of events consumed from all channels, queues and
services within the container

Published/Sec - The number of events published to all channels, queues and services,
per second within the container

Consumed/Sec - The number of events consumed from all channels, queues and
services, per second within the container

Totals

The Totals section describes the following :

Realms- The number of realms mounted within this container

Channels- The number of channels that exist within this container

Queues- The number of queues that exist within this container

Services- Total number of services that exist within this container

Connection Status

The Connection Status section describes the following :

Total - The total number of connections made to channels, queues and services within
this container

Current - The current number of connections made to channels, queues and services
within this container

Rate - The number of connections being made per second to channels, queues and
services within this container

Storage Usage (KB)

The Memory Usage section describes 4 values :

Total - The total amount of KB used by channels, queues and services found within
this container

Free - The free memory available in the Realm JVM

Used - The amount of memory available in the Realm JVM

Change - The amount of change in Realm JVM memory between newest update and
previous update

Container Monitor Panel
When you select a container (folder) from the namespace, one of the available panels to
select is labeled 'Monitor'.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 286

The Monitor panel provides a view not unlike 'top' for unix systems or task manager for
windows based systems. Its main purpose is to present the user with a high level view of
usage. The usage is based on channels found within the container node.

The Monitor panel comprises 2 sections. The top most section contains a real time
graph illustrating the realm memory usage in the same way the Realm Status panel (see
"Realm Status" on page 266) displays memory usage. This section also contains a
summary showing the number of mounted realms, the number of channels, the number
of queues and the number of services.

The image below demonstrates the Monitor panel for a container within a clustered
realm.

Channel Usage

The next section of the Monitor panel displays a table showing multiple columns
and rows. This table represents channel usage throughout the realm. Each row in the
table represents a channel. Channel usage can be measured a number of ways. Each
measurement corresponds to a column within the table. By clicking on one of the
column headers, all known channels found within the container will be sorted according
to their value for the selected column. For example, one of the columns is 'Connections',
i.e. the number of current consumers on the channel. By clicking on the column header
labeled 'Connections', the table will be sorted according to the number of consumers

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 287

each channel has. The channel with the most number of consumers will appear at the
top of the table.

Each column used for channel usage measurements is described below:

Connections - The number of consumers the channel has

Published - The rate of events published per status interval

Consumed - The rate of events consumed per status interval

Memory (bytes) - The number of bytes the channel uses from the JVM memory

% Memory - The percentage of overall JVM memory used by this channel

Disk - The amount of disk space used by this channel, only relevant for persistent /
mixed channels

Monitor Graphs

The monitor panel provides a method of graphing channel usage. It uses a 3D graph
package from sourceforge (hp://sourceforge.net/projects/jfreechart/) to display the
items in each table as columns in a 3D vertical bar chart. The bar charts can be update
live as the values in the tables are updated. Once a column is selected, simply click on
the buon labeled 'Bar Graph' under either the channel or connections table and a graph
panel will appear, as shown in the image below showing a graph of the number of
events published for channels within the container..

Right-clicking anywhere within the graph will show a pop-up menu of options. One
of the options is labeled 'Start Live Update', which will ensure the graph consumes

http://sourceforge.net/projects/jfreechart/

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 288

updates as and when they occur to the table. Once the live update is started, you can
also stop the live update by once again right clicking on the graph and selecting 'Stop
Live Update'.

You can also print the graph, and save the graph image as a '.png' file, as well as alter the
properties of the graph and its axis.

Channel Status

Introduction

Every time a channel object is selected from the namespace, the first panel to be
displayed on the right hand side of the Enterprise Manager panel is the 'Status' panel.
Configuration information is always displayed at the top section of the Enterprise
Manager when a channel is selected. This configuration information shows channel type,
l (age), capacity as well as any channel key information available. The channel 'Status'
tab shows real-time management information for the selected channel.

The status panel is split into 2 main sections. The top section shows real time graphs
representing the events published and consumed on the channel, both in terms of rates
(i.e. per status interval) as well as the totals.

The boom section shows the actual values ploed in the graphs for events published
and consumed, as well as information about the actual channel store at the server.

The image below shows the status panel for an active cluster channel.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 289

The top most graph in the panel shows the event history for events consumed from the
channel. The red line graphs the rates at which events are being consumed while the
yellow line graphs the total events consumed from the channel.

The boom graph shows the event history for events published to the channel. The
red line graphs the rates at which events are being published while the yellow line
graphs the total events published to the channel. As the status events are consumed,
and the channel (nLeafNode) is updated with the new values for events consumed and
published, the status panel and its graphs will be updated.

The boom section of the status panel shows 3 types of information: Totals, Rates and
Event Store. These are discussed below.

Totals

The totals section shows 5 values:

Published - The total number of events published to the channel when the last status
events was consumed

Consumed - The total number of events consumed from the channel when the last
status event was consumed

Event ID - The event id of the last event published to the channel

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 290

Current Connections - The current number of consumers on the channel

Total Connections - Total number of subscribers that have subscribed to the channel

Rates

The rates section shows 3 values:

Published - The current rate of events published to the channel, calculated as (total -
previous total) / (interval 1000 milliseconds)

Consumed - The current rate of events consumed from the channel, calculated as
(total - previous total) / (interval 1000 milliseconds)

Connections - The current rate of subscriptions being made to the channel

Event Store

The event store section shows 4 values:

Used Space - The amount of space in KB used by the channel on the server (either
memory, or disk for persistent / mixed channels)

Events - The current number of events on the channel

% Free - The amount of free space in the channel store (calculated as (used space -
(total space used by all purged or aged events))

Cache Hit - The %age of events consumed from the channel event cache as opposed
form the actual physical store if persistent or mixed

Data Group Status
When you select the 'Data Groups' node from the tree, one of the available panels to
select is labeled 'Status' panel.

The Status panel for The 'Data Groups' node contains information regarding the publish
and consumed events on Data Groups as well as the number of Data Groups and Data
Streams currently connected

The status information shown within this panel is explained below.

The Status panel is split into 2 main sections. The top most section of this panel shows a
graph that demonstrates Event History

The event history graph shows the rates that events are published (red) and consumed
(yellow) across all data groups in the current realm.

This graph is updated every time a status event is received from the realm in which
data groups are actively being used. The image below demonstrates the status graphs as
described.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 291

The boom section of the panel displays 4 sections of information, Event Status, Totals,
Connection Status and Storage Usage respectively. These panels and the information
displayed are described below.

Event Status

The Event Status section describes the following :

Published - The total number of events published to all channels, queues and services
within the container

Consumed - The total number of events consumed from all channels, queues and
services within the container

Published/Sec - The number of events published to all channels, queues and services,
per second within the container

Consumed/Sec - The number of events consumed from all channels, queues and
services, per second within the container

Totals

The Totals section describes the following :

Realms- The number of realms mounted within this container

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 292

Channels- The number of channels that exist within this container

Queues- The number of queues that exist within this container

Services- Total number of services that exist within this container

Connection Status

The Connection Status section describes the following :

Total - The total number of connections made to channels, queues and services within
this container

Current - The current number of connections made to channels, queues and services
within this container

Rate - The number of connections being made per second to channels, queues and
services within this container

Storage Usage (KB)

The Memory Usage section describes 4 values :

Total - The total amount of KB used by channels, queues and services found within
this container

Free - The free memory available in the Realm JVM

Used - The amount of memory available in the Realm JVM

Change - The amount of change in Realm JVM memory between newest update and
previous update

Channel Connections
When a Universal Messaging client connects to a Realm Server, the server maintains
information on the connection (see "Connection Information" on page 347) that is
available through the Universal Messaging Administration API. The API also provides
mechanisms for receiving notification when connections are added and deleted (see the
code example "Connection Watch" using the Administration API).

Connection information is also maintained when Universal Messaging clients subscribe
to channels. This section guides you through channel connection information.

The Universal Messaging Enterprise Manager allows you to view the connections
(channel subscriptions) on a realm and drilldown to view more detailed information
about each connection, such as the last event sent or received, and the rate of events sent
and received from each connection.

To view connections for a channel, select a channel node from the namespace, and select
the 'Connections' tab. This will display a panel containing a table of connections, as
shown in the image below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 293

Connections have the following aributes:

Protocol - The protocol used in the connection

User - The name of the user connected

Host - The host machine that the user is connecting from

Connection - The local connection id, defined as hostname:local_port

Sub-Name- The named object (see "Channel Named Objects" on page 98)
reference if one has been provided

Filter - The filter string for the subscription if one has been provided

The highlighted connection above shows that the user has subscribed to the
'ClusterRates' channel using the nsp protocol, to localhost. The user has also provided
a named object called 'johnsmith' and a filter of "region='UK'" which will ensure the
user only consumes events with the value 'UK' in the 'region' property of the event
properties.

When a connection is highlighted, there a number of things that can be shown for a the
connection.

Firstly, connections can be disconnected by clicking on the 'Disconnect' buon.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 294

Secondly, by double-clicking on a connection from the table, or by clicking on the 'Show
Details' buon, you are presented with a panel that contains a more detailed look at the
activity for the selected connection. The connection details panel is shown in the image
below.

Connection Details

You will see that there are 2 separate information panels above the graphs once you have
drilled down into a connection. The first of which is labelled Connection Details. This
information contains information about the user connection, such as user name, host
protocol.

Client Environment

Next to this you will see a panel that shows details regarding the client environment for
this user. These includes API language / Platform, Host OS and Universal Messaging
build number

The two graphs, labeled 'Tx Event History' and 'Rx Event History' show the total
(yellow) and rates (red) for events received from the server (TX) and sent to the server
(RX) for the selected connection.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 295

The boom of the connection details panel shows 3 sections of information for the
selected connection, 'Events Sent', 'Events Received' and 'Status'. Each of these are
described below.

Events Sent

The Events Sent section shows the following values:

Total - The total number of events sent by the realm server to this connection

Rate - The rate at which events are being sent by the realm server to this connection

Max - The maximum rate at which events have been sent by the realm server to this
connection

Last Event Type - The type of the last event sent from the realm server

Bytes - Total bytes sent by the realm server to this connection

Events Received

The Events Received section shows the following values:

Total - The total number of events sent by this connection to the realm server

Rate - The rate at which events are being sent by connection to the realm server

Max - The maximum rate at which events have been sent by this connection to the
realm server

Last Event Type - The type of the last event sent from the connection to the realm
server

Bytes - Total bytes sent by this connection to the realm server

Status

The Events Sent section shows the following values:

Connect Time - The amount of time this connection has been connected to the realm
server

Queue Size - The number of events in the outbound queue of this connection (i.e.
events waiting to be sent to the realm server)

Last Tx - The time since the last event was received by this connection from the realm
server

Last Rx - The time since the last event was sent to the server from this connection

Clicking on the 'Show List' buon will take you back to the connections table.

Queue Status
Every time a queue object is selected from the namespace, the first panel to be
displayed on the right hand side of the Enterprise Manager panel is the 'Status' panel.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 296

Configuration information is always displayed at the top section of the Enterprise
Manager when a queue is selected. This configuration information shows queue type, l
(age) and capacity. The queue 'Status' tab shows real-time management information for
the selected queue.

The status panel is split into 2 main sections. The top section shows real time graphs
representing the events pushed and popped from the queue, both in terms of rates (i.e.
per status interval) as well as the totals.

The boom section shows the actual values ploed in the graphs for events pushed and
popped, as well as information about the actual queue store at the server.

The image below shows the status panel for an active cluster queue.

The top most graph in the panel shows the event history for events popped from the
queue. The red line graphs the rates at which events are being popped while the yellow
line graphs the total events popped from the queue.

The boom graph shows the event history for events pushed onto the queue. The red
line graphs the rates at which events are being pushed while the yellow line graphs the
total events pushed to the queue. As the status events are consumed, and the queue
nLeafNode () is updated with the new values for events popped and pushed, the status
panel and its graphs will be updated.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 297

The boom section of the status panel shows 3 types of information : Totals, Rates and
Event Store. These are discussed below.

Totals

The totals section contains the following values:

Published - The total number of events pushed to the queue when the last status event
was consumed

Consumed - The total number of events popped from the queue when the last status
event was consumed

Event ID - The event id of the last event pushed to the queue

Current Connections - The current number of asynchronous consumers on the queue

Total Connections - Total number of asynchronous consumers that have subscribed to
the queue

Rates

The rates section contains the following values:

Published - The current rate of events pushed to the queue, calculated as (total -
previous total) / (interval 1000 milliseconds)

Consumed - The current rate of events popped from the queue, calculated as (total -
previous total) / (interval 1000 milliseconds)

Connections - The current rate of asynchronous subscriptions being made to the
queue

Event Store

The event store section contains the following values:

Used Space - The amount of space in KB used by the queue on the server (either
memory, or disk for persistent / mixed queues)

Events - The current number of events on the queue

% Free - The amount of free space in the queue store (calculated as (used space - (total
space used by all purged or aged events))

Cache Hit - The %age of events popped from the queue event cache as opposed form
the actual physical store if persistent or mixed

Interface Status
Universal Messaging interfaces (see "Universal Messaging Enterprise Manager Comms:
TCP Interfaces, IP Multicast and SHM" on page 185) allow users to connect to
a Realm using various protocols and ports on specific physical Network interfaces
on the host machine. Interfaces are also available to users through the Universal

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 298

Messaging Administration API and can provide useful status information regarding
user connections.

The Enterprise manager provides a summary of this status information for each
interface. This section will describe the status information available for each interface.

To view status information for an interface, you must first select the 'Comms' tab for
the Realm you want to view. This tab contains the interface configurations as well as
Multicast and Shared Memory configurations Select the interface you wish to view from
the list of interfaces in the 'Interfaces'. By selecting the desired interface, you will be
presented with a number of panels, one of which is labeled 'Status'. This panel is shown
in the image below.

The interface status panel has a section that describes the details of the interface status
information. The status information contains 6 values, each of which is described below.

Details Panel

Idle Threads- The number of idle threads, calculated as the total threads from the
interface accept threads pool - the number of threads from the pool currently
accepting connections. Corresponds to available threads

Total Connections - The total number of successful connections made to this interface

Total Failed - The total number of failed connection aempts made to this interface

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 299

Ave Authorisation - The average time it takes a connection to authenticate with the
realm server

Pool Exhausted Count - The number of times that the interface thread pool has had no
threads left to service incoming connection requests. When this count increases, you
should increase the number of accept threads (see "Interface Configuration" on page
192) for the interface

Ave Pool Wait - The average time that a client connection has to wait for the accept
thread pool to provide an available thread. Like the Pool Exhausted count, this is
a good indicator that the number of accept threads for an interface is too low and
needs to be increased

The status panel also shows 2 graphs that depict connection aempts (successful
connections are shown in yellow, failed connection aempts are shown in red) and
authentication times (average authentication times are shown in yellow, and the last
authentication time is shown in red).

Scheduler view
Universal Messaging Enterprise Manager allows managing, deploying and editing
server side scripts for execution in the Universal Messaging scheduler. The scripts
consist of initial tasks, triggered tasks and / or calendar tasks as illustrated in the
following sections.

"Adding Scheduler Scripts" on page 299

"Editing Scheduler Scripts" on page 300

"Scheduler Script Initial Tasks" on page 301

"Scheduler Script Triggered Tasks" on page 302

"Scheduler Scripts Calendar Tasks" on page 303

Adding Scheduler Scripts

The Universal Messaging Enterprise Manager allows deployment of scheduler scripts
that execute on the Universal Messaging realm's scheduler. The editor features syntax
highlighting to facilitate script editing.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 300

Editing Scheduler Scripts

The Universal Messaging Enterprise Manager allows viewing and editing of scripts that
are already deployed on the realm from any location.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 301

Scheduler Script Initial Tasks

Each scheduler script has an initialisation section that allows variable definition as
well as execution of tasks such as realm configuration changes, custom log messages,
interface configuration etc. These can be viewed after they are parsed and validated from
the Enterprise Manager.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 302

Scheduler Scripts Triggered Tasks

Each scheduler script can optionally contain a triggered tasks section. Triggered tasks
are tasks that are executed when certain conditions are met during the operation of the
Universal Messaging realm. For example the image below shows a triggered tasks that
is executed if the realm log level is set to 0 (very verbose) which results to a custom log
message as well as seing the log level to 1.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 303

Scheduler Scripts Calendar Tasks

Each scheduler script can optionally have a calendar tasks section. Calendar tasks are
triggered by calendar events as defined in the scheduler script. The Enterprise Manager
image below shows a calendar tasks that writes a custom log message every 30 minutes
of every hour, of every day or month.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 304

Channel view
Universal Messaging Enterprise Manager allows monitoring, administration and
configuration of every aspect of a Universal Messaging channel, as illustrated in the
following sections.

"Channel Status" on page 305

"Channel Access Control List (ACL)" on page 305

"Channel Joins" on page 306

"Channel Connections" on page 307

"Channel Named Objects" on page 308

"Channel Event Snooping" on page 309

For more information on these screens please see the Management Information section.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 305

Channel Status

The Universal Messaging Enterprise Manager allows monitoring of a channel's status
in terms of publish & consume event totals / rates as well as connection total / rates and
persistent store / memory.

Channel Access Control List (ACL)

Universal Messaging offers complete control over security policies. Universal Messaging
stores security policies locally or be driven by any external entitlements service.
Universal Messaging's rich set of entitlements ensure that everything from a network
connection through to a channel/queue creation can be controlled on a per user and/or
host basis. For more information please see the Universal Messaging ACL's FAQ.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 306

Channel Joins

Universal Messaging allows channels to be joined to other channels or queues creating
server side routing tables with the possibility to apply filters based on message content
on the local or a remote Universal Messaging realm.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 307

Channel Connections

Channel subscribers are reported as channel connections and can be monitored /
managed through the Universal Messaging Enterprise Manager.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 308

Channel Named Objects

Channel subscribers can manage their subscription's event id manually or they can
become a named subscriber and let that be managed by the Universal Messaging realm.
The Universal Messaging Enterprise Manager allows complete management of channel
named objects.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 309

Channel Event Snooping

The Universal Messaging Enterprise Manager provides the ability to inspect the contents
of messages remotely using the Snoop panel.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 310

Queue view
Universal Messaging Enterprise Manager allows monitoring, administration and
configuration of every aspect of a Universal Messaging queue, as illustrated in the
following sections.

"Queue Status" on page 310

"Queue Access Control List (ACL)" on page 311

"Queue Joins" on page 311

"Queue Event Snooping" on page 312

For more information on these screens please see the Management Information section.

Queue Status

The Universal Messaging Enterprise Manager allows monitoring of a queue's status in
terms of publish & consume event totals / rates as well as connection total / rates and
persistent store / memory.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 311

Queue Access Control List (ACL)

Universal Messaging offers complete control over security policies. Universal Messaging
stores security policies locally or be driven by any external entitlements service.
Universal Messaging's rich set of entitlements ensure that everything from a network
connection through to a channel/queue creation can be controlled on a per user and/or
host basis. For more information please see the Universal Messaging ACL's FAQ.

Queue Joins

Universal Messaging allows channels to be joined to other channels or queues creating
server side routing tables with the possibility to apply filters based on message content
on the local or a remote Universal Messaging realm.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 312

Queue Event Snooping

The Universal Messaging Enterprise Manager provides the ability to inspect the contents
of messages remotely using the Snoop panel.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 313

Peer 2 Peer view
Universal Messaging Enterprise Manager allows monitoring, administration and
configuration of every aspect of a Universal Messaging Peer 2 Peer service, as illustrated
in the following sections.

"Service Status" on page 313

"Service Access Control List (ACL)" on page 314

"Service Connections" on page 315

For more information on these screens please see the Management Information section.

Service Status

The Universal Messaging Enterprise Manager allows monitoring of a peer 2 peer
service's status in terms of publish & consume event totals/ rates as well as connection
totals / rates.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 314

Service Access Control List (ACL)

Universal Messaging offers complete control over security policies. Universal Messaging
stores security policies locally or be driven by any external entitlements service.
Universal Messaging's rich set of entitlements ensure that everything from a network
connection through to a channel/queue creation can be controlled on a per user and/or
host basis and as peer 2 peer services use channels a similar model applies. For more
information please see the Universal Messaging ACL's FAQ.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 315

Service Connections

Channel subscribers are reported as channel connections and can be monitored /
managed through the Universal Messaging Enterprise Manager. As Peer 2 Peer services
use channels to exchange messages with service clients a similar model is used.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 9.8 316

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 317

2 Universal Messaging Administration API

■ Introduction ... 318

■ Administration API Package Documentation ... 320

■ Namespace Objects ... 321

■ Realm Server Management ... 328

■ Security ... 335

■ Management Information ... 340

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 318

Universal Messaging provides a feature rich Administration API capable of capturing
all metrics, management and audit information from Universal Messaging realms. The
API allows you to control and administer all aspects of any Universal Messaging realm
or clusters of realms.

Universal Messaging's Enterprise Manager GUI has been wrien entirely using the
Universal Messaging Administration API as a means of demonstrating how useful the
API can be for the management of your messaging infrastructure.

Some example code showing how to use the Universal Messaging management API can
be found in the examples section.

The Admin API is available in the following languages:

Java

C#.NET

C++

Introduction
Getting Started

The Universal Messaging Admin API (see the Package Documentation) allows
management, configuration, audit and monitoring of all aspects of a Universal
Messaging realm server.

The starting point for the Admin API is connecting to a realm. In order to connect to a
realm using the Admin API, you need to ensure you are familiar with the concept of
an RNAME. Once you have the RNAME that corresponds to your realm, you can then
connect to the realm.

The way you connect to a realm is by constructing an nRealmNode object. The nRealmNode
object is the main object you need to access all of the objects you wish to configure,
monitor and manage:
String[] RNAME={"nsp://127.0.0.1:9000"};
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nRealmNode realm = new nRealmNode(nsa);

Universal Messaging namespace

Access to resources on a Universal Messaging realms, or indeed objects in a multi
Universal Messaging realm server namespace, is based on a simple tree structure, where
the nRealmNode is the root of the tree. All nodes within the tree are subclasses of a base
class nNode. From the root, it is possible to obtain references to all child nodes. Child
nodes may be other realm nodes, containers (folders containing other realms, channels
etc), channels, queues and P2P services.

For example, to obtain an enumeration of all child nodes within a realm node, simply
call the following:

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 319

Java:
Enumeration children = realm.getNodes();

C#:
System.Collections.IEnumerator children = realm.getNodes();

C++:
fSortedList nodes = pNode->getNodes();

From this enumeration you can then perform operations on the child nodes. For
example, if you have a realm with 1 channel and 1 queue, and wanted to find the
number of events currently on each, the following code would do that:

Example: Finding out how many events are on a channel / queue

Java:
 while (children.hasMoreElements()) {
 nNode child = (nNode)children.nextElement();
 if (child instanceof nLeafNode) {
 nLeafNode leaf = (nLeafNode)child;
 System.out.println("Leaf node contains "+leaf.getCurrentNumberOfEvents());
 }
 }

C#:
while (children.MoveNext()){
 nNode child = (nNode)children.Current;
 if (child is nLeafNode) {
 nLeafNode leaf = (nLeafNode)child;
 Console.WriteLine("Leaf node contains "+leaf.getCurrentNumberOfEvents());
 }
 }

C++:
void searchNodes(fSortedList nodes)
 for (fSortedList::iterator iterator = nodes.begin(); iterator != nodes.end(); iterator++)
 {
 nNode *pNode = iterator->second;
 int type = pNode->getType ();
 if (type == fBase::LEAFNODE)
 {
 printf("Leaf node contains %ll events",pNode->getCurrentNumberOfEvents());
 }
 }
}

The namespace structure is dynamic and is managed asynchronously for you, so as
and when objects are created, deleted modified, stopped or started, the namespace will
manage those state changes and keep the structure up to date automatically.

Management / Configuration / Security

As well as the namespace nodes, there are also other objects that can be obtained from
the nodes but which are not part of the namespace tree structure.

For example, from an nRealmNode it is possible to obtain the following objects:

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 320

nClusterNode - The cluster node that this realm may be part of, allowing the
administration of Universal Messaging realm clusters

nACL - The realm acl object (see "Realm Entitlements" on page 125), allowing control
of the ACL permissions (see "Access Control Lists" on page 335)

nInterfaceManager - The realm interface manager, allows me to add, remove, stop, start
interfaces on a realm (see "Interfaces" on page 328)

nSchedulerManager - the scheduler manager allows me to control scheduled tasks (see
"Scheduling" on page 330) on the realm

nConfigGroup - an enumeration of these corresponds to all configuration (see "Config"
on page 331) and tuning parameters for a given realm.

From an nLeafNode which could be a channel or a queue, the following objects are
available:

nACL - The leaf node acl object, allows me to control acl permissions (see "Channel
Entitlements" on page 127) for resources

nJoinInfo - All join information associated with a channel or queue

Monitoring

As well access to the channel resources as described above, there are also many
monitoring tools available to developers that provide information asynchronously as
and when events occur on a realm. This can be extremely useful in ongoing real time
management of one or more Universal Messaging Realm servers.

For example, for a realm node you can provide listeners for the following :

Connections - get notified as new connections (see "Connection Information" on page
347) to the realm occur, showing connection information

Creation / Deletions / Stop / Start - get notified when new objects are created, deleted,
modified, stopped or started (see "nRealmNode" on page 340) (for example new
channels being created, acls being changed etc)

State Changes - get notified when changes occur to any of the objects in the
namespace (see "nLeafNode" on page 344), such as events being published /
consumed. All updates are asynchronously received from the realm server and the
API manages those changes for you.

Audit / Logging - when security or state changes occur, get notified of audit events, as
well as remotely receiving log file information from the server.

The following sections in this guide will work through in more detail, each of what has
been discussed above.

Administration API Package Documentation
The Administration API is provided in the package com.pcbsys.nirvana.nAdminAPI

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 321

The API documentation is available in the Universal Messaging Reference Guide section of
the documentation.

Namespace Objects

nRealmNode
Universal Messaging's namespace contains objects that can be administered, monitored
and configured. The nRealmNode object in the nAdminAPI, corresponds to a Universal
Messaging Realm server process. The nRealmNode is used to make an admin connection
to a realm.

In order to connect to a realm you need to ensure you are familiar with the concept of
an RNAME. Once you have the RNAME that corresponds to your realm, you can then
construct the nRealmNode and connect to the corresponding realm. This is achieved by the
following calls:

Java:
String[] RNAME={"nsp://127.0.0.1:9000"};
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nRealmNode realm = new nRealmNode(nsa);

C++:
std::string rName = "nsp://127.0.0.1:9000";
nSessionAttributes* nsa=new nSessionAttributes(rName);
nRealmNode* realm = new nRealmNode(nsa);

By constructing an nRealmNode, and connecting to a realm, the realm node will
automatically begin receiving status information from the realm periodically, as well as
when things occur.

nRealmNode

The nRealmNode is the root of a Universal Messaging Realm's namespace, which is a tree
like structure that contains child nodes. The tree nodes are all subclasses of a base class
nNode. Each node corresponds to one of the following node subclasses:

nRealmNode - other realm nodes that have been added to this realm's namespace

nContainer - folders, if there was a channel called /eur/uk/rates, there would be a child
nContainer node called, 'eur' which would have a child called 'uk' etc.

nLeafNode - these correspond to channels and queues

nServiceNode - these correspond to p2p services.

The nRealmNode itself is a subclass of the nContainer class. To obtain an enumeration of
all child nodes within a realm node, simply call the following:

Java:
Enumeration children = realm.getNodes();

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 322

C#:
System.Collections.IEnumerator children = realm.getNodes();

C++:
fSortedList nodes = pNode->getNodes();

Once you have this enumeration of nodes, you can then perform the various operations
on those nodes available through the nAdminAPI.

If you know the name of the child node you wish to obtain a reference to, you can use
the following method:

Java:
nNode found = realm.findNode("/eur/uk/rates");

C++:
nNode* found = realm->findNode("/eur/uk/rates");

Which should return you an nLeafNode that corresponds to the channel called '/eur/uk/
rates'.

As well as obtaining references to existing nodes, it is also possible to create and delete
channels and queues using the nRealmNode. For example, to create a channel called '/eur/
fr/rates', we would write the following code:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setMaxEvents(0);
cattrib.setTTL(0);
cattrib.setType(nChannelAttributes.SIMPLE_TYPE);
cattrib.setName(“/eur/fr/rates”);
nLeafNode channel = realm.createChannel(cattrib);

C++:
nChannelAttributes* cattrib = new nChannelAttributes();
cattrib->setMaxEvents(0);
cattrib->setTTL(0);
cattrib->setType(nChannelAttributes.SIMPLE_TYPE);
cattrib->setName(“/eur/fr/rates”);
nLeafNode* channel = realm->createChannel(cattrib);

To remove channel or a queue, you can simply call the following method on your realm
node (using the channel created above):
realm.delLeafNode(channel);

C++:
realm->delLeafNode(channel);

For more information on Universal Messaging Administration, please see the API
documentation, and the "Enterprise Manager Guide" on page 9.

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 323

nLeafNode (Channels and Queues)
Once you are familiar with the concept of the Universal Messaging Namespace, as
discussed in the nRealmNode guide (see "nRealmNode" on page 321), you can then
begin to use the other administration objects associated with a realm's Namespace.

In this section the nLeafNode is discussed. It is assumed you are aware of how to
create an nRealmNode for this section, and have a general understanding of Universal
Messaging's publish / subscribe and message queue technologies

nLeafNode

The nLeafNode is either a channel or a queue, and is, as it's name suggests, an end point
of a branch of the namespace tree. An nLeafNode's parent is always an instance of
nContainer. Since nRealmNode is a subclass of nContainer, sometimes an nLeafNode's
parent is also an instance of an nRealmNode. For example, consider the following 2
channels within the namespace:
/eur/uk/rates
/rates

The nLeafNode that corresponds to the channel '/eur/uk/rates' will have a parent which
is an instance of nContainer, and is called 'uk', whereas the nLeafNode that corresponds
to the channel '/rates' has a parent which is also an instance of nContainer, however is
is also an instance of an nRealmNode (i.e. the namespace root), since it does not contain
any folder information in it's name.

As channels and queues are created, they are added to the nRealmNode's tree structure
as nLeafNodes. This is all managed for you and does not require you to modify the
structure. However it is possible to be notified when changes to the namespace occur so
that your application can handle it as you see fit. This is discussed in more detail in the
Management Information section of this guide.

To determine if an nLeafNode is a channel or a queue, there are 2 simple methods you
can use. The following code snippet search the namespace and print out whether each
leaf node it finds is a channel or a queue.

Example : Find channels and queues in the namespace

Java:
public void searchNodes(nContainer container)
 Enumeration children = container.getNodes();
 while (children.hasMoreElements()) {
 nNode child = (nNode)children.nextElement();
 if (child instanceof nContainer) {
 searchNodes((nContainer)child);
 } else if (child instanceof nLeafNode) {
 nLeafNode leaf = (nLeafNode)child;
 if (leaf.isChannel) {
 System.out.println("Leaf Node "+leaf.getName()+" is a channel");
 } else if (leaf.isQueue()) {
 System.out.println("Leaf Node "+leaf.getName()+" is a queue");
 }
 }

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 324

 }
}

C#:
public void searchNodes(nContainer container)
System.Collections.IEnumerator children = realm.getNodes();
while (children.MoveNext()){
 nNode child = (nNode)children.Current;
 if (child is nContainer) {
 searchNodes((nContainer)child);
 } else if (child is nLeafNode) {
 nLeafNode leaf = (nLeafNode)child;
 if (leaf.isChannel) {
 Console.WriteLine("Leaf Node "+leaf.getName()+" is a channel");
 } else if (leaf.isQueue()) {
 Console.WriteLine("Leaf Node "+leaf.getName()+" is a queue");
 }
 }
 }
}

C++:
void searchNodes(fSortedList nodes)
 for (fSortedList::iterator iterator = nodes.begin(); iterator != nodes.end(); iterator++)
 {
 nNode *pNode = iterator->second;
 int type = pNode->getType ();
 if (type == fBase::LEAFNODE)
 {
 if(iterator->second->isChannel()){
 printf("Leaf Node %s is a Channel");
 } else if(iterator->second->isQueue()){
 printf("Leaf Node %s is a Queue");
 }
 }
 else if (type == fBase::CONTAINER)
 {
 searchNodes(((nContainer*)pNode)->getNodes());
 }
 }
}

In the above code example, by the searchNodes(realm) method searches the namespace
from the realm node, and this isChannel() and isQueue() methods are used to determine
whether each leaf node is a queue or a channel.

Associated with each leaf node, is the nChannelAributes for the queue or channel,
this is obtained by using the getAttributes() method, so it is possible to determine the
characteristics of each leaf node.

Each leaf node also has an associated nACL object that can be modified to change
security permissions for users. This is discussed in more detail in the security section of
this guide.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 325

nServiceNode (P2P Services)
Once you are familiar with the concept of the Universal Messaging Namespace, as
discussed in the nRealmNode guide, you can then begin to use the other objects
associated with a realm's Namespace.

This section discusses the nServiceNode which is used to administrate Nirvna P2P
services. A general description of Universal Messaging P2P services is also available in
the developer guide.

nServiceNode

The nServiceNode represents a Universal Messaging P2P service. The nServiceNode
objects are generally stored under the root realm node. They can be obtained by a
number of methods Firstly, by an enumeration of all child nodes from a realm node.

Java:
public void searchNodes(nContainer container) {
 Enumeration children = container.getNodes();
 while (children.hasMoreElements()) {
 nNode child = (nNode)children.nextElement();
 if (child instanceof nServiceNode) {
 nServiceNode service = (nServiceNode)child;
 System.out.println("Found Service : "+service.getName());
 }
 }
}

C#:
public void searchNodes(nContainer container) {
System.Collections.IEnumerator children = realm.getNodes();
while (children.MoveNext()){
 nNode child = (nNode)children.Current;
 if (child is nServiceNode) {
 nServiceNode service = (nServiceNode)child;
 Console.WriteLine("Found Service : "+service.getName());
 }
 }
}

C++:
void searchNodes(fSortedList nodes)
 for (fSortedList::iterator iterator = nodes.begin(); iterator != nodes.end(); iterator++)
 {
 nNode *pNode = iterator->second;
 int type = pNode->getType ();
 if (type == fBase::CONTAINER)
 {
 searchNodes(((nContainer*)pNode)->getNodes());
 }
 else if (type == fBase::SERVICENODE)
 {
 nServiceNode *pSNode = (nServiceNode*)pNode;
 printf("Found Service : "+service->getName());
 }
 }

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 326

}

Or, directly from the realm node by calling :

Java:
Vector services = realm.getServicesList();

C#:
List services = realm.getServicesList();

C++:
services = realm->getServicesList();

Each nServiceNode will have a parent which is an instance of nContainer, however this
is also an instance of an nRealmNode (i.e. the namespace root), since services do not
contain any folder information in its name.

As services are created, they are added to the nRealmNode's tree structure as
nServiceNodes. This is all managed for you and does not require you to modify the
structure. However it is possible to be notified when changes to the namespace occur so
that your application can handle it as you see fit. This is discussed in more detail in the
Management Information section of this guide.

Associated with each service node, is an nServiceInfo object that describes the details of
each service node.

Each service node also has an associated nACL object that can be modified to change
security permissions for users. This is discussed in more detail in the security section of
this guide.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

Realm Federation
A Universal Messaging Realm is an instance of the server and a container for resources
and P2P services. Each Universal Messaging Realm defines a namespace of its own but it
is possible to merge the namespaces of multiple Realms into one large one.

While adding a Universal Messaging Realm into the namespace of another, there is one
compulsory options and two optional. The compulsory option is the RNAME of that
Realm. The optional parameter is the mount point that the Realm should be added in the
existing Realm.

If you are specifying the name of the Realm you are adding it should be specified exactly
as it appears in the Enterprise Manager. It appears adjacent to the globe icon specifying
the realm to which this realm is being added.

A Universal Messaging Realm can also be added to another Realm's namespace using
the Enterprise Manager (see "Realm Federation" on page 326).

A Realm is added into the namespace of another programmatically as follows.

Java, C#:

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 327

//Create an instance of the Universal Messaging Realm object to be added
String rname = "nsp://remoteHost:9002";
nRealm nr = new nRealm(realmName, rname);
//Set the mountpoint in the local realm's Namespace
nr.setMountPoint(mountPnt);
//Add the remote realm to the local one.
//assuming mySession has already been connected to your local realm
mySession.addRealm(nr);

C++
//Create an instance of the Universal Messaging Realm object to be added
string rname = "nsp://remoteHost:9002";
nRealm* nr = new nRealm(realmName, rname);
//Set the mountpoint in the local realm's Namespace
nr->setMountPoint(mountPnt);
//Add the remote realm to the local one.
//assuming mySession has already been connected to your local realm
mySession->addRealm(nr);

Example Usage of a Federated Universal Messaging Namespace

You can then provide filters for channel joins (see "Channel Join" on page 327) across
the multiple realms you have added to the namespace. This allows you to ensure that
events are routed to the correct channel based on the content of the event. For example,
if channel1 on Realm1 is joined to channels channel2, channel3, channel4, channel5
on realms Realm2, Realm3, Realm4, Realm5, and each event is published using an
nEventProperties dictionary that contains a key called 'DESTINATION'.

If each channel join from channel1 is created with a filter, for example for the join from
channel1 to channel2 on Realm2 the filter would be:
DESTINATION='realm2'

This guarantees only those events that are published to channel1 and that contain
'realm2' in the 'DESTINATION' key will be published to channel2 on Realm2.

For further example code demonstrating adding Universal Messaging Realms to a
names space please see the addRealm example.

Channel Join
Joining a channel to another allows you to set up content routing such that events on the
source channel will be passed on to the destination channel also. Joins also support the
use of filters thus enabling dynamic content routing.

Channels can be joined using the Universal Messaging Enterprise Manager GUI (see
"Channel Join" on page 327) or programmatically.

In joining two Universal Messaging channels there is one compulsory option and
two optional ones. The compulsory option is the destination channel. The optional
parameters are the maximum join hops and a JMS message selector to be applied to the
join.

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 328

Channel joins can be created using the nmakechanjoin join sample application which
is provided in the bin directory of the Universal Messaging installation. For further
information on using this example please see the nmakechanjoin example page.

Universal Messaging joins are created as follows:

Java, C#:
//Obtain a reference to the source channel
nChannel mySrcChannel = mySession.findChannel(nca);
//Obtain a reference to the destination channel
nChannel myDstChannel = mySession.findChannel(dest);
//create the join
mySrcChannel.joinChannel(myDstChannel, true, jhc, SELECTOR);

C++:
//Obtain a reference to the source channel
 nChannel* mySrcChannel = mySession->findChannel(nca);
 //Obtain a reference to the destination channel
 nChannel* myDstChannel = mySession->findChannel(dest);
 //create the join
 mySrcChannel->joinChannel(myDstChannel, true, jhc, SELECTOR);

Realm Server Management

Interfaces
Universal Messaging Realm servers provide the ability for connections to be made
using any available physical network interface on the server machine. For example, if a
machine has 4 physical network interfaces, Universal Messaging provides the ability to
bind specific network interface addresses to specific ports and different protocols. This
provides the ability to run segment the communication between client and server. There
is no limit to the number of separate interfaces that can be run on a Universal Messaging
realm server.

For example, a Realm Server that is visible to Internet users may have 4 Network
cards, each one having its own physical IP address and hostname. Two of the network
interfaces may be externally visible, while the other 2 may be only visible on internal
sub-nets.

The 2 external interfaces may be specified as using nhp, and nhps on ports 80 and 443
respectively, since for firewall purposes, these ports are the most commonly accessible
ports to external clients connecting to the realm. The remaining internal interfaces,
visible to internal client connections do not have the same restrictions, and so could be
defined as using nsp and nsps protocols on other ports, say 9000 and 9002 respectively.

What this guarantees is separation of internal and external connections based on
network interface and protocol.

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 329

nInterfaceManager

When you have connected to a realm, and have a reference to an nRealmNode object
(see "nRealmNode" on page 321), you can access an object called nInterfaceManager,
which provides the ability to add, modify, delete, stop and start interfaces on the
Universal Messaging realm. To get access to this object, you can call the following
method from a realm node:

Java, C#:
nInterfaceManager iMgr = realm.getInterfaceManager();

C++:
nInterfaceManager* iMgr = realm->getInterfaceManager();

Using the nInterfaceManager object you can then obtain a list of known interfaces for
that realm:

Java:
Vector ifaces = iMgr.getInterfaces();

C#:
List ifaces = iMgr.getInterfaces();

C++:
int numInterfaces; nInterfaceStatus** pTemp = iMgr->getInterfaces(numInterfaces);

All interfaces extend a base class called nInterface. There are 4 types of interface object
that correspond to the different types of protocols that an interface can use. These are:

nSocketInterface - standard socket interface, Universal Messaging protocol is nsp

nHTTPInterface - hp interface, Universal Messaging protocol is nhp

nSSLInterface - ssl socket interface, Universal Messaging protocol is nsps

nHTTPSInterface - hps interface, Universal Messaging protocl is nhps

Each of these interface objects contain standard configuration information and allows
the same operations to be performed on them. For example, if there is an interface called
'nsp1', and you wanted to change the 'autostart' property to true (i.e. make the interface
start automatically when the realm is started) this can be achieved with the following
code:

Java, C#:
nInterface iface = iMgr.findInterface("nsp0");
 iface.setAutostart(true);
 iMgr.modInterface(iface);

C++:
nInterface* iface = iMgr->findInterface("nsp0");
iface->setAutostart(true);
iMgr->modInterface(iface);

Which will modify the interface configuration at the server, stop and restart the
interface. When performing a modInterface operation, if you are modifying the interface

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 330

that your nRealmNode is connected to, you will be disconnected and reconnected when
the interface restarts. This is important to remember when using the stop method of
an interface too, since if you stop the interface you are connected to, you cannot start
it again, since your connection needs to be active, and the stop operation will close
your connection. If you wish to restart an interface you should therefore do it from a
connection which has been made via another interface.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

Scheduling
Universal Messaging Realm servers provide the ability for scheduling tasks. Tasks can
be scheduled to execute based on certain conditions being met.

These conditions can be either time based (scheduling) or event based (triggers).

Universal Messaging scheduling is achieved through the creation of numerous
scheduling scripts. Each script can contain multiple definitions of triggers and tasks.

The Universal Messaging server parses these scripts and sets up the triggers and tasks
accordingly. For more information on the script grammar, there is a section in the
enterprise manager guide which deals with writing scheduling scripts.

nSchedulerManager

When you have connected to a realm, and have a reference to an nRealmNode object
(see "nRealmNode" on page 321), you can access an object called nSchedulerManager,
which provides you with the ability to add, modify, delete scheduling scripts. To get
access to this object, you can call the following method from a realm node:

Java, C#:
nSchedulerManager sMgr = realm.getSchedulerManager();

C++:
nSchedulerManager* sMgr = realm->getSchedulerManager();

Using the nSchedulerManager object you can then obtain a list of scheduler objects for
the realm:

Java:
Enumeration schedulers = sMgr.getNodes();

C#:
System.Collections.IEnumerator schedulers = sMgr.getNodes();

C++:
fSortedList nodes = pNode->getNodes();

This method returns an enumeration of nScheduler objects. The nScheduler objects each
correspond to a particular scheduling script.

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 331

The following code shows you how to construct a new scheduler object using a sample
script that will log a message to the realm server log every hour, signified by the 'every
60' condition: {Please Note: typically this script would be read from a script file or it
could be entered directly into the realm enterprise manager GUI.}

Java, C##:
String source = "scheduler myScheduler {\n";
 String logString = "Sample script : ";
 source += "\n";
 source += "\n";
 source += " initialise{\n";
 source += " Logger.setlevel(0);\n";
 source += " }\n";
 source += " every 60"{\n";
 source += " Logger.report(\""+logString+"\");\n";
 source += " }\n";
 source += "}\n";
 sMgr.add(source, "user@localhost", false);

C++:
stringstream s;
 s<<"scheduler myScheduler {\n";
 string logString = "Sample script : ";
 s<<"\n";
 s<<"\n";
 s<<"initialise{\n";
 s<<"Logger.setlevel(0);\n";
 s<<"}\n";
 s<<"every 60"{\n";
 s<<"fLogger::report(\""+logString+"\");\n";
 s<<"}\n";
 s<<"}\n";
 sMgr->add(source, "user@localhost", false);

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

Config
Universal Messaging Realm servers contain a large number of configurable parameters
These parameters can be modified using the nAdminAPI.

The Universal Messaging Realm config can also be managed via the Realm enterprise
manager (see "Realm Configuration" on page 25). This also provides a useful guide to
the configuration groups and their specific config entities.

nConfigGroup

When connected to a realm, and using a reference to an nRealmNode object (see
"nRealmNode" on page 321), you can access configuration objects that correspond to
a group of configuration entries. To get access to the config groups, call the following
method from a realm node:

Java, C#
Enumeration children = realm.getNodes();

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 332

C++
fSortedList nodes = pNode->getNodes();

The enumeration will contain a number of nConfigGroup objects. Each nConfigGroup
contains a number of nConfigEntry objects, each one corresponds to a specific
configurable parameter in the realm server.

For example, to change the log level of the realm server, we need to obtain the config
group called 'GlobalValues' and set the 'fLoggerLevel' property:

Java, C#:
nConfigGroup grp = realm.getConfigGroup("fLoggerLevel");
nConfigEntry entry = grp.find("fLoggerLevel");
entry.setValue("0");

C++
nConfigGroup* grp = realm->getConfigGroup("fLoggerLevel");
nConfigEntry* entry = grp->find("fLoggerLevel");
entry->setValue("0");

For a definitive list of available configuration groups and their specific properties please
see "Realm Configuration" on page 25 in the enterprise manager guide.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

Clustering
Universal Messaging provides the ability to group Realm servers together to form
a cluster. A cluster is a logical group of realm servers that share common resources.
The resources and any operations performed on then are replicated across all cluster
members. Clients connecting to 'Realm A' in cluster 1, are able to access the same logical
objects as clients connecting to Realms B or C in cluster1.

The state of these objects is fully replicated by each realm in the cluster. For example,
if you create a queue (queue1) within cluster 1, it is physically created in realms A,
B and C. If there are 3 consumers on queue1, say one on each of realms A, B and C
respectively, each realm in the cluster will be aware as each message is consumed and
removed from the different physical queue1 objects in the 3 realms.

If one of the realms within cluster1 stops, due to a hardware or network problems, then
clients can automatically reconnect to any of the other realms and start from the same
point in time on any of the other realms in the cluster.

This ensures a number of things:

Transparency - Any client can connect to any Universal Messaging realm server
within a cluster and see the same cluster objects with the same state. Clients
disconnected from one realm will automatically be reconnected to another cluster
realm.

24 x 7 Availability - If one server stops, the other realms within the cluster will take
over the work, providing an always on service

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 333

Scalability - Large number of client connections can be managed across multiple
servers within a cluster

nClusterNode

Using the nAdmin API, if you wish to create a cluster that contains 3 realms, and you
know the RNAME values for all 3, then the following call will create the cluster.

Java, C#, C++:
String[] RNAME=({"nsp://127.0.0.1:9000";, "nsp://127.0.0.1:10000","nsp://127.0.0.1:11000"});
nRealmNode realms[] = new nRealmNode[RNAME.length];
nClusterMemberConfiguration[] config = new nClusterMemberConfiguration[RNAME.length];
for (int x = 0; x < RNAME.length; x++) {
 // you don't have to create the realm nodes
 // here, since the member configuration will create
 // them for you form the RNAME values
 realms[x] = new nRealmNode(new nSessionAttribute(RNAME[x]));
 config[x]=new nClusterMemberConfiguration(realms[x], true);
}
nClusterNode cluster = nClusterNode.create("cluster1", config);

Once the cluster node is created, each realm node within the cluster will know of the
other realms within the cluster, and be aware of the cluster they are part of. For example,
calling the following method:

Java, C#, C++:
nClusterNode cluster = realms[0].getCluster();

will return the cluster node just created with the realm with nsp://127.0.0.1:9000 for an
RNAME.

Cluster nodes contain information about the member realms (nRealmNode objects)
as well as the current state of the cluster members. This information can be found by
calling the getClusterConnectionStatus() method on the cluster node, which returns a vector
of nClusterStatus objects, each of which corresponds to a realm.

nRealmlNode

Once a realm becomes part of a cluster, channels and queues can be created that are part
of the cluster, as well as standard local resources within the realms. For example, if you
were to us the following calls:

Java, C#, C++:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setMaxEvents(0);
cattrib.setTTL(0);
cattrib.setType(nChannelAttributes.PERSISTENT_TYPE);
cattrib.setClusterWide(true);
cattrib.setName(“clusterchannel”);
nLeafNode=.createChannel(cattrib);
realms[0].createChannel(cattrib);

This would create a channel that is visible to all realms within a cluster. Any
administrative changes made to this channel such as ACL modifications will also be

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 334

propagated to all cluster members in order for the channel to be kept in sync across all
realms.

Inter-Cluster Connections

Inter-cluster connections can be created programmatically through the Administration
API. To do this, connect to a realmNode in each cluster and then do the following:

Java, C#, C++:
cluster1realm1.getCluster().registerRemoteCluster(cluster2realms1.getCluster());

Similarly, the inter-cluster connection can be removed programmatically:

Java, C#, C++:
cluster1realm1.getCluster().deregisterRemoteCluster(cluster2realm1.getCluster());

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

Multicast
A common way to add a multicast configuration is via the Enterprise Manager (see
"Multicast" on page 334) but you can also do this programmatically.

Creating the nMulticastConfiguration

In order to create an nMulticastConfiguration object you need to specify two parameters:

multicastAddress - Multicast IP address to use

adapter - Network adapter address of your multicast configuration

Java, C#:
String multicastAddress = "227.0.0.98";
 String adapter = "10.150.12.1";
 nMulticastConfiguration mConf = new nMulticastConfiguration(multicastAddress, adapter);

C++:
std::string multicastAddress = "227.0.0.98";
 std::string adapter = "10.150.12.1";
 nMulticastConfiguration* mConf = new nMulticastConfiguration(multicastAddress, adapter);

Enabling multicast for cluster communication

In order to use multicast for intra-cluster communication you need to set a flag on the
nMulticastConfiguration:

Java, C#:
mConf.setUseForCluster(true);

C++:
mConf->setUseForCluster(true);

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 335

Enabling multicast on DataGroups

When you create a DataGroup you have the option to enable multicast delivery.
However you also need to enable multicast for DataGroups on the multicast
configuration:

Java, C#:
mConf.setUseForDataGroups(true);

C++:
mConf->setUseForDataGroups(true);

Then (after the configuration has been applied) when you create a DataGroup you need
to set the enableMulticast flag to true:

Java, C#:
boolean enableMulticast = true;
 String name = "newGroup";
 mySession.createDataGroup(name,enableMulticast);

C++:
bool enableMulticast = true;
 std::string name = "newGroup";
 mySession->createDataGroup(name,enableMulticast);

Applying the multicast configuration

In order to register the new configuration on the server you will need to connect to a
Universal Messaging Realm and establish an nRealmNode (see "nRealmNode" on page
321). You can then get a reference to the nMulticastManager:

Java, C#:
nMulticastManager mMgr = realm.getMulticastManager();

C++:
nMulticastManager* mMgr = realm->getMulticastManager();

You can now use the nMulticastManager to send the new configuration to the server:

Java, C#:
mMgr.addMulticastConfiguration(mConf);

C++:
mMgr->addMulticastConfiguration(mConf);

Security

Access Control Lists
The Universal Messaging Administration API allows Access Control Lists (ACLs) to
be set using the nACL object defines a set of nACLEntry objects that consist of a user

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 336

subject and a value that corresponds to the operations permied for that subject. With an
nACL object, it is possible to added, delete and modify acl entries for specific subjects.

The nACL Object

There are 3 different subclasses of the base nACLEntry object. These are :

nRealmACLEntry - defines permissions for a specific subject on the Universal
Messaging Realm server itself

nChannelACLEntry - defines permissions for a subject on a channel or queue

nServiceACLEntry - defines permissions for a subject on a Universal Messaging P2P
service

ACL Lists can contain any combination and number of user@host entries, along with
Security Groups (see "Nirvana Admin API - Nirvana Security Groups" on page 336).

Nirvana Admin API - Nirvana Security Groups
The Administration API allows groups of users to be defined. These groups can then be
used in ACL lists in-place of individual ACL entries for each user.

Security Groups can contain any number of users (user@host pairs), and may also
include other Security Groups.

A new security group can be registered as follows:

Java, C#, C++:
 nSecurityGroup grp = new nSecurityGroup();
 grp.add(add(new nSubject("user@host");
 realmNode.getSecurityGroupManager.registerSecurityGroup(grp);

The SecurityGroupManager can be used to edit memberships of multiple groups at the
same time, for example:

Java, C#, C++:
 nSecurityGroupManager mgr = realmNode.getSecurityGroupManager();
 mgr.registerGroupMembers(group,members);
 //Members can be a single subject(user@host), a group, or a collection
 //containing many subjects, groups or a combination of these.

Once a security group has been registered, it can be added into ACL lists as you would
normally add a user@host entry. Subsequent changes to the membership of the group
will be reflected in which users have permissions for the corresponding resources.

Java, C#, C++:
 nSecurityGroup grp = securityGroupManager.getGroup("myGroupName");
 nChannelACLEntry aclEntry = new nChannelACLEntry(grp);
 aclEntry.setFullPrivileges(true);
 leafNode.addACLEntry(aclEntry);

Groups can also be deregistered from the realm. This will remove the group and will
remove the group reference from all ACL lists where the group currently appears. As
with the other examples, this can be done via the nSecurityGroupManager:

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 337

Java, C#, C++:
 mgr.deregisterSecurityGroup(grp);

As with all ACLs in Nirvana, privileges are cumulative. This means that, for example,
if a user is in a group which has publish permissions on a channel, but not subscribe
permissions, the user will no be able to subscribe on the channel. Then, if an ACL entry
is added on the channel for his specific username/host pair, with subscribe but no
publish permissions, the user will then be able to both subscribe(from the non-group
ACL permission), and publish (from the group ACL permission).

Deeply nested Security Groups hierarchies are generally discouraged, since this type
of configuration can negatively impact the speed of checking ACLs, and may result in
worse performance than a shallow hierarchy.

Realm Access Control List (nACL)
When you have connected to a realm, and have a reference to an nRealmNode object
(see "nRealmNode" on page 321), you can access an the realm's acl object. This object
contains a list of nRealmACLEntry objects that represent a subject and a set permissions
for various operations on a realm.

You can also, add, delete and modify acl entry objects. To obtain the realm acl object,
simply call the following method from a realm node:

Java, C#:
nACL acl = realm.getACLs();

C++:
nACL* acl = realm->getACLs();

nRealmACLEntry

Once you have the acl object, you can then add, remove or modify acl entries:

To find a specific acl entry from the realm acl, you can search the acl using the subject.
For example, if I wished to change the default permissions for the *@* subject (i.e. the
default permission for a realm), I could use the following code:
nRealmACLEntry entry = acl.find("Everyone");
 entry.setFullPrivileges(false);
 acl.replace(entry);
 realm.setACLs(acl);

C++:
nRealmACLEntry* entry = acl->find("Everyone");
 entry->setFullPrivileges(false);
 acl->replace(entry);
 realm->setACLs(acl);

which would set the full privileges flag to false for the default subject.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 338

Channel Access Control List (nACL)
When connected to a Universal Messaging realm server ,with a reference to an
nRealmNode object (see "nRealmNode" on page 321) it is possible to get a reference
to an nLeafNode (see "nLeafNode (Channels and Queues)" on page 323) that
corresponds to a channel. This can then be used to get access the node's nACL . This
object contains a list of nChannelACLEntry objects that represent a subject and a set
permissions for various operations on a channel. There is a separate nChannelACLEntry
object for each subject that has been permissioned on the nLeafNode.

You can also, add, delete and modify ACL entry objects.

In order to obtain a reference to the correct channel ACL object for a channel called "/
products/prices", simply call the following method from a realm node:

Java, C#, C++:
nLeafNode chan = realm.findNode("/products/prices");
 nACL acl = chan.getACLs();

C++:
nLeafNode* chan = realm->findNode("/products/prices");
nACL* acl = chan->getACLs();

nChannelACLEntry

Once you have the ACL object, you can then add, remove or modify acl entries:

To find a specific ACL entry from the channel ACL, the ACL object can be searched
using the subject.

For example, to change the default permissions for the *@* subject (i.e. the default
permission for the channel), the following code can be used:

Java, C#:
nChannelACLEntry entry = acl.find("Everyone");
 entry.setFullPrivileges(false);
 acl.replace(entry);
 chan.setACLs(acl);

C++:
nChannelACLEntry* entry = acl->find("Everyone");
 entry->setFullPrivileges(false);
 acl->replace(entry);
 chan->setACLs(acl);

which would set the full privileges flag to false for the default subject.

Click here to see example of how to modify channel ACLs programmatically or to see
example of modifying ACLs using the enterprise manager.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 339

Queue Access Control List
When you have connected to a realm, and have a reference to an nRealmNode object
(see "nRealmNode" on page 321), and an nLeafNode (see "nLeafNode (Channels and
Queues)" on page 323) that corresponds to a queue, you can access the node's ACL
object. This object contains a list of nChannelACLEntry objects that represent a subject
and a set permissions for various operations on a queue.

You can also, add, delete and modify acl entry objects. To obtain the queue ACL object,
simply call the following method from a realm node:

Java, C#:
nLeafNode queue = realm.findNode("/eur/uk/orders");
 nACL acl = queue.getACLs();

C++:
nLeafNode* queue = realm->findNode("/eur/uk/orders");
 nACL* acl = queue->getACLs();

Once you have the acl object, you can then add, remove or modify acl entries:

nChannelACLEntry

To find a specific ACL entry from the queue ACL, you can search the ACL using the
subject. For example, if I wished to change the default permissions for the *@* subject
(i.e. the default permission for the queue), I could use the following code:

Java, C#:
nChannelACLEntry entry = acl.find("Everyone");
entry.setFullPrivileges(false):
acl.replace(entry);
queue.setACLs(acl);

C++:
nChannelACLEntry* entry = acl.find("Everyone");
entry->setFullPrivileges(false):
acl->replace(entry);
queue->setACLs(acl);

which would set the full privileges flag to false for the default subject.

Click here to see example of how to add queue ACLs programmatically or to see
example of modifying ACLs using the enterprise manager.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

P2P Service Access Control List
When you have connected to a realm, and have a reference to an nRealmNode object
(see "nRealmNode" on page 321), and an nServiceNode (see "nServiceNode (P2P
Services)" on page 325) that corresponds to a p2p service, you can access the node's

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 340

acl object. This object contains a list of nServiceACLEntry objects that represent a subject
and a set permissions for various operations on a p2p service.

You can also, add, delete and modify acl entry objects. To obtain the queue acl object,
simply call the following method from a realm node:

Java, C#:
nServiceNode service = realm.findNode("Universal Messaging-shell");
nACL acl = service.getACLs();

C++:
nServiceNode* service = realm->findNode("Universal Messaging-shell");
nACL* acl = service->getACLs();

Once you have the acl object, you can then add, remove or modify acl entries:

nServiceACLEntry

To find a specific acl entry from the service acl, you can search the acl using the subject.
For example, if I wished to change the default permissions for the *@* subject (i.e. the
default permission for the service), I could use the following code:

Java, C#:
nServiceACLEntry entry = acl.find("Everyone");
entry.setFullPrivileges(false);
acl.replace(entry);
service.setACLs(acl);

C++
nServiceACLEntry* entry = acl->find("Everyone");
entry->setFullPrivileges(false);
acl->replace(entry);
service->setACLs(acl);

which would set the full privileges flag to false for the default subject.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

Management Information

nRealmNode
The Universal Messaging admin API provides real time asynchronous management
information on all objects within a realm server. By creating an nRealmNode (see
"nRealmNode" on page 321), and connecting to a realm, information is automatically
delivered to the nRealmNode object from the realm. This information is delivered
periodically in summary form, and also as and when the state changes for one or all of
the objects managed within a realm.

Before reading this section it may be useful to look at the management information
available via the Universal Messaging enterprise manager. A full description of

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 341

all Realm management screens is available in the enterprise manager guide. All
functionality seen in the enterprise manager can be easily added to bespoke admin and
monitoring processes as it is wrien entirely using the Universal Messaging Admin API.

This section discusses the following different types of information that can be obtained
through the nAdmin API for the nRealmNode object:

Status Information

The nRealmNode extends nContainer, that extends nNode which is a subclass of
Observable, so when the status information is received for a realm node, (by default
this is every 5 seconds although it is configurable (see "Realm Configuration" on page
25) by seing the StatusBroadcast property under the Global Values config group) the
nRealmNode will trigger the update callback on any known Observers. For example, if
you write a class that implements the Observer interface, it can be added as an observer
as follows:

Java, C#, C++:
realm.addObserver(this);

Assuming 'this' is the instance of the class implementing Observer, then the
implementation of the update(Observable obs, Object obj) will be notified that the realm node
has changed.

When regular status events are sent, the Observable object referenced in the update
method will be the realm node that you added your observer to, and the Object will be
null.

State Change Events

When events occur on a realm node that you have added an observer to, the Observable/
Observer mechanism will notify you of the details of that event. For example, the
following implementation of the update method of the Observer interface demonstrates
how to detect that a new channel or queue has been created or deleted :

Java, C#:
public void update(Observable obs, Object obj){
 if (obs instanceof nContainer) {
 if (obj instanceof nLeafNode) {
 nLeafNode leaf = (nLeafNode)obj;
 nContainer cont = (nContainer)obs;
 if (cont.findNode(leaf) == null) {
 // node has been deleted
 System.out.println("Node "+leaf.getName()+" removed");
 } else {
 // node has been added
 System.out.println("Node "+leaf.getName()+" added");
 }
 }
 }
}

C++:
void ObservableMapping::update(Observable *pObs, void *pObj)
{

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 342

 if (obs->getType() == fBase::CONTAINER) {
 if (obj->getType() == fBase::LEAFNODE) {
 nLeafNode leaf = (nLeafNode*)obj;
 nContainer cont = (nContainer*)obs;
 if (cont->findNode(leaf)) {
 // node has been deleted
 printf("Node %s removed",leaf->getName());
 System.out.println("Node "+leaf.getName()+" removed");
 } else {
 // node has been added
 printf("Node %s added",leaf->getName());
 }
 }
 }
}

Any changes to the realm ACL will also use the same notification mechanism. For
example, if an ACL entry was changed for a realm, the update method would be fired
calling with the realm node object and the nACLEntry that had been modified.

Logging and Audit

An nRealmNode allows you to asynchronously receive realm log file entries as well as
audit file entries as they occur.

Firstly, for receiving asynchronous log file entries, there is an interface called
nLogListener which your class must implement. This interface defines a callback method
called report(String) that will deliver each new log entry as a string. Once implemented,
the following call will add your log listener to the realm node:

Java, C#, C++:
realm.addLogListener(this);

Assuming 'this' is the instance of the class implementing the nLogListener interface.

The following is an example of the report(String) method implementation:

Java, C#:
public void report(String msg) {
 System.out.println("LOG "+msg);
}

C++:
printf("Log : %s\n", msg);

Secondly, realm servers provide an audit file that tracks object creations and deletions,
acl changes, connection aempts and failures. This information can be very useful for
tracking who has created ACL entries for example and when they were done.

This information, as with log file entries can be asynchronously received by
implementing an interface called nAuditListener. This interface defines a callback
method called audit(nAuditEvent) that delivers contains the details of the audit entry.
Once implemented, the following call will add your log listener to the realm node:

Java, C#, C++:
realm.addAuditListener(this);

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 343

Assuming 'this' is the instance of the class implementing the nAuditListener.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

nClusterNode
Universal Messaging's admin API provides real time asynchronous information on all
objects within a realm server. By creating an nRealmNode (see "nRealmNode" on page
321), and connecting to a realm, information is automatically delivered to the realm
node from the realm. This information is delivered periodically in summary form, and
also as and when the state changes for one or all of the objects managed within a realm.

Before reading this section it may be useful to look at the management information
available via the Universal Messaging enterprise manager. A full description of
all Realm management screens is available in the enterprise manager guide. All
functionality seen in the enterprise manager can be easily added to bespoke admin and
monitoring processes as it is wrien entirely using the Universal Messaging Admin API.

This section discusses the following different types of information that can be obtained
through the nAdmin API for the nClusterNode object. The nClusterNode corresponds to
a cluster that 2 or more realms are members of. Each nRealmNode will have access to its
cluster node object once it has been added to a new or existing cluster:

Status Information

Firstly, in order to detect that a cluster node has been created, one has to observer the
realm to which you are connected. When the realm is added to a cluster, the Observer/
Observable mechanism will notify you of the cluster creation.

As well as implementing the Observer interface to detect new clusters, there is an
interface that can be used to be notified of specific cluster events when clusters already
exist. This interface is the nClusterEventListener. The interface defines various methods
that enable your program to receive callbacks for specific cluster events. When the status
changes for a cluster node, this will trigger an callback on any known listeners of the
nClusterNode. For example, when you have constructed your nRealmNode, if your class
implements the nClusterEventListener interface, then we can do the following:

Java, C#:
realm.addObserver(this);
nClusterNode cluster = realm.getCluster();
if (cluster != null) {
 cluster.addListener(this);
}

C++:
pRealm->addObserver(this);
nClusterNode *pCluster = pRealm->getCluster();
pCluster->addListener(this);

If the realm is not part of a cluster, then the getCluster() method will return null.
However, by adding an observer to the realm, if a cluster is created that contains the

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 344

realm you are connected to, the update() method of the Observer implementation will
notify you that a cluster has been created. For example, the following code demonstrates
how to detect if a cluster has been created with the realm you are connected to as a
member:

Java, C#:
public void update(Observable o, Object arg) {
 if (arg instanceof nClusterNode) {
 System.out.println("New cluster formed, name = "+((nClusterNode)arg).getName());
 ((nClusterNode)arg).addListener(this);
 }
}

C++:
nNode *pNode = iterator->second;
int type = pNode->getType ();
 if (type == fBase::LEAFNODE)
 {
 ((nLeafNode*)pNode)->addListener(new nChannelWatch((nLeafNode*)pNode, this));
 }

For more information on how to monitor cluster nodes programmatically please see the
appropriate code example.

For more information on how to monitor cluster nodes using the enterprise manager
please see the enterprise manager guide.

For more information on Universal Messaging Administration, please see the API
documentation and the Enterprise Manager Guide.

nLeafNode
Universal Messaging's admin API provides real time asynchronous information on all
objects within a realm server. By creating an nRealmNode (see "nRealmNode" on page
321), and connecting to a realm, information is automatically delivered to the realm
node from the realm. This information is delivered periodically in summary form, and
also as and when the state changes for one or all of the objects managed within a realm.

Before reading this section it may be useful to look at the management information
available via the Universal Messaging enterprise manager. A full description of
all Realm management screens is available in the enterprise manager guide. All
functionality seen in the enterprise manager can be easily added to bespoke admin and
monitoring processes as it is wrien entirely using the Universal Messaging Admin API.

This section will discuss the basic information that can be obtained through the nAdmin
API for the nLeafNode object:

Status Events

The nLeafNode extends nNode which is a subclass of Observable, so when the status
information is received for a leaf node, (this occurs only when things change on the
channel or queue, i.e. acl, connections, events published / consumed etc) the nLeafNode

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 345

will trigger the update callback on any known Observers. For example, if you write a
class that implements the Observer interface, then we can do the following:

Java, C#:
Enumeration children = realm.getNodes();
while (children.hasMoreElements();
 nNode child = (nNode)children.nextElement();
 if (child instanceof nLeafNode) {
 child.addObserver(this);
 }
}

C++:
pNode->addObserver(this);
pNode->addConnectionListener(new nRealmWatch(this));
fSortedList nodes = registerNodes(pNode->getNodes());
for (fSortedList::iterator iterator = nodes.begin(); iterator != nodes.end(); iterator++)
 {
 if (type == fBase::LEAFNODE)
 {
 ((nLeafNode*)pNode)->addListener(new nChannelWatch((nLeafNode*)pNode, this));
 }
 }

Assuming 'this' is the instance of the class implementing Observer, then the
implementation of the update(Observable obs, Object obj) will be notified that the leaf node
has changed.

When events occur on a leaf node that you have added an observer to, the Observable/
Observer mechanism will notify you of the details of that event. For example, the
following implementation of the update method of the Observer interface demonstrates
how to detect that a channel or queue acl has been added or deleted:

Java, C#:
public void update(Observable obs, Object obj){
 if (obs instanceof nLeafNode) {
 if (obj instanceof nACLEntry) {
 nLeafNode leaf = (nLeafNode)obs;
 nACLEntry entry = (nACLEntry)obj;
 if (leaf.isChannel()) {
 // acl modified / added / deleted
 System.out.println("Channel "+leaf.getName()+" acl event for "+entry.getSubject());
 } else {
 // acl modified / added / deleted
 System.out.println("Queue "+leaf.getName()+" acl event for "+entry.getSubject());
 }
 }
 }
}

C++:
void ObservableMapping::update(Observable *pObs, void *pObj)
{
 if (obs->getType() == fBase::LEAFNODE) {
 if (obj->getType() == fBase::ACLENTRY) {
 nLeafNode leaf = (nLeafNode*)obs;
 nACLEntry entry = (nACLEntry*)obj;
 if (leaf->isChannel()) {
 // acl modified / added / deleted

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 346

 printf("Channel %s acl event for %s",leaf->getName(),+entry->getSubject());
 } else {
 // acl modified / added / deleted
 printf("Queue %s acl event for %s",leaf->getName(),+entry->getSubject());
 }
 }
 }
}

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

nServiceNode
Universal Messaging's admin API provides real time asynchronous information on all
objects within a realm server. By creating an nRealmNode (see "nRealmNode" on page
321), and connecting to a realm, information is automatically delivered to the realm
node from the realm.

This information is delivered as and when the state changes for one or all of the objects
managed within a realm and it also delivers summary information periodically.

Before reading this section it may be useful to look at the management information
available via the Universal Messaging enterprise manager. A full description of
all Realm management screens is available in the enterprise manager guide. All
functionality seen in the enterprise manager can be easily added to bespoke admin and
monitoring processes as it is wrien entirely using the Universal Messaging Admin API.

This section discussed the information that can be obtained through the nAdmin API for
the nServiceNode object which is associated with a Universal Messaging P2P service:

Status Events

The nServiceNode extends nNode which is a subclass of Observable, so when the status
information is received for a service node, (this occurs only when things change on the
service, i.e. acl, connections, events published / consumed etc) the nServiceNode will
trigger the update callback on any known Observers who are interested in receiving
information about the service.

For example, if you write a class that implements the Observer interface, then the
nServiceNode callback can be added as follows:

Java, C#:
Enumeration children = realm.getNodes();
while (children.hasMoreElements();
 nNode child = (nNode)children.nextElement();
 if (child instanceof nServiceNode) {
 child.addObserver(this);
 }
}

C++:
fSortedList nodes = pNode->getNodes();
fSortedList::iterator iterator;
for (iterator = nodes.begin(); iterator != nodes.end(); iterator++)

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 347

{
 nNode *pNde = (nRealmNode*)iterator->second;
 if (pNde->getType() ==fBase::SERVICENODE)
 {
 pNde->addObserver(this);
 }
}

Assuming 'this' is the instance of the class implementing Observer, then the
implementation of the update(Observable obs, Object obj) will be notified that the service
node has changed.

When events occur on a service node that you have added an observer to, the
Observable/Observer mechanism will notify you of the details of that event. For
example, the following implementation of the update method of the Observer interface
demonstrates how to detect that a service acl has been added or deleted:

Java, C#:
 public void update(Observable obs, Object obj){
 if (obs instanceof nServiceNode) {
 if (obj instanceof nACLEntry) {
 nServiceNode srvc = (nServicefNode)obs;
 nACLEntry entry = (nACLEntry)obj;
 // acl modified / added / deleted
 System.out.println("Service"+srvc.getName()+"
 acl event for "+entry.getSubject());
 }
 }
}

C++:
 void ObservableMapping::update(Observable *pObs, void *pObj)
{
 if (obs->getType() == fBase::SERVICENODE) {
 if (obj->getType() == fBase::ACLENTRY) {
 nServiceNode srvc = (nServiceNode*)obs;
 nACLEntry entry = (nACLEntry*)obj;
 // acl modified / added / deleted
 printf("Service %s",entry.getSubject());
 }
 }
 }
}

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

Connection Information
Universal Messaging's admin API provides real time asynchronous information on all
objects within a realm server. By creating an nRealmNode (see "nRealmNode" on page
321), and connecting to a realm, information is automatically delivered to the realm
node from the realm. This information is delivered periodically in summary form, and
also as and when the state changes for one or all of the objects managed within a realm.

Before reading this section it may be useful to look at the management information
available via the Universal Messaging enterprise manager. A full description of

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 348

all Realm management screens is available in the enterprise manager guide. All
functionality seen in the enterprise manager can be easily added to bespoke admin and
monitoring processes as it is wrien entirely using the Universal Messaging Admin API.

This section will discuss the connection information that is available through the
nAdmin API for the nRealmNode, the nLeafNode and the nServiceNode objects:

nRealmNode Connections

The nRealmNode provides the ability to be notified of connections to the realm, and
when connections are closed. When a client aempts a connection, a callback will be
made that gives the details of the connection, such as the user name, hostname, protocol
and connection id. When a user connection is closed, again, you will receive notification.
This information can be useful for monitoring activity on a realm.

In order to receive this kind of information, you need to implement the
nConnectionListener class. This class defines 2 methods, newConnection and
delConnection. To receive notifications, you can use the following method:

Java, C#, C++:
realm.addConnectionListener(this);

Assuming 'this' is the instance of the class implementing nConnectionListener, then the
implementation of the newConnection and delConnection methods will be notified when
connections are made or closed with the realm.

nLeafNode Connections

Universal Messaging provides the ability to issue notifications of connections to
leaf nodes. Connections to leaf nodes correspond to subscriptions on a channel, so
when a user subscribes to a channel or removes the subscription, you can be notified.
Notification is via a callback that contains the details of the connection, such as the user
name, hostname, protocol, connection id, durable name and subscription filter.

In order to receive this kind of information, you need to implement the
nConnectionListener class. This class defines 2 methods, newConnection and
delConnection. To receive notifications, you can use the following method:

Java, C#:
leafaddListener(this);

C++:
leaf->addListener(this);

Assuming 'this' is the instance of the class implementing nConnectionListener, then the
implementation of the newConnection and delConnection methods will be notified when
channel subscriptions are made or removed.

nServiceNode Connections

Universal Messaging provides the ability to issue notifications of connections to service
nodes. Connections to service nodes correspond to p2p client connections, so when a
user connects to a service or closes the service, you can be notified. Notification is via

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 9.8 349

a callback that contains the details of the connection, such as the user name, hostname,
protocol, connection id.

In order to receive this kind of information, you need to implement the
nConnectionListener class. This class defines 2 methods, newConnection and
delConnection. To receive notifications, you can use the following method:

Java, C#:
service.addListener(this);

C++:
service->addListener(this);

Assuming 'this' is the instance of the class implementing nConnectionListener, then the
implementation of the newConnection and delConnection methods will be notified when
service connections are made or closed.

For information on monitoring realm connections using the enterprise manager or
channel/queue connections please see the enterprise manager guide (see "Realm
Connections" on page 272 and "Channel Connections" on page 292). In addition monitor
panels (see "Top" on page 277) are available to show TOP like functionality on realm
usage.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

	Table of Contents
	Overview
	Universal Messaging Enterprise Manager
	Introduction
	Getting Started
	Tab-by-Tab Overview

	Administration Using Enterprise Manager
	Enterprise View
	Realm Administration
	Connecting to Multiple Realms
	Disconnecting from Realms
	Editing Connection Information
	Realm Profiles
	Realm Federation
	Realm Configuration

	Zone Administration
	Cluster Administration
	Creating a Cluster
	Deleting Clusters
	Modifying Clusters
	Cluster Channel Administration
	Cluster Queue Administration
	Viewing Cluster Information
	Manage Inter-Cluster Connections
	Creating and Managing Clusters with Sites

	Channel Administration
	Channel Creation
	Channel Editing
	Copying Channels
	Creating Channel Joins
	Channel Snoop
	Channel Publishing
	Channel Named Objects

	DataGroup Administration
	Creating DataGroups
	Adding Existing DataGroups to DataGroups
	Removing DataGroups from DataGroups
	Deleting DataGroups

	Queue Administration
	Creating Queues
	Editing Queues
	Copying Queues
	Queue Snoop

	Security
	Nirvana Enterprise Manager - Security Groups
	Realm Entitlements
	Channel Entitlements
	Queue Entitlements
	P2P Service
	Interface VIA Rules

	Scheduling
	Universal Messaging Scheduling : Writing Schedule Scripts
	Universal Messaging Scheduling : Calendar Triggers Schedules
	Universal Messaging Scheduling : Conditional Triggers
	Universal Messaging Scheduling : Tasks
	Universal Messaging Scheduling: Editor
	Scheduler Examples
	Universal Messaging Scheduling : Example Realm Script
	Universal Messaging Scheduling : Store Triggers Example
	Universal Messaging Scheduling : Interface Triggers Example
	Universal Messaging Scheduling : Memory Triggers Example
	Universal Messaging Scheduling : Realm Triggers Example
	Universal Messaging Scheduling : Cluster Triggers Example
	Universal Messaging Scheduling : Counter Trigger Example
	Universal Messaging Scheduling : Time Triggers Example
	Universal Messaging Scheduling : Configuration Example

	Integration with JNDI
	Universal Messaging Enterprise Manager Comms: TCP Interfaces, IP Multicast and SHM
	Creating Interfaces
	Deleting Interfaces
	SSL Interfaces
	Stopping Interfaces
	Starting Interfaces
	Interface Configuration
	JavaScript Interface Panel
	Modifying Interfaces
	Interface plugins
	Interface VIA Rules
	Multicast Configuration
	Shared Memory Configuration
	Creating an SSL network interface to a Universal Messaging Realm server
	How to generate certificates for use

	Plugins
	File Plugin
	XML Plugin
	Proxy Passthrough Plugin
	REST Plugin
	SOAP Plugin
	Servlet Plugin

	XML Configuration: Overview
	XML Configuration: Exporting To XML
	XML Configuration: Importing From XML
	XML Configuration: Sample XML File for EXPORT

	Management and Monitoring Sections
	Enterprise view
	Management Information
	Enterprise Summary
	Clusters Summary
	Clusters Status
	Realms Summary
	Realm Status
	Realm Monitoring
	Universal Messaging Enterprise Manager : Logs Panel
	Realm Connections
	Threads Status
	Top
	Audit Panel
	Container Status
	Container Monitor Panel
	Channel Status
	Data Group Status
	Channel Connections
	Queue Status
	Interface Status

	Scheduler view
	Channel view
	Queue view
	Peer 2 Peer view

	Universal Messaging Administration API
	Introduction
	Administration API Package Documentation
	Namespace Objects
	nRealmNode
	nLeafNode (Channels and Queues)
	nServiceNode (P2P Services)
	Realm Federation
	Channel Join

	Realm Server Management
	Interfaces
	Scheduling
	Config
	Clustering
	Multicast

	Security
	Access Control Lists
	Nirvana Admin API - Nirvana Security Groups
	Realm Access Control List (nACL)
	Channel Access Control List (nACL)
	Queue Access Control List
	P2P Service Access Control List

	Management Information
	nRealmNode
	nClusterNode
	nLeafNode
	nServiceNode
	Connection Information

