
CentraSite Developer's Guide

Version 9.8

April 2015

This document applies to CentraSite Version 9.8 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: CS-DG-98-20150415

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

M
Table of Contents

CentraSite Developer's Guide Version 9.8 3

Table of Contents

About this Guide..13
Document Conventions.. 13
Online Information.. 14

Developing Custom Actions...15
Planning to Create Custom Actions... 16
About Action Categories...16

Predefined Action Categories Installed with CentraSite..16
Custom Action Categories...17

About Action Templates..17
Types of Actions..17
Supported Object Events.. 18

About Parameter Templates... 18
Who Can Create and Manage Action Categories or Templates?.. 18
Viewing the Action Categories List...19
Adding Custom Actions Using the CentraSite UI...19

Creating a Custom Action Category... 19
Adding an Action Template to a Custom Action Category.. 20
Adding a Parameter Template to the Action Template..22

Adding Custom Actions Using APIs...23
Creating Action Rules..23

Creating a Rule in a Java Class..23
Creating a Rule Using a Groovy Script... 24

Uploading Action Rules to Action Templates.. 25
Viewing or Editing Action Categories or Templates... 26

Viewing or Editing an Action Category... 26
Viewing or Editing an Action Template... 26

Downloading Rules from System Action Templates...27
Structure of the Zip File.. 27

Deleting Custom Action Categories and Templates...27
Deleting a Parameter Template...28
Deleting a Custom Action Template..28
Deleting a Custom Action Category..28

Versioning a Custom Action Template... 29
Sample Custom Actions... 30

Sample Java Action: Enforce Unique Asset Names... 30
Sample Groovy Script Action: Service Attribute Checker... 32

Built-In Design/Change-Time Actions Reference... 37
Summary of Actions in the ARIS Category..38
Summary of Actions in the Change-Time Category...38

M
Table of Contents

CentraSite Developer's Guide Version 9.8 4

Summary of Actions in the Collector Category.. 40
Summary of Actions in the Design-Time Category.. 41
Summary of Actions in the Global Category..41
Summary of Actions in the Handler Category..42
Summary of Actions in the WS-I Category.. 43
Built-In Actions for Design/Change-Time Policies..44

Call Web Service...44
Change Activation State..46
Change Deployment Status.. 48
Classify.. 49
Consumer WSDL Generator... 50
Default Move Handler..50
Delete RuntimeEvents and RuntimeMetrics..51
Enforce Unique Name... 52
Initiate Approval...52
Initiate Group-Dependent Approval...58
Mark Pending on Runtime Policy Change.. 61
Notify ARIS Service...61
On Consumer Registration Request Send Email to Owner.. 63
Processing Steps Status... 64
Promote Asset... 65
Publish to API-Portal... 70
Register Consumer..71
Send Email Notification... 72
Set Attribute Value...76
Set Consumer Permission...77
Set Instance and Profile Permissions... 78
Set Permissions...81
Set Profile Permissions... 83
Set State..83
Set View Permission for Service and Service Related Object to Everyone Group............84
Send Email Notification to Watchers...84
UnClassify..85
UnPublish from API-Portal.. 86
Validate Attribute Value... 87
Validate Classification..88
Validate Description... 88
Validate Lifecycle Model Activation... 89
Validate Name... 90
Validate Namespace..90
Validate Policy Activation.. 91
Validate Policy Deactivation.. 92
Validate Service Binding..93
Validate State...93
Validate WSDL Size.. 94

M
Table of Contents

CentraSite Developer's Guide Version 9.8 5

webMethods REST Publish...94

Access via UDDI.. 97
Overview of the UDDI Standard...98
Summary of UDDI Support in CentraSite.. 99
CentraSite UDDI Architecture...100

Overview.. 100
Client Access via UDDI...100
Localization.. 101
Modeling of the Node Business Entity.. 101

Key Generator tModel.. 101
Node Business Entity... 102
Inquiry Service..102
Publish Service...103
Security Service..104
Custody and Ownership Transfer Service... 105
WSDL... 105

UDDI Representation of the Object Model...106
Attributes..106

Key/Value Pair Attributes..106
Rich Text Attributes.. 107
Document Attributes...107
Relationship Attributes..108

Metrics Definition... 109
Metrics Reference Taxonomy...110
Metrics Types Taxonomy..111
Total Request Count Taxonomy... 111
Success Request Count Taxonomy... 112
Fault Request Count Taxonomy...112
Average Response Time Taxonomy.. 112
Minimum Response Time Taxonomy... 113
Maximum Response Time Taxonomy.. 113
Availability Taxonomy... 113
Service Liveliness Taxonomy... 114

Representing Targets and Target Types... 114
Representing Status.. 114
Representing Version.. 114
Mapping WS-PolicyAttachments... 115

Configuring the UDDI Environment.. 115
Configuration Properties..115

UDDI in a Multi-CAST Environment...115
CAST Registration/Deregistration... 115

Registering a CAST...116

Registering a CAST...116

M
Table of Contents

CentraSite Developer's Guide Version 9.8 6

Deregistering a CAST... 117

Deployment Descriptors... 118
Changing the User ID/Password of the Web Application Login Account.......... 118

Setting Global and Local UDDI Properties.. 118
Setting Global UDDI Properties.. 119
Setting Local UDDI Properties..123

Getting Global and Local UDDI Properties.. 125
Schema Validation of UDDI Requests.. 126
Checked Value Set Validation... 126

Predefined Value Sets.. 126
Predefined tModels...127
UDDI V3 APIs...129

Overview.. 129
Classes and Interfaces..130

RegistryService...130
RegistryConfiguration... 130
RegistryFramework...130
RegistryAgent... 131
UDDI_Security_SoapService..131
UDDI_Inquiry_SoapService..131
UDDI_Publication_SoapService... 131
UDDI_Taxonomy_SoapService.. 131
CentraSiteBusinessService.. 131

Examples... 132
Getting the Value of an Attribute..132
Getting the Proxy Services for a Specified Target... 133
Inquiring about a Business Service... 133
Publishing a Business Service...134
Fetching Taxonomies..134

Using Third-Party IDE Tools with CentraSite... 135
Overview.. 135

Supported IDE Tools.. 135
Specifying the Inquiry, Publish and Security URLs.. 135

WTP Eclipse 1.5.2 Plug-In.. 136
IBM Rational Application Developer 6.0... 137

Connecting to CentraSite... 137
Publishing Entities.. 137

UDDI Extensions.. 137
Using WSDL in a UDDI Registry.. 138
Using WS-PolicyAttachment..138

Version 1.2 Support..138
Supported Policy Subjects.. 138
Referencing Remote Policy Expressions..138
Registering Reusable Policy Expressions...139
Registering Policies in UDDI Version 3.. 139

M
Table of Contents

CentraSite Developer's Guide Version 9.8 7

tModels to Support UDDI-Based WS-PolicyAttachments................................. 140
Version 1.5 Support..141

Extending UDDI Publisher API Set to Enable Physical Deletion of tModels................... 141
Arguments.. 141
Behavior..141
Returns... 142
Caveats...142

Pluggable Architecture..143
Introduction to CentraSite Control Pluggable Architecture...144
Customizing the Welcome Page.. 145

Introduction.. 145
Technical Implementation of the Welcome Page.. 147

Overview of Java Methods Used... 147
Screen Component: Welcome Page...147
Screen Component: Widget..149
Screen Component: Item.. 151
Methods Not Related to Screen Components.. 152

Java Interface Hierarchy.. 153
Installing the Customized Welcome Page...154

Stop Software AG Runtime.. 154
Updating the plugin.xml Configuration File.. 154
Deploying the New Java Classes to the PluggableUI Environment.........................155
Start Software AG Runtime..155

Example of a Customized Welcome Page..155
Location of Demo Files.. 156
Differences Between the Standard Welcome Page and the Demo Welcome
Page... 156
Implementation of Welcome Page Layout... 157

Header Area..157
Separator Between Header Part and Widget Part..158
Widget CentraSite... 158
Widget Useful Links.. 159
Widget User Preferences..161
Default Settings for Widgets... 162

Implementing the Demo as an Eclipse Java Project... 162
Building the Deployment Files for Software AG Runtime...163

The build.properties File... 163
Building the Deployment Files.. 163
Building the Deployment Files Using Eclipse (Method 1)................................. 164
Building the Deployment Files from the Command Line (Method 2).................164

Deploying the Demo to Software AG Runtime...164
Displaying the Demo Welcome Page.. 165

Special Programming Techniques...165
Customizing Content Pages... 167

M
Table of Contents

CentraSite Developer's Guide Version 9.8 8

Extension Points..167
I18N for Layouts...167
Parameters for Plug-ins... 168
ConnectionHandler - Logon and Logoff / Exit..168
Perspectives... 169
Topic... 171
Command for Item... 172
Bulk Command for Items... 173
Add Property.. 174
Tab in Detail View.. 175
Add Source of Notification... 176
Impact Analysis: NodeDecorator..177
Append Root Node to Topic...178
Replace Standard Detail View by Another Editor.. 179
Extend Search Dialog by Additional Conditions...180
Download Documents.. 182

Making the Download Menu Entry Visible/Invisible for Guest Users.................182
Changing the Text String Displayed in the Context Menu................................ 182
Changing the Format of the Zipped Archive...183

Attach Documents.. 183
Activating the IDE..185
Step-by-Step Guide... 185

Setting the Preferred Plug-In and Order of Plug-Ins..186
Installing and Uninstalling Plug-Ins.. 186

Directory Structure...186
Installing a Plug-In...187
Uninstalling a Plug-In.. 187
Plug-In Management Perspective... 188

Special and Advanced Topics.. 189
Icons.. 189
Class Loading..189
Multithreading and Synchronization.. 191
Nested Layouts..191

Javadoc Documentation of the APIs..192
Step-by-Step Guide.. 192

Eclipse Prerequisites... 192
Setting up the Plug-in Project... 193
Plugging into CentraSite Control...199
Bring Your Own Layouts to the Screen...203

Application Framework... 217
Introduction... 218

RegistryBean... 219
BeanPool... 220
StandaloneRegistryProvider.. 220

M
Table of Contents

CentraSite Developer's Guide Version 9.8 9

Configuration...221
Bean Types Managed by CSAF..222

Bean Modes... 222
Persistence Modes...222
Cache Configuration...223

Re-Reading Outdated Objects.. 223
Mapping Beans to Registry Objects with Annotations... 223

Introduction to Bean Mapping... 223
Standard Mappings... 232

Standard Mappings Usage Sample... 232
Generating Beans from the Command Line... 233

Querying the Registry...234
Application Framework Simple Search... 234

Creating a Search Object...235
Restricting the Search Results by Adding Search Predicates................................. 235
Defining the Order of the Search Results..240
Invoking the Search... 241

Extending the Application Framework...241
Application Framework JAXR-Based Search..242

Event Mechanism... 243
Asset Types.. 243

Usage Sample for Type Management.. 244
Association Types...245

Usage Sample for Association Type Management... 245
Lifecycle Management..246

Usage Sample for LCM...247
Revision Management.. 247

Usage Sample for Revision Management...248
Multi-User Scenarios...249
Setting the Classpath... 250
Examples.. 250

CRUD Example... 250

API for JAXR.. 251
Introduction to the CentraSite API for JAXR..252
Creating and Closing a JAXR-based Connection.. 252

Creating a JAXR-based Connection... 252
Closing a JAXR-based Connection...254

Defining a Service.. 255
Service that Uses Another Service.. 255
Service with Additional Information.. 256
Pre-Defined Classification Schemes (Taxonomies)..256
Impact Analysis...258
CentraSite API for JAXR Reference Information... 258

Creating User-Defined Objects... 258

M
Table of Contents

CentraSite Developer's Guide Version 9.8 10

Direct XQuery Access to the Stored Data.. 259
Unique Keys.. 260
Simultaneous Database Access and Locking... 260
Caller..262
Semantics of Remove Operations.. 262
Delete Operation... 263

RegistryObject.. 263
Association... 263
AuditableEvent..264
Classification...264
ClassificationScheme... 264
Concept.. 264
ExternalIdentifier...264
ExternalLink.. 264
Organization... 264
RegistryEntry.. 264
RegistryPackage...265
Service..265
ServiceBinding..265
SpecificationLink...265
User.. 265

Unsupported Methods... 265
Unsupported FindQualifiers... 266
Using Wildcards...266
Using Namespaces..266
Method createSlot... 266
Caching Considerations...267

JAXR-based Caching Strategy...267
Caching in User Interfaces...267
Dynamically Loaded JAR Files.. 267
Cache Location.. 268

API for XQJ...269
Introduction to the API for XQJ..270
What is XQJ?... 270

Features of the XQJ Interface...270
Working with the XQJ Interface..271

Executing an XQuery with a Standard XQExpression.. 271
Executing an XQuery with an XQPreparedExpression... 273
Working with a Materialized XQSequence..275

Examples.. 275
CentraSite-Specific Extensions to XQJ.. 275

Updating a Database Using XQJ..276
Inserting a Document in the Registry/Repository..276

XQDataSource Properties.. 276

M
Table of Contents

CentraSite Developer's Guide Version 9.8 11

Java Management Interface..279
Introduction the Java Management Interface...280
Description.. 280
Attributes and Operations...281

Attributes..281
Registry/Repository Start/Stop Operations..282

Web Service Interfaces... 285
Introduction to the Web Service Interfaces.. 286
Approval Service...286

About the Approval Service...286
Invoking Operations from the Approval Service..287

Specifying the Authenticated User...287
Specifying the Location of the Approval Log... 287

Retrieving the List of Approval Requests that a User Has Submitted.............................287
ApprovalRequestList Message...288
Getting Details about the Actions of the Approvers Associated with a Request.......288

Approving or Rejecting Approval Requests.. 289
Scrolling Through the List of Returned Approval Requests.. 290
Reverting a Pending Approval Request..291
Operations... 291

getPendingApprovals..291
getApprovalRequests... 293
getApprovalActions...295
approve...296
reject... 296
getApprovalHistory... 297
revertPendingStateChange.. 299
ApprovalRequestList...300
ApprovalActionResult... 302

M
Even Header

CentraSite Developer's Guide Version 9.8 12

M
Odd Header

About this Guide

CentraSite Developer's Guide Version 9.8 13

About this Guide

This guide describes how you can use programming interfaces to access and/or modify
the CentraSite Registry Repository. Additionally, it describes how you can customize
the CentraSite graphical user interfaces to suit the requirements or standards of your
organization.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods
Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace
font

Identifies text you must type or messages displayed by the
system.

{ } Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

| Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

... Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

M
Even Header

About this Guide

CentraSite Developer's Guide Version 9.8 14

Online Information
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at hp://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at hps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at hp://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

M
Odd Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 15

1 Developing Custom Actions

■ Planning to Create Custom Actions ... 16

■ About Action Categories .. 16

■ About Action Templates ... 17

■ About Parameter Templates .. 18

■ Who Can Create and Manage Action Categories or Templates? .. 18

■ Viewing the Action Categories List .. 19

■ Adding Custom Actions Using the CentraSite UI .. 19

■ Adding Custom Actions Using APIs .. 23

■ Viewing or Editing Action Categories or Templates ... 26

■ Downloading Rules from System Action Templates .. 27

■ Deleting Custom Action Categories and Templates .. 27

■ Versioning a Custom Action Template ... 29

■ Sample Custom Actions ... 30

M
Even Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 16

Planning to Create Custom Actions
If you would like a policy to execute a task that is not provided by a built-in action, you
can create a custom action to perform the work. For example, a custom action can consist
of a Java class or a Groovy script that performs the required task, such as running a test,
creating a required aribute or logging an entry in an external database. You can insert
custom actions into a policy just like you would insert a built-in action.

Creating a custom action consists of the following high-level steps:

1. Create a custom action category with which to associate the action.

2. Create an action template to specify the scope of objects and events to which the action
applies.

3. For an action template to be used in a design or change time policy, you specify the
location of your custom action rule, which fires when the action executes.

4. Add parameter templates to define the parameters that serve as input to the action.

There are two ways you can add custom actions:

You can use CentraSite Control to create action categories and action templates,
as described in "Adding Custom Actions Using the CentraSite UI" on page 19.
Then, you create action rules using Java programs or Groovy scripts, which is
described in "Creating Action Rules" on page 23. You upload the rules into
action templates when you create the action templates, using CentraSite Control.

—OR—

You can create action categories, action templates and action rules using Java
programs or Groovy scripts, as described in "Adding Custom Actions Using APIs"
on page 23. Then, you upload the rules scripts to action templates using JAXR-
based calls in the action templates.

About Action Categories
Action categories identify the action templates assigned to the category, and the type
of action those templates represent. CentraSite includes a set of predefined action
categories and templates.

Predefined Action Categories Installed with CentraSite
By default, the policy actions that are installed with CentraSite are grouped into the
following categories:

Design-Time Category

Change-Time Category

M
Odd Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 17

Run-Time Category

Global Category

WS-I Category

For more information on the policy actions that CentraSite ships, see "Built-In Design/
Change-Time Actions Reference" on page 37 and Run-Time Governance with
CentraSite.

Custom Action Categories
If you would like to enforce policies using actions that are not provided by your
CentraSite, you can create your own categories to define the custom actions. For
example, a custom category can consist of user-defined actions to enforce policies. You
can enforce policies of the custom actions just like you would enforce policies using the
system (built-in) actions.

About Action Templates
An action template specifies the object and event types to which the action applies. In
addition, an action template for a design or change time policy contains your custom
action rule, which fires when the action executes.

Types of Actions
CentraSite supports the following types of actions:

Manual Actions are long-run processes that involve manual user intervention to
complete the execution of the action. For example, Approval is a manual action.

Be aware that although CentraSite allows you to use system-defined manual actions
in creating policies, you cannot create a new manual action.

Axiomatic Actions are simple actions used to configure parameters. No code is
involved in the execution of axiomatic actions. Axiomatic actions are used in run-
time policies.

Programmatic Actions are usually executed by means of program code. Specifically,
a programmatic action fires an action rule when the action executes. You write an
action rule as a Java class or a Groovy script. Programmatic actions are used only in
design/change-time policies. CentraSite provides sample action rules. You upload
action rules when you create a custom action template.

You can upload action rules when you create a custom action template, as described
in "Adding an Action Template to a Custom Action Category" on page 20.

M
Even Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 18

For more information on the policy actions that CentraSite ships, see "Built-In Design/
Change-Time Actions Reference" on page 37 and Run-Time Governance with
CentraSite.

Supported Object Events
Although it is possible to create an action template whose scope encompasses any
combination of object types and event types, be aware that not all combinations are
enforceable. This is because certain types of events do not occur for certain types of
objects.

To see the types of events that each object type supports, see the CentraSite User’s Guide.

For example, a PreStateChange event occurs only on Assets, Policies and Lifecycle
Models. If you create a policy for a PreStateChange event on a User object, that policy
will never execute, because a PreStateChange event will never occur on a User object.

About Parameter Templates
Parameter templates are a part of the action template. The parameter templates assigned
to the action template serve as input parameters for the policy action at enforcement
time. You can configure the required parameters of an action template in two ways:

Default values: You can define parameters with default values and select one of these
values as the default value. When the action template and its associated parameter
template are used in a policy, you can restrict the policy action to use only the
defined default values.

Blank values: Alternatively, you can define parameters with blank values. When the
action template and its associated parameter template are used in a policy, the policy
action accepts any desired value.

Who Can Create and Manage Action Categories or
Templates?
To create and manage action templates for design/change-time policies, you must
belong to a role that includes the Manage System-wide Design/Change-Time Policies
permission. By default, the following predefined roles include the Manage System-wide
Design/Change-Time Policies permission:

CentraSite Administrator

Asset Type Administrator

Operations Administrator

For more information about roles and permissions, see Geing Started with CentraSite.

M
Odd Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 19

Viewing the Action Categories List
The Action Templates page displays the list of action categories and templates defined on
your instance of CentraSite.

To view the action categories and templates list

1. CentraSite Control, go to Policies > Action Templates.

2. The action templates list provides the following information about a category or
template.

Column Description

Action Templates Lists the action templates assigned to each category.

Description Provides additional comments or descriptive information
about an action template.

Type Indicates whether an action category contains design-
time or change-time or global or WS-I compliant action
template and whether an action template type is manual
or programmatic.

Adding Custom Actions Using the CentraSite UI
To add a custom action to CentraSite, perform the following high-level steps:

1. Create a custom action category. During this step, you specify the type of the category
and details for the category.

2. Add an action template to the custom action category. During this step, you specify details
for the action template, upload its associated action rule (if appropriate), and select
the object and event types to which this template applies.

3. Add a parameter template to the action template. During this step, you add one or more
parameter templates, and specify their input values.

Creating a Custom Action Category
Perform these steps to create a custom action category and save it to CentraSite.

To create a custom category

1. In CentraSite Control, go to Policies > Action Templates.

M
Even Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 20

2. Click the Add Action Category buon in the upper-right corner of the Policy Information
panel.

3. In the Add Action Category dialog box, do the following:

a. Specify a name for the new custom category.

An action category name does not need to be unique within the CentraSite
Registry. However, to reduce ambiguity, you should avoid giving multiple
action categories the same name.

An action category name can contain any character (including spaces).

b. Choose the type of template that the category will contain (for example, Design/
Change-Time or Run-Time templates).

c. Click OK.

Adding an Action Template to a Custom Action Category
Perform these steps to add an action template to a custom action category and save it to
CentraSite.

To add an action template to a custom action category

1. In CentraSite Control, go to Policies > Action Templates.

2. Click Add Action Template.

3. If a custom action category does not yet exist, the Add Action Category dialog box is
displayed, prompting you to create a custom action category. After you create a
custom action category, the Add Action Template page is displayed, and is described
in the next step.

4. In the Add Action Template page, do the following:

In this field... Do the following...

Category Select the action category for which you want to add the
action template.

Name Enter a name for the new action template. Follow these
guidelines:

An action template name must be unique.

An action template name can contain any character
(including spaces).

M
Odd Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 21

In this field... Do the following...

Description Optional. Type a description for the new action template.
This description appears when the user displays a list of
action templates in the Policy Information panel.

Type No action is necessary.

By default, CentraSite sets the action type to Programmatic
for a design-time or change-time action, and Axiomatic for a
run-time action.

Implementation For a programmatic action (a design-time or change-time
action), specify whether the action’s rule is a Groovy script
or a Java class.

Uploaded File For a programmatic action, click the Browse buon and
upload the action's rule file.

For a Java rule type, upload its Java program .zip file.

For a Groovy rule type, upload its .groovy script.

For procedures on creating action rules, see "Creating
Action Rules" on page 23. For procedures on
uploading action rules, see "Uploading Action Rules to
Action Templates" on page 25.

Note: Alternatively, you can download the rules used by
the system action templates, and modify them for use
with the custom action template. For procedures, see
"Downloading Rules from System Action Templates"
on page 27.

5. In the Scope panel, do the following:

In this field... Specify...

Object Types Select the type of objects to which this action template
applies.

Event Types Select the type of events to which this action template
applies.

Note: Not all event types are supported by all objects. For
more information, see "Supported Object Events" on
page 18.

M
Even Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 22

6. Click Save.

Upon saving the action template, CentraSite displays the Edit Action Template Detail
page. You will use this page's Parameter Templates profile to add parameter templates
for this action.

Adding a Parameter Template to the Action Template
To complete the action template, you must define its input parameters.

To add a parameter template to the action template

1. If you are beginning this procedure immediately after completing "Adding an Action
Template to a Custom Action Category" on page 20, skip to step 4.

2. In CentraSite Control, go to Policies > Action Templates.

3. Select the action template for which you want to define parameter templates.

4. In the Edit Action Template Detail page, select the Parameter Templates profile.

5. Click the Add Parameter Template buon.

6. Define the first parameter as follows:

In this field... Do the following...

Name Enter a name for the new parameter template.

Type Select a data type.

Default Value If you want to specify a default value, type a value in this
field.

If the selected data type is String, Number or URL, you
can specify one or multiple default values. You can specify
multiple possible default data values from which to choose
as follows:

a. Select the Edit icon to the right of the Default Value field.

b. In the Add Default Values dialog box, type a value and click
Add. Repeat for as many values as you need.

c. Click OK.

d. Then, in the Default Value field select from the drop-down
list the value you want to use as the default value.

Note: If you would rather fill in required values when this
template is used in a policy, leave this field blank.

M
Odd Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 23

In this field... Do the following...

Array Select this check box if you want the data type as an array.

Required Select this check box if you want the parameter template to
be mandatory.

7. If you need to define additional parameters, click the Add Parameter Template buon
again and repeat the previous step.

8. Click Save and then Close.

The parameter templates that you added appear under the Parameter Templates
profile.

Adding Custom Actions Using APIs
To create a custom action programmatically, you perform the following high-level steps:

1. Create a custom action category and template.

To do this, you create a Java class that uses the
com.centrasite.jaxr.CentraSiteLifeCycleManager interface. To view the
Javadoc for this interface, see the CentraSite Java API Reference.

2. Create a Java class action rule or a Groovy script action rule. For procedures, see "Creating
Action Rules" on page 23.

3. Upload the action rule to the action template. For procedures, see "Uploading Action
Rules to Action Templates" on page 25.

Creating Action Rules

Creating a Rule in a Java Class
Perform the following steps to create a rule in a Java class.

To create a rule in a Java class

1. Create a Java action executor class that implements the
com.softwareag.centrasite.policy.api.IActionExecutor interface. To view
the Javadoc for this interface, see the CentraSite Java API Reference .

Important: The Java executor class must return an AssertionResult object
that contains the completion code ResultStatus.SUCCESS (if the
action was successful) or ResultStatus.FAILURE (if the action
failed). There are other possible completion codes (for example,
ResultStatus.IN_PROCESS), however, these codes are used by internal
processes and are not intended to be returned by user-defined actions.

M
Even Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 24

Custom actions that you create must only return a completion code of
ResultStatus.SUCCESS or ResultStatus.FAILURE.

2. Create a .zip file that contains the following:

A folder named lib, which should contain a jar file with the action’s executor
class and the external libraries.

A folder named META-INF, which should contain a property file named
assertion.properties, which is the build file for the action. It includes an
entry of the following format:
com.softwareag.centrasite.policy.rule.class=<fully_qualified_class_name>

3. Upload the .zip file, as described in "Uploading Action Rules to Action Templates"
on page 25.

For example, the sample Java action rule provided in the your CentraSite installation
has the following file structure:

<CentraSite_Install_Dir> \demos\Custom actions\Java\META-INF
\assertions.properties

This is the build file for the action. It includes an entry of the following format:
com.softwareag.centrasite.policy.rule.class=<fully_qualified_class_name>

<CentraSite_Install_Dir> \demos\Custom actions\Java\src\com\softwareag
\demo\actions\UniqueNameChecker.java

This is the sample source file for the action executor. You can modify this file as
needed, and compile it using the build file.

<CentraSite_Install_Dir> \demos\Custom actions\Java\build.xml

This build file has the default target “zip”, which will compile the Java file, build
a jar out of it and pack it as a zip file.

<CentraSite_Install_Dir> \demos\Custom actions\Java\uniquenamechecker.zip

This .zip file contains the following:

A folder named lib, which contains a jar file with the action’s executor class
and the external libraries.

A folder named META-INF, which contains the property file
assertion.properties, which is the build file for the action.

For more information about the sample Java action, see "Sample Custom Actions" on
page 30.

Creating a Rule Using a Groovy Script
Perform the following steps to create a rule using Groovy script.

M
Odd Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 25

To create a rule using a Groovy script

Upload the .groovy file as described in "Uploading Action Rules to Action
Templates" on page 25.

Uploading Action Rules to Action Templates
Before you upload a Java action rule, you must first create a .zip file as described in
"Creating Action Rules" on page 23.

If you want to upload a Groovy script rule, the .groovy file can contain the following
variables. You cannot upload external libraries.

Variable Description

entity This represents the RegistryObject which is in the context.

The following fields are available in this object:

Name

Description

State

policyContext The PolicyContext in which the policy is running.

assertion The IAssertionInstance that is in execution.

result The result object that has the status and message.

Set the result.successMessage or result.failureMessage.

Based on the message, the status is inferred. If you fail to set
a message, the status will be treated as a successful execution
with an empty message.

To upload an action rule

There are two ways you can upload a rule’s .zip file or .groovy file to a custom action
template:

If you are uploading the rule to a custom action template you created using the
CentraSite Control, you upload the rule (either a Java .zip file or a .groovy file) when
you create the action template, on the Add Action Template page. For procedures,
see "Adding an Action Template to a Custom Action Category" on page 20.

—OR—

M
Even Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 26

If you are uploading the rule to a custom action template that you created
programmatically, you upload the rule (either a Java .zip file or a .groovy file) using
a JAXR-based call in the action template.

Viewing or Editing Action Categories or Templates
You use the Edit Action Category or Edit Action Template page to examine and/or edit
the properties of an action category or action template. When viewing or changing the
properties of an action category or template, keep the following points in mind:

You cannot edit or delete the predefined categories or action templates that are
installed with CentraSite.

You can change any property of an custom category or action template; however
cannot modify the type.

You can edit an category or action template only after deactivating all the policies
that use it.

You can rename an action category at any time.

Viewing or Editing an Action Category
You use the following procedure to view or edit the action category details.

To view or edit the properties of an action category

1. In CentraSite Control, go to Policies > Action Templates.

2. In the Policy information panel, select the action category whose details you want to
view or edit.

3. Examine or modify the category’s properties on the Edit Action Category dialog box as
appropriate. For more information about these properties, see "Creating a Custom
Action Category" on page 19.

Viewing or Editing an Action Template
You use the following procedure to view or edit the action template details.

To view or edit the properties of an action template

1. In CentraSite Control, go to Policies > Action Templates.

2. In the Policy information panel, select the action template whose details you want to
view or edit.

3. Examine or modify the template’s properties on the Edit Action Template page as
appropriate. For more information about these properties, see "Adding an Action
Template to a Custom Action Category" on page 20.

M
Odd Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 27

4. Select the Scope profile. View or edit the object types and event types to which this
action template applies as appropriate. To modify the list of object or event types, do
the following:

a. Click the Select buon beside the list of applicable object or event types.

b. Use the controls in the Select Object/Event Types dialog box to adjust the list.

c. Click Save to update the modification.

Note: Not all event types are supported by all objects. See "Supported Object
Events" on page 18.

5. Select the Parameter Templates profile. View or edit the parameter fields as
appropriate.

6. If you have edited a template’s properties, click Save. Otherwise, click Cancel.

Downloading Rules from System Action Templates
You can download the rules associated with CentraSite system action templates.

To download a rule

1. In CentraSite Control, go to Policies > Action Templates.

2. Locate the action template whose rule you want to download and select its name.

3. Choose the .zip file in the Uploaded File field, and then download the rule.

Structure of the Zip File
The structure of the zip file created by the download feature is as follows:

A folder named lib, which contains a jar file with the action’s executor class and the
external libraries.

A folder named META-INF, which contains a property file named
assertion.properties, which is the build file for the action. It includes an entry of
the following format:
com.softwareag.centrasite.policy.rule.class=<fully_qualified_class_name>

Deleting Custom Action Categories and Templates
When you delete custom action categories, action templates and parameter templates,
you must delete these items in the below order:

1. Parameter templates

M
Even Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 28

2. Action templates

3. Action categories

Deleting a Parameter Template
Before you aempt to delete a parameter template, you must first delete all of the
policies consuming it.

To delete a parameter template

1. In CentraSite Control, go to Policies > Action Templates.

2. Locate the custom action template whose parameter template you want to delete and
select its name.

3. Select the Parameter Templates profile.

4. Select the check box beside the parameter template name and click Delete.

This temporarily revokes the selected parameter template from the action template.

5. Click Save to permanently remove the parameter template from the action template.

Deleting a Custom Action Template
Before you aempt to delete a custom action template, you must first delete all of the
policies consuming it. Also, be aware that when you delete a custom action template,
CentraSite also deletes all previous versions of the template.

To delete a custom action template

1. In CentraSite Control, go to Policies > Action Templates.

2. Locate the custom action template that you want to delete.

3. Select the check box beside the action template name and click Delete.

Deleting a Custom Action Category
Before you aempt to delete a custom action category, you must first delete all of the
policies consuming it.

To delete a custom action category

1. In CentraSite Control, go to Policies > Action Templates.

2. Locate the custom action category that you want to delete.

3. Select the check box beside the action category name and click Delete.

M
Odd Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 29

Versioning a Custom Action Template
If you need to modify a custom action template, you can create a new version of the
existing template and make your changes to the new version. When you create a new
version of a custom action template, CentraSite creates an identical copy of the existing
template, and then you make your changes to the copy. (Note that the new version of
the custom action template will get is own copy of the executable Groovy or Java file.)

Be aware that CentraSitedoes not automatically apply the new custom action template to
policies that use existing versions of the custom action. Policies that use existing versions
of the action will continue to use the versions that they have. If you want to apply the
new version of the action to these policies, you must edit the policies (or create new
versions of them) and replace the old version of the action with the newer one.

Similarly, modifying the parameter definitions in a new version of an action template
will not affect the parameter definitions in any of the existing policies that use the action.
Parameter definitions are specific to a version of the template.

When you create a new version of a custom action, be aware that:

You can only create a new version from the latest version of an action. For example,
if an action already has versions 1.0, 2.0 and 3.0, CentraSite will only allow you to
create a new version of the action from version 3.0.

Initially, the new version of the action will be identical to the version from which
you created it (except for the system-assigned version identifier, which is always
incremented by one).

CentraSite automatically establishes a relationship between the new version of the
policy and the previous version. CentraSite uses this relationship to enforce rules
related to versioned actions.

You can only create new versions of custom actions that exist on your instance of
CentraSite (i.e., actions that you have added to CentraSite). You cannot create new
versions of the predefined actions that are installed with CentraSite.

To version a custom action

1. In CentraSite Control, go to Policies > Action Templates to display the list of action
templates.

2. Locate the most recent version of the custom action for which you want to create a
new version.

3. From the context menu for the custom action, click Create New Version.

4. Modify the new version of the custom action as necessary and then save it.

Tip: To make the new version of the custom action easy to distinguish from
earlier versions, consider appending the version number to the name of the

M
Even Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 30

custom action. This will make the versions easier to tell apart when you
view or edit the action list for a policy.

Sample Custom Actions
Your CentraSite installation contains two sample custom action rules. One rule is a Java
rule, and the other is a Groovy script rule.

Sample Java Action: Enforce Unique Asset Names
Your CentraSite installation contains a sample Java action rule (which is contained in
uniquenamechecker.zip) that you can use to create a custom action that ensures that the
name and version combination of a newly-created asset is unique within the CentraSite
catalog. If it is not unique, the action returns Failure, and the asset is not allowed to be
created.

To create the custom action, you will use the CentraSite user interface to:

1. Create a custom action category

2. Create a custom action template, to which you upload the sample Java rule

3. Create a Design/Change-Time policy and add the custom action template to it

To create and test the custom action Enforce Unique Asset Names

1. In CentraSite Control, go to Policies > Action Templates.

2. Click the Add Action Category buon.

3. In the Add Action Category dialog box, do the following:

a. Specify a name for the new custom category, for example My Custom Actions.
An action category name can contain any character (including spaces).

b. Choose Design/Change-Time as the action category type.

c. Click OK.

The action category that you created appears as a custom category next to an icon in
the Policy Information panel.

4. Click Add Action Template.

5. On the Add Action Template page, specify the following fields:

In this field... Do the following...

Category Select the custom action category you just created.

M
Odd Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 31

In this field... Do the following...

Name Enter the name Enforce Unique Asset Names for the
new action template.

Description Optional. Type a description for the new action template.
For example: Ensures that asset names are
unique.

Implementation Select Java.

Uploaded File Click the Browse buon and upload the following rule
file:

<CentraSite_Install_Dir> \demos\Custom actions\Java
\uniquenamechecker.zip

This .zip file that contains the following:

A folder named lib, which contains a jar file with the
action’s executor class and the external libraries.

A folder named META-INF, which contains a property
file named assertion.properties, which is the build
file for the action.

For more information about creating and uploading
action rules, see "Creating Action Rules" on page 23.

6. In the Scope panel, specify the following fields:

In this field... Do the following...

Object Types Select Service as the type of object to which this action
template applies.

Event Types Select PreCreate as the type of event to which this action
template applies.

7. Click Save.

The Edit Action Template Detail page is displayed.

8. Create a policy and add the sample action to the policy as follows:

a. In CentraSite Control, go to Policies > Design/Change Time.

b. Click Add Policy.

M
Even Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 32

c. In the Policy Information panel, enter a name for the new policy, for example,
Ensure Unique Asset Names Policy. A policy name can contain any character
(including spaces).

d. In the Scope panel, specify the object and event types to which the policy applies
as follows:

In the Object Types field, select Service as the type of object to which this policy
applies.

In the Event Types field, select PreCreate as the type of event to which this
policy applies.

In the Organization field, select your organization name as the organization to
which this policy belongs (and to whose objects the policy will be applied).

e. Click Next.

f. From the Available Actions list, choose the custom action Enforce Unique Asset
Names action that you created.

g. Click Finish to save the new policy. The Design/Change-Time Policy Details page
is displayed.

h. Activate the policy by choosing the Change State buon and choosing the
Productive state.

Sample Groovy Script Action: Service Attribute Checker
Your CentraSite installation contains a sample Groovy action rule
(ServiceAributeChecker.groovy) that you can use to create a custom action that checks
for a particular value of a service aribute.

To create and test the custom action, you will use the CentraSite user interface to:

1. Create a custom action category

2. Create a custom action template, to which you upload the sample Groovy script rule

3. Create a Design/Change-Time policy and add the custom action template to it

4. Test the custom action "on demand" (manually) on the policy's detail page

To create and test the custom action Service Attribute Checker

1. In CentraSite Control, go to Policies > Action Templates.

2. Click the Add Action Category buon.

3. In the Add Action Category dialog box, do the following:

a. Specify a name for the new custom category, for example My Custom Actions.
An action category name can contain any character (including spaces).

b. Choose Design/Change-Time as the action category type.

M
Odd Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 33

c. Click OK.

The action category that you created appears as a custom category next to an icon in
the Policy Information panel.

4. Click Add Action Template.

5. On the Add Action Template page, specify the following fields:

In this field... Do the following...

Category Select the custom action category you just created.

Name Enter the name Service Attribute Checker for the
new action template.

Description Optional. Type a description for the new action template.
For example: Validates asset attribute values.

Implementation Select Groovy.

Uploaded File Click the Browse buon and upload the following rule
file:

<CentraSite_Install_Dir> \demos\Custom actions
\Groovy\ServiceAributeChecker.groovy

In the Scope panel, specify the following fields and click Save:

In this field... Do the following...

Object Types Select Service as the type of object to which this action
template applies.

Event Types Select OnTrigger as the type of event to which this action
template applies. This will enable you to test the action
"on demand" (manually) in the Actions profile of the
Design/Change Time Policy Detail page.

6. In the Edit Action Template Detail page, select the Parameter Templates profile in order
to add the action's parameter templates and click the Add Parameter Template buon.

7. Set the first parameter template for the action as follows:

M
Even Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 34

In this field... Do the following...

Name Enter Attribute Name. This parameter will hold the
aribute that you want to check (e.g., any CentraSite
aribute, which you will assign after you add the action
to a policy).

Type Choose the data type Attribute for this parameter
template.

Default Value Leave blank.

Array Leave blank.

Required Select this check box.

8. Click the Add Parameter Template buon again to set the second parameter template as
follows:

In this field... Do the following...

Name Enter Possible Attribute Value. This parameter will
hold the value of the aribute that you want to check.

Type Select the data type String for this parameter template.

Default Value Enter an aribute value that you want to check.

Array Leave blank.

Required Select this check box.

9. Click Save and then Close.

The parameter template that you added appears in the Parameter Templates profile.

10. Create a policy and add the sample action to the policy as follows:

a. In CentraSite Control, go to Policies > Design/Change Time.

b. Click Add Policy.

c. In the Policy Information panel, enter a name for the new policy, for example,
Service Attribute Checker Policy. A policy name can contain any character
(including spaces).

M
Odd Header

Developing Custom Actions

CentraSite Developer's Guide Version 9.8 35

d. In the Scope panel, specify the object and event types to which the policy applies
as follows:

In the Object Types field, select Service as the type of object to which this policy
applies.

In the Event Types field, select OnTrigger as the type of event to which this
policy applies.

In the Organization field, select your organization name as the organization to
which this policy belongs (and to whose objects the policy will be applied).

e. Click Next.

f. From the Available Actions list, choose the custom action Service Attribute Checker
action that you created.

g. Click Finish to save the new (as yet incomplete) policy. The Design/Change-Time
Policy Details page is displayed.

h. To configure the two parameters for the action, choose the action name on the
Actions profile. For the Attribute Name parameter, choose an aribute. For the
Possible Attribute Value parameter, select the default value that you defined for the
Possible Attribute Value parameter in the action template.

i. Click Save and then Close. The policy detail page is displayed.

j. Activate the policy by choosing the Change State buon and choosing the
Productive state.

k. Select the Actions profile.

l. To test the action, click the Run buon. The action checks all services in your
organization and displays a pop-up. The pop-up should indicate Success in the
Result column for the service that matches the value you specified in Possible
Attribute Value. All other services will also be displayed, with Failure in the
Result column.

11. After you have completed testing, you can use this custom action in other Design/
Change-Time policies. To do this, go to its Scope panel, change the event type from
OnTrigger to PreCreate or PreUpdate, and include the action in other Design/Change-
Time policies whose event type scope is either PreCreate or PreUpdate.

M
Even Header

CentraSite Developer's Guide Version 9.8 36

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 37

2 Built-In Design/Change-Time Actions Reference

■ Summary of Actions in the ARIS Category ... 38

■ Summary of Actions in the Change-Time Category .. 38

■ Summary of Actions in the Collector Category .. 40

■ Summary of Actions in the Design-Time Category .. 41

■ Summary of Actions in the Global Category ... 41

■ Summary of Actions in the Handler Category ... 42

■ Summary of Actions in the WS-I Category .. 43

■ Built-In Actions for Design/Change-Time Policies ... 44

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 38

Summary of Actions in the ARIS Category
The following action templates are available in the ARIS category:

Action Template Description

Notify ARIS Service Notifies the ARIS APG service endpoint when:

A Process object in CentraSite is updated or deleted.

A Service object (native or virtual) in CentraSite is updated
or deleted, or when a user changes the state of the service
to a “completed” lifecycle state (e.g, the Productive state).

Summary of Actions in the Change-Time Category
The following action templates are available in the Change-Time category:

Action Template Description

Change Activation State Activates or deactivates a lifecycle model or a
policy.

Change Deployment Status Enables or disables the deployment of a
virtual service.

Classify Classifies an object by one or more taxonomy
categories.

Delete RuntimeEvents and
RuntimeMetrics

Deletes the logged events and metrics
associated with a service.

Initiate Approval Initiates an approval workflow.

Initiate Group-Dependent
Approval

Initiates an approval workflow based on the
group to which the requestor belongs.

Mark Pending on Runtime Policy
Change

Marks a service as pending for redeployment
on activation or deactivation of the applicable
run-time policy.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 39

Action Template Description

Processing Steps Status Enables or disables the Processing Steps
profile for a virtual service.

Promote Asset Promotes an asset to a new lifecycle stage
(moving from one CentraSite instance to
another CentraSite instance).

Register Consumer Registers users and/or consumer applications
as consumers of the requested asset.

Set Aribute Value Assigns a value to a specified aribute in an
organization, user or asset object.

Set Consumer Permission Gives consumers instance-level permissions
on the asset for which they have been
registered.

Set State Changes the lifecycle state of a lifecycle
model, policy or asset.

UnClassify Removes specified taxonomy categories from
an object.

Validate Aribute Value Validates the value of a specified aribute in
an organization, user or asset against a list of
allowed values.

Validate Classification Checks whether an object is classified by a
given taxonomy or taxonomy category.

Validate Lifecycle Model
Activation

Checks whether a lifecycle model is ready to
be activated.

Validate Policy Activation Checks whether a policy is ready to be
activated.

Validate Policy Deactivation Verifies that a policy is not currently in-
progress (i.e., undergoing execution) so that it
can be successfully deactivated.

Validate State Validates the current state of a lifecycle
model, policy or asset against a given list of
states.

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 40

Summary of Actions in the Collector Category
The following action templates are available in the Collector category:

Important: The actions in this category are used by the predefined collector policies
that are installed with CentraSite. They are not intended to be used in user-
defined policies. For information about predefined collector policies, see the
CentraSite User’s Guide.

Action Template Description

BPEL Collector Performs the collection process on BPEL Process
objects

Default Collector Performs the collection process for types that do not
have a specified collector.

Lifecycle Model
Collector

Performs the collection process on Lifecycle Models.

Policy Collector Performs the collection process on Policy objects (both
design/change-time policies and run-time policies)

REST Service Collector Performs the collection process on REST Service
objects.

Schema Collector Performs the collection process on XML Schema
objects

Virtual REST Service
Collector

Performs the collection process on Virtual REST
Service objects.

Virtual Service
Collector

Performs the collection process on Virtual Service
objects.

Virtual XML Service
Collector

Performs the collection process on Virtual XML
Service objects.

Webservice Collector Performs the collection process on Service objects.

WS-Policy Collector Performs the collection process on WS-Policy objects.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 41

Action Template Description

XML Service Collector Performs the collection process on XML Service
objects.

IS Service Interface
Collector

Performs the collection process on IS Service Interface
objects.

Summary of Actions in the Design-Time Category
The following action templates are available in the Design-Time category:

Action Template Description

Validate Description Validates the description of an object against a
given paern string.

Validate Name Validates the name of an object against a given
paern string.

Validate Namespace Checks that the target namespace aribute in
a Service or XML Schema matches one of the
valid namespaces in a given list.

Validate Service Binding Checks that a Service supports the specified
bindings.

Validate WSDL Size Checks the size of the WSDL document
associated with a Service to ensure that it falls
within a specified range.

webMethods REST Publish Creates a REST service in CentraSite from the
published IS service interface object.

Summary of Actions in the Global Category
The following action templates are available in the Global category:

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 42

Action Template Description

Call Web Service Submits a given SOAP message to a specified
Web service.

Enforce Unique Name Ensures that the names of the Application
Server type objects that are created in
CentraSite are unique.

On Consumer Registration
Request Send Email to Owner

Sends an email message to an object's owner
when there is a consumer registration request
for the object.

Publish to API-Portal Publishes API metadata to API-Portal
repository.

Send Email Notification Sends an email message to a specified group of
users.

Set Instance and Profile
Permissions

Assigns instance-level permissions to an asset
and to the asset's profiles.

Set Permissions Sets instance-level permissions on an policy.

Set Profile Permissions Assigns instance-level permissions to an asset's
profiles.

Set View Permission for Service
and Service Related Object to
Everyone Group

Grants View permission to all users (including
guests) on a given service.

Send Email Notification to
Watchers

Sends an email notification to the watchers
for an asset who are specific users asked to be
notified for any modifications on that particular
asset.

UnPublish from API-Portal Revokes API metadata form API-Portal
repository.

Summary of Actions in the Handler Category
The following action templates are available in the Handler category:

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 43

Important: The actions in this category are used by the predefined handler policies
that are installed with CentraSite. They are not intended to be used in user-
defined policies. For more information about the predefined handler policies,
see the CentraSite User’s Guide.

Action Template Description

Asset Type Export
Handler Action

Handler that CentraSite uses to export Type objects.

Default Delete
Handler

Handler that CentraSite uses to delete instances of types
that do not have a their own delete handlers.

Default Export
Handler Action

Handler that CentraSite uses to export instances of types
that do not have their own export handlers.

Default Move Handler Handler that CentraSite uses to move instances of types
that do not have their own move handlers (move to
another user and/or to another organization).

Default User Move
Handler

Handler that CentraSite uses to move users to other
organizations.

Organization Export
Handler Action

Handler that CentraSite uses to export organizations.

Reject Handler Action Handler that prevents instances of a type from being
deleted, exported, or moved, except as part of a composite
object.

Taxonomy and
Category Export
Handler Action

Process that CentraSite uses to export taxonomies and
their categories.

Virtual Service Export
Handler Action

Process that CentraSite uses to export Virtual Service
objects.

Summary of Actions in the WS-I Category
The WS-I category contains numerous actions from Basic Profile 1.1 and SSBP 1.0 that
you can use to test a Web service (of type Service or Virtual Service) for compliance with
Web Service Interoperability (WS-I) standards.

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 44

Important: A policy that contains WS-I actions must not contain any other type of
action. If you need to execute other types of actions for the same event, you
must place those actions in a separate policy.

Built-In Actions for Design/Change-Time Policies

Call Web Service
Submits a given SOAP message to a specified Web service. You can use this action to
notify external systems, via a SOAP message, of changes that occur in the registry.

If the Web service returns a response, the response message is recorded to the policy log.

If the Web service produces a SOAP fault or the service cannot be successfully
performed for other reasons (e.g., a network failure occurs), the policy action fails, and
thus the policy itself fails. If the policy had been executed on a "pre" operation event
(e.g., PreCreate, PreDelete), the requested operation is not executed.

Event Scope
PreCreate
PostCreate
PreUpdate
PostUpdate
PreDelete
PostDelete
PreStateChange
PostStateChange
OnTrigger

Object Scope

This action can be enforced on any object type that the policy engine supports.

Input Parameters

Service
Endpoint

String The URL of the Web service that you want to call.
Supported protocols are HTTP and HTTPS.

Example:
http://myServer:53307/wsstack/myService

Note: If the Web service that you want to invoke is registered
in CentraSite, you can use the Browse buon to select
its URL.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 45

Boolean Specifies whether the service is secured by Basic
HTTP authentication.

If you enable this option, you can optionally specify the
user ID and password that CentraSite is to submit when
it invokes the service in the following parameters. If you
leave these parameters empty, CentraSite will submit the
credentials belonging to the user who triggered this policy
action.

HTTP Basic Auth
Username

The user ID that you want
CentraSite to submit for HTTP
basic authentication (if you do not
want CentraSite to submit the user
ID of the user who triggered the
policy).

HTTP Basic Auth
Enabled

HTTP Basic Auth
Password

The password associated with the
user ID specified in HTTP Basic
Auth Username.

SOAP Request
Message

String The SOAP message that CentraSite is to submit to the
Web service. This message can include substitution tokens,
if you want to insert run-time data into it. For available
tokens, see the list of Substitution Tokens shown in the
Send Email Notification action.
<env:Envelope
 xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Body>
 <m:keylogger
 xmlns:m=" http://mycompany.example.org/key ">
 <serviceName>${entity.name}</serviceName>
 <assetType>${entity.type}</assetType>
 <key>${entity.attribute.Key}</key>
 </m:keylogger>
 </env:Body>
</env:Envelope>

SOAP Action String The SOAP action that CentraSite will set in the
message. If you do not set this parameter, CentraSite will
set the SOAP action to the empty string.

Connection
Timeout (in
milliseconds)

Number The length of time in milliseconds that CentraSite
will wait for a response from the remote machine. If the
timeout limit is exceeded, the policy action fails.

Content Type String The value that CentraSite is to assign to the Content-
Type header in the SOAP request that it submits to the
service.

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 46

Example:
application/soap+xml; charset=utf-8

If you do not specify Content Type, the value,
application/soap+xml, is assigned to the SOAP request.

Change Activation State
Activates or deactivates a lifecycle model or a policy.

Event Scope
PostStateChange
OnTrigger

Object Scope
Lifecycle Model
Policy

Input Parameters

Change
Activation
State To

String The activation state to which you want to set the
lifecycle model or policy as follows:

 Active Activates the policy or lifecycle model.

This action will fail if it aempts to activate:

A policy whose parameters are not set.

A lifecycle model that does not have an
associated object type.

A lifecycle model whose associated
object type is already assigned to another
lifecycle model.

To prevent these types of failures from
occurring, you should always execute
the appropriate validation action before
changing the activation state of a policy or
lifecycle model. See the following:

"Validate Policy Activation" on page 91
"Validate Lifecycle Model Activation" on
page 89

 Inactive Deactivates the policy or lifecycle model.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 47

 The following options are used to create policies that
support the automatic deactivation of an older version
of a policy or lifecycle model when a newer version is
activated. In a lifecycle model for policies or lifecycle
models, any state during which a policy or lifecycle is
active must include a transition that places the policy or
lifecycle model in one of the following activation states.

For example, the default lifecycle model for policies
includes the Productive state. This is the only state in the
model during which the policy is active. The Productive
state includes a transition to the Retired state, which
triggers a policy that switches the policy's activation state
to "Superseded and Retired".

Because the Productive state includes this transition,
CentraSite is able to automatically deactivate an old
version of a policy when a new version is activated. It
simply locates and executes the transition that places the
policy in one of the following states. In the case of policies,
this transition is the one to the Retired state, which puts the
policy in the "Superseded and Retired" state of activation.

 Superseded Deactivates the policy and switches the
policy's activation state to Superseded to
indicate that the policy has been replaced by
a newer version.

 Retired Deactivates the policy and switches
the policy's activation state to Retired
to indicate that the policy is no longer
available for use.

 Superseded
and
Retired

Deactivates the policy and switches the
policy's activation state to Superseded and
Retired to indicate that the policy has been
replaced by a new version and is no longer
available for use.

 This action will fail if it aempts to deactivate a policy
that is in-progress. To prevent this type of failure from
occurring, you should always execute the "Validate Policy
Deactivation" on page 92 action before using the
Change Activation State action to deactivate a policy or
lifecycle model.

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 48

Change Deployment Status
Enables or disables the deployment status of a virtual service. You use this action to
specify whether the given virtual service is eligible or ineligible for deployment.

When you enable the deployment status for a virtual service, you enable the
controls on the Deployment profile. These controls enable authorized users to deploy,
undeploy or redeploy the virtual service.

Additionally, enabling the deployment status of a virtual service makes the virtual
service eligible for automatic re-deployment when changes occur to its run-time
policies.

When you disable the deployment status for a virtual service, you disable the
controls on the virtual service's Deployment profile (thus, preventing users from
deploying, undeploying or redeploy the virtual service).

When the deployment status for a virtual service is in the disabled state, the virtual
service is not eligible for automatic re-deployment when changes occur to its run-
time policies.

Note: Disabling the deployment status of a virtual service does not undeploy
the virtual service if it is already deployed. If the virtual service is
currently deployed on a Mediator, it remains deployed there. However,
administrators will not be able to undeploy or redeploy the virtual service
from CentraSite Control until its deployment status is enabled.

To enable the deployment status of a virtual service, the following conditions must be
satisfied:

There must be at least one target defined in the registry.

The Entry Protocol and Routing steps must be configured.

Typically, you use this action in combination with the "Processing Steps Status" on
page 64 action, which enables and disables the Processing Steps profile for a virtual
service. For example, when you enable the Deployment profile, you generally disable the
Processing Steps profile and vice versa.

Event Scope
PostStateChange

Object Scope
Service
Virtual Service
Virtual REST Service
Virtual XML Service

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 49

Input Parameters

Enable
Deployment

Boolean Specifies whether the virtual service is eligible
for deployment (parameter set to "Yes") or ineligible for
deployment (parameter set to "No").

Classify
Classifies the target object (i.e., the object on which the policy was triggered) by one or
more taxonomy categories. You can assign the taxonomy categories to a classification
aribute of the target object, or you can assign the taxonomy categories as normal
classifications of the target object.

The classifications you assign using this action will appear on the asset's Classification
tab. The classifications you assign will also appear for the selected classification
aribute.

You can choose whether the classifications you specify with this action will be added
to the object's existing classifications or whether they will replace the object's existing
classifications. This choice is only available for multi-value classification aributes,
i.e. classification aributes that can reference more than one taxonomy category. If a
classification aribute is a single-value classification aribute, its existing value will be
replaced by the new one.

Event Scope
PostCreate
PostStateChange
OnTrigger
OnConsumerRegistration

Object Scope

This action can be enforced on any object type that the policy engine supports.

Input Parameters

Classify With
Attribute

Object Array This holds the parameters Classification
Attribute and Categories.

Classification
Attribute

String (optional) This specifies the name of the object's
aribute to which the following classification categories
apply. If you leave this parameter empty, the classification
categories will be used as normal classifications of the target
object.

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 50

Categories Taxonomy Node Array The taxonomy nodes by which you
want to classify the object.

Overwrite Boolean If true, this specifies that you want to overwrite
all existing classifications with the newly specified
classifications. If false, the newly specified classifications are
added to the existing classifications.

Note: This option applies only to multi-value classification
aributes. If a classification aribute is a single-
value classification aribute, its existing value will be
replaced by the new one, regardless of the seing of the
Overwrite parameter.

Consumer WSDL Generator
Enables the Consumer WSDL option on the Specification profile of SOAP-based virtual
services. For information about the Consumer WSDL option, see information about the
Specification profile in Run-Time Governance with CentraSite.

Event Scope
PreCreate
PreUpdate
OnTrigger

Object Scope
Virtual Service

Input Parameters

None.

Default Move Handler
Performs standard actions when an object's owner or organization changes.

This action is included in the Default Move Handler policy that is installed with
CentraSite. This is the default policy that executes when an object is moved to a new
owner or organization.

Event Scope
OnMove

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 51

Object Scope

This action can be enforced on any object type that the policy engine supports.

Input Parameters

Send
Notification

Boolean Specifies whether a notification should be sent to the
object's new owner and previous owner.

If this is set to true, a notification will be sent to the new
owner and the previous owner. Also, a subscription to the
object will be created automatically for the new owner and
the previous owner. If the ownership changes again at a
later time, the subscriptions of the old owners (i.e. users who
owned the object before the new owner and the immediate
previous owner) will not be automatically deleted, so the old
owners will continue to receive notifications of ownership
changes until they delete the subscription explicitly.

If this is set to false, no notification will be sent to the
new owner or the previous owner. However, a notification
will be sent to any other user who has a subscription to be
notified of an ownership change for the object.

The default is true.

Delete RuntimeEvents and RuntimeMetrics
Deletes the events and metrics that have been logged for a service.

This action is included in the Delete RuntimeEvents and RuntimeMetrics of Service policy
that is installed with CentraSite. This policy executes when a service is deleted. The
policy ensures that the metrics and events associated with a service are removed from
the run-time logs when a service is deleted.

Event Scope
PreDelete

Object Scope
Service
Virtual Service
REST Service
Virtual REST Service
XML Service
Virtual XML Service
CEP Event Type

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 52

Input Parameters

Delete Runtime
Events

Boolean Specifies whether the events that have been logged
for a service are to be deleted.

Delete Runtime
Metrics

Boolean Specifies whether the runtime metrics that have been
logged for a service are to be deleted.

Enforce Unique Name
Ensures that the names of objects that are created in CentraSite are unique.

This action is included in the Enforce Unique Name policy that is installed with
CentraSite. For information about this policy, see the information about using CentraSite
with ARIS in the CentraSite Administrator’s Guide.

Event Scope
PreCreate
PreUpdate
PreStateChange
OnTrigger

Object Scope

This action can be enforced on any object type that the policy engine supports.

Input Parameters

Enforce Across
Organizations

Boolean If this parameter is set to True, then the
unique name requirement for objects is enforced in all
organizations defined in CentraSite.

Allow Different
Versions

Boolean If this parameter is set to True, then different
versions of an object can exist in CentraSite with the
same name.

Initiate Approval
Initiates an approval workflow.

When this action is executed, CentraSite initiates the approval process. CentraSite will
not process any subsequent actions in the policy or execute the requested operation until
the approvals specified by the Initiate Approval action are received.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 53

Caution: When you use this action on the PreStateChange event, only certain kinds of
actions can be executed after this action in an approval policy. Some actions, if
they occur after this action, will cause the policy to fail.

Note: To use the email options provided by this action, CentraSite must have a
connection to an SMTP email server. For instructions on how to configure
CentraSite‘s connection to an email server, see the CentraSite Administrator’s
Guide.

If You Migrate this Action from a Pre-8.2 Release

If you have a policy that contains this action and the policy was created prior to version
8.2, that policy will continue to exhibit the old email-notification behavior (i.e., it will
continue to send the earlier version's standard email message to approvers). If you want
to use the email-notification enhancements that were introduced in version 8.2, simply
edit the policy and enable the email parameters in the Initiate Approval action.

Event Scope
PreStateChange
OnConsumerRegistration

Object Scope

This action can be enforced on any object type that the policy engine supports.

Input Parameters

User String The user name that will be used together with the
Password parameter as authentication credentials for
performing a lifecycle model state change on a service
asset. The credentials are stored in the approval request
and passed to the web service for completing the approval.
The user specified must have the permissions required to
perform the state change.

This parameter is only visible to users with the CentraSite
Administrator role.

Password String The password that will be used together with the
User parameter as authentication credentials.

This parameter is only visible to users with the CentraSite
Administrator role.

Approval Flow
Name

String The name to be given to the approval workflow
that this action initiates. This name serves to identify
the workflow in the Approval History log and in the
approver's inbox.

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 54

An approval flow name can contain any combination of
characters, including a space.

You can also include substitution tokens in the name to
incorporate data from the target object on which the policy
is acting. For a list of the allowed tokens, see the list of
Substitution Tokens shown in the Send Email Notification
action.

Approver Group String Array The user group (or groups) that identifies the
set of users who are authorized to approve the requested
operation.

Note: If the user groups specified in Approver Group are
empty at enforcement time, the user's request is auto-
approved.

String The manner in which the approval is to be
processed:

Value Description

AnyOne Default The request can be approved or
rejected by any single user in Approver
Group. In this mode, only one user from
the set of authorized approvers is required
to approve or reject the request.

Approval is
Needed From

EveryOne The request must be approved by all users
specified in Approver Group. (It does not
maer in which order the approvals are
issued.) A single rejection will cause the
request to be rejected.

Reject State The lifecycle state that is to be assigned to the object if
the approval request is rejected. If this parameter is not
specified, the object's lifecycle state does not change when
a rejection occurs.

The lifecycle model must define a valid transition from the
state that the target object is in at the time it is submied
for approval to the state specified in Reject State.
Otherwise, the target object's state will not be switched
when a rejection occurs.

Send Pending
Approval Email

Boolean Specifies whether CentraSite is to send an email
message to specified users and/or groups when the request

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 55

is initially submied for approval. If you enable this
option, you must set the following parameters to specify
the text of the message and to whom it is to be sent.

Note: If the request is auto-approved, this message is not
sent.

Note: CentraSite automatically sends the email message to
the approvers in addition to the users and/or groups
that you specify below.

 Users Array of Users Users who are to receive the
email.

Note: You can specify the recipients of the
email using the Users parameter, the
Groups parameter, or both.

 Groups Array of Groups Groups whose users are to
receive the email.

Note: CentraSite will only send the email
to those users in the group whose
CentraSite user account includes an
email address.

 Subject String The text that you want to appear
in the subject line of the email. This
text can include substitution tokens to
insert run-time data into the subject
line. For available tokens, see the list of
Substitution Tokens shown in the Send
Email Notification action.

 Use Email
Template

Email Template Specifies the template that
is to be used to generate the body of the
email message.

Note: You can use the predefined template,
PendingNotification.html, for pending-
approval notifications if you do not
want to create an email template of
your own.

Note: If you use an email template to generate
the body of the message, you cannot
specify the body of the message using
the Custom Message parameter. (In

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 56

other words, you specify the body of
the message using either the Use Email
Templateor the Custom Message
parameter.)

 Custom
Message

TextArea The text of the email message.
This text can include substitution tokens
to insert run-time data into the message.
For available tokens, see the list of
Substitution Tokens shown in the Send
Email Notification action.

Note: If you use the Custom Message
parameter to specify the body of the
email message, you cannot generate
the body of the message using an email
template. (In other words, you specify
the body of the message using either
the Custom Messageor the Use Email
Template parameter.)

 Format String Specifies whether the message
in the Custom Message parameter is
formaed as HTML or plain text. For more
information about using this option, see
the CentraSite User’s Guide.

 Include
owner in
notification

Boolean When the parameter is enabled,
CentraSite sends the email to the owner of
the object (on which the policy is acting) in
addition to the other recipients.

Send Approval
Email

Boolean Specifies whether CentraSite is to send an email
message to specified users and/or groups when the request
is approved. If you enable this option, you must set the
following parameters to specify the text of the message and
to whom it is to be sent.

Note: CentraSite automatically sends the email message
to the user who submied the approval request in
addition to the users and/or groups that you specify
below.

Note: When the EveryOne option is specified in the
Approval is Needed From parameter, CentraSite
sends this email only after all approvers have
approved the request.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 57

Users See description of Users parameter.

Groups See description of Groups parameter.

Subject See description of Subject parameter.

Use Email
Template

See description of Use Email Template
parameter.

Note: You can use the predefined template,
ApprovalNotification.html, for
approval notifications if you do not
want to create an email template of
your own.

Custom
Message

See description of Custom Message
parameter.

Format See description of Format parameter.

Include
owner in
notification

See description of Include owner in
notification parameter.

Boolean Specifies whether CentraSite is to send an email
message to specified users and/or groups when the request
is rejected. If you enable this option, you must set the
following parameters to specify the text of the message and
to whom it is to be sent.

Note: CentraSite automatically sends the email message to
the approvers (except for the approver who rejected
the request) and to the user who submied the
approval request in addition to the users and/or
groups that you specify below.

Users See description of Users parameter.

Groups See description of Groups parameter.

Subject See description of Subject parameter.

Send Rejection
Email

Use Email
Template

See description of Use Email Template
parameter.

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 58

Note: You can use the predefined template,
RejectApprovalNotification.html, for
rejection notifications if you do not
want to create an email template of
your own.

Custom
Message

See description of Custom Message
parameter.

Format See description of Format parameter.

Include
owner in
notification

See description of Include owner in
notification parameter.

Initiate Group-Dependent Approval
Initiates an approval workflow based on the group to which the requestor belongs. If the
requestor does not belong to any of the groups specified in the Triggering Groups array,
approval is waived and the action is considered to be completed successfully.

Caution: When you use this action on the PreStateChange event, only certain kinds of
actions can be executed after this action in an approval policy. Some actions, if
they occur after this action, will cause the policy to fail.

Note: To use the email options provided by this action, CentraSite must have a
connection to an SMTP email server. For instructions on how to configure
CentraSite‘s connection to an email server, see CentraSite Administrator’s Guide.

If You Migrate this Action from a Pre-8.2 Release

If you have a policy that contains this action and the policy was created prior to version
8.2, that policy will continue to exhibit the old email-notification behavior (i.e., it will
continue to send the earlier version's standard email message to approvers). If you want
to use the email-notification enhancements that were introduced in version 8.2, simply
edit the policy and enable the email parameters in the Approval action.

Event Scope
PreStateChange
OnConsumerRegistration

Object Scope

This action can be enforced on any object type that the policy engine supports.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 59

Input Parameters

User String The user name that will be used together with the Password
parameter as authentication credentials for performing a lifecycle
model state change on a service asset. The credentials are stored in
the approval request and passed to the web service for completing
the approval. The user specified must have the permissions required
to perform the state change.

This parameter is only visible to users with the CentraSite
Administrator role.

Password String The password that will be used together with the User
parameter as authentication credentials.

This parameter is only visible to users with the
CentraSiteAdministrator role.

Object Array The list of groups whose membership will determine
whether the request requires approval, and if so, to which group of
approvers the request is to be routed. Each object in the Approval
array must contain the following information:

Parameter Description

Triggering
Groups

String Array The user group (or groups) that
identifies the users whose requests must be
approved.

Approval

Approval Flow
Name

String The name to be given to the approval
workflow that this action initiates. This name
serves to identify the workflow when activity
relating to it appears in the Approval History
log or an approver's inbox.

An Approval Flow Name can contain any
combination of characters, including a space.

You can also include substitution tokens in
the name to incorporate data from the target
object on which the policy is acting. For a list of
the allowed tokens, see the list of Substitution
Tokens shown in the Send Email Notification
action.

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 60

Approver
Group

String Array The user group (or groups) that
identifies the set of users who are authorized to
approve the requested operation.

Note: If the user groups specified in Approver
Group are empty at enforcement time, the
user's request is auto-approved.

String The manner in which the approval is to
be processed as follows:

Value Description

AnyOne Default The request
can be approved or
rejected by any single
user in Approver
Group. In this mode,
only one user from
the set of authorized
approvers is required
to approve or reject
the request.

Approval is
needed from

EveryOne The request must
be approved by all
users specified in
Approver Group.
(It does not maer
in which order the
approvals are issued.)
A single rejection will
cause the request to
be rejected.

Reject
State

The lifecycle state that is to be assigned to the object if the approval
request is rejected. If this parameter is not specified, the object's
lifecycle state does not change when a rejection occurs.

The lifecycle model must define a valid transition from the state that
the target object is in at the time it is submied for approval to the
state specified in Reject State. Otherwise, the target object's state
will not be switched when a rejection occurs.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 61

Mark Pending on Runtime Policy Change
Marks the deployed virtual services or consumer applications that are within the scope
of run-time policy as pending for redeployment on activation or deactivation of the
policy. After the policy is activated, the virtual services and consumer applications are
automatically redeployed.

This action is included in the Mark Pending-For-Redeployment On RuntimePolicy Change
policy that is installed with CentraSite. This policy executes when a run-time policy
switches to the Productive state (which activates the policy) or Suspended state (which
deactivates the policy).

If you customize the lifecycle model that CentraSite provides for policies and you add
additional states to the model, you must execute this action during any transition that
changes the activation state of a policy.

Event Scope
PreStateChange

Object Scope
Policy

Input Parameters

None.

Notify ARIS Service
Notifies the ARIS APG Service endpoint with the SOAP request message provided
in this action. The APG Service endpoint is picked up from the associated ARIS
Application Server.

You can use this action in the following policies:

Notify ARIS on Process Changes

Notify ARIS on Service Changes

Notify ARIS on Service Completion

Notify ARIS on Service Deletion

For information about using CentraSite with ARIS in the CentraSite Administrator’s Guide.

Event Scope
PostUpdate
PostDelete
PostStateChange
OnTrigger

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 62

Object Scope
Process
Service

Input Parameters

Boolean Specifies whether the service is secured by Basic HTTP
authentication.

If you enable this option, you can optionally specify the user
ID and password that CentraSite is to submit when it invokes
the service in the following parameters. If you leave these
parameters empty, CentraSite will submit the credentials
belonging to the user who triggered this policy action.

HTTP Basic
Auth Username

The user ID that you want CentraSite to
submit for HTTP basic authentication
(if you do not want CentraSite to submit
the user ID of the user who triggered the
policy).

HTTP
Basic Auth
Enabled

HTTP Basic
Auth Password

The password associated with the user ID
specified in HTTP Basic Auth Username.

SOAP
Request
Message

String The SOAP message that CentraSite is to submit to the
ARIS service. This message can include substitution tokens, if
you want to insert run-time data into it. For available tokens,
see the list of Substitution Tokens shown in the Send Email
Notification action.
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:web="http://www.idsscheer.com/age/webMethods/">
 <soapenv:Header/>
 <soapenv:Body>
 <web:UpdateServiceRequest>
 <dbname>${context.ARIS_DB_CONTEXT}</dbname>
 <language>${user.locale}</language>
 <serviceDetail>
 <guid>${entity.key}</guid>
 <name>${entity.name}</name>
 <url>${entity.URL}</url>
 <lifeCycleState>${entity.state}</lifeCycleState>
 <owner>${entity.owner}</owner>
 <description>${entity.description}</description>
 <organization>${entity.organization}</organization>
 <version>${entity.version}</version>
 ${entity.attribute.Operations}
 </serviceDetail>
 </web:UpdateServiceRequest>
 </soapenv:Body>
</soapenv:Envelope>

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 63

SOAP Action String The SOAP action that CentraSite will set in the message.
If you do not set this parameter, CentraSite will set the SOAP
action to an empty string.

Connection
Timeout (in
milliseconds)

Number The length of time (in milliseconds) that CentraSite will
wait for a response from the remote machine. If the timeout
limit is exceeded, the policy action fails.

Content
Type

String The value that CentraSite is to assign to the Content-Type
header in the SOAP request that it submits to the service.

Example:
application/soap+xml; charset=utf-8

If you do not specify Content Type, the value application/
soap+xml is assigned to the SOAP request.

On Consumer Registration Request Send Email to Owner
This action template allows an email to be sent to the owner of an object if there is a
consumer registration request for the object.

Event Scope
PreCreate

Object Scope
Consumer Registration Request

Input Parameters

Custom
Message

TextArea The text of the email message. This text can include
substitution tokens to insert run-time data into the message. For
available tokens, see the list of Substitution Tokens shown in the
Send Email Notification action.

Note: If you use the Custom Message parameter to specify
the body of the email message, you cannot generate the
body of the message using an email template. (In other
words, you specify the body of the message using either the
Custom Messageor the Use Email Template parameter.)

Subject String The text that you want to appear in the subject line of the
email. This text can include substitution tokens to insert run-
time data into the subject line. For available tokens, see the list of
Substitution Tokens shown in the Send Email Notification action.

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 64

Format String Specifies whether the message in the Custom Message
parameter is formaed as HTML or plain text.

Use Email
Template

Email Template Specifies the template that is to be used to
generate the body of the email message. This text can include
substitution tokens to insert run-time data into the subject line.
For available tokens, see the list of Substitution Tokens shown in
the Send Email Notification action.

Note: You can use the predefined template,
PendingNotification.html, for pending-approval
notifications if you do not want to create an email template
of your own.

Note: If you use an email template to generate the body of the
message, you cannot specify the body of the message using
the Custom Message parameter. (In other words, you
specify the body of the message using either the Use Email
Templateor the Custom Message parameter.)

Processing Steps Status
Enables or disables the Processing Steps profile for a virtual service.

When you enable the processing steps status for a virtual service, you enable the
controls on the Processing Steps profile for that virtual service. These controls enable
authorized users to modify the processing steps for the virtual service.

When you disable the processing steps status for a virtual service, you disable the
controls on the Processing Steps profile. While this profile is disabled, users cannot
make changes to the virtual service's processing steps.

Typically, you use this action in combination with the "Change Deployment Status"
on page 48 action, which enables and disables the Deployment profile for a virtual
service. For example, when you enable the Processing Steps profile for a virtual service,
you generally disable the Deployment profile and vice versa.

Event Scope
PostStateChange

Object Scope
Service
Virtual Service
Virtual REST Service
Virtual XML Service

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 65

Input Parameters

Enable
Processing
Steps

Boolean Specifies whether the Processing Steps profile
for a virtual service is enabled (parameter set to "Yes") or
disabled (parameter set to "No").

Promote Asset
This policy action allows you to promote an asset instance to a different CentraSite stage.
The action can be executed on a lifecycle pre-state change, post-state change or on an
OnTrigger event. The configurations cover the following options:

Specify a stage to promote to

This can be either the name of a lifecycle stage or the URL of the target registry.

Specify optional user credentials for the target stage

The credentials specify a user name and password of a user defined on the target
registry. This user should have the required permissions to create the asset on the
target registry.

Include referenced objects in the promotion set

Assets that are referenced by the asset being promoted can be included in the
promotion process.

Keep the asset owner unchanged

You can specify that the owner of the asset in the source registry will also be the
owner in the target registry. If this user does not exist in the target registry, the
owner will be the user specified in the optional user credentials described above.

This user should be able to create assets in the target organization, which can be any
of the following, depending on the input parameters you specify:

The organization mentioned in the Target Organization parameter.

The organization to which the user in the target registry belongs.

The organization to which the triggering user or the user in the Username
parameter belongs.

Replace existing registry objects in the target stage

If an asset already exists on the target stage, it may be replaced by the asset being
promoted.

Specify a target organization name

When the asset is promoted, it will belong to the organization specified.

Keep the lifecycle state

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 66

You can specify a lifecycle state for the promoted asset on the target registry. If you
do not specify a state, the promoted asset will be placed in the initial state of the
lifecycle model on the target registry.

Event Scope
PreStateChange
PostStateChange
OnTrigger

Object Scope
Asset

Input Parameters

The following table lists the input parameters for the policy action.

Target
Stage

String The name of the target stage to which the asset will be
promoted. This assumes that you have already defined the
stage, as described in the section about lifecycle management in
the CentraSite Administrator’s Guide.

If a value is specified for the parameter Target Stage URL,
the value of Target Stage is used instead of the value of the
parameter Target Stage URL. At least one of the parameters
Target Stage or Target Stage URL must be specified, i.e.
they cannot both be empty.

Target
Stage URL

String The URL of the target CentraSite registry.

If a value is specified for the parameter Target Stage URL,
the value of Target Stage is used instead of the value of the
parameter Target Stage URL. At least one of the parameters
Target Stage or Target Stage URL must be specified, i.e.
they cannot both be empty.

Username String (optional) The user name and password are used as
authentication credentials for the target stage. The assets will be
created in the target by this user.

If the user name and password are not supplied, the user
name and password of the triggering user on the source stage
will be used. If this user is not defined on the target stage, the
promotion will fail.

Password String (optional) The user name and password are used as
authentication credentials for the target stage. The assets will be
created in the target by this user.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 67

If the user name and password are not supplied, the user
name and password of the triggering user on the source stage
will be used. If this user is not defined on the target stage, the
promotion will fail.

Include
Referenced
Assets

Boolean (optional) Specifies whether the referenced assets
(referenced via associations) of the applied asset will be
included for the promotion.

A value of yes means that the references assets will also be
promoted. A value of no means that only the specified asset will
be promoted.

The default value is yes.

Keep Owner Boolean (optional) Specifies if the current owner will also be
the owner in the target registry. This can only happen if the
owner also exists as a user on the target registry and has the
permissions required to create assets.

A value of yes means that the asset owner on the target stage
will be the same owner as on the source stage. A value of no
means that the owner will be the specified user from the User
Name parameter.

The default value is no.

Replace
Existing
Assets

Boolean (optional) Specifies if an asset that already exists on the
target stage may be replaced by the asset being promoted.

A value of yes means that an asset on the target stage can be
replaced. A value of no means that an existing asset on the
target stage cannot be replaced.

The default value is no.

Keep
Lifecycle
State

Boolean (optional) Specifies if the promoted asset should keep
the lifecycle state that it has on the source stage. This can only
happen if the lifecycle model used on the source stage is also
defined and active on the target stage.

A value of yes means that an asset on the target stage will have
the same state as on the source stage. A value of no means that
the promoted asset will be set to a lifecycle state according to
the combinations as shown in the table below.

The default value is no.

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 68

Target
Organization

String (optional) Specifies the owning organization of the asset
on the target stage. This can only happen if the specified
organization exists on the target.

As noted in the table, some of the promotion operations are only possible if the target
stage contains users, organizations and lifecycle models that are compatible with those
defined on the source stage. The possible combinations are listed in the following tables.

Note: During the promotion process, CentraSite copies the metadata of an asset
from the source instance to the target instance. However, if the action is to be
executed during a prestatechange event, the changes due to the other actions
in the source instance are not reflected in the target instance. You will need
to explicitly update the asset if you want that change reflected in the target
instance, too.

Important: Before you activate a policy that includes the Promote Asset action, ensure
that the target's specified target stage URL or target stage is active and the
user credentials of target registry are valid. To check this, click the Check
Connection buon. If the connection is not active and valid, activate the target
specified in Target Stage or Target Stage URL and modify the user credentials
as required.

Target Organization and Target Owner

When the asset is promoted to the target registry, it will belong to a specific organization
and will be owned by a specific user. The organization and owner on the target registry
are not necessarily the same organization and owner as on the source registry.

The owner on the target registry can be one of the following:

the same owner as on the source registry (called "User A" in the following
description)

the user specified in the Username parameter (called "User B" in the following
description)

the triggering user, i.e. the user who activates the asset promotion (called "User C" in
the following description)

The organization on the target registry can be one of the following:

the organization specified in the Target Organization parameter (called
"Organization P" in the following description)

the organization of the user supplied in the Username parameter (called
"Organization Q" in the following description)

the organization of the triggering user (called "Organization R" in the following
description)

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 69

Target Owner:

This user will be the owner … ... under these circumstances

User A If Keep Owner is specified, and User A has
permission to create assets in Organization P or
Q or R.

User B If User A does not meet the requirements
described in the previous row, and User B is
defined.

User C If User B not meet the requirements described in
the previous row.

Target Organization

This organization will be the
owning organization …

... under these circumstances

Organization P If Target Organization is specified and the
target owner defined in the above table has
permission to create assets in this organization.

Organization Q If Organization P does not meet the
requirements described in the previous row, and
User B is defined.

Organization R If Organization Q does not meet the
requirements described in the previous row.

CentraSite aempts to create the asset on the target registry using the resulting
combination of target owner and target organization. If the given user does not have
permission to create assets in the given organization, the promotion will fail.

Keep Lifecycle State

Keep LCM
State

Availability of the same
LCM in the target stage

Does target have
its own LCM

Result state of the promoted
asset

yes yes n/a Same state as in the
source.

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 70

Keep LCM
State

Availability of the same
LCM in the target stage

Does target have
its own LCM

Result state of the promoted
asset

yes no yes Initial state of the LCM in
the target.

yes no no No state assigned.

no n/a yes Initial state of the LCM in
the target.

no n/a no No state assigned.

Publish to API-Portal
Enables you to publish API metadata to an API-Portal, thereby creating or updating the
API information in the API-Portal repository.

Event Scope

PreStateChange

PostStateChange

OnTrigger

Object Scope

Service

XML Service

REST Service

Virtual Service

Virtual XML Service

Virtual REST Service

Input Parameters

API-Portal Optional. String. Array. The name of the API-Portal to which
the API would be published. This assumes that you have
already registered the API-Portal in CentraSite, as described
in Working with the CentraSite Business UI.

Note: However, if this action is to be executed in a
different event other than OnTrigger, for example,

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 71

prestatechange or poststagechange, that is not provided
by default, you must specify a value for this field.

Endpoint
Category

Optional. String. Array. The names of specific taxonomy
categories by which the endpoints of the API are classified.

REST Service
Attributes

Optional. String. Array. A metadata bundle can be supplied
with additional information of a RESTful API and published
to an API-Portal. You use this field to specify additional
aributes of the REST API to be published to API-Portal.

SOAP Service
Attributes

Optional. String. Array. A metadata bundle can be supplied
with additional information of a SOAP-based API and
published to an API-Portal. You use this field to specify
additional aributes of the SOAP API to be published to
API-Portal.

Register Consumer
Registers users, groups and/or consumer applications (as specified by the requestor) as
consumers of an asset. This action creates a consumed-by relationship between the asset
and the specified consumers. Once established, this relationship is visible in the asset's
Consumers profile and also on the asset's Impact Analysis page.

The following actions are typically used in conjunction with the Register Consumer
action.

The approval actions (Initiate Approval or Initiate Group-Dependent Approval)
are generally used to obtain necessary approvals prior to executing the Register
Consumer action.

The Set Consumer Permission action is typically executed after the Register
Consumer action to give the specified consumers access to the requested asset.

Event Scope
OnConsumerRegistration

Object Scope
Asset (any type)

Input Parameters

None.

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 72

Send Email Notification
Sends an email message to specified users and/or groups.

Note: To use this action, CentraSite must have a connection to an SMTP email
server. For instructions on how to configure the email server, see the
CentraSite Administrator’s Guide.

Note: During an iteration of the policy, if the connection to a SMTP email server
fails, this policy action returns a failure code. CentraSite writes the failure
message to the policy log; however performs the next action in the policy (if
one exists).

Event Scope
PreCreate
PostCreate
PreUpdate
PostUpdate
PreDelete
PostDelete
PreStateChange
PostStateChange
OnConsumerRegistration
OnTrigger

Object Scope

This action can be enforced on any object type that the policy engine supports.

Input Parameters

Users Array of Users Users who are to receive the email.

Note: You can specify the recipients of the email using the
Users parameter, the Groups parameter, or both.

Groups Array of Groups Groups whose users are to receive the email.

Note: CentraSite will only send the email to those users in
the group whose CentraSite user account includes an
email address.

Subject String The text that you want to appear in the email's
subject line. This text can include substitution tokens to
insert run-time data into the subject line.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 73

Use Email
Template

Email Template Specifies the template that is to be used to
generate the body of the email message.

Note: You can use the predefined template,
ChangeNotification.html, as your email template if you
do not want to create an email template of your own.

Note: If you use an email template to generate the body
of the message, you cannot specify the body of the
message using the Custom Message parameter. (In
other words, you specify the body of the message
using either the Use Email Template or the Custom
Message parameter.)

Custom Message TextArea The text of the email message. This text can include
substitution tokens to insert run-time data into the message.

Note: If you use the Custom Message parameter to specify
the body of the email message, you cannot generate
the body of the message using an email template. (In
other words, you specify the body of the message
using either the Custom Messageor the Use Email
Template parameter.)

Format String Specifies whether the custom mail message is
formaed as HTML or plain text.

Include owner
in notification

Boolean When enabled, this parameter sends the email
notification to the owner of the object on which the policy
is acting in addition to the users specified by the Users and
Groups parameters.

Substitution Tokens

The following list describes substitution tokens that you can use to incorporate data
from the run-time instance of a policy into the email. For example, you can use tokens to
return information about the object on which the policy is acting, identify the user who
triggered the policy, and/or indicate what type of event caused the policy to fire.

Be aware that some tokens are only meaningful for certain types of objects. User objects,
for example, do not have a Description aribute, so the ${entity.description} token has
no meaning for a User object. If you use a substitution token that is not supported by the
policy's target object, CentraSite simply replaces the substitution token with a space at
enforcement time.

If the target object includes the requested aribute, but the aribute itself has no value,
CentraSite also replaces the substitution token with a space in the email message. If the

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 74

requested aribute contains an array of values, CentraSite inserts the values into the
email as a comma-separated list.

This token... Inserts the following information into the parameter
value at execution time...

${api.usage} This token will be replaced with the value
specified in the API Usage aribute of API.

${entity.approver} The name of the user who approved or
rejected the approval request.

Note: This token is only meaningful in email
messages that are issued by the "Initiate
Approval" on page 52 or "Initiate
Group-dependent Approval" on page
58 actions. If it is used in a context
where there is no approver or approval
request, the token is simply replaced with
a space.

${entity.approvercomments} The comment provided by the approver
when he or she approved or rejected the
approval request.

Note: This token is only meaningful in email
messages that are issued by the "Initiate
Approval" on page 52 or "Initiate
Group-dependent Approval" on page
58 actions. If it is used in a context
where there is no approval request, the
token is simply replaced with a space.

${entity.attribute.attributeName}The value of the aribute specified in
aributeName . You can use this token with all
aribute types (including computed types)
except Classification, File, and Relationship
types.

Important: You must specify the aribute's
schema name in aributeName, not its
display name. For information about
an aribute's schema name, see the
CentraSite Administrator’s Guide.

${entity.BUIAssetURL} A link to the URL of the asset details page in
CentraSite Business UI.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 75

This token... Inserts the following information into the parameter
value at execution time...

${entity.BUIBaseURL} A link to the URL of the CentraSite Business
UI.

${entity.description} The object's description.

Note: Users do not have a Description aribute.

${user.displayname} The display name of the user who triggered
the policy.

${entity.key} The object's key (i.e., the UUID that uniquely
identifies the object within the registry).

${entity.name} The object's name (in the user's locale).

${entity.owner} The name of the user who owns the object
against which the policy is acting.

${entity.type} The type of object against which the policy
acting.

${entity.state} The state of the object against which the
policy is acting.

If the object is an Asset, Policy or Lifecycle
Model, this action inserts the object's current
lifecycle state. For all other object types, this
token is ignored.

${entity.URL} The URL for the object on which the policy is
acting. (This is the URL that opens the object
in CentraSite Control.)

${entity.version} The object's user-assigned version identifier.

${event.type} The type of event that triggered the policy.

${from.state} The state from which the object is being
switched (if the policy is executing on a
PreStateChange or PostStateChange event.)

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 76

This token... Inserts the following information into the parameter
value at execution time...

${target.state} The state to which the object is being
switched (if the policy is executing on a
PreStateChange or PostStateChange event).

${user.locale} The locale of the user who triggered the
policy.

${user.name} The name of the user who triggered the
policy.

${user.organization} The name of the organization to which the
user who triggered the policy belongs.

Example
User ${entity.owner} has added the following asset to the catalog:
Name: ${entity.name} Description: ${entity.description}

Set Attribute Value
Assigns a value to a specified aribute in an organization, user or asset.

Event Scope
Post-State Change
OnTrigger
OnConsumerRegistration
Pre-Create
Post-Create

Object Scope
Organization
User
Asset (any type)

Input Parameters

Attribute
Name

String/Non-String The name of the aribute that you want to
set.

Note: Attribute Name must be a non-arrayed String/Non-
String aribute.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 77

Set Consumer Permission
Assigns permission seings to the users and/or groups who are identified by a
consumer-registration request.

The behavior of this action with respect to specific asset profiles depends on the policy's
object scope.

If you use this action in a policy that applies to multiple asset types, you can set only
the asset's top-level View/Modify/Full permissions. Consumers do not receive View
or Modify permission on the individual profiles associated with the asset. You will
have to assign permissions to the asset's individual profiles manually.

If you use this action in a policy that applies to one (and only one) type of asset, you
can set the asset's top-level View/Modify/Full permissions and also the View/Modify
permissions on its individual profiles.

The permission seings you specify in this action will either replace or be merged
with the asset's existing seings, depending on how you set the Remove Existing
Permission parameter.

If you set Remove Existing Permission to true, the permission seings specified
in the action completely replace the asset's current seings. That is, the asset's previous
instance-level seings are completely cleared and the permissions specified by the action
are set.

For example if an asset's initial permission seings are as follows:
USER A Full
USER B Full

And you specify the following permissions (with Remove Existing Permission set to
true):
USER A Full
GROUP X Modify

The resulting permissions on the asset will be:
USER A Full
GROUP X Modify

If you set Remove Existing Permission to false, the permission seings specified by
this action are added to the asset's current seings. So, for example, if an asset has the
following permission seings:
USER A Full
USER B View

And you specify the following permissions (with Remove Existing Permission set to
false):
USER A Modify
USER B Full
GROUP X Modify

The resulting permissions on the asset will be:
USER A Full

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 78

USER B Full
GROUP X Modify

Note: The instance-level permissions that this action assigns to a user does not affect
any role-based permissions that the user might already have. For example, if
user ABC has Manage Assets permission for an organization, and that user
also happens to be a member of a group to which this action assigns instance-
level permissions, user ABC's Manage Assets permission will override the
permission seings that this action assigns to him or her.

Event Scope
OnConsumerRegistration

Object Scope
Asset (any type)

Input Parameters

Consumer Asset
Profile Permission

Object The instance-level permissions that are to be
assigned to the users and/or groups (specified in
the consumer registration request) for the requested
asset.

Remove existing
permission

Boolean Specifies whether the permission seings
in the Consumer Asset Profile Permission
parameter replace the existing permission seings or
whether they are combined with the existing seings.

Set Instance and Profile Permissions
Sets instance-level permissions on an asset. You can use this action to set top-level View/
Modify/Full permissions on an entire asset and to set View/Modify permissions on
individual profiles within an asset.

Note: You use this action to set permissions on assets only. To set permissions
on policies, you must use the "Set Permissions" on page 81 action. If
you want to assign asset permissions to consumers during the consumer
registration process, use the "Set Consumer Permission" on page 77
action.

Be aware that the behavior of this action varies depending on the policy's object scope.

If you use this action in a policy that applies to multiple asset types, you can only
use it to set the asset's top-level View/Modify/Full permissions. Users do not receive
View or Modify permission on the individual profiles associated with the asset. You
have to assign permissions to the asset's individual profiles manually.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 79

If you use this action in a policy that applies to one (and only one) type of asset,
you can use it to set the asset's top-level View/Modify/Full permissions and also the
View/Modify permissions on its individual profiles.

The permission seings you specify in this action will either replace or be merged
with the asset's existing seings, depending on how you set the Remove Existing
Permission parameter.

If you set Remove Existing Permission to true, the permission seings specified
in the action completely replace the asset's current seings. That is, the asset's previous
instance-level seings are completely cleared and the permissions specified by the action
are set.

For example if an asset's initial permission seings are as follows:
USER A Full
USER B Full

And you specify the following permissions (with Remove Existing Permission set to
true):
USER A Full
GROUP X Modify

The resulting permissions on the asset will be:
USER A Full
GROUP X Modify

If you set Remove Existing Permission to false, the permission seings specified by
this action are added to the asset's current seings. So, for example, if an asset has the
following permission seings:
USER A Full
USER B View

And you specify the following permissions (with Remove Existing Permission set to
false):
USER A Modify
USER B Full
GROUP X Modify

The resulting permissions on the asset will be:
USER A Full
USER B Full
GROUP X Modify

Note: The instance-level permissions that this action assigns to a user does not affect
any role-based permissions that the user might already have. For example, if
user ABC has Manage Assets permission for an organization, and that user
also happens to be a member of a group to which this action assigns instance-
level permissions, user ABC's Manage Assets permission will override the
permission seings that this action assigns to him or her.

Event Scope
PostCreate

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 80

PreStateChange
PostStateChange
OnTrigger

Object Scope
Asset (any type)

Input Parameters

User/
Group Asset
Permission

Object Array An array of permission seings. Each seing
in the array identifies one individual user or one group and
specifies the permissions for that user or group.

If you specify multiple groups in this array and a user is a
member of more than one group, the user will receive the
permissions of all those groups combined. For example,
if you assign Modify permission to Group A and Full
permissions to Group B, users that are members of both
groups will get Full permission on the object.

Remove
existing
permission

Boolean Specifies whether the permission seings in the
parameters User/Group Asset Permission, Propagate
permissions to dependent objects and Propagate
profile permissions replace the existing permission
seings or whether they are combined with the existing
seings.

Propagate
permissions
to dependent
objects

Boolean Specifies whether the access permissions defined
for the asset instance will be automatically propagated to
all dependent objects. For example, a Service asset can refer
to a WSDL which in turn can refer to one or more XML
Schema assets, and when you set this parameter to yes,
changes in the access permissions in the Service asset will be
propagated to all of these dependent assets.

Propagate
profile
permissions

Boolean Specifies whether the profile permissions defined
for the asset instance will be automatically propagated
to all dependent assets of the same type. The restriction
concerning the asset type arises because different asset types
can have different sets of profiles.

The use of this parameter is restricted to the following asset
types:

Service

XML Schema

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 81

Set Permissions
Grants View, Modify or Full permissions to specified users (or to groups of users) for a
policy.

Note: You use this action to set permissions on policy objects. To set permissions on
catalog assets, you must use "Set Instance and Profile Permissions" on page
78.

Be aware that the permission seings you specify in the action will either replace or
be merged with the object's existing seings, depending on how you set the Remove
Existing Permission parameter.

If you set Remove Existing Permission to true, the permission seings specified in
the action will completely replace the object's current seings. That is, the action will
clear the object's existing permission seings and replace them with the permissions you
specify.

For example if a policy's initial permission seings were as follows:
USER A Full
USER B Full
GROUP ABC Full

And you were to specify the following permissions with Remove Existing
Permission set to true:
USER A Full
GROUP X Modify

The resulting permissions on the asset would be:
USER A Full
GROUP X Modify

If you set Remove Existing Permission to false, the permission seings specified in
the action are added to the object's current seings. That is, the action will merge the new
permission seings with the object's existing seings. For example, if an asset had the
following permission seings:
USER A Full
USER B View
GROUP ABC View

And you were to specify the following permissions with Remove Existing
Permission set to false:
USER A Modify
USER B Full
GROUP X Modify

The resulting permissions on the asset will be:
USER A Full
USER B Full
GROUP X Modify
GROUP ABC View

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 82

Note: The instance-level permissions that this action assigns to a user will not affect
any role-based permissions that the user might already have. For example, if
user ABC has Manage Policies permission for an organization and that user
also happens to be a member of a group to which this action assigns instance-
level permissions, user ABC's Manage Policies permission will override the
permission seings that this action assigns to him or her.

Event Scope
PostCreate
PreStateChange
PostStateChange
OnTrigger

Object Scope

This action can be enforced on the following object types.
Policy

Input Parameters

User/Group
Permission

Object Array An array of permission seings. Each seing
in the array identifies one individual user or one group and
specifies the permissions for that user or group.

If you specify multiple groups in this array and a user is a
member of more than one group, the user will receive the
permissions of all those groups combined. For example, if you
assign Modify permission to Group A and Full permissions to
Group B, users that are members of both groups will get Full
permissions on the object.

Remove
existing
permission

Boolean Specifies whether the permission seings in the
Users and Groups parameter replace the existing permission
seings or whether they are combined with the existing
seings.

Propagate
permissions
to dependent
objects

Boolean Specifies whether the access permissions defined for
the asset instance will be automatically propagated to all
dependent objects. For example, a Service asset can refer to a
WSDL which in turn can refer to one or more XML Schema
assets, and when you set this parameter to yes, changes in the
access permissions in the Service asset will be propagated to
all of these dependent assets.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 83

Set Profile Permissions
This action sets an asset's profile permissions for the users/groups specified without
seing the asset's instance level permissions.

The users/groups specified in the parameter should have view or modify instance level
permission on the asset.

Event Scope
PostCreate
PreStateChange
PostStateChange
OnTrigger

Object Scope
Asset (any type)

Input Parameters

User/Group
Permission

Object Array An array of permission seings. Each seing
in the array identifies one individual user or one group, the
specified profile and the view/modify permissions for that
user or group for the profile.

Remove
existing
permission

Boolean Specifies whether the permission seings in the
User/Group Permission parameter replace the existing
permission seings or whether they are combined with the
existing seings.

Set State
Initiates a lifecycle state change for a lifecycle model, policy, asset or Process object.

When you use this action, be aware that:

The state change performed by this action will trigger PreStateChange or
PostStateChange policies if such policies exist for the specified state change.

When CentraSite executes this action at enforcement time, it aempts to change the
target object to the state you have specified. If this state is not a valid transition from
the object's current state, the action will fail.

If the target object is already in the specified state at enforcement time, this action
does nothing. It does not initiate a state change. It simply exits and returns a
successful completion code (i.e., this condition is not considered an error).

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 84

Event Scope
PostStateChange
OnTrigger
OnConsumerRegistration

Object Scope
Lifecycle Model
Policy
Asset (any type)
Process object

Input Parameters

Change
State To

String The value to which you want to set the object's state.

Set View Permission for Service and Service Related Object to
Everyone Group
Grants the View permission on a given service to the Everyone group. When permission
is given to Everyone, all users, including guests, are able to view the service and its
related interface, operation and binding objects. This policy action enables UDDIv2
clients to access the service without providing an authtoken.

This action is included in the UDDIv2 Inquiry Policy policy that is installed with
CentraSite. This policy executes when a service or virtual service is created. This policy
is disabled by default.

Event Scope
PostCreate
OnTrigger

Object Scope
Assets

Input Parameters

None.

Send Email Notification to Watchers
Sends an email notification to the watchers for an asset who are specific users asked to
be notified for any modifications on that particular asset.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 85

Note: This action is applicable to the CentraSite Business UI.

Event Scope
PostUpdate
PostDelete
OnTrigger

Object Scope

Asset (any type)

Input Parameters

Email
Template

Email Template Specifies the template that is to be used to
generate the body of the email message.

Note: You can use the predefined template,
NotifyUsersOnUpdate.html, as your email template if you
do not want to create an email template of your own.

Format String Specifies whether the mail message is formaed as HTML
or plain text.

UnClassify
Removes specified taxonomy categories from an object.

You can use this action to unclassify an object generally or specifically. If you want to
unclassify an object by removing from it all categories for an entire taxonomy, use the
Taxonomies parameter to specify the taxonomy name. If you want to unclassify an object
by removing just one particular category from its classification aributes, you use the
Categories parameter to specify a specific category name. Both parameters can be used
in the same action.

This action is executed against all classification aributes in the target object.

If the target object is not classified by any of the taxonomies or classifiers specified in the
Taxonomies or Categories parameters, the action simply exits and returns a successful
completion code. This condition is not considered to be an error.

Event Scope
PostStateChange
OnTrigger
OnConsumerRegistration

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 86

Object Scope

This action can be enforced on any object type that the policy engine supports.

Input Parameters

Taxonomies String Array The names of the taxonomies whose categories are to
be removed from the target object.

Categories String Array The names of specific categories that are to be
removed from the target object.

UnPublish from API-Portal
Removes specified API metadata from the API-Portal repository.

Event Scope

PreDelete

PostDelete

PreStateChange

PostStateChange

OnTrigger

Object Scope

Service

XML Service

REST Service

Virtual Service

Virtual XML Service

Virtual REST Service

Input Parameters

API-Portal Optional. String. Array. The name of the API-Portal from that
API-repository the API metadata would be removed.

Note: However, if this action is to be executed in a
different event other than OnTrigger, for example,

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 87

prestatechange or poststagechange, that is not provided
by default, you must specify a value for this field.

Validate Attribute Value
Validates the value of a specified aribute in an organization, user or asset against a list
of allowed values.

Event Scope
PreStateChange
PreDelete
OnTrigger
OnConsumerRegistration

Object Scope
Organization
User
Asset (any type)

Input Parameters

Attribute
Name

The name of the aribute that you want this action to test. The
aribute's data type can be Boolean, Date and Time, Duration,
Email, IP Address, Multiline String, Number, and URL/URI.

Note: Attribute Name must be a non-arrayed aribute.

Possible
Attribute
Value

String Array An array of regular expression String values. If the
value of the aribute specified in Attribute Name matches any
entry in Possible Attribute Values, the action succeeds.

The regular expressions you specify in Possible Attribute
Values must support the regular expression specification for
Java.

The data types of possible aribute values can be Boolean,
Date and Time, Duration, Email, IP Address, Multiline String,
Number, and URL/URI.

You can include substitution tokens in this parameter to
incorporate data from the target object on which the policy
is acting. For a list of the allowed tokens, see the list of
Substitution Tokens shown in the Send Email Notification
action.

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 88

Validate Classification
Checks whether an object is classified by a given taxonomy or taxonomy category. This
action examines all classification aributes in the target object.

If you just want to check that the target object has been classified by a given taxonomy,
simply specify the taxonomy in the Taxonomies parameter. Leave the Categories
parameter empty. The action will succeed if the object is classified by any category in
the taxonomy (i.e., the action succeeds if the object includes at least one Classification
aribute whose value represents a category that belongs the specified taxonomy).

If you want to check that the target object has been classified by a specific category in a
taxonomy, specify the exact category in the Categories parameter. Leave the Taxonomies
parameter empty. The action will succeed only if the object has been classified by the
exact category you specify (i.e., the object includes at least one Classification aribute
whose value is set to that specific category).

If you specify multiple taxonomies and categories in the Taxonomies and Categories
parameters, be aware that action will succeeds if the target object is classified according
to any taxonomy specified in the Taxonomies parameter or any category specified in
the Categories parameter. If you need to verify that an object has been classified by
several different taxonomies or categories, you must test for each required taxonomy or
category using a separate Validate Classification action.

Event Scope
PreStateChange
PreDelete
OnTrigger
OnConsumerRegistration

Object Scope

This action can be enforced on any object type that the policy engine supports.

Input Parameters

Taxonomies String Array The names of the taxonomies by which the object
must be classified.

Categories String Array The names of specific taxonomy nodes by which the
target object must be classified.

Validate Description
Validates the description of an object against a given paern string.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 89

Event Scope
PreCreate
PreStateChange
OnTrigger

Object Scope

This action can be enforced on any object type that the policy engine supports.

Input Parameters

Allowed
Description
Pattern

String Specifies a regular expression that the description
must satisfy. The regular expressions you specify in Allowed
Description Pattern must support the regular expression
specification for Java.

The regular expression can include substitution tokens to
incorporate data from the target object on which the policy
is acting. For a list of the allowed tokens, see the list of
Substitution Tokens shown in the Send Email Notification
action.

Validate Lifecycle Model Activation
Verifies that a lifecycle model is ready to be activated by checking that the following
conditions exist for the lifecycle model:

That the lifecycle model is associated with at least one object type.

That the object types associated with the lifecycle model are not already assigned to
an active lifecycle model in your organization. (This check ensures that, within your
organization, each object type is associated with no more than one lifecycle model.)

The action will not succeed unless both conditions are satisfied.

You should include this action in any policy that is triggered by a lifecycle state change
that subsequently activates the lifecycle model. Executing this action before the state
change occurs ensures that the state change (and subsequent activation) will not occur
unless the lifecycle model is capable of being activated.

This action is executed by the default Validate Lifecycle Activation policy that is
installed with CentraSite. The Validate Lifecycle Activation policy executes on the
PreStateChange event that occurs when a lifecycle model switches to the Productive
lifecycle state. The Validate Lifecycle Activation action in this policy ensures that a
lifecycle model is not switched to the Productive state (and consequently, activated)
unless the model has been properly associated with one or more object types.

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 90

Event Scope
PreStateChange

Object Scope
Lifecycle Model

Input Parameters

None.

Validate Name
Validates the name of an object against a given paern string.

Event Scope
PreCreate
PreStateChange
OnTrigger

Object Scope

This action can be enforced on any object type that the policy engine supports.

Input Parameters

Allowed
Name
Pattern

String Specifies a regular expression that the object name must
satisfy. The regular expressions you specify in Allowed Name
Pattern must support the regular expression specification for
Java.

The regular expression can include substitution tokens
to incorporate data from the target object on which the
policy is acting. For a list of the allowed tokens, see the list
of Substitution Tokens shown in the Send Email Notification
action.

Validate Namespace
Checks that the targetnamespace aribute in a Web Service or XML Schema matches one
of the valid namespaces in a given list.

Event Scope
PreCreate
PreStateChange

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 91

OnTrigger

Object Scope
XML Schema
CEP Event Type
Service
Virtual Service
REST Service
Virtual REST Service
XML Service
Virtual XML Service

Input Parameters

Allowed
Namespaces

String Array An array of regular expressions representing the
valid namespaces. For this action to succeed, the value of the
targetnamespace aribute in the service WSDL or XML schema
must satisfy one of the regular expressions in the array.

The regular expressions you specify in Allowed Namespaces
must support the regular expression specification for Java.

The regular expression can include substitution tokens to
incorporate data from the target object on which the policy is
acting. For a list of the allowed tokens, see the list of Substitution
Tokens shown in the Send Email Notification action.

Validate Policy Activation
Verifies that a policy is ready to be activated by checking that the following conditions
exist for the policy:

That all of the required parameters in the policy's action list have been set.

That all of the actions in the action list are supported by the policy's specified scope.
That is, the policy does not contain any action whose scope includes an object type or
event type that is outside the scope of the policy itself.

That a policy that contains one or more WS-I actions contains only WS-I actions.

That a policy that executes on a PreStateChange or PostStateChange specifies the
lifecycle states that will trigger the policy.

Whether a previous version of the policy is already active, and if so, it verifies that
the policy can be switched to a state in which it is retired or superseded.

The action will not succeed unless all conditions are satisfied.

You should include this action in any policy that is triggered by a lifecycle state change
that subsequently activates the policy. Executing this action before the state change

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 92

occurs ensures that state change (and subsequent activation) will not occur unless the
policy is capable of being activated.

This action is executed by the default Validate Policy Activation policy that is installed
with CentraSite. The Validate Policy Activation policy executes on the PreStateChange
event that occurs when a policy switches to the Productive lifecycle state. The Validate
Policy Activation action in this policy ensures that a policy is not switched to the
Productive state (and consequently activated) unless the policy's action parameters have
been set.

Event Scope
PreStateChange

Object Scope
Policy

Input Parameters

None.

Validate Policy Deactivation
Verifies that a policy is not currently “in-progress” (that is, undergoing execution) and
can therefore be successfully deactivated. If the policy is in-progress when this action is
executed, this action will fail.

You should include this action in any policy that is triggered by a lifecycle state change
that subsequently deactivates the policy. Executing this action before the state change
occurs helps ensure that the stage change (and subsequent policy deactivation) will not
take place if the target policy is in-progress.

Note: A policy that initiates an approval workflow is considered to be “in-progress”
until the required approvals are obtained for the workflow. Therefore, if the
Validate Policy Deactivation action is triggered for a policy that is associated
with one or more pending approval workflows, the action will fail.

This action is executed by the default Validate Policy Deactivation policy that is installed
with CentraSite. The Validate Policy Deactivation policy executes on the PreStateChange
event that occurs when a policy switches to the Revising or Retired state. The Validate
Policy Deactivation action in this policy ensures that a policy is not switched to the
Revising or Retired state (and consequently, deactivated) while it is undergoing
execution.

Event Scope
PreStateChange

Object Scope
Policy

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 93

Input Parameters

None.

Validate Service Binding
Checks that a Web Service supports the specified bindings.

Event Scope
PreCreate
PreStateChange
OnTrigger

Object Scope
Service
Virtual Service

Input Parameters

Binding
Types

String Array An array containing the list of binding types that
the Web Service must support. The action will succeed only if
the Web service supports all of the bindings specified in Binding
Types.

Validate State
Validates the current state of a lifecycle model, policy or asset against a given list of
states.

Event Scope
PreDelete
OnTrigger
OnConsumerRegistration

Object Scope
Lifecycle Model
Policy
Asset (any type)

M
Even Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 94

Input Parameters

Allowed
States

String Array An array that specifies the states for which you want
the target object checked. If the state of the object matches any
entry specified in Allowed States, the action succeeds.

Validate WSDL Size
Checks the size of the WSDL document associated with a Web Service to ensure it falls
within a specified range.

Event Scope
PreCreate
PreStateChange
OnTrigger

Object Scope
Service
Virtual Service

Input Parameters

WSDL Size Number The size limit (expressed in the units specified by the
Size Unit parameter, below.)

Comparator String A relational operator that specifies how the size of the
WSDL document is to be compared to the value in WSDL Size.

Size Unit String The units in which WSDL Size is expressed. Valid values
are 'KB' (for Kilobytes) or 'MB' (for Megabytes).

webMethods REST Publish
Creates a REST service from the published IS service interface object.

The action is included in the webMethods REST Publish policy that is installed with
CentraSite. This policy automatically executes when the webMethods Designer
publishes an IS Service Interface object.

Important: This IS Service Interface object should be classified under the
concept called WMAssetType -> Integration Server Asset ->
TypeOfIntegrationServiceInterface -> REST Service.

M
Odd Header

Built-In Design/Change-Time Actions Reference

CentraSite Developer's Guide Version 9.8 95

Event Scope
Post-Create
Pre-Update

Object Scope
IS Service Interface

Input Parameters

None.

M
Even Header

CentraSite Developer's Guide Version 9.8 96

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 97

3 Access via UDDI

■ Overview of the UDDI Standard .. 98

■ Summary of UDDI Support in CentraSite .. 99

■ CentraSite UDDI Architecture .. 100

■ UDDI Representation of the Object Model .. 106

■ Configuring the UDDI Environment ... 115

■ Predefined Value Sets ... 126

■ Predefined tModels .. 127

■ UDDI V3 APIs .. 129

■ Using Third-Party IDE Tools with CentraSite ... 135

■ UDDI Extensions .. 137

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 98

Overview of the UDDI Standard
UDDI (Universal Description Discovery & Integration) is a platform-independent
standard maintained by the OASIS consortium. The standard describes a Service
Oriented Architecture (SOA) registry and its interfaces. UDDI allows clients to discover
registered businesses (organizations or providers) and the web services they provide.
UDDI also provides programming interfaces to create and update the stored registry
information.

The current release of UDDI is V3.0.2. In this document, the UDDI version number is
abbreviated to V3.

The UDDI data model defines the following entity types:

Entity Type Description

businessEntity Represents a business.

businessService Represents one or more web services provided by a
business.

bindingTemplate Describes how to use a web service.

tModel Categorizes a web service type.

publisherAssertion Represents a relationship between two business entities.

UDDI defines a set of APIs for accessing and modifying the data stored in the registry.

These APIs include:

UDDI Inquiry

This API allows you to search for registry entries and retrieve information about
them. The search mechanism allows the use of browse paerns (i.e. wildcards) to
be used, so that a set of matching business entities can be returned. The use of a
subsequent so-called drill-down paern allows information to be retrieved from a
business entity.

UDDI Publication

This API allows you to add entries to the registry or modify existing entries.

UDDI Security

This API determines which security seings apply for a registry entity.

Custody and Ownership Transfer

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 99

This API set is for transferring UDDI objects between multiple nodes of a UDDI
registry and transferring the ownership of UDDI objects between users.

Replication

This API set is for synchronizing the data of multi-node UDDI registries.

In addition, the UDDI specification defines the following client API set:

Value Set

Summary of UDDI Support in CentraSite
CentraSite provides support for UDDI V3. The full list of features of UDDI V3 is
available at the OASIS web site mentioned above.

The features currently not supported in CentraSite are as follows:

Value Set API Set

This API is not supported.

Replication

Replication is not supported.

Publishing Across Multiple Registries

This feature is not supported.

UDDI Policies

UDDI policies are not supported.

Note: UDDI policies are not the same as web service policies.

CentraSite supports ownership transfer but not inter-node custody transfer.

Multi-Version Support

The following features are not supported:

Migrating version 2 keys to a version 3 registry

Multiple xml:lang aributes of the same language

Supporting external value set providers across versions

White space handling

Multiple overviewDoc data

Multiple personName data

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 100

CentraSite UDDI Architecture

Overview
CentraSite behaves like a UDDI registry, as described in the UDDI specification. The
main components of CentraSite's UDDI environment are:

The CentraSite Registry/Repository, in which the UDDI objects are stored.

One or more UDDI servlets running on different application servers. Each UDDI
servlet implements the web services of the UDDI API sets.

The following figure illustrates the multiple UDDI servlet scenario, in which multiple
UDDI clients and a JAXR client interact with a single CentraSite registry/repository:

Although there can be multiple UDDI servlets, a CentraSite installation is a single-node
UDDI registry. Each UDDI servlet just provides an alternative endpoint for the UDDI
web services.

When UDDI data is stored in the CentraSite Registry/Repository, it is mapped to a
data model that is common for JAXR and UDDI clients. The data model is an XML
representation of JAXR data. Since this representation is also used to store data from the
JAXR API, UDDI and JAXR clients act on the same data. Note that JAXR instance-based
security is the basis of the CentraSite UDDI security, so changes in the JAXR instance-
based security may affect UDDI security.

Client Access via UDDI
UDDI clients can access the CentraSite registry using the following URLs.

The URL for the inquiry API is: http://<hostname>:53307/UddiRegistry/
inquiry, where <hostname> is the name of the host machine. For example, if the

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 101

UDDI client is running on the same machine as the UDDI servlet, the URL is http://
localhost:53307/UddiRegistry/inquiry.

The URL for the publish API is: http://<hostname>:53307/UddiRegistry/publish.

Every UDDI servlet in a multiple UDDI servlet environment has these endpoints.

Localization
Localization for UDDI means that the error messages are localized. These messages are
given in the content of an errorInfo element in the disposition report. Following is an
example disposition report:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <soapenv:Fault>
 <faultcode>Client</faultcode>
 <faultstring>Client Error</faultstring>
 <faultactor />
 <detail>
 <dispositionReport generic="3.0" xmlns="urn:uddi-org:api_v3">
 <result errno="10120">
 <errInfo errCode="E_authTokenRequired">
 The authentication token value dummy passed in the authInfo
 argument of the UDDI request is not valid.
 </errInfo>
 </result>
 </dispositionReport>
 </detail>
 </soapenv:Fault>
 </soapenv:Body>
</soapenv:Envelope>

Modeling of the Node Business Entity
The modeling of the Node Business Entity is based on the Recommended Modeling of
Node Business Entity in the UDDI 3.0.2 standard.

Key Generator tModel
The UDDI objects needed for the self-modeling of the node business entity have keys
defined internally by CentraSite that belong to the key partition that is owned by the key
generator:
<tModel
 tModelkey="...:keyGenerator"
 xmlns="urn:uddi-org:api_v3">
 <name xml:lang="en-US">centrasite-node-com:keyGenerator</name>
 <description xml:lang="en-US">
 Key generator for self registering node business entity
 </description>
 <categoryBag>
 <keyedReference
 tModelkey="...:keyGenerator"
 keyName="uddi-org:types:keyGenerator"

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 102

 keyValue="keyGenerator"/>
 </categoryBag>
 </categoryBag>
</tModel>

The key generator is preloaded in the UDDI registry.

Node Business Entity
The node business entity that is preloaded into the Registry/Repository looks like this:
<businessEntity
 businessKey="...">
 <name xml:lang="en-US">NodeBusinessEntity</uddi:name>
 <description xml:lang="en-US">
 Node Business Entity of the CentraSite UDDI registry
 </description>
 <categoryBag>
 <uddi:keyedReference
 keyName=""
 keyValue="node"
 tModelkey="...:keyGenerator"/>
 </categoryBag>
</businessEntity>

The node business entity references certain businessService objects which reflect the
UDDI API sets. The first UDDI registry interacting with the Registry/Repository adds
the businessService objects. It also adds the bindingTemplate objects pointing to
the API set's endpoints offered by the UDDI registry. Every additional UDDI registry
in a multiple UDDI servlet environment adds bindingTemplate objects pointing to the
additional endpoints where the UDDI services can be called. The tModels referenced
by the businessService objects are preloaded into the UDDI registry. Due to the
fact that multiple bindingTemplate objects are defined for each UDDI registry, the
bindingTemplate objects get node generated keys.

The web services that implement the UDDI API sets are themselves registered in the
UDDI registry. For CentraSite, only the supported API sets are reflected by this self-
registration. These are:

Inquiry API set

Publication API set

Security Policy API set

Custody and Ownership Transfer API Set

Inquiry Service
<businessService
 serviceKey="uddi:centrasite.node.com:service_inquiry"
 businessKey="..."
 xmlns="urn:uddi-org:api_v3">
 <name xml:lang="en-US">UDDI Inquiry Services</name>
 <description xml:lang="en-US">Web Service supporting UDDI Inquiry APIs
 </description>
 <bindingTemplates>
 <bindingTemplate
 bindingKey="..."

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 103

 serviceKey="uddi:centrasite.service.com:inquiry">
 <description xml:lang="en-US">
 This binding supports the UDDI Programmer's API Specification
 For inquiry
 </description>
 <accessPoint useType="endPoint">
 http://localhost:53307/UddiRegistry/inquiry
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelkey="...:keyGenerator">
 <description xml:lang="en-US">
 This access point supports the UDDI Version 2.0
 Programmer's API Specification for inquiry
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 <bindingTemplate
 bindingKey="..."
 serviceKey="uddi:centrasite.node.com:service_inquiry">
 <description xml:lang="en-US">
 This binding supports the UDDI Programmer's API Specification
 for inquiry
 </description>
 <accessPoint useType="endPoint">
 http://localhost:53307/UddiRegistry/inquiry
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelkey="...:keyGenerator">
 <description xml:lang="en-US">
 This access point supports the UDDI Version 3.0
 Programmer's API Specification for inquiry
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
</businessService>

Publish Service
<businessService
 serviceKey="uddi:centrasite.node.com:service_publish"
 businessKey="..."
 xmlns="urn:uddi-org:api_v3">
 <name xml:lang="en-US">UDDI Publish API Services</name>
 <description xml:lang="en-US">
 Web Service supporting UDDI specifications
 </description>
 <bindingTemplates>
 <bindingTemplate
 bindingKey="..."
 serviceKey="uddi:centrasite.node.com:service_publish">
 <description xml:lang="en">
 This binding supports the UDDI Programmer's API Specification
 for publication
 </description>
 <accessPoint useType="endPoint">
 http://localhost:53307/UddiRegistry/publish
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 104

 tModelkey="...:keyGenerator">
 <description xml:lang="en">
 This binding supports the UDDI Version 2.0 Programmer's
 API Specification for publication
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 <bindingTemplate
 bindingKey="uddi:centrasite.node.com:binding_publish_v3"
 serviceKey="uddi:centrasite.node.com:service_publish">
 <description xml:lang="en">
 This binding supports the UDDI Programmer's API Specification
 for publication
 </description>
 <accessPoint useType="endPoint">
 http://localhost:53307/UddiRegistry/publish
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelkey="...:keyGenerator">
 <description xml:lang="en">
 This binding supports the UDDI Version 3.0 Programmer's
 API Specification for publication
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
</businessService>

Security Service
<businessService
 serviceKey="uddi:centrasite.node.com:service_security"
 businessKey="..."
 xmlns="urn:uddi-org:api_v3">
 <name xml:lang="en">UDDI Security Service</name>
 <description xml:lang="en-US">
 Web Service supporting UDDI Security API
 </description>
 <bindingTemplates>
 <bindingTemplate
 bindingKey="..."
 serviceKey=" uddi:centrasite.node.com:service_security">
 <description xml:lang="en">
 This binding to authenticate with the UDDI services using the
 UDDI Security API.
 </description>
 <accessPoint useType="endPoint">
 http://localhost:53307/UddiRegistry/publish
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelkey="...:keyGenerator">
 <description xml:lang="en">
 This binding's supports the UDDI v3 Security API.
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
</businessService>

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 105

Custody and Ownership Transfer Service
<businessService
 serviceKey="uddi:centrasite.node.com:service_ownership_transfer"
 businessKey="..."
 xmlns="urn:uddi-org:api_v3">
 <name xml:lang="en">UDDI Custody and Ownership Transfer API</name>
 <description xml:lang="en-US">
 Web Service providing partly support for the UDDI Custody and Ownership
 Transfer API
 </description>
 <bindingTemplates>
 <bindingTemplate
 bindingKey="uddi..."
 serviceKey=" uddi:centrasite.node.com:service_ownership_transfer">
 <description xml:lang="en-US">
 This binding provides partly support for the UDDI Custody and
 Ownership Transfer API.
 </description>
 <accessPoint useType="endPoint">
 http://localhost:53307/UddiRegistry/publish
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelkey="...:keyGenerator">
 <description xml:lang="en-US">
 This binding provides partly support for the UDDI
 Custody and Ownership Transfer API
 </description>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
</businessService>

WSDL
The referenced tModels refer to the WSDL file shown below. Each port, specified by the
<port> element, specifies an access point. The WSDL representation is a description of
the web services that are provided by the UDDI servlets.
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="UDDI_API_V3"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:api_v3_binding="urn:uddi-org:api_v3_binding"
 xmlns:tns="urn:uddi-org:api_v3"
 targetNamespace="urn:uddi-org:api_v3">

 <documentation>
 UDDI V3 Security, Publication, Inquiry and Transfer APIs.
 </documentation>

 <import
 namespace="urn:uddi-org:api_v3_binding"
 location="http://uddi.org/wsdl/uddi_api_v3_binding.wsdl"/>
 <import
 namespace="urn:uddi-org:api_v3_binding"
 location="http://uddi.org/wsdl/uddi_custody_v3_binding.wsdl"/>
 <service name="UDDI_Security_SoapService">

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 106

 <port
 name="UDDI_Security_PortType"
 binding="api_v3_binding:UDDI_Security_SoapBinding">
 <soap:address
 location="http://localhost:53307/UddiRegistry/publish"/>
 </port>
 </service>
 <service name="UDDI_Publication_SoapService">
 <port
 name="UDDI_Publication_PortType"
 binding="api_v3_binding:UDDI_Publication_SoapBinding">
 <soap:address
 location="http://localhost:53307/UddiRegistry/publish"/>
 </port>
 </service>
 <service name="UDDI_Inquiry_SoapService">
 <port
 name="UDDI_Inquiry_PortType"
 binding="api_v3_binding:UDDI_Inquiry_SoapBinding">
 <soap:address
 location="http://localhost:53307/UddiRegistry/inquiry"/>
 </port>
 </service>
 <service name="UDDI_Ownership_Transfer_SoapService">
 <port
 name="UDDI_Inquiry_PortType"
 binding="api_v3_binding:UDDI_Inquiry_SoapBinding">
 <soap:address
 location="http://localhost:53307/UddiRegistry/inquiry"/>
 </port>
 </service>
</definitions>

The WSDL defines the proper endpoints of each web service. Each UDDI registry adds a
port pointing to its endpoints. The first UDDI registry also inserts the service elements.
The WSDL file can be accessed via the URIs:

http://localhost:53307/UddiRegistry/inquiry?WSDL

http://localhost:53307/UddiRegistry/publish?WSDL

The WSDL is stored in the CentraSite repository.

UDDI Representation of the Object Model

Attributes
The purpose of aributes in CentraSite is to associate values, classifications and
associations with names. For the UDDI representation in CentraSite, the aributes are
grouped together in a uddi:keyedReferenceGroup holding all aributes of the UDDI
object.

Key/Value Pair Attributes
Key/value pair aributes are represented in a uddi:categoryBag, as follows:
<categoryBag>

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 107

 <keyedReference
 tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="Encryption Required" keyValue="false"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="Demo Available" keyValue="false"/>
</categoryBag>

Rich Text Attributes
For tModels and instanceDetails, Rich Text aributes are represented in a
uddi:overviewDoc element, as follows.
…
<overviewDoc>
<description>
 Detailed Description
</description>
<overviewUrl useType="uddi:centrasite.com:attributes:richText">
 http://10.22.21.94:2020/...
</overviewUrl>
</overviewDoc>
…

For all other UDDI objects, especially uddi:business and uddi:businessService,
a modified, UDDI-conformant uddi:keyedReferenceGroup approach provides
more flexibility. However, the document referencing semantics cannot be interpreted
by a standard UDDI client. Therefore, for Rich Text aributes a dedicated
uddi:keyedReferenceGroup is introduced, as follows:
<categoryBag>
 <keyedReferenceGroup tModelKey="uddi:centrasite.com:attributes:richText">
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="Detailed Description"
 keyValue="http://... "/>
 </keyedReferenceGroup>
</categoryBag>

The uddi:tModelKey is pointing to
uddi:uddi.org:categorization:general_keywords, to make the uddi:keyName
meaningful. The uddi:keyValue points to the URL of the rich text. All
uddi:keyedReferences representing a rich text aribute are stored in a single
uddi:keyedReferenceGroup.

Document Attributes
CentraSite supports two different documents types:

reference: This type is used for referencing documents that can be shared between
registry objects. These are also called supporting documents.

contains: This type is used for documents that belong exclusively to the definition
of a registry object. Examples are WSDL and schema documents that define a Web
service.

For tModels and instanceDetails, documents are represented in a uddi:overviewDoc
element, as follows.

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 108

…
<overviewDoc>
<description>
 sample category/Documentation
</description>
<overviewUrl useType="uddi:centrasite.com:attributes:document:reference">
 http://10.22.21.94:2020/...
</overviewUrl>
</overviewDoc>
<overviewDoc>
<description>
 sample Asset File
</description>
<overviewUrl useType="uddi:centrasite.com:attributes:document:contains">
 http://10.22.21.94:2020/...
</overviewUrl>
</overviewDoc>
…

For all other UDDI objects, a modified uddi:keyedReferenceGroup-based approach is
used, which conforms to the UDDI specification:
<categoryBag>
<keyedReferenceGroup
 tModelKey="uddi:centrasite.com:attributes:document:reference">
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="sample category/Documentation"
 keyValue="http://10.22.21.94:2020/..."/>
</keyedReferenceGroup>
<keyedReferenceGorup
 tModelKey="uddi:centrasite.com:attributes:document:contains"
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="Asset File" keyValue="http://10.22.21.94:2020/..."/>
 </keyedReferenceGroup>
</categoryBag>

For both document types (reference and contains), a separate
uddi:keyedReferenceGroup is needed. The uddi:tModelKey of the
uddi:keyedReferenceGroup specifies the document type. For each document
type, a separate uddi:tModel is defined. Each udddi:keydReference
represents a single document. The uddi:tModelKey points to
uddi:uddi.org:categorization:general_keywords, to add meaning to the
uddi:keyName. The uddi:keyName specifies the location of the file, and the
uddi:keyValue holds the URL of the document. All uddi:keyedReferences
representing documents of one type are stored in a single uddi:keyedReferenceGroup.

Relationship Attributes
Relationships are represented in a uddi:keyedReferenceGroup, as follows:
<categoryBag>
<keyedReferenceGroup
 tModelKey="uddi:centrasite.com:attributes:relationShip">
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyValue="uddi:3447…"
 keyName="Invokes"/>
 <keyedReference
 tModelKey="uddi:uddi.org:categorization:general_keywords"

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 109

 keyValue="uddi:3447…"
 keyName="RelatedTo"/>
 </keyedReferenceGroup>
</categoryBag>

The uddi:tModelKey indicates that a relationship is represented. Another
uddi:tModelKey uses uddi:uddi.org:categorization:general_keywords to
add meaning to the uddi:keyNames. The uddi:keyValue points to the reference
registry object, and the uddi:keyName specifies the type of the relationship.
The available relationship types are determined by the aribute meta data.
All uddi:keyedReferences representing relationships are stored in a single
uddi:keyedReferenceGroup.

Metrics Definition
Following the approach proposed by the Governance Interoperability Framework,
saving metrics information for service objects is accomplished by publishing a
uddi:tModel. This means that a uddi:tModel holding the metrics information is
published and aached to the given uddi:businessService.

Following is a simple uddi:tModel the metrics information:
 <tModel tModelKey="uddi:3d32ac10-5dd1-11da-88b8-51d47e6188b2" deleted="false"
xmlns="urn:uddiorg:api_v3">
<name>Metrics</name>
<description>Metrics of EchoAccessPoint</description>
<categoryBag>
<keyedReference
 tModelKey="…(key of object type taxonomy)"
 keyName="Metrics"
 keyValue="Metrics"/>

 <keyedReference
 tModelKey="uddi:centrasite.com:management:metrics:total.request.count"
 keyName="Count of hits"
 keyValue="14"/>

</categoryBag>
</tModel>

The uddi:keyedReference of the uddi:categoryBag hold the metrics information. The
following metrics are supported.

Total Request Count

Success Request Count

Fault Count

Average Response Time

Minimum Response Time

Maximum Response Time

Availability

Service Liveliness

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 110

For each of the supported metrics an according taxonomy is defined that represents the
according value set.

For aaching a metrics uddi:tModel to a given uddi:service, a uddi:keyedReference is
used, which references the metrics-reference taxonomy. Following is an example of a
uddi:businessService that references a metrics uddi:tModel:
<businessService serviceKey="uddi:1d233560-5dc8-11da-88b7-51d47e6188b2"
businessKey="uddi:a2b32100-5ac0-11da-8540-e2406020853d"
xmlns="urn:uddi-org:api_v3">
 <name>EchoHeadersService</name>
 <description>wsdl:type representing service</description>
 <bindingTemplates>
 <bindingTemplate bindingKey="uddi:1d25a660-5dc8-11da-88b7-51d47e6188b2"
 serviceKey="uddi:1d233560-5dc8-11da-88b7-51d47e6188b2">
 <description>wsdl:type representing port</description>
 <accessPoint useType="http://schemas.xmlsoap.org/soap/http">
 http://tracy:4400/sst/runtime.asvc/com.actional.soapstation.Echo
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uddi:1cd8bee0-5dc8-11da-88b7-51d47e6188b2">
 <instanceDetails>
 <instanceParms>EchoHeaders</instanceParms>
 </instanceDetails>
 </tModelInstanceInfo>
 <tModelInstanceInfo
 tModelKey="uddi:1cafda20-5dc8-11da-88b7-51d47e6188b2"/>
 </tModelInstanceDetails>
 <categoryBag>
 <keyedReference tModelKey="uddi:uddi.org:wsdl:types"
 keyName="uddi.org:wsdl:types" keyValue="port"/>
 </categoryBag>
 </bindingTemplate>
 </bindingTemplates>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:centrasite.com:management:metrics:reference"
 keyName="Metrics"
 keyValue="uddi:3d32ac10-5dd1-11da-88b8-51d47e6188b2"/>
 <keyedReference tModelKey="uddi:uddi.org:xml:namespace"
 keyName="uddi.org:xml:namespace"
 keyValue="http://sanity/test"/>

 <keyedReference tModelKey="uddi:uddi.org:wsdl:types"
 keyName="uddi.org:wsdl:types" keyValue="service"/>

 <keyedReference tModelKey="uddi:uddi.org:xml:localName"
 keyName="uddi.org:xml:localName"
 keyValue="EchoHeadersService"/>
 </categoryBag>
</businessService>

Metrics Reference Taxonomy
The Metrics Reference taxonomy is for aaching metrics uddi:tModels to
uddi:businessService. The uddi:tModel for defining the taxonomy looks as follows:
<tModel tModelKey="uddi: centrasite.com:management:metrics:reference">
 <name> centrasite -com:management:metrics:reference</name>
<description>

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 111

 Reference to a tModel containing all metrics about the Service
</description>
 <categoryBag>
 <keyedReference
 keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference
 keyName="uddi-org:types:checked"
 keyValue="checked"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference
 keyName="entityKeyValues"
 keyValue="tModelKey"
 tModelKey="uddi:uddi.org:categorization:entitykeyvalues"/>
 </categoryBag>
</tModel>

Metrics Types Taxonomy
The Metrics Types taxonomy is needed for classifying the metrics value set taxonomies:
<tModel tModelKey="uddi:centrasite.com:management:metrics:types">
 <name>CentraSite Metrics taxonomy </name>
<description>
Taxonomy holding all types of metrics known by CentraSite
</description>
 <categoryBag>
 <keyedReference
 keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference
 keyName="uddi-org:types:unchecked"
 keyValue="unchecked"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference
 keyName="entityKeyValues"
 keyValue="tModelKey"
 tModelKey="uddi:uddi.org:categorization:entitykeyvalues"/>
 </categoryBag>
</tModel>

Total Request Count Taxonomy
The following metrics tModel indicates the total number of requests:
<tModel tModelKey="uddi:centrasite.com:management:metrics:total.request.count">
 <name>Total Request Count</name>
 <description> Represents Metrics Total Request Count</description>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference keyName="uddi-org:types:unchecked"
 keyValue="unchecked"
 tModelKey="uddi:uddi.org:categorization:types"/>

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 112

 <keyedReference keyName="Metric Type"
 keyValue="Metrics Type"
 tModelKey="uddi:centrasite.com:management:metrics:types"/>
 </categoryBag>
</tModel>

Success Request Count Taxonomy
The following metrics tModel indicates the number of successful requests:
<tModel tModelKey="uddi:centrasite.com:management:metrics:success.request.count">
 <name>Success Request Count</name>
 <description>Represents Metrics Success Request Count</description>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference keyName="uddi-org:types:unchecked"
 keyValue="unchecked"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference keyName="Metric Type"
 keyValue="Metrics Type"
 tModelKey="uddi:centrasite.com:management:metrics:types"/>
 </categoryBag>
</tModel>

Fault Request Count Taxonomy
The following metrics tModel indicates the number of faults:
<tModel tModelKey="uddi:centrasite.com:management:metrics:fault.request.count">
 <name>Fault Request Count</name>
 <description>Represents Metrics Fault Request Count</description>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference keyName="uddi-org:types:unchecked"
 keyValue="unchecked"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference keyName="Metric Type"
 keyValue="Metrics Type"
 tModelKey="uddi:centrasite.com:management:metrics:types"/>
 </categoryBag>
</tModel>

Average Response Time Taxonomy
The following metrics tModel indicates the average response time of requests:
<tModel tModelKey="uddi:centrasite.com:management:metrics:average.response.time">
 <name>Average Response Time</name>
 <description>Represents Metrics Average Response Time</description>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 113

 <keyedReference keyName="uddi-org:types:unchecked"
 keyValue="unchecked"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference keyName="Metric Type"
 keyValue="Metrics Type"
 tModelKey="uddi:centrasite.com:management:metrics:types"/>
 </categoryBag>
</tModel>

Minimum Response Time Taxonomy
The following metrics tModel indicates the minimum response time of requests:
<tModel tModelKey="uddi:centrasite.com:management:metrics:minimum.response.time">
 <name>Minimum Response Time</name>
<description>Represents Metrics Minimum Response Time</description>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="uddi-org:types:unchecked"
 keyValue="unchecked"
 tModelKey="uddi:uddi.org:categorization:types"/>
 <keyedReference keyName="Metric Type"
 keyValue="Metrics Type"
 tModelKey="uddi:centrasite.com:management:metrics:types"/>
 </categoryBag>
</tModel>

Maximum Response Time Taxonomy
The following metrics tModel indicates the maximum response time of requests:
<tModel tModelKey="uddi:centrasite.com:management:metrics:maximum.response.time">
 <name>Maximum Response Time</name>
 <description>Represents Metrics Maximum Response Time</description>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference keyName="uddi-org:types:unchecked"
 keyValue="unchecked"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference keyName="Metric Type"
 keyValue="Metrics Type"
 tModelKey="uddi:centrasite.com:management:metrics:types"/>
 </categoryBag>
</tModel>

Availability Taxonomy
The following metrics tModel indicates the Virtual/Proxy service availability:
<tModel tModelKey="uddi:centrasite.com:management:metrics:availability">
 <name>Availability</name>
 <description>Represents Metrics Availability</description>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 114

 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference keyName="uddi-org:types:unchecked"
 keyValue="unchecked"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference keyName="Metric Type"
 keyValue="Metrics Type"
 tModelKey="uddi:centrasite.com:management:metrics:types"/>
 </categoryBag>
</tModel>

Service Liveliness Taxonomy
The following metrics tModel indicates the uptime/downtime of Virtual/Proxy services:
<tModel tModelKey="uddi:centrasite.com:management:metrics:service.liveliness">
 <name>Service Liveliness</name>
 <description>Represents Metrics Service Liveliness</description>
 <categoryBag>
 <keyedReference keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference keyName="uddi-org:types:unchecked"
 keyValue="unchecked"
 tModelKey="uddi:uddi.org:categorization:types"/>

 <keyedReference keyName="Metric Type"
 keyValue="Metrics Type"
 tModelKey="uddi:centrasite.com:management:metrics:types"/>
 </categoryBag>
</tModel>

Representing Targets and Target Types
CentraSite stores Targets and Target Types as taxonomies. Thus, a deployment of a
service to a target can be represented via a uddi:keyedReference.

Representing Status
Services that have a certain status are classified according to the LCM taxonomy.

Representing Version
Version information is represented by mapping the jaxr:Slot holding the version
information. A uddi:categoryBag holding version information appears as follows:
<categoryBag>
 <keyedReference tModelKey="uddi:uddi.org:categorization:general_keywords"
 keyName="Version" keyValue="1.0.0"/>
</categoryBag>

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 115

Mapping WS-PolicyAttachments
The mapping of WS-PolicyAachments follows the W3C specification Web Service
Policy Aachment version 1.5. This means that a tModel is created to represent the
reusable policy expression.

Configuring the UDDI Environment

Configuration Properties
In CentraSite the UDDI registry reflects its behavior in terms of JAXR objects stored in
the CentraSite Registry/Repository. This representation can be used to parameterize the
behavior.

The behavior of the UDDI processing in CentraSite can be configured using global and
local properties.

UDDI in a Multi-CAST Environment
CentraSite supports a multi-CAST (CentraSite Application Server Tier) UDDI registry
environment. In this environment, multiple CASTs are running against a single
CentraSite Registry/Repository. Each CAST comes with its own UDDI Registry web
application. In addition, several pure JAXR-based clients interact with the Registry/
Repository.

In such an environment the Registry/Repository represents a single UDDI registry node,
albeit multiple UDDI Registries are involved. Each UDDI Registry provides its own
endpoints for the UDDI services. Due to the multi-CAST scenario, two different sets of
properties are needed:

Local properties, which specify the behavior of a single UDDI web application.
Local properties can be used to change the behavior of the web applications
independently.

Global properties, which specify the global behavior of the UDDI registry. Global
properties cannot be changed separately for each UDDI registry.

CAST Registration/Deregistration

You can register/deregister CASTs (and retrieve a list of CASTs) by executing the
following commands in the command line interface CentraSiteCommand.cmd
(Windows) or CentraSiteCommand.sh (UNIX) of CentraSite. The tool is located in
<CentraSiteInstallDir> /utilities.

If you start this command line tool with no parameters, you receive a help text
summarizing the required input parameters.

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 116

The parameters of the command are case-sensitive, so for example the parameter -url
must be specified as shown and not as -URL.

Registering a CAST

Use the list CAST command to retrieve the list of available CASTs in CentraSite.

The syntax for the command is:

C:\SoftwareAG\CentraSite\utilities>CentraSiteCommand.cmd list CAST [-url
<CENTRASITE-URL>] -user <USER-ID>-password <PASSWORD>

The input parameters are:

Parameter Description

-url (Optional) The URL of the CentraSite registry. Default value is
http:/localhost:53307.

-user The user ID of a registered CentraSite user. For example, a
user who has the CentraSite Administrator role.

-password The password for the registered CentraSite user identified by
the parameter -user.

Example:

C:\SoftwareAG\CentraSite\utilities>CentraSiteCommand.cmd list CAST -url
http://localhost:53305/CentraSite/CentraSite -user AdminUser -password
AdminPass

The response to this command could be:
Executing the command : list CAST
Successfully executed the command : list CAST

Registering a CAST

Use the add CAST command to register a CAST in CentraSite.

The syntax for the command is:

C:\SoftwareAG\CentraSite\utilities>CentraSiteCommand.cmd add CAST [-url
<CENTRASITE-URL>] -user <USER-ID>-password <PASSWORD>

The input parameters are:

Parameter Description

-url (Optional) The URL of the CentraSite registry. Default value is
http:/localhost:53307.

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 117

Parameter Description

-user The user ID of a registered CentraSite user. For example, a
user who has the CentraSite Administrator role.

-password The password for the registered CentraSite user identified by
the parameter -user.

Example:

C:\SoftwareAG\CentraSite\utilities>CentraSiteCommand.cmd add CAST -
url "http://localhost:53305/CentraSite/CentraSite" -user "AdminUser" -
password "AdminPass"

The response to this command could be:
Executing the command : add CAST
Successfully executed the command : add CAST

Deregistering a CAST

Use the remove CAST command to deregister a CAST from CentraSite.

The syntax for the command is:

C:\SoftwareAG\CentraSite\utilities>CentraSiteCommand.cmd remove CAST [-
url <CENTRASITE-URL>] -user <USER-ID>-password <PASSWORD>

The input parameters are:

Parameter Description

-url (Optional) The URL of the CentraSite registry. Default value
is http:/localhost:53307.

-user The user ID of a registered CentraSite user. For example, a
user who has the CentraSite Administrator role.

-password The password for the registered CentraSite user identified
by the parameter -user.

Example:

C:\SoftwareAG\CentraSite\utilities>CentraSiteCommand.cmd remove CAST
-url http://localhost:53305/CentraSite/CentraSite -user AdminUser -
password AdminPass

The response to this command could be:
Executing the command : remove CAST
Successfully executed the command : remove CAST

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 118

Deployment Descriptors
In addition to the local and global properties that are stored in the registry, the web
application needs a minimum of information to contact the CentraSite Registry/
Repository. These parameters are:

com.centrasite.uddi.store.db

com.centrasite.uddi.store.dbUserId

com.centrasite.uddi.store.dbUserPasswordHandle

The credentials are for the unauthenticated read access. Usually the guest account is
used here.

Changing the User ID/Password of the Web Application Login Account

If you wish to change the password of the guest account, or if you wish to use another
user account instead of the guest account, proceed as follows:

To change the user ID/password of the web application login account

1. In the file <CentraSiteInstallDir >\cast\cswebapps
\UddiRegistry\WEB-INF\web.xml, specify the user ID and
password in com.centrasite.uddi.store.dbUserId and
com.centrasite.uddi.store.dbUserPasswordHandle.

If your configuration includes more than one CAST, you must make this change on
each CAST.

2. Update the corresponding user ID/password information that is stored in
the CentraSite Registry Repository. For more information, see the CentraSite
Administrator’s Guide .

3. Restart CentraSite.

Setting Global and Local UDDI Properties
You can set the global and local UDDI properties by executing the following
command in the command line interface CentraSiteCommand.cmd (Windows)
or CentraSiteCommand.sh (UNIX) of CentraSite. The tool is located in
<CentraSiteInstallDir> /utilities.

If you start this command line tool with no parameters, you receive a help text
summarizing the required input parameters.

The parameters of the command are case-sensitive, so for example the parameter -url
must be specified as shown and not as -URL.

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 119

Setting Global UDDI Properties

To set global properties

1. Create an XML configuration file that contains the following predefined UDDI
properties. This file should be in Java XML properties format.

For example:
<?xml version="1.0" encoding="UTF-8" ?>
 <!DOCTYPE properties (View Source for full doctype...)>
 <properties version="1.0">
 <comment>Test UDDI Global Configuration XML</comment>
 <entry key="com.centrasite.uddi.UDDIOperatorName">CentraSite</entry>
 <entry key="com.centrasite.uddi.UDDIDefaultLanguage">en-US</entry>
 <entry key="com.centrasite.uddi.UDDIValueValidation">false</entry>
 <entry key="com.centrasite.uddi.UDDIKeyGeneratorChecks">true</entry>
 <entry key="com.centrasite.uddi.UDDIDiscoveryURLGeneration">false</entry>
 <entry key="com.centrasite.uddi.UDDIEncoding">utf-8</entry>
 <entry key="com.centrasite.uddi.UDDISubscriptionDuration">P1M</entry>
 <entry key="com.centrasite.uddi.UDDIAuthTokenExpiration">P1D</entry>
 <entry key="com.centrasite.uddi.UDDITransferTokenExpiration">P1D</entry>
 <entry key="com.centrasite.uddi.UDDIV2Inquiry">true</entry>
 <entry key="com.centrasite.uddi.UDDIV2Publish">true</entry>
 <entry key="com.centrasite.uddi.UDDISendEmptyWebServiceNotifications">
 false
 </entry>
 <entry key="com.centrasite.uddi.UDDISendEmptyEmailNotifications">
 true
 </entry>
 <entry key="com.centrasite.uddi.UDDIMinimalNotificationInterval">
 P0Y0M0DT0H0M30S
 </entry>
 <entry key="com.centrasite.uddi.UDDINumberOfRetries">3</entry>
 <entry key="com.centrasite.uddi.UDDIMaxSubscriptionThreads">5</entry>
 </properties>

Descriptions of these properties are as follows:

Global Property Description

UDDIOperatorName Sets the operator aribute in UDDI V2
replies. The default value is CentraSite.

UDDIDefaultLanguage Sets the default language. All valid
language identifiers are allowed. The
default value is “en-US”.

UDDIValueValidation Activates or deactivates internal value
validation. Valid values: "true" or
"false" (default). For more information, see
"Checked Value Set Validation" on page
126.

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 120

Global Property Description

UDDIKeyGeneratorChecks Activates or deactivates the enforcement
of keyGenerator tModels for publisher
assigned keys. Valid values: "true" (default)
or "false".

UDDIDiscoveryURLGeneration Activates or deactivates the generation
of discoveryURL. Valid values: "true" or
"false" (default).

UDDIEncoding Specifies the XML encoding of the UDDI
responses. Valid values: "utf-8" (default) or
"utf-16".

UDDISubscriptionDuration The duration of a registry subscription.
You can specify a default subscription
expiration period for each UDDI web
application separately.

The subscription duration is specified
via an xs:duration instance. It specifies a
duration in terms of years, months, days,
hours, minutes and seconds.

The default value is 1 month
(xs:duration(“P1M”)).

How a string holding an xs:duration
instance is generated is specified in the
XML Schema (Part 2) specification.

For example, to specify a duration of 1
year, 2 months, 3 days, 10 hours and 30
minutes, specify: P1Y2M3DT10H30M. You
can also indicate a duration of minus 120
days as: -P120D. Reduced precision and
truncated representations of this format
are allowed provided they conform to
the following: If the number of years,
months, days, hours, minutes, or seconds
in any expression equals zero, the number
and its corresponding designator may be
omied. However, at least one number
and its designator must be present. The
seconds part may have a decimal fraction.
The designator ‘T’ shall be absent if all of
the time items are absent. The designator
‘P’ must always be present.

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 121

Global Property Description

For example, P1347Y, P1347M and
P1Y2MT2H are all allowed; P0Y1347M
and P0Y1347M0D are allowed. P-1347M is
not allowed although –P1347M is allowed.
P1Y2MT is not allowed.

Note: A UDDI subscription survives an
application server restart.

UDDIAuthTokenExpiration The duration of an authorization token.

This duration is specified via an
xs:duration instance. It specifies a duration
in terms of years (either 0 or 1), months,
days, hours, minutes and seconds.

The default value is 1 day
(xs:duration(“P1D”)).

UDDITransferTokenExpiration The duration of a transfer token.

This duration is specified via an
xs:duration instance. It specifies a duration
in terms of years (either 0 or 1), months,
days, hours, minutes and seconds.

The default value is 1 day
(xs:duration(“P1D”)).

UDDIV2Inquiry Enables UDDI V2 Inquiry support. Valid
values: "true" (default) or "false".

UDDIV2Publish Enables UDDI V2 Publish support. Valid
values: "true" (default) or "false".

UDDISendEmptyWebServiceNotificationsSpecifies whether to allow Web service
notifications to be sent even when no
changes have occurred. Valid values:
"true" (default) or "false".

UDDISendEmptyEmailNotifications Specifies whether to allow email
notifications to be sent even when no
changes have occurred. Valid values: "true"
or "false" (default).

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 122

Global Property Description

UDDIMinimalNotificationInterval The minimum time interval at which to
send notifications to subscribers.

This duration is specified via an
xs:duration instance. It specifies a duration
in terms of years (either 0 or 1), months,
days, hours, minutes and seconds.

The default value is 30 seconds
(xs:duration(“P30S”)). The minimal
resolution is 10 seconds (as well as the
minimal possible value).

UDDINumberOfRetries The maximum number of times to try
to send Web service notifications to
subscribers. Valid values: 0 through 10.
Default: 3. The value 0 turns off this
property (i.e., allows for unlimited retries).

Note: This property applies only to Web
service notifications, not to email
notifications.

UDDIMaxSubscriptionThreads The maximum number of threads for
subscriptions. Default: 5.

2. Use the set UDDI command to set the global UDDI properties in CentraSite.

The syntax for the command is:

C:\SoftwareAG\CentraSite\utilities>CentraSiteCommand.cmd set UDDI
[-url <CENTRASITE-URL>] -user <USER-ID>-password <PASSWORD>-file
<CONFIG-FILE>

The input parameters are:

Parameter Description

-url (Optional) The URL of the CentraSite registry. Default value
is http:/localhost:53307.

-user The user ID of a registered CentraSite user. For example, a
user who has the CentraSite Administrator role.

-password The password for the registered CentraSite user identified
by the parameter -user.

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 123

Parameter Description

-file The absolute or relative path to the XML configuration file.
If relative, the path should be relative to the location from
where the command is executed.

Example:

C:\SoftwareAG\CentraSite\utilities>CentraSiteCommand.cmd set UDDI -
url http://localhost:53305/CentraSite/CentraSite -user AdminUser -
password AdminPass -file config.xml

The response to this command could be:
Executing the command : set UDDI
Successfully executed the command : set UDDI

Setting Local UDDI Properties

Note: The UDDI representation of local properties is based on the general approach
of mapping jaxr:Slots to UDDI.

To set local properties

1. Create an XML configuration file that contains the following predefined UDDI
properties. This file should be in Java XML properties format.

For example:
<?xml version="1.0" encoding="UTF-8" ?>
 <!DOCTYPE properties (View Source for full doctype...)>
 <properties version="1.0">
 <comment>Test UDDI Local Configuration XML</comment>
 <entry key="com.centrasite.uddi.UDDIMaxResultSize">*</entry>
 <entry key="com.centrasite.uddi.UDDIMaxSearchKeys">*</entry>
 <entry key="com.centrasite.uddi.UDDIMaxSearchNames">*</entry>
 <entry key="com.centrasite.uddi.UDDIHTTPGetServicesUrl">
 http://localhost:53307/UddiRegistry
 </entry>
 <entry key="com.centrasite.uddi.UDDIResponseValidation">false</entry>
 <entry key="com.centrasite.uddi.UDDIRequestValidation">false</entry>
 </properties>

Descriptions of these properties are as follows:

Local Property Description

UDDIMaxResultSize Specifies the maximum inquiry result size. Default:
An unlimited size (denoted by *).

UDDIMaxSearchKeys Specifies the maximum number of search keys
returned by an inquiry. Default: An unlimited
number (denoted by *).

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 124

Local Property Description

UDDIMaxSearchNames Specifies the maximum number of search names
returned by an inquiry. Default: An unlimited
number (denoted by *).

UDDIHTTPGetServicesUrl Holds the URI for the HTTP Get calls to retrieve
UDDI objects from the registry. Default value:
hp://localhost:53307/UddiRegistry.

UDDIResponseValidation Enables schema validation on UDDI V2 and V3
responses. Valid values: "true" or "false" (default).

Note: The appropriate schema file should be stored in
the CentraSite repository, in the /projects/uddi
folder.

UDDIRequestValidation Enables schema validation on incoming UDDI
V2 and V3 requests. Valid values: "true" or
"false" (default).

Note: The appropriate schema file should be stored in
the CentraSite repository, in the /projects/uddi
folder.

2. Use the set UDDI command to set your local UDDI properties in CentraSite.

The syntax for the command is:

C:\SoftwareAG\CentraSite\utilities>CentraSiteCommand.cmd set UDDI
[-url <CENTRASITE-URL>] -user <USER-ID>-password <PASSWORD>-file
<CONFIG-FILE>

The input parameters are:

Parameter Description

-url (Optional) The URL of the CentraSite registry. Default value
is http:/localhost:53307.

-user The user ID of a registered CentraSite user. For example, a
user who has the CentraSite Administrator role.

-password The password for the registered CentraSite user identified
by the parameter -user.

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 125

Parameter Description

-file The absolute or relative path to the XML configuration file.
If relative, the path should be relative to the location from
where the command is executed.

Example:

C:\SoftwareAG\CentraSite\utilities>CentraSiteCommand.cmd set UDDI -
url http://localhost:53305/CentraSite/CentraSite -user AdminUser -
password AdminPass -file config.xml

The response to this command could be:
Executing the command : set UDDI
Successfully executed the command : set UDDI

Getting Global and Local UDDI Properties
You can retrieve the global and local UDDI properties by executing the following
command in the command line interface CentraSiteCommand.cmd (Windows)
or CentraSiteCommand.sh (UNIX) of CentraSite. The tool is located in
<CentraSiteInstallDir> /utilities.

If you start this command line tool with no parameters, you receive a help text
summarizing the required input parameters.

The parameters of the command are case-sensitive, so for example the parameter -url
must be specified as shown and not as -URL.

C:\SoftwareAG\CentraSite\utilities>CentraSiteCommand.cmd get UDDI [-url
<CENTRASITE-URL>] -user <USER-ID>-password <PASSWORD>

The input parameters are:

Parameter Description

-url (Optional) The URL of the CentraSite registry. Default value
is http:/localhost:53307.

-user The user ID of a registered CentraSite user. For example, a
user who has the CentraSite Administrator role.

-password The password for the registered CentraSite user identified
by the parameter -user.

Example:

C:\SoftwareAG\CentraSite\utilities>CentraSiteCommand.cmd get UDDI -url
http://localhost:53305/CentraSite/CentraSite -user AdminUser -password
AdminPass

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 126

The response to this command could be:
Executing the command : get UDDI
Successfully executed the command : get UDDI

Schema Validation of UDDI Requests
All incoming UDDI V3 requests are validated against the XML schemas for UDDI
requests, as defined in the OASIS UDDI specification. Invalid requests are rejected. The
schema files are stored in the CentraSite repository in the folder /projects/uddi.

The validation can be activated or deactivated by the local configuration properties
Request Validation and Response Validation. For details, see "Seing Global and
Local UDDI Properties" on page 118.

Checked Value Set Validation
CentraSite offers the internal validation of checked value sets. If a keyedReference
object is published that points to a checked value set, CentraSite checks if the keyValue
belongs to the value set. UDDI 3.0.2 specifies checked value sets specified by value
set taxonomies and value sets that have a validation algorithm. All value sets are
represented in UDDI by a tModel. The validation of keyedReference objects can be
switched off. For this purpose, the global configuration property Internal Value
Set Validation can be used. To set this property, see "Seing Global and Local UDDI
Properties" on page 118.

If the property is set to false, no checking is performed but keyedReference objects
pointing to an existing taxonomy are still mapped to a jaxr:internal classification.
Invalid references are mapped to external classifications. This means that even a
keyedReference object with an invalid value that points to a classificationScheme
with a concept taxonomy is not rejected but mapped to an external classification. If
the property is set to yes, keyedReference objects pointing to checked value sets are
checked. Invalid keyedReference objects are rejected with the error E_invalidValue.

Predefined Value Sets
CentraSite supports the following value sets from the UDDI specification:

Type category system

Relationships category system

Entity Key Values category system

NAICS 1997 Release

NAICS 2002 Release

UNSPSC Version 7.3

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 127

ISO 3166 Geographic Code System

UDDI v2 OwningBusiness category system

UDDI v2 IsReplacedBy identifier system

UDDI Entity Key Values category System

UDDI Derived From category system

UDDI Nodes category system

General Keyword category system

Postal Address Structure

Predefined tModels
The following is a list of the predefined tModels in CentraSite:
AssociationType
CentraSite
CentraSiteFilterType
ClassificationGroup
ContentType
Databases
Interstage Business Process Manager
Object
ObjectType
Origin
PhoneType
PostalAddressAttributes
Products
RepositoryObjectType
URLType
UseType
crossvision Application Composer
crossvision Information Integrator
crossvision Legacy Integrator - ApplinX
crossvision Legacy Integrator - EntireX
crossvision Service Orchestrator
dnb-com:D-U-N-S
http://schemas.xmlsoap.org/ws/2003/03/localpolicyreference
http://schemas.xmlsoap.org/ws/2003/03/policytypes
http://schemas.xmlsoap.org/ws/2003/03/remotepolicyreference
node-centrasite-com:keyGenerator
ntis-gov:naics:1997
ntis-gov:naics:2002
ntis-gov:sic:1987
thomasregister-com:supplierID
ubr-uddi-org:iso-ch:3166-2003
ubr-uddi-org:iso-ch:6523-1998:icd
ubr-uddi-org:postalAddress
uddi-org: protocol:keyGenerator
uddi-org:UTS-10
uddi-org:andAllKeys
uddi-org:approximateMatch:SQL99
uddi-org:binarySort
uddi-org:bindingSubset
uddi-org:caseInsensitiveMatch

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 128

uddi-org:caseInsensitiveSort
uddi-org:caseSensitiveMatch
uddi-org:caseSensitiveSort
uddi-org:categorization:keyGenerator
uddi-org:combineCategoryBags
uddi-org:derivedFrom
uddi-org:diacriticsInsensitiveMatch
uddi-org:diacriticsSensitiveMatch
uddi-org:entityKeyValues
uddi-org:exactMatch
uddi-org:fax
uddi-org:ftp
uddi-org:general_keywords
uddi-org:homepage
uddi-org:hostingRedirector
uddi-org:http
uddi-org:inquiry
uddi-org:inquiry_v2
uddi-org:inquiry_v3
uddi-org:isReplacedBy
uddi-org:keyGenerator
uddi-org:mutualAuthenticatedSSL3
uddi-org:node_custody_transfer_v3
uddi-org:nodes
uddi-org:orAllKeys
uddi-org:orLikeKeys
uddi-org:ownership_transfer_v3
uddi-org:owningBusiness_v3
uddi-org:protocol:http
uddi-org:protocol:soap
uddi-org:publication
uddi-org:publication_v2
uddi-org:publication_v3
uddi-org:relationships
uddi-org:replication_v3
uddi-org:security_v3
uddi-org:serverAuthenticatedSSL3
uddi-org:serviceSubset
uddi-org:signaturePresent
uddi-org:smtp
uddi-org:sortByDateAsc
uddi-org:sortByDateDesc
uddi-org:sortByNameAsc
uddi-org:sortByNameDesc
uddi-org:sortorder:keyGenerator
uddi-org:suppressProjectedServices
uddi-org:taxonomy
uddi-org:taxonomy_v2
uddi-org:telephone
uddi-org:transport:keyGenerator
uddi-org:types
uddi-org:v3_policy
uddi-org:validatedBy
uddi-org:valueSetCaching_v3
uddi-org:valueSetValidation_v3
uddi-org:wsdl:address
uddi-org:wsdl:categorization:protocol
uddi-org:wsdl:categorization:transport
uddi-org:wsdl:portTypeReference
uddi-org:wsdl:types
uddi-org:xml:localName
uddi-org:xml:namespace
uddi.org:bpel:types

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 129

uddi:ebxml.org:collaborationprotocolagreement:v1.0:template
uddi:ebxml.org:collaborationprotocolagreement:v2.0:template
uddi:ebxml.org:collaborationprotocolprofile:v1.0
uddi:ebxml.org:collaborationprotocolprofile:v2.0
uddi:ebxml.org:messageservice:v1.0
uddi:ebxml.org:messageservice:v2.0
uddi:oasis-open.org:wsrp:v1_bindings
uddi:oasis-open.org:wsrp:service_type
uddi:oasis-open.org:wsrp:v1_service_description_porttype
uddi:oasis-open.org:wsrp:v1_markup_porttype
uddi:oasis-open.org:wsrp:v1_registration_porttype
uddi:oasis-open.org:wsrp:v1_portlet_management_porttype
uddi:oasis-open.org:wsrp:v1_service_description_binding_soap
uddi:oasis-open.org:wsrp:v1_markup_binding_soap
uddi:oasis-open.org:wsrp:v1_registration_binding_soap
uddi:oasis-open.org:wsrp:v1_portlet_management_binding_soap
uddi:uddi.org:bpel:wsdlporttypereference
uddi:uddi.org:propertyset
uddi:uddi.org:update_entities_v2
uddi:uddi.org:update_entities_v3
uddi:w3.org:ws-policy:v1.5:attachment:policytypes
uddi:w3.org:ws-policy:v1.5:attachment:remotepolicyreference
uddi:w3.org:ws-policy:v1.5:attachment:localpolicyreference
uddi:untmg.org:businessprocessspecificationschema:v1.10
unspsc-org:unspsc
unspsc-org:unspsc:3-1
unspsc-org:unspsc:v6.0501

UDDI V3 APIs

Overview
The CentraSite Registry/Repository supports the Java API for XML Registries (JAXR).
It also supports UDDI V3- and V2. These APIs enable you to interact with the
CentraSite Registry/Repository directly from UDDI-compliant browsers and integration
development environment (IDE) tools. For more information about IDE tools, see "Using
Third-Party IDE Tools with CentraSite " on page 135.

CentraSite provides Javadocs that you can use to create UDDI V3 clients. The Javadocs
provide the interfaces you need for implementing the Publish, Inquiry, Security and
Taxonomy APIs in your clients.

<CentraSite_installation_root>\Documentation\en\jd\uddiv3ClientAPI

CentraSite supports the following APIs.

Use this API... To enable the client to...

Publish Execute any UDDI publishing API call. For example, you can
publish services to CentraSite and publish proxy endpoints for
services that already exist in CentraSite. You can publish the
following UDDI objects: Organization, Service, ServiceBinding
and tModel.

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 130

Use this API... To enable the client to...

Inquiry Interrogate CentraSite to retrieve service information. When an
active run-time policy’s virtual service executes, the Inquiry API
will pull the virtual service's information from CentraSite. You
can publish the following UDDI objects: Organization, Service,
ServiceBinding and tModel.

Security Execute UDDI security API calls, using authorization tokens.

Taxonomy Fetch taxonomies and their immediate children. The taxonomies
are represented in the tree structure. The Taxonomy API is a
custom API.

Classes and Interfaces
The major classes and interfaces available in the Javadocs are described below.

RegistryService
RegistryService is the core interface to communicate with the UDDI Registry
using the UDDI V3 API. This interface contains utility methods to get service stubs
for the Publish, Inquiry, Security and Taxonomy APIs. The UDDI operations are
performed using their respective service stubs. It also contains a method to connect to
the CentraSite Registry/Repository, using authentication tokens.

RegistryConfiguration
RegistryConfiguration is a bean class that is used to connect to the CentraSite
Registry/Repository, based on the Registry/Repository’s configuration details, such
as its host, port and URLs. The URLs include the Security URL, Inquiry URL, Publish
URL and Taxonomy URL. This class also contains the user credentials of the Registry/
Repository.

RegistryFramework
RegistryFramework is a helper interface that can be used to get aribute
values, relationships and documents. This class contains the helper method
getServiceModifiedDate, which uses get_operationalInfo to get the modified date
of the service.

Note: Unlike the UDDI specification, serviceBinding is a contained element of a
businessService entity in CentraSite. Thus, when a service's bindingTemplate
entity is updated, then the service will be updated as well. This means
that when you use the helper method getServiceModifiedDate,

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 131

it will return the same modification time for both the modified and
modifiedIncludingChildren aributes.

RegistryAgent
RegistryAgent is an interface that enables a policy enforcement point to query
the virtual services in the CentraSite Registry/Repository, and to publish run-time
performance metrics to the CentraSite Registry/Repository.

This interface contains the following helper methods:

findVirtualServices, which finds the virtual services that are deployed to the
runtime target

getVirtualServiceWSDLURL, which returns the WSDL URL for the specified virtual
service

saveMetrics, which saves the run-time performance metrics for the virtual services

UDDI_Security_SoapService
UDDI_Security_SoapService is an interface that can be used for all UDDI
Security operations. This interface contains the methods get_authToken
and discard_authToken. An instance of this interface can be obtained from
RegistryService.

UDDI_Inquiry_SoapService
UDDI_Inquiry_SoapService is an interface that contains methods for all Inquiry
operations. An instance of this interface can be obtained from RegistryService.

UDDI_Publication_SoapService
UDDI_Publication_SoapService is an interface that contains methods for all
UDDI Publish operations. An instance of this interface can be obtained from
RegistryService.

UDDI_Taxonomy_SoapService
UDDI_Taxonomy_SoapService is an interface that uses the method get_conceptDetail
to fetch taxonomies and their immediate children. The taxonomies are represented in the
tree structure. An instance of this interface can be obtained from RegistryService.

CentraSiteBusinessService
CentraSiteBusinessService is a wrapper class for the BusinessService class. This
class contains all methods contained in BusinessService, as well as these additional
methods:

getAttachedPolicyDocURL, which returns the aached policy associated with the
service.

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 132

getAttachedPolicyTModelKey, which returns the aached policy tModel key
associated with the service.

getAttributes, which returns the aributes associated with the service in a Map.

getDocuments, which returns the documents associated with the service in a Map.

getRelatedObjectKey, which returns the UDDI key of the object that has the
specified relationship.

Examples

Getting the Value of an Attribute
The following example shows how to get the value of an aribute named Life Cycle
Status.
//Creating configuration object with host, port
//and user credentials of the registry
RegistryConfiguration regConfig =
 new RegistryConfiguration("localhost", "53307",
 "DefaultUser", "PwdFor_CS21");

//Creating registry service instance using the RegistryConfiguration
RegistryService regService =
 RegistryService.Factory.newInstance(regConfig);

//connection is made (get_authToken will be issued to registry)
regService.connect();

//Inquiring the registry for the service using find_service call

UDDI_Inquiry_SoapService inquirySoapService =
 regService.getInquirySoapService();
FindService findService = new FindService();
Name name = new Name();
name.setValue("UDDI Security Service");
findService.setName(new Name[] {name});
findService.setAuthInfo(regService.getAuthToken());
System.out.println("Name....."+ findService);
ServiceList serviceList = inquirySoapService.find_service(findService);
ServiceInfos serviceInfos = serviceList.getServiceInfos();

//Getting the service Key for the first service
ServiceInfo serviceInfo = serviceInfos.getServiceInfo(0);
String serviceKey = serviceInfo.getServiceKey();

//Getting the service detail
GetServiceDetail getServiceDetail = new GetServiceDetail();
getServiceDetail.setServiceKey(new String[] {serviceKey});
getServiceDetail.setAuthInfo(regService.getAuthToken());
ServiceDetail serviceDetail =
 inquirySoapService.get_serviceDetail(getServiceDetail);
BusinessService businessService =
 serviceDetail.getBusinessService(0);

//Creating instance of CentraSiteBusinessService
CentraSiteBusinessService csBusinessService = new
CentraSiteBusinessService(businessService);

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 133

//Getting the value for the attribute "Life Cycle Status"
String attributeValue =
 csBusinessService.getAttributeValue("Life Cycle Status");

Getting the Proxy Services for a Specified Target
The following example shows how to get the proxy services for a specified target.
//Creating configuration object with host, port
//and user credentials of the registry
RegistryConfiguration regConfig =
 new RegistryConfiguration("localhost",
 "53307", "DefaultUser", "PwdFor_CS21");

//Creating registry service instance using the RegistryConfiguration
RegistryService regService =
 RegistryService.Factory.newInstance(regConfig);

//connection is made (get_authToken will be issued to registry)
regService.connect();

//Getting the RegistryAgent instance using RegistryService
RegistryAgent registryAgent = regService.getRegistryAgent();

//Getting the ServiceInfos which will contain
//a list of the services deployed in the "Actional" target
ServiceInfos proxyServices =
 registryAgent.findProxyServices("Actional");

Inquiring about a Business Service
The following example shows how to fetch the details of a business service, using the
UDDI Inquiry API.
//RegistryConfiguration containing the host, port, userId and
//password to connect to registry
RegistryConfiguration regConfig =
 new RegistryConfiguration("hostName", "port", "userId", "password");

//Creating the RegistryService using RegistryConfiguration
RegistryService regService =
 RegistryService.Factory.newInstance(regConfig);

//connecting to registry. This method will fetch the AuthToken
//using get_authTokenAPI
regService.connect();

//Inquiring the registry for the service using find_service call
UDDI_Inquiry_SoapService inquirySoapService =
 regService.getInquirySoapService();

//Constructing the find_service inquiry call
FindService findService = new FindService();
Name name = new Name();
name.setValue("UDDI Inquiry Service");
findService.setName(new Name[] {name});

//Issuing find_service inquiry call to
//CentraSite registry using UDDI_Inquiry_SoapService
ServiceList serviceList = inquirySoapService.find_service(findService);
ServiceInfos serviceInfos = serviceList.getServiceInfos();

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 134

//Getting the service Key for the first service
ServiceInfo serviceInfo = serviceInfos.getServiceInfo(0);
String serviceKey = serviceInfo.getServiceKey();

//Getting the service detail
GetServiceDetail getServiceDetail = new GetServiceDetail();
getServiceDetail.setServiceKey(new String[] {serviceKey});
getServiceDetail.setAuthInfo(regService.getAuthToken());
ServiceDetail serviceDetail =
 inquirySoapService.get_serviceDetail(getServiceDetail);
BusinessService businessService =
 serviceDetail.getBusinessService(0);
System.out.println("Fetched Service Name : " +
 businessService.getName()[0].getValue());

Publishing a Business Service
The following example shows how to publish a business service, using the UDDI
Publish API.
//RegistryConfiguration containing the host, port,
//userId and password to connect to registry
RegistryConfiguration regConfig =
 new RegistryConfiguration("hostName", "port", "userId", "password");

//Creating the RegistryService using RegistryConfiguration
RegistryService regService =
 RegistryService.Factory.newInstance(regConfig);

//connecting to registry. This method will fetch the
//AuthToken using get_authTokenAPI
regService.connect();

//Getting the UDDI_Publication_SoapService to publish the
//sample business service
UDDI_Publication_SoapService publishSoapService =
 regService.getPublishSoapService();

//Constructing the save service call for sample business service
SaveService saveService = new SaveService();
BusinessService businessService = new BusinessService();
Name name = new Name();
name.setValue("Sample Business Service");
businessService.setName(new Name[] {name});

//Setting the auth token using the registry service
saveService.setAuthInfo(regService.getAuthToken());
saveService.setBusinessService(new BusinessService[] {businessService});

//Saving the business service using UDDI_Publication_SoapService
publishSoapService.save_service(saveService);

Fetching Taxonomies
The following example shows how to fetch taxonomies, using the Taxonomy API.
//RegistryConfiguration containing the host, port,
//userId and password to connect to registry
RegistryConfiguration regConfig =
 new RegistryConfiguration("hostName", "port", "userId", "password");

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 135

//Creating the RegistryService using RegistryConfiguration
RegistryService regService =
 RegistryService.Factory.newInstance(regConfig);

//connecting to registry. This method will fetch the
//AuthToken using get_authTokenAPI
regService.connect();

//Getting the taxonomy soap service which is used fetch the taxonomies
UDDI_Taxonomy_SoapService taxonomySoapService =
 regService.getTaxonomySoapService();

//Constructing the get_conceptDetail request
GetConceptDetail getConceptDetail = new GetConceptDetail();

//Fetching the NAICS taxonomy
getConceptDetail.setConceptKey(new String[]
 {"uddi:uddi.org:ubr:categorization:naics:1997"});

//Using UDDI_Taxonomy_SoapService we are fetching the
//taxonomies from CentraSite registry
ConceptDetail conceptDetail =
 taxonomySoapService.get_conceptDetail(getConceptDetail);

Using Third-Party IDE Tools with CentraSite

Overview
An Integrated Development Environment (IDE) tool for Web services is a user interface
provided by any vendor that enables you to publish (submit data) and inquire (search
data) in any UDDI registry. CentraSite supports any IDE tool that complies with
WSDL and UDDIV3 or UDDIV2 inquiry and publish semantics. Using IDE tools with
CentraSite, you can publish, inquire and delete Web services.

Supported IDE Tools
The following IDE tools can be used with CentraSite version 9.8.

WTP Eclipse 1.5.2 plug-in

IBM Rational Application Developer 6.0

Parasoft JTest 7.5

PushToTest

UDDI4J

RUDDI

Specifying the Inquiry, Publish and Security URLs
When using any IDE tool, you need to obtain a user account in CentraSite, and also
provide an inquiry URL for inquiring a Web service and a publish URL for publishing a

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 136

Web service. You also need to provide the security URL for those tools that require it (for
example, ALSB uses the security URL to get the AuthToken).

The UDDI Publish, Inquiry and Security services are hosted at the following URLs on
the CentraSite host machine:

Inquiry URL:

http://<hostName>:<port>/UddiRegistry/inquiry

Publish URL:

http://<hostName>:<port>/UddiRegistry/publish

Security URL:

http://<hostName>:<port>/UddiRegistry/security

where <hostName> is the host name or IP address of the machine on which CentraSite is
installed and <port> is the port on which CentraSite is listening for hp requests.

Note: The save_binding call in UDDI sends the access point but does not send the
WSDL URL. Therefore, the WSDL URL shows only the access point.

WTP Eclipse 1.5.2 Plug-In
You can search for a business and publish a service from that business, using the WTP
Eclipse client.

To download the plug-in and access the Web Services Explorer

1. Download the Eclipse Web Tools version 1.5.2 from hp://download.eclipse.org/
webtools/downloads/. This version contains Eclipse 3.2.1.

2. Run your virus scan product to ensure the Eclipse Web Services Explorer opens
properly.

3. On the Eclipse SDK screen, click Window > Open Perspective.

4. On the Open Perspective dialog box, select J2EE and then click OK.

5. Click Run > Launch the Web Services Explorer.

The Web Services Explorer portlet displays.

6. In the Navigator pane, click UDDI Main.

7. On the Open Registry screen, type the following URL in the Inquiry URL box:

http://<hostName>:<port>/UddiRegistry/inquiry

where <hostName> is the host name or IP address of the machine on which
CentraSite is installed and <port> is the port on which CentraSite is listening for hp
requests.

8. Click Go.

http://download.eclipse.org/webtools/downloads/
http://download.eclipse.org/webtools/downloads/

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 137

If the registry is active, Eclipse displays its details. On this page, you can find and
publish services, businesses and service interfaces (tModels).

9. Click Go.

IBM Rational Application Developer 6.0

Connecting to CentraSite
For more information about the IBM Rational Application Developer 6.0, see the IBM
developerWorks website.

To connect to CentraSite

1. From the Window menu of the tool, click Open Perspective > J2EE.

2. Click Run > Launch the Web Services Explorer.

3. In the navigation window, click UDDI Main.

4. In the Registry Name box, type CentraSite.

5. In the Inquiry URL box, type http://<host>:<port>/UDDIRregistry/inquiry,
where <host> and <port> reflect the target CentraSite registry.

Publishing Entities

To publish entities

1. In the Publish URL box, type http://<host>:<port>/UDDIRegistry/publish,
where <host> and <port> reflect the target CentraSite registry.

2. Supply your user name and password.

3. Identify the registry to which you want to publish the entity.

4. Provide entity details.

When you aempt to find services and publish a new service, double authentication
is required. But when you aempt to publish a service directly, authentication is
involved once.

UDDI Extensions
Various extensions to the UDDI standard have been published by the standards bodies
OASIS and W3C. The extensions described below are implemented in CentraSite's UDDI
environment.

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 138

Using WSDL in a UDDI Registry
Since a UDDI registry houses information about web services and their providers, it is
essential that the information contained in a web service's WSDL document is accurately
mapped to the UDDI data model. This means that subsequent search operations to
discover a registered web service are possible, based on the information that is mapped
from the WSDL.

How CentraSite performs WSDL-to-UDDI mappings is based on the recommendations
that OASIS has published. The technical description of the OASIS recommendation for
WSDL-to-UDDI mapping can be found on the OASIS website.

Using WS-PolicyAttachment
An XML-based expression grammar for policies is described in the Web Services Policy
Framework (WS-Policy) specification, published by the W3C. The specification also
describes how a policy can be associated with a registry object.

The CentraSite UDDI registry supports WS-PolicyAachment version 1.2 and 1.5. Policy
aachments can be either WSDL-based or UDDI-based. Currently, CentraSite supports
UDDI-based policy aachments. With UDDI-based policy aachments, the policies are
modeled in the UDDI registry using UDDI elements.

Version 1.2 Support
The CentraSite WS-PolicyAachment support for version 1.2 covers the following
aspects of the WS-PolicyAachment specification:

Supported Policy Subjects

CentraSite supports the UDDI-based policy aachments for the following policy
subjects:

Service Provider Policy Subject

Service Policy Subject

Endpoint Policy Subject

Referencing Remote Policy Expressions

An example for a remote policy reference is shown by the following
uddi:businessService that is taken from the WS-PolicyAachment specification:
<businessService serviceKey="…" >
 <name>…</name>
 <description>…</description>
 <bindingTemplates>…</bindingTemplates>
 <categoryBag>
 <keyedReference
 keyName="Policy Expression for example's Web services"
 keyValue="http://www.example.com/myservice/policy"

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 139

 tModelKey="uuid:a27078e4-fd38-320a-806f-6749e84f8005" />
 </categoryBag>
</businessService>

The uddi:businessService is aached to a WS-Policy that accessible through the URL
hp://www.example.com/myservice/policy. The uddi:keyedReference represents
the aachment. It is referencing the remote policy reference category system via its
uddi:tModelKey and its value holds the URI of the policy document.

Registering Reusable Policy Expressions

A reusable policy expression is represented by a dedicated uddi:tModel in the UDDI
registry. The following uddi:tModel shows an example:
<tModel tModelKey="uuid:04cfa…">
 <name>…</name>
<description xml:lang="EN">
 Policy Expression for example's Web services
 </description>
 <overviewDoc>
 <description xml:lang="EN">WS-Policy Expression</description>
 <overviewURL>http://www.example.com/myservice/policy</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 keyName="Reusable policy Expression"
 keyValue="policy"
 tModelKey="uuid:fa1d77dc-edf0-3a84-a99a-5972e434e993" />
 <keyedReference
 keyName="Policy Expression for example's Web services"
 keyValue="http://www.example.com/myservice/policy"
 tModelKey="uuid:a27078e4-fd38-320a-806f-6749e84f8005" />
 </categoryBag>
</tModel>

The uddi:tModel comes with two uddi:keyedReferences. The first uddi:keyedReference
specifies the uddi:tModel to represent a reusable policy expression. The second
one points to the document holding the policy expression. An example that
shows the aachment of a reusable policy expression is given by the following
uddi:businessService:
<businessService serviceKey="…" >
 <name>…</name>
 <description>…</description>
 <bindingTemplates>…</bindingTemplates>
 <categoryBag>
 <keyedReference
 keyName="Policy Expression for example's Web services"
 keyValue="uuid:04cfa…"
 tModelKey="uuid:a27f7d45-ec90-31f7-a655-efe91433527c" />
 </categoryBag>
</businessService>

The uddi:businessService holds a keyedReference pointing to the uddi:tModel holding
the reusable policy expression. The uddi:tModelKey of the uddi:keyedReference points
to the local policy reference uddi:tModel.

Registering Policies in UDDI Version 3

CentraSite supports UDDI-based policy aachments for UDDI version 2 and 3.

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 140

tModels to Support UDDI-Based WS-PolicyAttachments

CentraSite provides the tModels necessary to support UDDI-based WS-
PolicyAachments.

Remote Policy Reference Category System

This tModel is used to aach a policy to a UDDI entity by referencing the policy's URI.
<tModel tModelKey="uddi:schemas.xmlsoap.org:remotepolicyreference:2003_03" >
 <name>http://schemas.xmlsoap.org/ws/2003/03/remotepolicyreference</name>
 <description xml:lang="EN">
 Category system used for UDDI entities to point to an external
 WS-PolicyAttachment Policy Expression that describes their
 characteristics. See WS-PolicyAttachment specification for further details.
 </description>
 <categoryBag>
 <keyedReference
 keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4" />
 </categoryBag>
</tModel>

WS-Policy Types Category System

This tModel is used to categorize tModels as representing Policy Expressions. There is
only one valid value, namely policy, that indicates this very fact. It is recommended that
tModels categorized as representing Policy Expressions reference no more and no less
than this very Policy Expression using the Remote Policy Reference category system.
<tModel tModelKey=" uddi:schemas.xmlsoap.org:policytypes:2003_03" >
 <name>http://schemas.xmlsoap.org/ws/2003/03/policytypes</name>
 <description xml:lang="EN">
 WS-Policy Types category system used for UDDI tModels to characterize them
 as WS-Policy – based Policy Expressions.
 </description>
 <categoryBag>
 <keyedReference
 keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4" />
 </categoryBag>
</tModel>

Local Policy Reference Category System

This tModel is used to aach a Policy Expression to a UDDI entity by referencing the
UDDI entity that represents this Policy Expression. The Local Policy Reference category
system is based on tModelKeys. It is expected that referenced tModels are registered
with the same UDDI registry and are categorized as representing Policy Expressions
using the WS-Policy Types category system.
UDDI Key (V3): uddi:schemas.xmlsoap.org:remotepolicyreference:2003_03
UDDI V1,V2 format key: uuid:a27f7d45-ec90-31f7-a655-efe91433527c
Categorization: categorization
Checked: Yes
<tModel tModelKey="uddi:schemas.xmlsoap.org:localpolicyreference:2003_03" >
 <name>http://schemas.xmlsoap.org/ws/2003/03/localpolicyreference</name>

M
Odd Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 141

 <description xml:lang="en">
 Category system used for UDDI entities to point to a WS-Policy
 Policy Expression tModel that describes their characteristics.
 See WS-PolicyAttachment specification for further details.
 </description>
 <categoryBag>
 <keyedReference
 keyName="uddi-org:types:categorization"
 keyValue="categorization"
 tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62aB4" />
 <keyedReference
 keyName="uddi-org:entityKeyValues"
 keyValue="tModelKey"
 tModelKey="uuid:916b87bf-0756-3919-8eae-97dfa325e5a4" />
 </categoryBag>
</tModel>

Version 1.5 Support
The CentraSite WS-PolicyAachment support for version 1.5 covers the same aspects
as for version 1.2. Additionally, CentraSite provides the following tModels necessary to
support UDDI-based WS-PolicyAachments:

uddi:w3.org:ws-policy:v1.5:aachment:localpolicyreference

uddi:w3.org:ws-policy:v1.5:aachment:policytypes

uddi:w3.org:ws-policy:v1.5:aachment:remotepolicyreference

Extending UDDI Publisher API Set to Enable Physical Deletion of
tModels
For the physical deletion of un-referenced tModels, CentraSite extends the UDDI
Publication API set. Appendix H of the UDDI V3 Specification describes how UDDI can
be extended. For removing a tModel from a registry, CentraSite introduces the request
purge_tModel. This extension is only supported for UDDI version 3.

Arguments
The purge_tModel request has the same arguments as the delete_tModel V3 request:

authInfo: This optional argument is an element that contains an authentication
token.

tModelKey: One or more required uddiKey values that represent specific instances of
known tModel data.

Behavior
The request removes a hidden tModel from the registry that is not referenced by any
other UDDI object.

M
Even Header

Access via UDDI

CentraSite Developer's Guide Version 9.8 142

Returns
On successful completion an empty message is returned.

Caveats
In the case of an error, a disposition report will be returned within a SOAP fault. In
addition to the errors which are common to all API calls, the following errors are
relevant here:

E_invalidKeyPassed: Signifies that one of the uddiKey values passed did not match
any known tModelKey values, or multiple instances of the same tModelKey values
were passed. The error is also returned if the referenced tModel is not hidden, or it
is still referenced. This means there are four conditions for this error. The different
conditions should be reflected in the errInfo element:

The specified tModel cannot be found

Multiple references to the same tModel

The specified tModel is not hidden

The specified tModel is still referenced

E_userMismatch: Signifies that one or more of the tModelKey values passed refers
to data that is not owned by the individual publisher who is represented by the
authentication token.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 143

4 Pluggable Architecture

■ Introduction to CentraSite Control Pluggable Architecture .. 144

■ Customizing the Welcome Page .. 145

■ Customizing Content Pages .. 167

■ Setting the Preferred Plug-In and Order of Plug-Ins ... 186

■ Installing and Uninstalling Plug-Ins .. 186

■ Special and Advanced Topics .. 189

■ Javadoc Documentation of the APIs ... 192

■ Step-by-Step Guide .. 192

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 144

Introduction to CentraSite Control Pluggable Architecture
CentraSite Control offers a pluggable architecture that allows you to extend the standard
graphical interface by adding your own features.

The CentraSite Control user interface is itself a plug-in to a base infrastructure, in other
words, the base infrastructure provides extension points where CentraSite Control is
plugged in. The base infrastructure is composed of the Application Designer, which
provides the basic graphical infrastructure of the GUI, and the plug-in infrastructure
base, which allows plug-ins to communicate with the Application Designer.

The pluggable architecture is illustrated in the following diagram:

The plug-in infrastructure is inspired by Eclipse, which allows the user interface to be
extended by domain-specific or customer-specific functionality.

Plug-ins are implemented as Java classes. The points in the code at which plug-ins can
be added are called extension points. CentraSite Control offers extension points that allow
you to implement or extend the following features:

Provide an alternative login screen.

Add a topic to the navigation pane within any perspective.

Support I18N (internationalization) for layouts contributed by a plug-in.

Add a logo and links to the login dialog.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 145

Handle the creation and termination of the connection to a backend machine.

Add a perspective contributing the following components: a toolbar, a logo, one or
more topics and a background screen. A perspective allows you to group topics in
the navigation view.

Add a command to the context menu of a registry object or a repository object

Add a property to an object. The property is then visible in detail views and under
the General tab.

Add a tab to the detail view of registry objects and repository objects.

Add a source of notifications.

Add secondary icons to nodes in the graphical impact analysis.

Extend the Summary tab.

Replace the standard detail view used as editor for registry / repository objects by an
object type specific editor.

Extend the set of available import commands.

Extend the search dialog by additional conditions.

A plug-in can itself provide extension points for further plug-ins.

The available extension points are described in "Extension Points" on page 167.

Customizing the Welcome Page
The Welcome page that you see when you start CentraSite Control can be customized
to suit your own requirements. You can change aspects such as icons used, colors, text,
fonts and layouts. You can also define links that will take you straight to the pages of
CentraSite Control that you use the most, and links to external web sites.

Introduction
The standard Welcome page gives you quick links to the pages of CentraSite Control
that you will probably use frequently during your day-to-day work with CentraSite.
It also provides links to external web sites that provide useful information related to
CentraSite. In the Welcome page you can specify the language you wish to use for your
further work with CentraSite Control, and you can specify the date format to be used in
the various displays.

A search box allows you perform a keyword search for registry assets and objects whose
name or description contains the given keyword.

The Welcome page has the following schematic layout:

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 146

The header section at the top contains a title text and a subtitle text. You can change the
texts, the fonts and colors used to display the texts. An icon can be displayed adjacent
to the title and subtitle. A search box is displayed by default, which allows you to
perform a keyword search for an asset. You can hide the search box as part of the page
customization. You can change the background color for the whole header section, and
you can change the background color of the search box.

Below the header section, there can be one or more so-called widgets. Each widget
contains a title, with an icon adjacent to the text. Under the title, you can have a list of
entries, each representing some executable action. Typically, an action contains a URL to
either a page of your choice within CentraSite Control, or to an external web page that
you regularly visit within the context of your work with CentraSite.

There are several kinds of widget:

Single-column widget

In this widget, the executable actions are displayed as a table consisting of a single
column. Each table cell contains one executable action. Each cell can also have an
icon beside it. There is a header text above the table.

Multi-column widget

In this widget, the executable actions are displayed as a table consisting of two or
more columns. Each table cell contains one executable action. Each cell can also have
an icon beside it. There is a header text above each column of the table.

HTML-style widget

In this widget, the contents are freely programmable as HTML code. The HTML
statements you use must be valid within the context of an HTML table cell, i.e. there
is an implicit HTML <td> element enclosing the HTML code you supply.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 147

The Welcome page can contain up to 10 widgets. The widgets are displayed side by side
in a single row.

In general, you can use CSS stylesheet statements to customize the appearance of text
and colors in the Welcome page.

Technical Implementation of the Welcome Page
The Welcome page is implemented as a plug-in module within the CentraSite pluggable
UI architecture. This means that all of the development aspects that are relevant for
implementing CentraSite plug-in modules apply also to the Welcome page.

Overview of Java Methods Used
The layout and contents of the Welcome page are implemented as Java code.

Each customizable part of the Welcome page requires a corresponding Java class. The
Welcome screen can be defined as a combination of the following hierarchical structures:

The header and body of the Welcome page.

The widgets in the body of the Welcome page.

The items in the columns of the widgets.

Screen Component: Welcome Page

The Welcome page is composed of a header and a body. The header contains a title,
subtitle, icon, search box and background image. The body contains one or more
widgets.

The content and appearance of these components are determined by the Java methods
shown in the following diagram.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 148

The following table describes the purpose of these Java methods:

Name of Java
interface

Java Method Description

IWelcomePage getTitle(); Defines the header text to
be used.

IWelcomePage getTitleStyle(); Defines the CSS style
information for the
header.

IWelcomePage getSubTitle(); Defines the header
subtitle text to be used.

IWelcomePage getSubTitleStyle(); Defines the CSS style
information for the
header subtitle.

IWelcomePage getImage(); Defines the icon to be
used in the header.

IWelcomePage isSearchVisible(); Defines whether the
search box in the header
part is visible or invisible.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 149

Name of Java
interface

Java Method Description

IWelcomePage getSearchBackgroundImage(); Defines a background
image to be used for the
search box.

IWelcomePage getHeaderBackgroundImage(); Defines a background
image to be used for the
header part.

IWelcomePage getBoomBackgroundImage(); Defines a background
image to be used for the
body part.

IWelcomePage getWidgets(); Defines the widgets that
will be used in the body
part.

Screen Component: Widget

The body part of the Welcome page is composed of one or more widgets. A widget
can define just HTML code (an HTML-style widget) or can define content and layout,
similar to the header part of the Welcome page. The content/layout components are: a
background image, a header text, the definition of a single-column table of items, the
definition of a multi-column table of items.

The content and appearance of these components are determined by the Java methods
shown in the following diagram.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 150

The following table describes the purpose of these Java methods:

Name of Java interface Java Method Description

IWidget getWidth(); Defines the screen width of
the widget.

IHtmlWidget getHtml(); Defines HTML code for an
HTML-style widget.

IColumnWidget getBackgroundImage(); Defines the background image
to be used for a column of a
widget.

IColumnWidget getTitle(); Defines the header text of a
column of a widget.

IColumnWidget getTitleStyle(); Defines the CSS style for the
header text of a column of a
widget.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 151

Name of Java interface Java Method Description

IColumnWidget getImage(); Defines the background image
to be used for the header part
of the widget.

ISingleColumnWidget getSubTitle(); Defines the subtitle text of a
single-column widget.

ISingleColumnWidget getSubTitleStyle(); Defines the CSS style for the
subtitle header text of a single-
column widget.

ISingleColumnWidget getItems(); Defines the items contained in
a single-column widget.

IMultiColumnWidget getColumns(); Defines the columns used in a
multi-column widget.

IColumn getSubTitle(); Defines the subtitle text of a
column of a multi-column
widget.

IColumn getSubTitleStyle(); Defines the CSS style for the
subtitle text of a column of a
multi-column widget.

IColumn getItems(); Defines the items contained in
a column of a multi-column
widget.

Screen Component: Item

Each widget in the body part of the Welcome page can contain one or more items,
arranged in one or more table columns. An item represents an executable action, which
you can define freely; for example, the action could be the activation of a URL in order to
reach a particular page within CentraSite Control or an external web site.

The content and appearance of these components are determined by the Java methods
shown in the following diagram.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 152

The following table describes the purpose of these Java methods:

Name of Java interface Java Method Description

IItem getStyle(); Defines the CSS style for the item.

IActionItem getTitle(); Defines the text to be displayed for the
item.

IActionItem getImage(); Defines the icon to be displayed adjacent
to the descriptive text.

ISeparatorItem getHeight(); Defines the height in pixels of the area
that contains the separator image.

ISeparatorItem getImage(); Defines the image be displayed as the
separator item.

Methods Not Related to Screen Components

The following list shows the Java methods that are not related to a screen component,
but which are required for the pluggable UI architecture of CentraSite Control.

Name of Java
interface

Java Method Description

(all interfaces) setLocale(); This informs the widget or item
about the CentraSite Control locale
that is required to localize texts for
the display.

This method is called automatically
before any other method that might
depend on the locale.

(all interfaces) setActionContext(); This informs the widget or item
about the CentraSite Control context

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 153

Name of Java
interface

Java Method Description

that is required for the processing
to be done subsequently by the
execute() method.

This method is called automatically
before any other method that might
depend on the action context.

IWidget invalidate(); This sets the status that the display
of the current item must be
refreshed (true) or does not need to
be refreshed (false).

IWidget isInvalidated(); This returns whether or not the
display of the item needs to be
refreshed.

IItem getWidget(); This method gets the widget to
which the current item belongs.

IItem setWidget(); This method sets the widget to
which the current item belongs.

IActionItem execute(); This activates the action to be
performed when you click on the
current item.

Java Interface Hierarchy
The interface hierarchy is as follows:
IWelcomePage

IWidget
 IColumnWidget
 IMultiColumnWidget
 ISingleColumnWidget
 IHtmlWidget

IColumn

IItem
 IActionItem
 ISeparatorItem

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 154

Installing the Customized Welcome Page
The Welcome page is implemented as a CentraSite Control extension point in the context
of CentraSite's pluggable UI architecture. To install your customized Welcome page,
you need to modify CentraSite Control's pluggable UI configuration in the Software AG
Runtime environment.

Stop Software AG Runtime
Before you make any changes to the Software AG Runtime environment, stop the
Software AG Runtime process.

Updating the plugin.xml Configuration File
The standard plugin.xml configuration file delivered with the CentraSite kit contains
all of the names of the CentraSite Control extension points, including the extension
point for the Welcome page. You must update this file to contain the definition
of the customized Welcome page. The configuration file is located in the folder
<RuntimeDir> \workspace\webapps\PluggableUI\CentraSiteControl.

There are two elements in the standard plugin.xml file that refer to the Welcome page.
The first part defines the name of the extension point to be used for the Welcome page,
and looks like this:
<extension-point id="welcomePage">
</extension-point>

The second part defines the Java class that implements the Welcome page, and looks like
this:
 <!-- Welcome Page -->
 <extension
 point="com.centrasite.control.welcomePage"
 id="welcomePage"
 class="com.centrasite.control.ext.welcome.standard.WelcomePage">
 </extension>

The point aribute of the extension element in the second part must match the
name given by the id aribute of the plugin element (usually in the first line in the
plugin.xml file) concatenated with a dot and the id aribute of the extension-point
element in the first part. For example, if the id aribute of the plugin element is
"com.centrasite.control" and the id aribute of the extension-point element is
"welcomePage", then the value of point aribute of the extension element must be
"com.centrasite.control.welcomePage".

The Java class identified by the class aribute of the extension element must
implement the interface IWelcomePage.

To use your customized Welcome page instead of the standard Welcome page, set
the class aribute to your customized Java class that implements the interface
IWelcomePage.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 155

For general information about plugin.xml, see "Installing and Uninstalling Plug-Ins" on
page 186.

The changes that you make in plugin.xml take effect the next time Software AG Runtime
is started.

Note: Instead of overwriting the standard element in plugin.xml, you might want to
retain a copy of the original element and comment it out. This means that you
can revert easily to the original Welcome page if required, by commenting out
your customized element and uncommenting the original element.

Deploying the New Java Classes to the PluggableUI Environment
In addition to modifying the plugin.xml file, as described above, you need to copy the
Java classes for your customized Welcome page to the CentraSite Control location in
Software AG Runtime.

There are two ways of doing this:

Create a jar file containing the class files for your customized Welcome page, and
copy the jar file to the CentraSiteControl\lib folder in Software AG Runtime.

Copy the class files to the CentraSiteControl\classes folder and its subfolders,
according to the naming convention of the Java package that contains the classes.
If, for example, your package name is com.centrasite.control.ext.welcome.sample,
then copy the classes to the CentraSiteControl\classes\com\centrasite\control\ext
\welcome\sample folder.

You can also combine these methods, and define some classes via a jar file in the
lib folder and some classes as class files in the appropriate subfolder of the classes
folder. If you have defined a class in both lib and a subfolder of classes, the class in the
CentraSiteControl\classes subfolder will be used.

If you have defined new icons for the customized Welcome page, you need to copy the
icons to the appropriate location under the CentraSiteControl folder. If, for example,
your code contains the definition public String getImage() { return "images/
my_welcome_icon.png"; }, ensure that the icon my_welcome_icon.png is copied to
CentraSiteControl\images.

Start Software AG Runtime
After you have made the changes to the Software AG Runtime environment, restart the
Software AG Runtime process. The changes you have made should now be visible when
you view the Welcome Page.

Example of a Customized Welcome Page
This section describes the customized Welcome page that is provided as a demo in the
product distribution.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 156

Location of Demo Files
All of the required files for the demo are contained in the folder demos\WelcomePage
under the CentraSite installation location. The following files are available at this
location:

The Java source files. These are located in the subfolder src.

Icons to be displayed in the Welcome page. These are located in the subfolder
resources.

Updates for the Software AG Runtime configuration. These are in the file resources
\plugin.xml.

Eclipse project files .classpath and .project.

Apache Ant files build.properties and build.xml for building the files that will be
deployed to Software AG Runtime.

Differences Between the Standard Welcome Page and the Demo Welcome
Page
This section shows the differences between the standard welcome page and the demo
welcome page. Based on this you should be able to quickly evaluate the usefulness of
this feature for your own business requirements.

The standard welcome page has the following appearance:

The demo welcome page used as an example in this section has the following
appearance:

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 157

The main changes between the standard welcome page and the customized welcome
page that Software AG supplies as a demo can be summarized as follows:

The text in the title of the header section has changed. Also the color of this text has
changed.

The background color in the customized welcome page has changed.

The large icons in the titles of the header part and of the widgets have changed.

The small icons in the CentraSite widget have changed.

The widgets have 3-D effect shadowed borders.

The search box in the header section has been removed.

Implementation of Welcome Page Layout
This section lists the layout possibilities of the welcome page and specifies the Java
methods where the layout is defined.

Note: If any background image that is defined for an area of the display is not as
wide as the area, the image is repeated horizontally until the whole width of
the area is covered.

Header Area

Layout component Source file Java Method

Icon WelcomePage.java getImage();

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 158

Layout component Source file Java Method

Background image WelcomePage.java getHeaderBackgroundImage();

Title text WelcomePage.java getTitle();

CSS style of title text WelcomePage.java getTitleStyle();

Subtitle text WelcomePage.java getSubTitle();

CSS style of subtitle text WelcomePage.java getSubTitleStyle();

Background image of the
Search box

WelcomePage.java getSearchBackgroundImage();

Make the Search box
visible/invisible

WelcomePage.java isSearchVisible();

Separator Between Header Part and Widget Part

Layout component Source file Java Method

Image SeparatorItem.java getImage();

Height in pixels SeparatorItem.java getHeight();

Widget CentraSite

Layout component Source file Java Method

Width of widget CentraSiteWidget.java getWidth();

Title text CentraSiteWidget.java getTitle();

CSS style of title text CentraSiteWidget.java getTitleStyle();

Subtitle text CentraSiteWidget.java getSubTitle();

CSS style of subtitle text CentraSiteWidget.java getSubTitleStyle();

Header icon CentraSiteWidget.java getImage();

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 159

Layout component Source file Java Method

Background image CentraSiteWidget.java getBackgroundImage();

CentraSite widget: define
the items to be included in
the bullet list

CentraSiteWidget.java getItems();

Icon for item Asset
Catalog

KeywordSearchItem.java getImage();

Text for item Asset
Catalog

KeywordSearchItem.java getTitle();

Icon for item Advanced
Search

AdvancedSearchItem.java getImage();

Text for item Advanced
Search

AdvancedSearchItem.java getTitle();

Icon for item Inbox InboxItem.java getImage();

Text for item Inbox InboxItem.java getTitle();

Icon for item My
Favorites

MyFavoriteItem.java getImage();

Text for item My
Favorites

MyFavoriteItem.java getTitle();

Widget Useful Links

Layout component Source file Java Method

Header icon UsefulLinksWidget.java getImage();

Width of widget UsefulLinksWidget.java getWidth();

Title text UsefulLinksWidget.java getTitle();

CSS style of title text UsefulLinksWidget.java getTitleStyle();

Subtitle text UsefulLinksWidget.java getSubTitle();

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 160

Layout component Source file Java Method

CSS style of subtitle
text

UsefulLinksWidget.java getSubTitleStyle();

Background image UsefulLinksWidget.java getBackgroundImage();

Text for item
CentraSite
Developers
Community

DeveloperCommunityItem.java getTitle();

URL for item
CentraSite
Developers Community
(See note below)

DeveloperCommunityItem.java execute();

Text for item
CentraSite
Community

CentraSiteCommunityItem.java getTitle();

URL for item
CentraSite Community
(See note below)

CentraSiteCommunityItem.java execute();

Text for item
CentraSite Online
Documentation

OnlineDocumentationItem.java getTitle();

URL for item
CentraSite Online
Documentation
(See note below)

OnlineDocumentationItem.java execute();

Define the items to be
included in the bullet
list

UsefulLinksWidget.java getItems();

Note: For the URLs for items CentraSite Developers Community, CentraSite
Community , and CentraSite Online Documentation, the creation of a
hyperlink that opens a new browser page is implemented by a call of the
openPageInNewWindow method of the getDisplayAdapter() class that is available
in the CentraSiteControlUI.jar file in Software AG Runtime.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 161

Widget User Preferences

Layout component Source file Java Method

Header icon UserPreferencesWidget.java getImage();

Width of widget UserPreferencesWidget.java getWidth();

Title text UserPreferencesWidget.java getTitle();

CSS style of title text UserPreferencesWidget.java getTitleStyle();

Background image UserPreferencesWidget.java getBackgroundImage();

Text of the Languages
subtitle

LanguagesColumn.java getSubTitle();

CSS style of the
Languages subtitle

LanguagesColumn.java getSubTitleStyle();

Width of Languages
column in pixels

LanguagesColumn.java getWidth();

Text of the Date
Formats subtitle

DateFormatsColumn.java getSubTitle();

CSS style of the Date
Formats subtitle

DateFormatsColumn.java getSubTitleStyle();

Width of Date Formats
column in pixels

DateFormatsColumn.java getWidth();

Languages column:
define the items to be
included in the bullet
list

LanguagesColumn.java getItems();

Date Formats column:
define the items to be
included in the bullet
list

DateFormatsColumn.java getItems();

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 162

Default Settings for Widgets

Layout component Source file Constant

Widgets: default "blue
circle" icon to mark
individual entries in a
widget

WelcomePage.java BLUE_CIRCLE_ICON

Widgets: default
"orange circle" icon to
mark individual entries
in a widget

WelcomePage.java ORANGE_CIRCLE_ICON

Widgets: default CSS
style of the title text of a
widget

WelcomePage.java WIDGET_TITLE_STYLE

Widgets: default CSS
style of the subtitle text
of a widget

WelcomePage.java WIDGET_SUBTITLE_STYLE

Widgets: default CSS
style of the text for each
item of a widget

WelcomePage.java ACTION_ITEM_STYLE

Implementing the Demo as an Eclipse Java Project
If you wish to use Eclipse as your development environment for updating the Java
sources of the customized welcome page, the demos\WelcomePage folder contains the
Eclipse project files .classpath and .project. You can use these files to create an Eclipse
Java project for managing your Java sources. To create and use the Eclipse Java project,
proceed as follows:

To create and use the Eclipse Java project

1. Start Eclipse.

2. Select File > New > Project > Java Project.

This opens the wizard for creating a new Java project.

3. Select Create project from existing source.

4. Specify the path demos\WelcomePage as the location of the existing project files.

When you build the project in Eclipse (using for example Project > Build Project), there
should be no errors reported.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 163

Building the Deployment Files for Software AG Runtime
To deploy the demo welcome page to Software AG Runtime, you need to create a jar file
containing the Java classes of your Java sources, then copy the jar file and any required
graphic icons to the Software AG Runtime environment.

You can build the jar file by using Apache Ant with the build file build.xml
provided in the demos\WelcomePage folder. The file build.xml uses a properties file
build.properties to define some customer-specific files names and folder locations.

The build file, build.xml also builds a zip file that contains the jar file and all required
graphical icons. To deploy the demo welcome page, you can unzip the contents of the
zip file directly into your Software AG Runtime location.

The build.properties File

The file build.properties contains the following properties that you should tailor to your
working environment before you run build.xml.

Property Description

projectName This is the name that will be used for the jar file and zip
file that are created by the Ant task.

The jar file will be copied to the CentraSite\lib folder in
the Software AG Runtime environment, so choose a name
that will easily distinguish the jar file from other jar files at
the Software AG Runtime location.

pluggableLocation This is the location of the webapps/PluggableUI folder in
the Software AG Runtime environment. In a Windows
environment, you should use forward slashes instead of
backward slashes in the path name.

centraSiteLocation This is the path where your CentraSite installation is
located. In a Windows environment, you should use
forward slashes instead of backward slashes in the path
name.

Building the Deployment Files

The build.xml file contains the definition of the tasks to be performed by Ant. The tasks
defined in the delivered demo version are:

Compile the Java sources that are located in the folder src and store the Java classes
in the folder classes.

Create a jar file containing all of the class files, and store the jar file in the folder lib.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 164

Create a zip file that contains the jar file and all icons associated with the customized
welcome page, and store the zip file in the folder lib.

The build.xml file is an XML file that contains element definitions such as:
<zipfileset dir="resources" prefix="images"> <include name="*.png" /> </zipfileset>

In such cases, the dir aribute indicates the name of the folder in the build environment
where Ant can locate the required files, and the prefix aribute indicates the folder in
the Software AG Runtime environment where the files will be copied to. In the extract
shown above, Ant will search for all PNG graphics files ("*.png") in the resources folder
in the build environment and add them to the zip file so that they can be unzipped into
the images folder in the Software AG Runtime environment.

To build the deployment files, you can use either Eclipse or the command line.

In both methods, the Ant tasks defined in build.xml are processed. Ant builds a new
jar file demos\WelcomePage\lib\SagBlueWelcomePage.jar, containing all of the Java
classes required for the Software AG Runtime environment. It also build a zip file
demos\WelcomePage\lib\SagBlueWelcomePage.zip, containing the jar file and all
required PNG graphics. The name SagBlueWelcomePage comes from the definition of
the property projectName in the file build.properties.

Building the Deployment Files Using Eclipse (Method 1)

To build the deployment files (method 1)

1. In Eclipse, select the build.xml file in the Package Explorer view.

2. In the context menu, click Run As > Ant Build....

3. Ensure that the options are set for Clear Environment, Compile Sources, Create
JAR file, Create ZIP file.

4. Click Run.

Building the Deployment Files from the Command Line (Method 2)

To build the deployment files from the command line

1. Open a command prompt window.

2. Go to the demos\WelcomePage folder.

3. Enter the command ant clean.

4. Enter the command ant.

Deploying the Demo to Software AG Runtime
To deploy the demo Welcome page to Software AG Runtime, you need to copy the Java
classes and icons of the demo Welcome page to the Software AG Runtimet environment,
and update the Software AG Runtimeplugin.xml file. To do this, proceed as follows:

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 165

To deploy the demo Welcome page to Software AG Runtime

1. Stop Software AG Runtime.

2. Do one of the following alternatives:

Unzip the zip file created by the Ant build into <RuntimeDir> \workspace
\webapps\PluggableUI\CentraSiteControl directory.

This will copy the jar file created by Ant into the folder
<RuntimeDir> \workspace\webapps\PluggableUI\CentraSiteControl\lib and
the PNG files into the folder <RuntimeDir> \workspace\webapps\PluggableUI
\CentraSiteControl\images.

-- OR --

As an alternative to using the zip file, you can just copy the jar file from the Ant
build into <RuntimeDir> \workspace\webapps\PluggableUI\CentraSiteControl
\lib and the PNG files into <RuntimeDir> \workspace\webapps\PluggableUI
\CentraSiteControl\images.

3. Update the plugin.xml file in the Software AG Runtime environment to point to
the Java classes of the customized Welcome page, as described in "Updating the
plugin.xml Configuration File" on page 154. The file plugin.xml in the folder
demos\WelcomePage\resources contains the elements that must be updated in the
plugin.xml file for Software AG Runtime.

Copy the entries manually from demos\WelcomePage\resources\plugin.xml to the
plugin.xml file under Software AG Runtime. Remember to comment out the original
entries for the standard Welcome page when you copy in the new entries.

4. Restart Software AG Runtime.

Displaying the Demo Welcome Page
After you have deployed the demo to the Software AG Runtime environment and
restarted Software AG Runtime, the demo Welcome page will be visible when you start
CentraSite Control.

Special Programming Techniques
This section summarizes some of the techniques you might find useful when creating
your own customized welcome page. You can find code examples of the techniques in
the demos\WelcomePage folder.

Technique Code Example in demos
\WelcomePage folder

Activate the Advanced Search page. AdvancedSearchItem.java

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 166

Technique Code Example in demos
\WelcomePage folder

Activate the Keyword Search page. KeywordSearchItem.java

Start the My Account dialog. UserPreferencesItem.java

Start the Add Asset dialog. CreateAssetItem.java

Start the Import dialog. ImportWsdlFileItem.java

Activate My CenstraSite and show Assets
I Provide.

MyFavoriteItem.java

Open the external website http://
communities.softwareag.com/centrasite.

CentraSiteCommunityItem.java

Open the external website http://
www.centrasite.com.

DeveloperCommunityItem.java

Open the external website http://
documentation.softwareag.com/
default.htm.

OnlineDocumentationItem.java

Create an empty line in a widget. EmptyItem.java

Create a doed dividing line. SeparatorItem.java

Create a column (list) with all available date
formats.

DateFormatsColumn.java

Select a specific date format from a list. DateFormatItem.java

Create a column (list) with all available
languages.

LanguagesColumn.java

Select a specific language from a list. LanguageItem.java

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 167

Customizing Content Pages

Extension Points
An extension point is characterized by the following properties:

An ID by which it can be referenced.

An interface to be implemented by plug-ins. In most cases there is also an abstract
base class available that implements the interface. It is recommended to extend this
class for your own extensions.

Names of properties to be provided by a plug-in.

Optionally, it may be related / compared to a corresponding extension point offered
in an Eclipse environment.

An extension point provides the name of a class that implements the interface and
property values. In general, if there is an abstract base class, its usage is strongly
encouraged.

I18N for Layouts

Usage Use this when the layout of a plug-in needs to be localized.

Attributes "point=com.softwareag.cis.plugin.i18n"

id

class

project (name of the plug-in directory)

prefix (as used by messages)

file (name of the property file to be used)

Interface I18NHandler

Standard class Common18NHandler

Processing Class I18NManager inside PluggableUI handles this extension
point. If an I18Message or a text ID in a layout definition (as
created using the Application Designer) refers to a source ID
that starts with the given prefix, the I18Manager will aempt to
resolve this reference using the given property file. In the case of
a text ID, the corresponding layout must be part of the plug-in
whose directory is indicated by the project aribute.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 168

Provided by PluggableUI

Example
<extension point="com.softwareag.cis.plugin.i18n"
 id="CentraSiteControl"
 class="com.softwareag.cis.plugin.ext.Common18NHandler"
 project="CentraSiteControl"
 prefix="INMCS"
 file="com.centrasite.control.adapters.util.INMMessages">
</extension>

Parameters for Plug-ins

Usage Use this to get parameters for a plug-in.

Attributes point="com.softwareag.cis.plugin.parameter"

id

value

Interface No interface to be implemented.

Processing Use the plug-in call ApplicationContext.getParameter() to obtain value.

Provided by PluggableUI

Example
<extension point="com.softwareag.cis.plugin.parameter"
 id="welcomePageDefault"
 value="true">
</extension>

ConnectionHandler - Logon and Logoff / Exit

Usage Use at the start or end of a session of CentraSite Control.

Attributes point="com.softwareag.cis.plugin.connectionHandler"

id

value

Interface ConnectionHandler

void init (CommonAdapter ca)

void connect (Credentials c, CommonAdapter ca)
throws Exception

void notifyConnected (CommonAdapter ca)

boolean isConnected()

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 169

void prepareDisconnect (CommonAdapter ca) throws
Exception

void disconnect (CommonAdapter ca);

Processing Logon:

Obtain credentials from the login screen

Call connect(Credentials) for each extension

If an exception occurs:

Show a popup with the exception

Disconnect each extension which is already connected

Restart

If all successful: start the workplace

Logoff:

Call prepareDisconnect() for each extension

If an exception occurs:

Show a popup with the exception

Done

Disconnect each extension which is already connected by
calling the disconnect() method

Provided by PluggableUI

Example
<extension point="com.softwareag.cis.plugin.connectionHandler"
 id="login"
 class="com.centrasite.control.ext.CentraSiteConnectionHandler">
</extension>

Perspectives
Perspectives allow certain predefined screen layouts to be stored. When several
perspectives are defined, it is possible to switch from one to the other easily.

The Perspective buon will only be shown if more than one perspective is available.
When you click the buon, a popup dialog appears, which allows you to select the
required perspective.

The perspective can be switched in two ways:

Select one or more rows (perspectives) and click OK.

Double click a single row.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 170

Multiple perspectives will be represented in a way that the union of the corresponding
topics is displayed on the right hand side. The header will be changed depending on the
perspective to which the currently selected topic belongs.

The following features are provided for perspectives:

A fixed set of perspectives as configured via extensions. You can switch a perspective
via the Select Perspective dialog.

A fixed set of topics per perspective. The association between topics and the
corresponding perspective is established via the plug-in configuration file. Each
declaration of a topic extension must contain a reference to the ID of the associated
perspective extension.

A perspective may contribute the following components:

A name and an icon being used to represent the perspective in the Select
Perspective dialog.

An ICONLISTInfo object used to create a toolbar in the header frame. This can be
suppressed if the perspective's supportsViews() method returns false.

The label and valid values for the View list box. This can be suppressed.

A tailored layout to be used as the workplace background. This will only be used
if the perspective is used as the initial perspective. For more information, see
"Seing the Preferred Plug-In and Order of Plug-Ins" on page 186.

Usage Each plug-in may contribute a perspective to contain its own
topics or the topics of other plug-ins

Attributes point="com.softwareag.cis.plugin.perspective"

id

class

Interface Perspective

String getTitle()

(used in dynamically generated Select Perspective
dialog)

String getImageURL()

(used to represent a perspective by an icon in the Select
Perspective dialog)

Toolbar:

ICONLISTInfo getToolbar()

Logo

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 171

String getLogoImageURL ()

(used for header frame)

Handling of the View listbox:

String getViewLabel()

String[] getViewValues()

String getView()

(returns the currently selected view)

void setView(String view)

(called when the user changes the view selection)

Default layout used for perspective background

String getWorkplaceDefaultLayout();

(used for background of workplace if no activity is
opened)

Abstract
base class

AbstractPerspective

Provided
by

PluggableUI

Example (CentraSite Control/plugin.xml)
<extension point="com.softwareag.cis.plugin.perspective"
 id="controlPerspective" <---+
 class="com.centrasite.control.ext.ControlPerspective"> |
</extension> |
<extension point="com.softwareag.cis.plugin.topic" |
 id="registry" |
 perspective="com.centrasite.control.controlPerspective" ---+
 class="com.centrasite.control.ext.ImportantTypesTopic">
</extension>

If a perspective is selected for display, all topics belonging to that perspective become
visible. If one of these perspectives is selected in the navigation pane, the content of the
header frame is adjusted with respect to the toolbar, the View listbox and the visible
logo.

Topic

Usage Add a topic in the navigation view.

Attributes point="com.softwareag.cis.plugin.topic"

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 172

id

perspective (see "Perspectives" on page 169)

class

Interface Topic

String getImageURL()

boolean isVisible()

(used when switching views)

Abstract base
class

AbstractTopic

Processing When starting the user interface, a topic is added to the
active perspective for each known extension that refers to the
perspective.

The first topic is selected.

When switching to a different topic, replace the content of
the HEADER frame according to the data provided by the
corresponding perspective.

Provided by PluggableUI

Example
<extension point="com.softwareag.cis.plugin.topic"
 id="registry"
 perspective="com.centrasite.control.perspective"
 class="com.centrasite.control.ext.ImportantTypesTopic">
</extension>

Command for Item

Usage Add a command to a menu.

Attributes point="com.centrasite.control.itemCommand"

id (default: name of implementing class)

class

Interface ExtensionCommand

boolean appliesTo (Item)

String getName()

String getImageURL()

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 173

int getCategory()

(used for grouping of commands)

abstract void execute(ActionContext actionContext)

Abstract base
class

AbstractExtensionCommand

Processing When a list of commands for a menu item is retrieved (e.g. for
context menu or toolbar), the following steps are performed
for each known extension:

create an instance of class and invoke appliesTo(Item).

If true is returned, the command is added to the list.

Provided by CentraSite Control

Example
<extension point="com.centrasite.control.itemCommand"
 id="test"
 class="com.centrasite.control.extpt.junit.
 DisplayRegObjKeyCommand">
</extension>

Bulk Command for Items

Usage Add a command to a menu in which bulk actions are permied.

Attributes point="com.centrasite.control.itemBulkCommand"

id (default: name of implementing class)

class

Interface ExtensionCommand

boolean appliesTo (Item)

String getName()

String getImageURL()

int getCategory()

(used for grouping of commands)

abstract void execute(ActionContext actionContext)

Abstract base
class

AbstractExtensionCommand

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 174

Processing When a list of commands for a menu item is retrieved (e.g. for
context menu or toolbar), the following steps are performed
for each known extension:

create an instance of class and invoke appliesTo(Item).

If true is returned, the command is added to the list.

Provided by CentraSite Control

Example
<extension point="com.centrasite.control.itemBulkCommand"
 id="test"
 class="com.centrasite.control.extpt.junit.
 DisplayRegObjKeyCommand">
</extension>

Add Property

Usage Add a property to a registry object.

Attributes point="com.centrasite.control.registryObjectProperty"

id

class

(boolean) visible by default

Interface ExtensionPropertyAccessor

boolean appliesTo (String objectTypeQName,
Connector con)

String getDisplayName(Locale locale)

String getDescription(Locale locale)

String getInternalName()

boolean getVisibleByDefault()

String getValue(Item item) throws Exception

void setValue(Item item, String value) throws
Exception

Abstract base
class

AbstractPropertyAccessor (must be explicitly implemented)

Processing When opening a report, all extensions are checked whether
they want to contribute.

The corresponding accessors are added to the report.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 175

Provided by CentraSite Control

Example
<extension
 point="com.centrasite.control.registryObjectProperty"
 id="test"
 class="com.centrasite.control.extpt.junit.
 LastModifiedPropertyAccessor">
</extension>

Note: Additional columns might also show up in upper table of the General tab.

Tab in Detail View

Usage Add a tab in the detail view of an object.

Attributes point="com.centrasite.control.detailViewTab"

id

class

Interface DetailViewTab

String getTitle()

String getImageURL()

String getLayout()

void initAdapterFor (Item, DetailViewTabAdapter)

protected String getAdapterClass();

boolean appliesTo (Item)

(If this is returned, the tab will be displayed for the
corresponding Item if isVisible() returns true as well,
otherwise the tab will not be displayed)

void setDetailsTabContext (DetailTabContext)

boolean isVisible(Item)

Abstract base
class

AbstractDetailViewTab

Processing If the detail view for an Item is opened, it is checked for each
known extension.

Create an instance of class and invoke appliesTo(Item). If true
is returned, getLayout() is invoked and the layout is added as
a tab. The respective adapter will be created implicitly by
the Application Designer when processing the layout.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 176

The title of the tab is set with the result from calling
getTitle().

Currently, items on tabs are not supported. Hence, the
result from getImageURL() is ignored.

Provided by CentraSite Control

Example
<extension point="com.centrasite.control.detailViewTab"
 id="lifecycle"
 class="com.centrasite.control.lifecycle.LifeCycleDetails">
</extension>

Add Source of Notification

Usage Add a source of a notification.

Attributes point="com.centrasite.control.addRowToMyNotifications"

id (default: name of implementing class)

class

Interface ReportExtensionItemsProvider

Collection getItems() throws Exception;

void setConnector(Connector connector);

boolean isContributedItem(Item item);

String getChangedImageURL (Item item);

Abstract base
class

AbstractReportExtensionItemsProvider

Processing The extension is initialized via the setConnector() method.

Obtain all items to be added to the list of items with pending
notification via the getItems() method.

isContributedItem() can be used to check whether this extension
has contributed the given item via getItems().

getChangedImageURL() is used to control the icon representing the
reason for the notification.

Provided by CentraSite Control

Example
<extension
 point="com.centrasite.control.addRowToMyNotifications"
 id="MyNotificationsApprovalItemsProvider"
 class="com.softwareag.centrasite.control.lms.ext.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 177

 MyNotificationsApprovalItemsProvider">
</extension>

Impact Analysis: NodeDecorator

Usage Change the visual representation of registry objects

Attributes point="com.centrasite.control.assocNavigatorNodeDecorator"

id (default: name of implementing class)

class

Interface NodeDecorator

String getImageURL(Item)

Abstract base
class

(none)

Processing If the item is to be rendered in Impact Analysis, check all known
extensions to determine whether they contribute to the item's
visualization;

If getImageURL(item) returns null: check for the next extension

Otherwise: use the URL being returned for secondary icon
within visualization of node in graphical impact analysis.

Provided by CentraSite Control

Example
<extension
 point="com.centrasite.control.assocNavigatorNodeDecorator"
 id="ExternalLinkNodeDecorator"
 class="com.centrasite.control.ext.ExternalLinkNodeDecorator">
</extension>

The following picture illustrates how ExternalLinks objects are decorated with icons
representing the type of the object they are referencing:

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 178

Append Root Node to Topic

Usage Append a root node to an existing topic.

Attributes point="com.centrasite.control.topicItems"

id

class

Interface TopicItems

boolean appliesTo (Topic)

Collection getItems()

Abstract base
class

AbstractTopicItems

Processing For each topic whose implementation class is derived from
a class named BaseTopic (true for all topics contributed by
CentraSite Control) it is checked whether there are any
extension for the topicItems extension point. Each extension
whose appliesTo() method returns true, the collection of Item
objects returned by getItems() is appended to the set of root nodes
for the corresponding topic.

Provided by CentraSite Control

Example
<extension point="com.centrasite.control.topicItems"
 id="filesystem"
 topic="com.centrasite.control.administration"
 class="com.centrasite.control.ext.junit.
 FileSystemTopicItems">
</extension>

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 179

Note: Here, the FileSystemTopicItems extension is an
extension of the base class AbstractTopicItems whose appliesTo()
method returns true if the value of the topic aribute
matches the ID of the topic being passed.

Replace Standard Detail View by Another Editor

Usage Add an editor that can be configured per object type, even per
object instance.

Attributes point="com.centrasite.control.itemEditor"

id (default: name of implementing class)

class

Interface ItemEditor

public boolean appliesTo (Item item, Connector
connector);

public String getLayout();

public String getTitle(Item item);

public String getAdapterClass();

(must return a class implementing the ItemEditorAdapter
interface)

Abstract base
class

AbstractItemEditor

Processing If appliesTo() returns true, the editor will be used when opening
the detail for the item being passed:

The given adapter class will be instantiated and initialized.

The given layout (=pageURL) is opened in the CONTENT
frame on the right hand side.

The title returned by getTitle() is used as the label for the
activity.

Provided by CentraSite Control

Example
<extension point="com.centrasite.control.itemEditor"
 id="DataType"
 class="com.softwareag.centrasite.ext.DataTypeEditor">
</extension>

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 180

Extend Search Dialog by Additional Conditions

Usage Extend the search dialog by additional conditions, for example,
you can add specific search predicates for your own object
types.

Attributes point="com.centrasite.control.searchPredicate"

id

class

Interface PredicateEditor

Predicate getPredicate()

(Get predicate to be added by this editor)

String getLayout()

(Get URL of layout to be rendered)

String getAdapterClass()

(Get name of adapter class to be used for rendering, must be a
subclass of AbstractPredicateAdapter)

String getPredicateClass()

(Get name of predicate class to be used for rendering, must be
a subclass of AbstractPredicate)

 The interface Predicate (many implementing classes are already
available in CentraSiteUtils.jar) with its abstract subclass
AbstractPredicate has the following methods

boolean appliesTo(String objectTypeValue,
CentraSiteQueryManager qm)

(Check whether this predicate applies to objects of given object
type)

String getInternalType ()

(Get unique internal string representation of type of predicate;
not to be localized. You may use a namespace-like notation for
your own.)

String getDisplayType ()

(Get human readable localized representation of type of
predicate; CentraSite Control will // display it on the left hand
side in the Add Condition dialog)

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 181

void validate() throws InvalidPredicateException

(Validate parameters set for this predicate. The
InvalidPredicateException should contain a localized message
text)

String getDisplayString () throws Exception

(Get human readable localized string representation of
predicate including values predicate; CentraSite Control will
display it in the condition table in the header section of the
Search Registry dialog)

boolean requiresEnterpriseLicense()

(Check whether this predicate requires an Enterprise license)

void addTo (BusinessQuery bq) throws JAXRException

(Add contribution of predicate to given BusinessQuery. This is
the worker method applying the predicate to the search result.)

 AbstractPredicate also provides implementations for the
following methods

Used for I18N support

Locale getLocale()

Void setLocale(Locale)

used for persisting predicates as part of queries.

String toXML ();

void setFromDom(Element predicateEement, Connection
connection)

used to initialize the search dialog with readonly predicates /
conditions which can neither modified or removed:

void setReadOnly(boolean readOnly);

boolean isReadOnly();

Abstract base
class

AbstractPredicateEditor

Processing When you click the appropriate buon, this invokes the user-
defined Adapter (layout) screen for entering custom search
related seings.

Create an instance of the class

Execute

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 182

Provided by CentraSite Control

Example
<extension point="com.centrasite.control.searchPredicate"
 id="ObjectTypePredicateEditor"
 class="com.centrasite.control...ObjectTypePredicateEditor">
</extension>

Download Documents
There is a menu entry in each asset's context menu that allows you to create a zipped
archive of the asset and optionally any aached documents, and to download the zipped
archive to the file system. You can customize the way in which the download feature
behaves:

You can make the download entry in the context menu visible or invisible for users
with the Guest role.

You can change the text string displayed in the context menu.

You can change the format of the zipped archive.

Making the Download Menu Entry Visible/Invisible for Guest Users

If a user with the Guest role can access an asset and view its context menu, the context
menu entry Download Document is visible by default. You can specify whether this entry is
visible or invisible for such users as follows:

To make the download menu entry visible/invisible for guest users

1. Locate the configuration file plugin.xml in the <RuntimeDir> \workspace\webapps
\PluggableUI\CentraSiteControl directory.

2. Open the file and locate the entry:
<extension point=com.softwareag.cis.plugin.parameter
id=guestCanDownloadDocuments value=true/>

3. To make the context menu entry invisible for guest users, change true to false and
restart Software AG Runtime. Similarly, if the context menu entry is already invisible
and you want to make it visible for guest users, set the value to true and restart
Software AG Runtime.

Changing the Text String Displayed in the Context Menu

The text string displayed in the context menu is by default Download Document. If you
want to change this, you can do so by extending the CentraSite Control functionality
via the extension point downloadDocumentCommand. This extension point has the following
definition:

Usage Change the text string displayed in the context menu for
downloading an asset.

Attributes com.centrasite.control.downloadDocumentCommand

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 183

id (default: name of implementing class)

class

Interface See the sample code.

Abstract base
class

AbstractExtensionCommand

Provided by CentraSite Control

Example See the sample code.

To change the text displayed for the context menu, your implementation of the extension
point must define a method getName() of type String. The return value of this method is
the text that will be displayed in the context menu.

You can find sample code for defining the extension point in the file
DownloadDocumentCustomCommand.java that is provided in the demo folder under
the CentraSite installation folder.

Changing the Format of the Zipped Archive

By default, the zipped archive contains the folder structure of the asset and its aached
documents. If you want to change this, you can do so by extending the CentraSite
Control functionality via the extension point downloadDocumentCommand. The definition of
the extension point is given above.

To change the format of the zipped archive, your implementation of the extension point
must define a method that extends the base class DownloadOperation.

You can find sample code for defining the extension point in the files
DownloadDocumentCustomCommand.java and DownloadCustomOperation.java that
are provided in the demo folder under the CentraSite installation folder.

Attach Documents
Some assets include file-related aributes that allow you to aach supporting
document(s) such as programming guides, sample code and script files with the asset.
When trying to aach a supporting document with an asset, CentraSite Control displays
the available documents underneath their respective organization directory by default.
If you want to change this (that is, simply display the documents by the side of its
organization directory), you can do so by extending the CentraSite Control functionality
via the extension point attachDocumentCommand.

To customize the document layout:

1. Locate the configuration file plugin.xml in the <RuntimeDir> \workspace\webapps
\PluggableUI\CentraSiteControl directory.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 184

2. Open the file and locate the entry:
<extension point="com.softwareag.cis.plugin.parameter"
 id="isCustomAttachDocument" value="false" />

 <extension point="com.centrasite.control.attachDocumentCommand"
 id="AttachDocumentCustomCommand"
 class="com.centrasite.control.extpt.AttachDocumentCustomCommand"
/>

Where com.centrasite.control.extpt.AttachDocumentCustomCommand is the name of the
abstract base class that implements the interface.

3. To define your custom document layout, change false to true and restart
Software AG Runtime. Similarly, if the document layout is already customized and
you want to revert back to the standard layout, set the value to false and restart
Software AG Runtime.

Usage Use this to define a custom layout of the documents while
aaching to an asset via the Attach Document dialog.

Attributes com.centrasite.control.aachDocumentCommand

id (default: name of implementing class)

class

Interface See the sample code.

Abstract base
class

AbstractExtensionCommand

Processing When you click the appropriate buon, this invokes
the user-defined Adapter (layout) screen displaying all
documents that are available for aaching to an asset.

Create an instance of the class

Execute

Provided by CentraSite Control

Example
<extension
 point="com.centrasite.control.attachDocumentCommand"
 id="AttachDocumentCustomCommand"
 class="com.centrasite.control.extpt.AttachDocumentCu
stomCommand" />

You can find sample code for defining the extension point in the files
AachDocumentCustomCommand.java, AachFile.xml and AachFileAdapter.java
that are provided in the demo folder under the CentraSite installation folder.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 185

Activating the IDE
The CentraSite distribution kit contains an IDE (integrated development environment)
that you can use to create and design a layout page. The IDE is a web application whose
clients run inside a web browser. The URL (assuming installation defaults) to start the
IDE on a machine where CentraSite is installed is:

hp://localhost:53307/PluggableUI/HTMLBasedGUI/workplace/ide.html

The IDE is deactivated by default. In order to activate the IDE, set the aribute
plugindevelopment in the file cisconfig.xml to true. This file is located in the
CentraSite Control web application (in the Application Server or Software AG Runtime
location) in the folder cis/cisconfig.

The following example illustrates the required configuration seing:
<cisconfig plugindevelopment="true" ...>
...
</cisconfig>

Security Considerations

When activated, the IDE and included development tools do not require further
authentication. The following example illustrates the security-constraint and
login-config elements to protect the IDE and development tools with the HTML basic
authentication method.
<security-constraint>
 <web-resource-collection>
 <web-resource-name>Plugin Development</web-resource-name>
 <url-pattern>/HTMLBasedGUI/workplace/*</url-pattern>
 <url-pattern>/servlet/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>developer</role-name>
 </auth-constraint>
</security-constraint>
<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Plugin Development</realm-name>
</login-config>

In order to protect passwords transmied in clear text between a browser and
development tools running on the application server, it is recommended to protect the
communication through the use of SSL. For more information about configuring secure
communication between CentraSite components, see the CentraSite Administrator’s Guide.

Step-by-Step Guide
A step-by-step guide of how to create customized plug-ins for the CentraSite Control
content pages is provided in "Step-by-Step Guide" on page 192.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 186

Setting the Preferred Plug-In and Order of Plug-Ins
You can adapt the URL used to invoke the pluggable user interface with a preferred
plug-in by appending a query parameter such as
PLUGIN=com.centrasite.control

So the modified URL would be:

hp://localhost:53307/PluggableUI/servlet/StartCISPage?PAGEURL=/PluggableUI/
Login.html&PLUGIN=com.centrasite.control&LOCALE=en

The value of the PLUGIN parameter must match the value of the id parameter of a
<plugin> root element in one of the plug-ins. This sets the preferred plug-in.

This implies that for all extensions for a specific extension point, the extensions
belonging to the referenced plug-in will be first in order (normally the order is
determined by the order aribute in the plug-in configuration file).

For any extension point, the order of the associated extensions is determined by the
following properties:

The processing order of the plug-ins is controlled by the value of the order aribute
of <plugin> in the plugin.xml file. Plug-ins with a smaller value of the order
aribute are processed first. The preferred plug-in is always processed first.

The order of extensions, as configured in plugin.xml, for the associated extension
point.

Depending on the extension point, the order of the extensions has a specific impact, for
example:

The login screen displayed when the user interface is started in the browser.

The initial perspective shown after login.

Installing and Uninstalling Plug-Ins

Directory Structure
The plug-in environment is contained in a directory structure under the installation
directory <RuntimeWebAppsDir> of the Software AG Runtime. The CentraSite
Administrator’s Guide describes the location of this directory.

Under <RuntimeWebAppsDir> \PluggableUI we have the following structure:
WEB-INF/
 classes/
 log4j.xml
 lib/ //JARs

cis/

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 187

HTMLBasedGUI/

PluggableUI
 plugin.xml
 *.html

 accesspath/
 xml/ // layout definitions
 images/

CentraSiteControl
 plugin.xml
 *.html
 *_SWT.xml

 accesspath/
 xml/ // layout definitions
 images/ // icons
 lib/ // JARs
 classes/ // class files

MyPlugIn
 plugin.xml
 *.html
 *_SWT.xml

 accesspath/
 xml/ // layout definitions
 images/ // icons
 lib/ // JARs
 classes/ // class files

The structure includes a sample user-wrien plug-in MyPlugIn for illustration purposes.

Installing a Plug-In
A plug-in should be provided as a ZIP archive with the directory structure described in
"Directory Structure" on page 186.

The following actions need to be performed when installing a plug-in manually:

Check for availability of other plug-ins being a prerequisite.

Copy files (except the plugin.xml configuration file) into the directory structure.

Compile layout definitions.

Note: Using the plug-in may require a restart of the Software AG Runtime.

Uninstalling a Plug-In
The following actions need to be performed to uninstall a plug-in manually:

Before you uninstall a plug-in, ensure that it is not required by another plug-in.

Remove the plug-in configuration file plugin.xml.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 188

Remove the plug-in directory, for example MyPlugIn.

Note: It might not be possible to remove files if they are in use, for example, while
the application server is running.

Plug-In Management Perspective
A separate Plug-In Management perspective offers the following functions:

Function Description Invoke via...

Install Plug-In Import a ZIP-file
containing all required
files for a plug-in

Buon in toolbar

Table of Plug-ins Similar to the About
dialog

Select a node in the Plug-
Ins topic

Uninstall Plug-In Check which other plug-
ins rely on the plug-in to
be uninstalled. If there
are no dependencies, the
plug-in is uninstalled.

Select the plug-in in
the table and select the
command from the
context menu

Compile Layouts Required when the
underlying Application
Designer runtime is
upgraded

Select plug-in in table
and select command
from context menu

Start the Application
Designer layout editor

 Buon in toolbar

The Plug-In Management perspective is not visible by default. It is only visible if you set
the preferred plug-in using PLUGIN=com.softwareag.cis.plugin in the URL that is
used to start the GUI.

Example:

hp://localhost:53307/PluggableUI/servlet/StartCISPage?PAGEURL=/PluggableUI/
Login.html&PLUGIN=com.softwareag.cis.plugin&LOCALE=en

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 189

Special and Advanced Topics

Icons
There are various optional references to icons which may be contributed by a plug-in.
Most icons should be transparent GIFs unless stated otherwise in the table below. Here
is a set of potential locations for contributing icons:

Context Recommended Size in
Pixels

Remarks

Plug-in icon appearing
in the common About
dialog

16x16 Transparent GIF

Bitmap for plug-in
specific 2nd-level About
dialog

None May be also JPG or
PNG file

Perspective icon in
Select Perspective dialog

16x16 Transparent GIF

Header icon
contributed by
perspective

Height: 35. Width:
depends on space
required for toolbar
and view listbox.

May be also JPG or
PNG file

Icon representing an
item in tree or table

16x16 Transparent GIF

Icon for command for
an item (context menu
or toolbar in detail
view)

16x16 Transparent GIF

Class Loading
The Pluggable UI relies heavily on dedicated class loaders. Whereas the code for a
normal web application is only loaded via the basic WebappClassLoader provided
by the servlet container (e.g. Tomcat), this class loader is only used for loading
the classes resembling the PluggableUI base with the underlying Application

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 190

Designer. The respective classes are loaded from the following directories below
<RuntimeWebAppsDir> \PluggableUI:
 WEB-INF/classes WEB-INF/lib/*.jar

In addition, locations holding common or shared class or jar files are searched by the
WebappClassLoader when aempting to resolve references to required classes.

Any code contributed by a plug-in is loaded by a corresponding instance
of the PlugInWebappClassLoader from the following directories below
<RuntimeWebAppsDir> /PluggableUI:
 plugInDir/classes plugInDir/lib/*.jar

If resolution fails, the PlugInWebappClassLoader for the current plug-in will delegate
class loading to the PlugInWebappClassLoaders for other plug-ins in the order as listed
as <requiredPlugin> in the plugin.xml of the current plug-in recursively. Finally, if
resolution via required plug-ins fails, the PlugInWebappClassLoader will delegate class
loading to the WebappClassLoader.

The following picture illustrates the scenario of the LifeCycleManagement plug-in
(representing any other 3rd party plug-in) that depends on the CentraSiteControl plug-
in and the PluggableUI base infrastructure.

The AdapterPlugInClassLoader is used by ApplicationDesigner when
resolving references to adapter classes found in layout definitions. The
AdapterPlugInClassLoader will never load classes itself. Instead, it will ask all known
PlugInWebappClassLoaders in an unspecified order whether they can load a required
class.

Caution: You must avoid having the same adapter classes in more than one plug-
in! Otherwise, various classloading related issues (ClassCastException,

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 191

ClassNotFoundException, …) will result. Under normal conditions, fulfilling
this restriction should not cause any problems.

In general, you should avoid having multiple locations contributing the same classes
within the graph of locations spanned by the required plug-ins.

Multithreading and Synchronization
Normally, when executing the HTTP requests on behalf of a single Application Designer
session, there is no parallel execution in multiple threads (unless the code contributed
by a plug-in starts a thread on its own). Hence, access to objects or properties having a
scope restricted to the session context does not require any synchronization.

However, when using global / static variables, this is no longer true. Multiple active user
sessions may be processed in parallel.

Warning About Using Global Variables

Avoid usage of global variables, which might lead to the following issues:

Synchronization is required otherwise non-reproducible race conditions will result.

Memory leakages if global collections that grow for each session are used.

Global references to JAXR-based RegistryObjects. A RegistryObject contains a
reference to the JAXR-based Connection (including the underlying credentials)
that had been used to load it. When resolving a secondary reference either of the
following may happen:

If the connection is still open, credentials of another user will be used, thus
causing a security hole.

If the connection is no longer open, a corresponding exception will be thrown
(trying to use a closed connection).

Nested Layouts
All adapter classes of a plug-in should not be just subclasses of
com.softwareag.cis.server.Adapter. Instead, they should be derived from one of
the following classes:

com.softwareag.cis.plugin.adapter.util.CommonAdapter - for a plug-in that
does not depend on CentraSite Control

com.centrasite.control.adapters.BaseAdapter - for a plug-in that depends on
CentraSite Control

BaseAdapter is a subclass of CommonAdapter and thus inherits certain properties. Among
those is the implicit registration of all adapters as known adapters in the current session
context. However, under certain circumstances it may happen that adapters for nested
pages displayed using a SUBCISPAGE or ROWTABSUBPAGES control are not automatically

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 192

deregistered when closing e.g. an activity displayed in the CONTENT frame on the right
hand side of the workplace. This may lead to subsequent NullPointerExceptions.

Normally, deregistration is accomplished within the destroy() method in CommonAdapter.
Hence, be careful when overriding this method in a subclass to call super.destroy(). In
addition, you should override the endProcess() method in the adapter for the container
layout, which should perform at least the following actions:

call super.endProcess()

call CommonAdapter.removeKnownAdapter (subPageAdapter) for each
subPageAdapter

Javadoc Documentation of the APIs
The CentraSite Java API Reference provides details of the classes and methods described
here. This document is available at Software AG Documentation Website.

You should only use the packages and classes that are explicitly mentioned in the
documentation.

There are three sets of Javadoc documentation:

PluggableUI (base architecture): com.softwareag.cis.plugin

CentraSite Control User Interface: com.centrasite.control...

CentraSite Control Backend: com.centrasite.control...

Step-by-Step Guide

Eclipse Prerequisites
The descriptions in this topic are based on a sample plug-in named DemoPlugIn01 . We
will show how to use Eclipse and standard CentraSite features in order to add the plug-
in to CentraSite.

Before you start, ensure that you have a recent Eclipse version installed on your
machine.

In Eclipse, select Window > Preferences > Java > Compiler in order to configure usage of /
compliance with the Java version currently supported by CentraSite.

You can check the system requirements at hp://documentation.softwareag.com.

http://documentation.softwareag.com

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 193

Example:

Click Apply to activate the seings. Eclipse will ask you to confirm the change, indicating
that an internal rebuild is required. Reply Yes. The rebuild takes only a few seconds.

Setting up the Plug-in Project
Follow the steps below to set up the Java project for DemoPlugIn01:

1. Create a new Java project in Eclipse using File > New > Project > Java Project.

2. Specify DemoPlugIn01 as the project name and check radio buon labeled Create
project from existing source.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 194

3. Click the Browse buon that is located right to the input field labeled Directory. The
Browse For Folder dialog is displayed.

4. Within the Browse For Folder dialog, navigate to and click on the PluggableUI web
application folder of the Software AG Runtime application. In the remainder of this
document, this folder is indicated by <PluggableUIFolder> .

5. Click Make New Folder. This causes an entry New Folder to be created under
PluggableUI. Select the entry New Folder, then from its context menu choose
Rename, then enter the name DemoPlugIn01.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 195

6. Click OK.

7. In the New Java Project dialog that becomes visible again, click Finish.

A new Java project called DemoPlugIn01 has been created due to the previous actions.
This project is now visible in the Package Explorer view in Eclipse.

This project needs to be adapted.

1. Create the following four subfolders of DemoPlugIn01:

accesspath

classes

images

xml

To create each of these subfolders, choose New > Folder from the context menu of
DemoPlugIn01 in the package explorer, then type in the name in the New Folder
dialog.

2. Create a source folder called src. You can create the source folder by choosing New >
Source Folder from the context menu of DemoPlugIn01.

3. In the context menu of DemoPlugIn01, choose Properties.

4. Select Java Build Path from the tree on the left.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 196

5. Select the Source tab and enter the value DemoPlugIn01/classes in the field Default
output folder.

6. Switch to the Libraries tab.

An entry for the JRE library should be visible. If you do not see this entry, click Add
Library and select the JRE system library from the displayed list, then click Finish.

7. Click Add External JARs

In the resulting JAR Selection dialog, navigate to <PluggableUIFolder> /WEB-INF/lib
and open this folder.

8. Select all files, using for example the key combination Control-A, and click Open.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 197

9. Click Add External JARs again.

10. In the JAR Selection dialog, navigate to <PluggableUIFolder> /CentraSiteControl/lib.

11. Again, select all files and click Open.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 198

12. Click the OK buon of the Properties for DemoPlugIn01 dialog.

Your project should now look like this:

Perhaps you have noticed that the classes subfolder of the project DemoPlugIn01 has
disappeared from the display. This is normal because the Java Development Tools (JDT)
of Eclipse suppress output folders from displaying by default (but they still exist on
your hard disk).

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 199

Furthermore, the old output folder bin that has been created by the JDT when creating
the Java project is not of any use for us, so you can delete it.

Later on we will need some icons for our plug-in. For now, let's just copy and rename
some already existing icons from the CentraSite Control plug-in and use them instead:

1. Using the Windows Explorer, navigate to <PluggableUIFolder> /CentraSiteControl/
images.

2. Copy the files myFavorites.gif and myFavorites24x24.gif to the images subfolder of
our Java project DemoPlugIn01.

3. In DemoPlugIn01/images, rename the file myFavorites.gif to star-16x16.gif and
rename myFavorites24x24.gif to star-24x24.gif. Use the command File > Rename in the
Eclipse menu to do this.

4. In Eclipse, refresh the display of the package explorer. The names of the two images
should now be visible.

Plugging into CentraSite Control
We have now created a Java project inside the PluggableUI web application. However,
there is one missing piece that tells CentraSite Control that this folder contains a plug-
in: the plug-in configuration file. Amongst other things, the plug-in configuration file
contains the information about where a plug-in plugs into in CentraSite Control.

The idea of using plug-ins to extend an application's functionality is quite simple and
meanwhile well established by the Eclipse platform. The CentraSite Control software
provides so-called extension points. These are positions in the program logic of the
CentraSite Control program where functionality can be added by a plug-in. Every time
the program flow comes to such an extension point, a search for plug-ins that extend
CentraSite Control at this point takes place and the code provided by the plug-ins is
invoked.

Let's convert our arbitrary Java project to a CentraSite Control plug-in folder by
providing a plug-in configuration file. To do so, follow the steps below:

1. In the context menu of DemoPlugIn01 in the package explorer, choose New > File.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 200

2. Type plugin.xml as the file name and click Finish.

3. Enter the following XML code:
<plugin id="demo.plugin01" order="101">

 <requiredPlugin id="com.softwareag.cis.plugin" />

 <!-- PlugInInfo -->
 <extension point="com.softwareag.cis.plugin.plugInInfo"
 id="DemoPlugIn01Info"
 class="demo.plugin01.ext.PlugInInfo">
 </extension>

</plugin>

4. Save the file using <Ctrl>+S.

First of all a plug-in must have an identifier (here demo.plugin01) which has to be
unique among all plug-ins. We recommend you to use naming conventions similar to
Java package names.

The order number of a plug-in (here 101) gives CentraSite Control a priority for the
sequence in which the plug-ins have to be loaded at startup. The higher the number, the
later a plug-in is loaded.

We need to declare our plug-in as being dependent on the plug-in
com.softwareag.cis.plugin because we use an extension point provided by this plug-in.
This dependency is indicated through the requiredPlugin XML element.

For a list of all supported extension points, see "Extension Points" on page 167.

The extension XML element in our file DemoPlugIn01/plugin.xml denotes that our
plug-in extends the user interface at a point where information about a plug-in can be
contributed. The string that looks like a Java package name is the name of the extension
point (com.softwareag.cis.plugin.plugInInfo).

The extension identifier (here DemoPlugIn01Info) must be unique among all extension
identifiers of a plug-in.

The class aribute specifies the fully qualified name of the class that implements the
extension (here demo.plugin01.ext.PlugInInfo). The top level package name for all of
our Java code will be demo.plugin01. We choose ext as the subpackage name for the
implementing class to denote that code that extends CentraSite Control resides here.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 201

Now we have to implement the extension, i.e. we have to provide a Java class called
demo.plugin01.ext.PlugInInfo which implements a specific interface required by the
extension point.

1. In the context menu of DemoPlugIn01/src in the package explorer, choose New >
Class.

2. Specify demo.plugin01.ext for the package name, PlugInInfo for the class name and
com.softwareag.cis.plugin.extpt.util.AbstractPlugInInfo for the superclass (you may
uses the Browse buon to save some typing).

3. Make sure that the check box labeled with Inherited abstract methods is checked and
click Finish.

Eclipse now opens the file PlugInInfo.java in the Java editor.

Modify PlugInInfo.java in the Java editor as follows:
package demo.plugin01.ext;

import com.softwareag.cis.plugin.extpt.util.AbstractPlugInInfo;

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 202

public class PlugInInfo extends AbstractPlugInInfo {

 public String getImageURL() {
 return "../DemoPlugIn01/images/star-16x16.gif";
 }

 public String getLayout() {
 return null;
 }

 public String getTitle() {
 return "DemoPlugIn01";
 }
 public String getVendor() {
 return "Software AG";
 }

 public String getVersion() {
 return "0.0.0.1";
 }
}

Save the modified file and make sure that no compile errors occur.

When you save the file, the Java file is automatically compiled into the folder classes of
the project DemoPlugIn01. (Remember: the classes subfolder of our project is suppressed
from displaying). The resulting class file is now accessible for the pluggable user
interface of CentraSite Control.

Finally, let's check if CentraSite Control is aware of our minimalist plug-in:

1. Restart the Windows service "Software AG Runtime".

2. Start the CentraSite Control application from the Windows Start > All Programs >
Software AG menu, and log in using your usual ID and password.

3. Click the About buon at the top of the page. In the subsequent dialog, click Plug-Ins.

If everything works fine, you should see a dialog box whose contents look quite similar
to the following screenshot. In particular, the line that represents our sample plug-in
DemoPlugIn01 should be visible.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 203

Bring Your Own Layouts to the Screen
You can extend CentraSite Control by embedding your own layout pages. In this step
you will learn how to create a layout page with by using the Application Designer IDE.
Furthermore you will learn a very simple way to bring your own layout onto the screen.

Before we start, let’s preview what the result of this step will be. We will create a simple
layout page that presents some information to the user. This page can be requested
by the user by clicking on an icon in the tool bar of CentraSite Control. Feel free to
extend the layout page and enhance it with more information after you have worked
through this step. In subsequent steps we will use this page many times when we extend
CentraSite Control at more and more extension points. So please make sure that this
page and the code behind it is running properly.

Here is a screenshot of the final result of this step:

In order to create and design a layout page we need to have the right tool. The
CentraSite distribution kit contains an IDE (integrated development environment) that
you can use for this purpose. There is currently no shortcut created by the installation to
start this IDE. Therefore we have to create one manually. The IDE is a web application
whose clients run inside a web browser. The URL (assuming installation defaults) to
start the IDE on a machine where CentraSite is installed is http://localhost:53307/
PluggableUI/HTMLBasedGUI/workplace/ide.html.

The IDE delivered in the distribution kit needs to be activated before you can use it. For
information on how to do this, see "Activating the IDE" on page 185.

The documentation for the IDE is available at hp://documentation.softwareag.com.

We start with the creation and design of a layout page. So please start the IDE now
(leave your Eclipse instance running).

After the IDE has started, perform the following steps:

1. In the buon list on the left, click the buon labeled with the name of our plug-in
DemoPlugIn01.

http://documentation.softwareag.com

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 204

2. Click New Layout on the left side directly below the DemoPlugIn01 buon.

3. In the resulting dialog window enter SimpleInfoPage.xml in the input field labeled
Name.

4. Click the leftmost image below the input field (see screenshot) to create an HTML
page.

The IDE presents a standard HTML page in the preview area of the layout painter (in
the center of the right side). To get an idea about how our newly created layout looks
initially, we should request a preview of it from the layout painter. To do so, select the
Preview icon from the toolbar of the layout painter (located beside the diskee symbol).
The current look of layout SimpleInfoPage.xml is presented in the preview area.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 205

Starting from this layout, we will follow the steps below to create a layout that looks like
the one that is shown at the beginning of this step:

1. Click on the title bar of our layout (the bar above the Save buon where the word
Template is visible).

2. In the Properties view for the title bar, located at the lower left corner of the layout
painter, change the name property from Template to Simple Info Page.

3. Click the Save buon of our layout (the content of the Properties view changes and
the current properties for the selected buon become visible). Change the name
property from Save to Refresh and set the method property to onRefresh by just
typing it in.

4. Save the layout by clicking on the diskee symbol in the tool bar of the layout
painter. The preview of our layout changes and now reflects the properties we
changed.

5. Click the Controls buon of the buon list in the Controls view (located right to the
preview area).

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 206

6. Add three Independent Row controls to the body of our page:

a. Click Independent Row and hold the left mouse buon down.

b. Drag the Independent Row icon to the page body of the layout (the white area
below the buon that is now labeled Refresh) and release the left mouse buon.

c. Click Add as Subnode from the popup menu that appears.

d. Perform the same action to add a second and a third Independent Row control to
the page body and click Add as last Subnode from the popup menu that appears
after releasing the mouse buon.

7. Please notice that the pagebody node of the Layout view (located above the Properties
view) now contains three itr subnodes, representing the three Independent Row
controls.

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 207

8. From the Controls view, drag and drop a Label control onto the first itr subnode of
the pagebody node in the Layout view.

9. In the Properties view (which now presents the properties for the Label control we
just added to the layout) set the name property to Some application context
information:.

10. Set the asheadline property of the label to true. To access this property, you have
to select the Appearance tab at the boom of the Property view. You can select the
value true using the combo box to the right of the property name.

11. Drag and drop a Horizontal Distance control onto the second itr subnode of the
pagebody node in the Layout view.

12. In the Properties view, set the width property for the Horizontal Distance control to 10
by just typing it in.

13. Drag and drop a Label control onto the second itr subnode of the pagebody node
in the Layout view. From the popup menu that appears after you release the mouse
buon, click Add as last Subnode.

14. Set the name property of the newly added label to Title: and the width property to
200.

15. Add a Dynamic Text control as the last subnode to the second itr subnode of
pagebody. Set the valueprop property to title and the width property to 500.

16. Execute the last five steps again for the third itr subnode of the pagebody node
in the Layout view. Set the name property of the Label control to Web application
directory: and the valueprop property of the Dynamic Text control to webAppDir.
All width properties remain the same as for the children of the second itr subnode
of pagebody.

17. Surround the first itr subnode with two vertical distances by dragging and
dropping two Vertical Distance controls onto the first itr subnode of pagebody
(one as a preceding node and one as a subsequent node of the itr). Set the height
property for each Vertical Distance control to 10.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 208

18. Save the layout by clicking again on the diskee symbol in the tool bar of the layout
painter.

Now our layout looks like the one that is shown at the beginning of this step. But we
are not finished yet. Each layout needs to have some code behind it (the so-called page
adapter) which we did not provide yet. Among other things within a page adapter we
can specify how to react on events that occur due to user interactions (the push of a
buon for example) or fill the controls with application specific values etc.

The code behind our layout at this stage is provided by a dummy adapter that comes
with the IDE. But we need to provide our own, of course, so that the adapter knows
what to do when a user presses the Refresh buon, for example. So our next task is to
create an adapter for our layout. Fortunately the IDE is equipped with tools that make
life easy.

Follow the steps below to create an adapter for SimpleInfoPage:

1. If not already active, switch to the Home tab of the layout painter.

2. Select Preferences and type in the absolute path for the Java source directory of our
CentraSite Control plug-in DemoPlugIn01.

Tip: Instead of typing in the complete path, you can copy/paste the content of
the field labeled Directory into the input field for the source directory. Then
append /src to the copied content (compare with following screenshot).

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 209

3. Click the Save and Apply buon at the top of the dialog.

4. In the Layout view select the topmost tree node called page (you probably need to
scroll up).

5. Change the model property of page from DummyAdapter to
demo.plugin01.adapters.SimpleInfoPageAdapter.

6. Save the layout (using the diskee symbol). The content of the Preview view changes
and indicates an error now. This is normal and can be ignored at the moment.

7. Switch to the Tools tab of the IDE and select Code Assistant. The look of the IDE
changes and the generated code for our page adapter is visible on the right side.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 210

We could apply the necessary changes for the adapter class using the IDE. The more
convenient way is doing this inside of our already existing eclipse project to which we
will switch back soon. One more step inside the IDE is missing: the code is not yet stored
in the file system. Hence, press the diskee icon again! Now the adapter source code is
stored in the Java source directory of our CentraSite Control plug-in DemoPlugIn01.

You can close the IDE now.

Now return to your Eclipse environment. We need to refresh our plug-in project. To
do so, select the folder DemoPlugIn01 and choose Refresh from the context menu. After
doing this and expanding all folders that relate to our plug-in, your eclipse project
should look like the one below. Please note the contents of subfolders accesspath
and xml which were formerly empty. The contents have been created by our IDE
activities. Most importantly, you should notice that there is now a new package called
demo.plugin01.adapters containing the class SimpleInfoPageAdapter.

Note that adapter classes used for plug-ins to CentraSite Control should be derived
from the class BaseAdapter rather than from the class Adapter as provided by Application
Designer.

Let’s apply application code to the adapter SimpleInfoPageAdapter now. To do so, open
file SimpleInfoPageAdapter.java by double-clicking its node in the tree, and enter the
following code inside the body of method onRefresh:
ApplicationContext applicationContext = new ApplicationContext(this);
// Application context
String title = applicationContext.getTitle();
File webAppDir = applicationContext.getWebAppDir();

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 211

this.setTitle(title != null ? title : "n/a");
this.setWebAppDir(webAppDir != null ? webAppDir.getAbsolutePath() : "n/a");

Some types will be marked by the Java editor as unknown when you enter the code. So
please press <Ctrl>+<Shift>+O to instruct the Java editor to add the necessary import
statements automatically (for the missing class called File please choose java.io.File from
the resulting dialog).

Now save the file. There should be no compilation errors.

Now the core of this step: we will bring our user-defined layout inside CentraSite
Control to the screen. The questions here are when and how we do this. The first (when)
is easy to answer: on user request. For the second (how) there are a lot of possibilities.
Using an extension point defined by CentraSite Control suggests itself. But which one do
we choose?

In this tutorial step we will extend CentraSite Control at another point in order to add a
perspective. Perspectives are listed on the top of the workbench. Once again we have to
inform the pluggable infrastructure that we are extending CentraSite Control at a new
point. In order to do so, add the following XML element to the plug-in description file
plugin.xml in your Eclipse environment and save it afterwards.

Add the following requiredPlugin XML element after the existing requiredPlugin
XML element:
<requiredPlugin id="com.centrasite.control" />

Also add the following XML element to the already existing XML code:
<!-- Perspective -->
<extension point="com.softwareag.cis.plugin.perspective"
 id="DemoPlugIn01Perspective"
 class="demo.plugin01.ext.PlugInPerspective" >
</extension>

Save the file plugin.xml.

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 212

The implementation of our new perspective requires a new class which implements the
necessary interface:

1. In the context of DemoPlugIn01/src, create a new Java class called PlugInPerspective in
package demo.plugin01.ext. Use class com.softwareag.cis.plugin.extpt.util.AbstractPerspective
as the superclass.

2. Let method getTitle() return the string DemoPlugIn01.

3. Let the getLogoImageURL() method return the path to our 24x24 icon (../DemoPlugIn01/
images/star-24x24.gif).

4. Insert the methods
public boolean hasTopicTree()
{
 return false;
}

and
public boolean supportsViews()
{
 return false;
}

The Java source should look exactly like this then:
package demo.plugin01.ext;

import java.util.List;

import com.softwareag.cis.plugin.extpt.util.AbstractPerspective;
import com.softwareag.cis.plugin.extpt.util.WorkplaceContext;
import com.softwareag.cis.server.util.ICONLISTInfo;

public class PlugInPerspective extends AbstractPerspective
{

 public String getTitle()
 {
 return "DemoPlugIn01";
 }

 public String getImageURL()
 {
 return null;
 }

 public boolean hasTopicTree()
 {
 return false;
 }

 public boolean supportsViews()
 {
 return false;
 }

 public String getLogoImageURL()
 {
 return "../DemoPlugIn01/images/star-24x24.gif";
 }

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 213

 public ICONLISTInfo getToolbar()
 {
 return null;
 }

 public String getView()
 {
 return null;
 }

 public String getViewLabel()
 {
 return null;
 }

 public List getViewValues()
 {
 return null;
 }

 public String getWorkplaceDefaultLayout()
 {
 return null;
 }

 public void setView(String arg0)
 {
 }

 public void setWorkplaceContext(WorkplaceContext arg0)
 {
 }

}

5. Save and close the Java source file.

We will now extend CentraSite Control with a new topic. In order to do so, add the
following XML element to the plug-in description file plugin.xml in your Eclipse
environment and save it afterwards.
<!-- Topic -->
<extension point="com.softwareag.cis.plugin.topic"
 id="DemoPlugIn01Topic"
 perspective="demo.plugin01.DemoPlugIn01Perspective"
 class="demo.plugin01.ext.PlugInTopic" >
</extension>

The implementation of our new topic requires two new classes: the topic class itself
which implements the necessary interface for the extension point and an adapter class
for the topic. Let’s start with the implementation of the adapter class:

1. In the context of DemoPlugIn01/src, create a new Java class called PlugInTopicAdapter in
package demo.plugin01.ext.adapters. Use class com.centrasite.control.adapters.TopicAdapter
as the superclass. Do not inherit abstract classes here.

2. Add a public default constructor to the class. The Java source should look exactly
like this then:
package demo.plugin01.ext.adapters;

M
Even Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 214

import com.centrasite.control.adapters.TopicAdapter;

public class PlugInTopicAdapter extends TopicAdapter

{
 public PlugInTopicAdapter()
 {
 }

}

3. Save and close the Java source file.

And now the extending class:

1. In the context of DemoPlugIn01/src, create a Java class called PlugInTopic, in the
package demo.plugin01.ext, using the superclass com.centrasite.control.ext.util.BaseTopic.
Check the box labeled Inherited abstract methods.

2. Add a public default constructor which invokes the super(int) constructor to the
source:
public PlugInTopic ()
{
 super(0);
}

3. Let the method getTopicAdapterClass() return PlugInTopicAdapter.class.

4. Let method getTitle() return the string DemoPlugIn01.

5. Add the following code to method initTree:
String title = "Simple Info Page";
String pageUrl = "../DemoPlugIn01/SimpleInfoPage.html";
String adapterClass = SimpleInfoPageAdapter.class.getName();
ActionContext actionContext = getTopicAdapter().getActionContext();
actionContext.showPage(pageUrl, title, adapterClass);

After this change of the source code you should press <Ctrl>+<Shift>+O to resolve
compilation problems.

6. Save the Java source file and make sure that no compilation errors occur. After
applying the changes described above, the Java source code for class PlugInTopic
should look like this:
package demo.plugin01.ext;

import com.centrasite.control.ActionContext;
import com.centrasite.control.Item;
import com.centrasite.control.ext.util.BaseTopic;

import demo.plugin01.adapters.SimpleInfoPageAdapter;
import demo.plugin01.ext.adapters.PlugInTopicAdapter;

public class PlugInTopic extends BaseTopic
{

 public PlugInTopic()
 {
 super(0);
 }

M
Odd Header

Pluggable Architecture

CentraSite Developer's Guide Version 9.8 215

 protected Class getTopicAdapterClass()
 {
 return PlugInTopicAdapter.class;
 }

 protected void initTree() throws Exception
 {
 String title = "Simple Info Page";
 String pageUrl = "../DemoPlugIn01/SimpleInfoPage.html";
 String adapterClass = SimpleInfoPageAdapter.class.getName();
 ActionContext actionContext = getTopicAdapter().getActionContext();
 actionContext.showPage(pageUrl, title, adapterClass);
 }

 public void refresh(Item arg0, int arg1)
 {
 }

 public String getTitle()
 {
 return "DemoPlugIn01";
 }

 public String getImageURL()
 {
 return null;
 }

 }

To see how our new extension affects CentraSite Control, restart the Software AG
Runtime service and open CentraSite Control afterwards. The navigation pane shows
the new perspective DemoPlugIn01 which has 1 topic entry called DemoPlugIn01. Note also
that the star-24x24.gif graphic is visible in the header bar.

When you click Refresh in the Simple Info Page display, the values for Title and Web
application directory are updated:

M
Even Header

CentraSite Developer's Guide Version 9.8 216

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 217

5 Application Framework

■ Introduction ... 218

■ Configuration .. 221

■ Mapping Beans to Registry Objects with Annotations ... 223

■ Querying the Registry .. 234

■ Event Mechanism ... 243

■ Asset Types .. 243

■ Association Types .. 245

■ Lifecycle Management ... 246

■ Revision Management .. 247

■ Multi-User Scenarios .. 249

■ Setting the Classpath ... 250

■ Examples .. 250

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 218

Introduction
The CentraSite Application Framework (CSAF) provides a programming model for
developing custom extensions on top of CentraSite. It supports JAXR (Java API for
XML Registries) and extends the CentraSite JAXR-based API and the Pluggable UI - the
framework on which the CentraSite UI is built.

It contains two independent parts: the persistence framework and the validation
framework.

The persistence framework provides the ability to operate on registry data using
JavaBeans instead of the JAXR-based API. This is done in a fashion similar to object-
relational mapping tools such as Hibernate or Java Persistence API. It this case,
Java Beans are mapped to registry objects. All this is done declaratively using Java5
Annotations.

This framework was created with the intention of making it easier to work with
registries that support the JAXR-based interface, such as CentraSite. Its usage does not
require in general any specific or deep knowledge of this API.

A direct benefit of this is shortened application development time.

The validation framework provides an extensible mechanism for validating Java beans.
Multiple numbers of constraints can be aached to each bean. The notion of scopes is
also supported, i.e., constraints apply only when specific conditions about the bean are
met.

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 219

This figure above shows the architecture of a common CentraSite application extension
developed using CSAF.

There are two major points that have to be clear in order to understand how the
persistence framework works, namely how the bean model is built based on the
RegistryBean interface and the BeanPool.

The following topics are discussed in this topic:

RegistryBean
The RegistryBean (com.softwareag.centrasite.appl.framework.beans.RegistryBean) interface has to
stay on top of each bean model hierarchy.

It contains the properties that a registry object would have, namely a
key and a name. Implementing is the only restriction the framework
on the application bean model. The user can use DynamicRegistryBean
(com.softwareag.centrasite.appl.framework.beans.DynamicRegistryBean) for implementation of
RegistryBeans.

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 220

It implements RegistryBean and RevisionBean (
com.softwareag.centrasite.appl.framework.beans.RevisionBean), which is the revision-aware
extension of the RegistryBean interface.

There is one more option here. If the registry bean needs to be lifecycle-aware, then the
user should use the com.softwareag.centrasite.appl.framework.lcm.beans.LifeCycleAware interface
instead of RegistryBean.

Its implementation is handled by
com.softwareag.centrasite.appl.framework.lcm.beans.LCAwareDynamicRegistryBean.

BeanPool
The BeanPool (com.softwareag.centrasite.appl.framework.persistence.BeanPool) is the main interface
with which the application interacts in order to use the persistence framework.

All CRUD (create, read, update, delete) operations search via this interface, and registry
queries are done via this interface. The user must be aware that the BeanPool instances
are not thread safe. There can be only one beanPool per SessionContext. CSAF provides
the functionality to create beanPool instances by using SessionContext.createBeanPool();. The
beanPool can be accessed by SessionContext.getCurrentBeanPool();. This method returns the
BeanPool instance that is associated with the given context. The CurrentBeanPoolContext
interface defines the contract for implementations which knows how to scope the
notion of a current bean pool. An implementation of this interface is provided as
ThreadLocalCurrentBeanPoolContext, which maintains current bean pools for the given
execution thread. This functionality is extensible, so users can create their own context
by implementing CurrentBeanPoolContext.

StandaloneRegistryProvider
In order to obtain a connection to the repository, an instance of StandAloneRegistryProvider
must be created. This registry provider has several important parameters for its creation
that will affect the functionality of CSAF. CSAF supports several constructors which
exclude some of the properties and use their default values instead. The constructor with
full parameter list is:
StandaloneRegistryProvider(String registryUrl, String user,
 String password, boolean browserBehaviour){}

registryUrl The fully qualified URL for the CentraSite registry/
repository. Default value is http://localhost:53307

user The user ID of the CentraSite user.

password The password of the user identified by the parameter -
user.

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 221

browserBehaviour Sets the com.centrasite.jaxr.BrowserBehaviour
property of the connection factory. To enable type
management, this flag must be set to true; to enable
RevisionManagement it must be false. Default value is
false.

Example for creating a BeanPool instance by using SessionContext and
StandaloneRegistryProvider
SessionContext context = null;
RegistryProvider provider = null;try {
 provider = new StandaloneRegistryProvider(registryUsername,
 registryPassword, true);

 Configuration conf = new Configuration();
 conf.setRegistryProvider(provider);
 conf.addBeanType(Item.class);
 conf.addBeanType(Action.class);
 conf.addBeanType(Entry.class);
 conf.addBeanType(ExternalLink.class);
 context = SessionContext.createInstance(conf);
 } catch (CSAppFrameworkException e) {
 // Do something with the exception
 }

BeanPool beanPool = context.getCurrentBeanPool();

Configuration
You can configure the CentraSite Application Framework via the Configuration object
(com.softwareag.centrasite.appl.framework.Configuration).

The following can be configured here:

Bean types managed by CSAF

Persistence mode

Bean mode

Maximum concept cache size

Cache scope

Re-reading of outdated objects

Additionally, the configuration object supports a generic property: key/name pair. It can
used to configure any of the above mentioned properties generically.

After the Configuration object has been initialized, it can be passed to the
com.softwareag.centrasite.appl.framework.SessionContext.createInstance()
method, which creates a SessionContext instance.

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 222

This instance can then create
com.softwareag.centrasite.appl.framework.persistence.BeanPool instances
and can be used for the lifetime of the application.

The following topics are discussed in this topic:

Bean Types Managed by CSAF
The framework keeps an internal data model for user-defined bean classes, i.e., bean
classes that extend the com.softwareag.centrasite.appl.framework.beans.RegistryBean interface.

After the bean interfaces have been defined as Java classes having the @RegistryObject
annotation, they must be registered by calling the Configuration.addBeanType(java.util.Class)
method.

In principle, calling Configuration.addBeanType(java.util.Class) for each bean class is not
mandatory, since CSAF tries to process this information (configuration) at runtime when
required. Nevertheless, it is still highly recommended because there are cases in which
it is not possible to obtain the mapping information at runtime, e.g., when performing a
search in the registry.

Bean Modes
The framework supports two bean modes: BACKED and SIMPLE
(com.softwareag.centrasite.appl.framework.persistence.BeanMode). This mode specifies how the
beans interact with the underlying implementation of the API supporting JAXR.

When using the SIMPLE mode, data from the bean is transferred to the registry object
only when the user explicitly requests this by calling one of the BeanPool methods
(update(), flush(),delete()).

When using the BACKED mode, data from the bean is transferred to the registry object
immediately after it is set in the bean. The advantage of this is that extra features such as
locking and caching can be used.

Note: SIMPLE mode is deprecated; BACKED mode should always be preferred.

Persistence Modes
The framework supports two persistence modes: FULL and MAP_ONLY. This mode
specifies how and whether the data will be persisted in the registry.

When using the FULL mode, the data is entirely persisted in the registry. This is the
default mode.

When using the MAP_ONLY mode, the data is not persisted in the registry at all; it
is just mapped from the bean to the registry object. It is assumed that the persistence
is done outside of the framework. This is used, for example, in a Pluggable UI
environment, and applies to any custom extension of the CentraSite UI. In this, the
Pluggable UI takes care of storing the object in the registry.

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 223

Cache Configuration
Two properties of the caching can be configured: the maximum concept cache size
and the cache scope. Both parameters configure the concept mapping cache within the
framework.

The default value for the cache size is 1000.

There are two available scopes for the cache:

APPLICATION There is one cache for the whole application.

SESSION Each session has its own cache.

Re-Reading Outdated Objects
The framework provides support to re-read outdated registry beans automatically. This
is controlled by the Configuration.PROP_AUTO_REREAD_OUTDATED_OBJECTS property.
Possible values are true and false.

If the property value is set to true then when an outdated object is modified by the
system it will automatically be re-read from the registry, i.e., reverted to the latest state
in the database, before applying any changes. Otherwise the user receives the following
exception when performing the modification:
com.softwareag.centrasite.appl.framework.persistence.ObjectOutdatedException

Note that if this feature is turned on the current client of CSAF will override any changes
made by another client.

Mapping Beans to Registry Objects with Annotations

Introduction to Bean Mapping
The beans are mapped to registry objects using Java5 Annotations.

Each bean from the application bean model has to extend or implement the RegistryBean
(com.softwareag.centrasite.appl.framework.beans.RegistryBean) interface. If an interface extends
the RegistryBean interface, an implementation must be provided and specified using the
@Bean annotation:
@RegistryObject(objectTypeName="{http://namespaces.CentraSite.com/csaf}Item")
@Bean(implementationClass = "...")
public interface Item extends RegistryBean{
...
}

The table below describes the annotations currently supported by the CentraSite
Application framework.

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 224

Annotations and Description Scope Properties

@RegistryObject

Maps a bean to a registry
object with a specific object
type.

Type objectTypeName (optional) – the
name of the object type of the
registry object.

objectTypeKey (optional) – the key
of the object type.

At least one of the properties must
be specified.

@Property

Maps a bean property to
a registry object property.
The properties should
have the same type. The
mapper does not provide
type conversion, except for
JAXR InternationalString
to/from String.

Method target (optional) – the name of
the target property in the registry
object. The property must be a
standard property of a predefined
JAXR-based object type. If the
target property is not specified, it is
assumed that it matches the name of
the bean property.

@Slot

Maps a bean property
to a registry object slot.
Multivalue slots are
supported. Also provided
are type conversion slot
values which are string
to integer, Boolean, date,
timestamp and Calendar.

Method Name (mandatory) – the name of
the slot to which this property is
to be mapped. The JAXR-based
property being mapped can be
custom defined, or the JAXR-based
object type that this property comes
from can be custom.

targetType (optional) – specifies
the type of the bean property. It
is used when the property is a
collection and thus the mapping
cannot guess the underlying
property.

type (optional) – the type of the
bean property. Supported types are
BOOLEAN, DATE, CALENDAR,
TIMESTAMP, INTEGER and AUTO.
The laer allows the mapper to
guess the property type.

@Slots Method targetType (mandatory) - the type
of bean that is to be mapped to a
single slot.

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 225

Annotations and Description Scope Properties

Maps all slots of a registry
object to a bean property
(Collection).

@SlotProperty

Used in conjunction with
the @Slots property. Maps
the properties of the bean
of the type specified as
target type with the @Slots
annotation. A slot has a
name, slot type and values.
All these properties can
be mapped using this
annotation.

Method target (mandatory) – can
be one value from the enum
SlotPropertyName – NAME,
SLOT_TYPE, VALUES.

@TelephoneNumbers

Maps a bean property to
the TelephoneNumber
object from the JAXR-based
infomodel. Such objects
are used in the User JAXR
Object.

Method type (optional) – the type of the
telephone numbers.

@ExternalLink

Maps a bean property to a
ExternalLink JAXR-based
object or a collection of
them.

Method slotName (optional) – the name of a
slot inside the ExternalLink registry
object to be mapped that is checked
for having a specified value. This is
used to pick the proper ExternalLink
if the registry object has more than
one.

slotValue (optional) – the value of
the slot to be checked.

type (optional) – type of the bean
used for the mapping

@Association

Maps a property to an
association. It can be either
the association object
itself or the target of the
association.

Method key (optional) – the key of the
association type to be used. Either
type or key must be present.

type (optional) – the association
type to be used. Either type or key
must be present.

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 226

Annotations and Description Scope Properties

targetType (optional) – the type
of the bean to be mapped. It is
used when the bean property is a
collection and the type cannot be
guessed.

mappedTo (optional) – the property
can be mapped to either the
association registry object or the
target of the association.

cascadeStyle (optional) –
Supported cascade styles are
ALL (Cascade on all operations),
UPDATE (Cascade on update
operations), DELETE (Cascade
on delete operations), NONE (no
cascading).

@AssociationTarget

Used in conjunction
with the @Association
annotation. Maps a
bean to a target of an
association. It is used when
a bean is mapped to an
association object using the
@Association annotation.
Then inside that bean a
property must be mapped
to the target.

Method None

@Classification

Maps a bean property
to a classification. Both
the classification object
and its concept can be
used. The mapping can be
simple – Bean property <-
> Classification(Concept)
or enumeration – Bean
property <-> Classification
(Concept) which concept
is under a specified parent
concept. The laer provides

Method classificationScheme
(optional) – the name of the
ClassificationScheme to be used.

parentConcept (optional) – the
path of the parent concept. Used
when mapping enumeration
classifications.

parentConceptKey (optional) – the
key of the parent concept. Either the
path or the key can be used.

conceptPath (optional) – the path
of the concept for this classification.

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 227

Annotations and Description Scope Properties
a set of predefined possible
concepts, thus is similar to
the notion of enumeration.

conceptKey (optional) – the key of
the concept for this classification.
Either the path or the key can be
used.

targetType (optional) – the type
of the bean used for the mapping.
Required when the property is a
collection and the type cannot be
guessed.

mappedTo (optional) – the bean
can be mapped either to the
classification object or to its concept.

cascadeStyle (optional) – The
supported cascade styles are ALL,
UPDATE, DELETE and NONE.

@ClassificationConcept

Used in conjunction
with the @Classification
annotation. Maps a bean
to the Concept of the
Classification specified
in the @Classification
annotation.

Method None

@ClassifiedInstances

Maps class hierarchy
to registry objects.
Classifications are used to
achieve this. Each registry
object that corresponds to
a bean from the hierarchy
is classified with a concept.
The laer belongs to a
taxonomy mirroring the
class hierarchy.

Type instances (mandatory) – the array
of the instances that this mapping
will address.

@ClassifiedInstance Sets the
information for a specific
mapping between a bean
from the hierarchy and a
registry object.

Type classificationScheme
(mandatory) – the classification
scheme to which the concept
belongs. Either the scheme name or
the key must be specified.

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 228

Annotations and Description Scope Properties

classificationSchemeKey
(mandatory) – the key of the
classification scheme. Either the
scheme name or the key must be
specified.

conceptKey (mandatory) – the key
of the concept used to classify this
instance.

conceptPath (mandatory) – the
path of the concept used to classify
this instance.

beanType (mandatory) – the type
of the bean that corresponds to this
instance.

@ClassificationAribute

Annotation for mapping
the return value of a (geer)
method to the classification
aribute specified at type
level. The aribute name is
mandatory and is used to
identify the aribute. This
annotation is very similar
to the {@link Classification}
annotation in terms of
supported aributes and
underlying representation.
The difference is that the
taxonomy is obtained from
the aribute description.
In order to use this
annotation, a classification
aribute must be defined
at type level (the registry
object type must have a
classification aribute with
the same aribute name as
specified in the annotation).

Method attributeName (mandatory) – The
name of the aribute represented by
this annotation.

cascadeStype (optional) – The
cascading style for this mapping.

targetType (optional) – The type
of the mapped bean. The bean itself
must be of type Concept.

@FileAribute

Annotation for mapping
the return value of a

Method attributeName (mandatory) – The
name of the aribute represented by
this annotation.

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 229

Annotations and Description Scope Properties
(geer) method to the
file aribute specified at
type level. The aribute
name is mandatory and
is used to identify the
aribute. This annotation
is very similar to the {@link
ExternalLink} annotation
in terms of supported
aributes and underlying
representation. In order to
use this annotation, a file
aribute must be defined
at type level (the registry
object type must have a
file aribute with the same
aribute name as specified
in the annotation).

cascadeStype (optional) – The
cascading style for this mapping.

targetType (optional) – The type
of the mapped bean. The bean itself
must be of type ExternalLink.

@Relationship

Annotation for mapping
the return value of a (geer)
method to the aribute
specified at type level.
The aribute name is
mandatory and is used to
identify the aribute. This
annotation is very similar
to the {@link Association}
annotation in terms of
supported aributes and
underlying representation.
The difference is that the
association and target types
are not specified but are
obtained from the aribute
description. In order to
use this annotation, a
relationship aribute must
be defined at type level (the
registry object type must
have a relationship aribute
with the same aribute
name as specified in the
annotation).

Method attributeName (mandatory) – The
name of the aribute represented by
this annotation.

cascadeStype (optional) – The
cascading style for this mapping.

targetType (optional) – The type
of the mapped bean. The bean itself
must be of type Concept.

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 230

Example:
/**
* Java bean interface representing JAXR-based registry objects
* of type ServiceInterfaceVersion.
*/
@RegistryObject(objectTypeName =
"{http://namespaces.CentraSite.com/csaf}ServiceInterfaceVersion")
@Bean(implementationClass =
"com.softwareag.centrasite.appl.framework.persistence.beanmodel.impl.ServiceIn
terfaceVersionImpl") public interface ServiceInterfaceVersion extends RegistryBean{

 @Property(target = "name")
 public String getName();
 public void setName(String name);

 /**
 * Returns the description
 */
 @Property(target = "description")
 public String getDescription();

 /**
 * Sets the description
 */
 public void setDescription(String description);

 /**
 * Returns the attachments
 */
 @ExternalLink(type = com.softwareag.centrasite.appl.framework.persistence.
beanmodel.ExternalLink.class) public List<com.softwareag.centrasite.appl.
framework.persistence.beanmodel.ExternalLink> getAttachments();

 /**
 * Sets the attachments
 */
 public void setAttachments(List<com.softwareag.centrasite.appl.
framework.persistence.beanmodel.ExternalLink> attachments);

 /**
 * Returns the short name of the interface version.
 * Maps to {http://namespaces.CentraSite.com/csaf}shortName slot.
 */
 @Slot(name = "{http://namespaces.CentraSite.com/csaf}shortName")
 String getShortName();

 /**
 * Sets the short name property of the interface version.
 */
 void setShortName(String shortName);

 /**
 * Returns.
 */
 @Association(type = "HasReviewRequest",
 targetType = ReviewRequestOutcome.class,
 cascadeStype = CascadeStyle.DELETE)
 List<ReviewRequestOutcome> getReviewRequestOutcomes();

 /**
 * @param list

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 231

 */
 public void setReviewRequestOutcomes(List<ReviewRequestOutcome> list);

 /**
 * Returns the findings, which are attached to the bean.
 */
 @Classification(classificationScheme = "CSAF -Taxonomy",
 conceptPath = "/ClassificationInstances/Finding",
 targetType = Finding.class)
 List<Finding> getFindings();

 /**
 *
 * @param pFindings
 */
 public void setFindings(List<Finding> pFindings);

 @Slots(targetType = SlotBean.class)
 public Collection<SlotBean> getSlots();

 public void setSlots(Collection<SlotBean> slots);
}

/**
* Implementation of the {@link ServiceInterfaceVersion} bean interface.
*/public class ServiceInterfaceVersionImpl extends DynamicRegistryBean
implements ServiceInterfaceVersion {

 private String _shortName;
 private List<ReviewRequestOutcome> _reviewRequestOutcomes;
 private Collection<SlotBean> slots;
 private String _instanceSlotName;
 private List<Finding> findings;
 private List<ExternalLink> externalLinks;

 /**
 * {@inheritDoc}
 */
 public String getShortName() {
 return _shortName;
 }

 /**
 * {@inheritDoc}
 *
 * The setter is annotated that modifies the object and it needs to be
 * updated in the JAXR-based registry.
 */
 public void setShortName(String shortName) {
 _shortName = shortName;
 }

 public List<ReviewRequestOutcome> getReviewRequestOutcomes() {
 return _reviewRequestOutcomes;
 }

 public
 void setReviewRequestOutcomes(List<ReviewRequestOutcome> list) {
 _reviewRequestOutcomes = list;
 }

 public Collection<SlotBean> getSlots() {

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 232

 return slots;
 }

 public void setSlots(Collection<SlotBean> slots) {
 this.slots = slots;
 }

 public String getInstanceSlotName() {
 return _instanceSlotName;
 }

 public void setInstanceSlotName(String slotName) {
 _instanceSlotName = slotName;
 }

 public List<Finding> getFindings() {
 return findings;
 }

 public void setFindings(List<Finding> findings) {
 this.findings = findings;
 }

 public List<ExternalLink> getAttachments() {
 return externalLinks;
 }

 public void setAttachments(List<ExternalLink> attachments) {
 externalLinks = attachments;
 }
}

Standard Mappings
The Standard Mappings (com.softwareag.centrasite.appl.framework.beans.standard) are
RegistryBeans that represent all supported JAXR-based Registry Objects under the
package com.centrasite.jaxr.infomodel. They provide the functionality to operate and manage
JAXR-based RegistryObjects through the Application Framework with ease.

There are other kinds of objects that are included in this package although they are
not RegistryObjects (EmailAddress, PostalAddress, Slot … etc.). The Application
Framework provides a mapping for them as well. Standard Mapping instances are
created by the BeanPool's create(beanClass); standard non-registry object mappings
(EmailAddress, PostalAddress, Slot … etc.) are managed using the following:
com.softwareag.centrasite.appl.framework.beans.standard.StandardMappingManager

Standard Mappings Usage Sample
//Create a com.softwareag.centrasite.appl.framework.beans.standard.Organization
com.softwareag.centrasite.appl.framework.beans.standard.Organization
organization = beanPool.create(com.softwareag.centrasite.appl.framework.beans.s
tandard.Organization.class);
organization.setName("MyOrganization");

// Create StandardMappingManager for managing Standard non RegistryObjects
// mappings
StandardMappingManager smm = new StandardMappingManager(registryProvider);

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 233

//Create a postal address
com.softwareag.centrasite.appl.framework.beans.standard.PostalAddress pa =
 smm.createPostalAddress("streetNumber", "street", "city",
 "stateOrProvince", "country", "postalCode","type");
organization.setPostalAddress(pa);

// Get existing user and add it to the organization
com.softwareag.centrasite.appl.framework.beans.standard.User user =
beanPool.read(com.softwareag.centrasite.appl.framework.beans.standard.User.class,
USER_KEY);
Collection<User> users = new ArrayList<User>();
users.add(user);
organization.setUsers(users);

// save the changes
beanPool.flush();

Generating Beans from the Command Line
You can use the command line interface CentraSiteCommand.cmd (Windows) or
CentraSiteCommand.sh (UNIX) of CentraSite. The command line tool is located in the
directory <CentraSiteInstallDir> /utilities.

Use the GenerateCSAFBeans to generate registry beans in CentraSite.

The syntax for the command is:

C:\SoftwareAG\CentraSite\utilities>GenerateCSAFBeans.cmd <USERNAME>
<PASSWORD> <CENTRASITE-URL> <TYPENAME> <INTERFACEPACKAGE> <IMPLPACKAGE>
<DESTINATION>

The input parameters are:

Parameter Description

USERNAME The user ID of a registered CentraSite user.
For example, a user who has the CentraSite
Administrator role.

PASSWORD The password for the registered CentraSite user
identified by the parameter -user.

CENTRASITE-URL (Optional) The URL of the CentraSite registry. Default
value is http:/localhost:53307.

TYPENAME Required. The namespace or name of the type to be
generated. Example: {hp://test}TestService. Or, the
name of the virtual type to be generated. Example:
"Virtual service" .

Note: The quotation marks are necessary, in order that
"Virtual service" is parsed as a single token.

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 234

Parameter Description

INTERFACEPACKAGE Required. The name of the package in which the
interfaces should be generated. For example:
com.sag.generated

IMPLPACKAGE Required. The name of the package in which the
implementation should be generated. For example:
com.sag.generated.impl

DESTINATION Required. The location where the generated bean will
be stored.

Example:

C:\SoftwareAG\CentraSite\utilities>GenerateCSAFBeans.cmd Administrator
manage http://localhost:53307 "Virtual service" com.sag.generated
com.sag.generated.impl c:\tmp\

Querying the Registry
The Application Framework provides two search functionalities:

The Application Framework Simple Search uses only framework-specific data, so it
is simpler to use and supports all needed query operations. This search interface is
also the recommended one to use.

The Application Framework JAXR-Based Search combines framework and JAXR-
based data. The advantage of this search is that it can use the whole JAXR-based
functionality to query the registry. The disadvantage is that in order to use it, the
user must have considerable knowledge of JAXR.

Application Framework Simple Search
The Application Framework Simple Search uses framework-specific data only. To
perform a search, you:

1. Create a search object using a BeanPool instance.

2. Restrict search results by adding search predicates.

3. Define the order of the search results using one of the Order static methods.

4. Invoke the search using the result method.

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 235

Creating a Search Object
To search the registry, the user must create a search object using a BeanPool instance.
The BeanPool offers several methods for creating search objects:

Without arguments:
BeanPool.createSearch();

This creates a search object which, when executed, searches for objects in the registry
from all registered bean types. See "Bean Types Managed by CSAF" on page 222.

When a List of items is passed:
BeanPool.createSearch(List<Class<? extends RegistryBean>> beanClasses)

The created search object searches through all objects in the registry, from the
specified list of types.

When a single type is passed:
BeanPool.createSearch(Class<? extends RegistryBean bean> beanClass)

The search object searches the registry only for items from the specified type.

The search object has a result() method which searches the registry and returns a list of all
RegistryBean objects that satisfy the search criteria.

Example:
BeanPool beanPool = sessionContext.getCurrentBeanPool();
Search search = beanPool.createSearch();

Restricting the Search Results by Adding Search Predicates
The predicate is an object representation of a query criterion used to restrict the
search results. Predicates can be created from a factory-like class called Predicates
(com.softwareag.centrasite.appl.framework.persistence.search.Predicates).

It provides two static methods for creating each specific predicate:

Without specifying Bean Type:
Predicates.eq(String propertyName, Object value)

By specifying a Bean Type:
Predicates.eq(String propertyName, Object value,
Class<? extends RegistryBean> beanType)

where

The comparison operator:

and logical conjunction

method name

eq equal

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 236

ge greater than or equal to

 gt greater than

 le less than or equal to

 like matches a string that can include wildcards

 lt less than

 ne not equal

 or logical disjunction

property name The name of the property to be compared. This property
name is a string value representing the name of the Java
property (getName() corresponds to “name”). The search
functionality supports adding a sequence of properties. This
is accomplished by knowing the searched RegistryBean
property hierarchy and by separating following properties
with a dot ..

Example:

Predicates.eq("externalLink.uri ", value)

The predicate is created for the URI property of the
externalLinks of the searched RegistryBean, which should
be equal to the given value.

value The value to compare against. Most methods expect an
Object value because the search can handle a variety of
objects including String, Number, Date, Calendar, Key,
RegistryBean and others. There are also methods that expect
a specific value type. An example is like (String propertyName,
String value), which supports wildcards and therefore the
expected value type is String. Other object types that
are worth mentioning are the so-called support types
(TelephoneNumbers, InternationalString, LocalizedString,
EmailAddress, PostalAddress). They can be used for search
criteria but not as a searched object because they are not
registry beans. For example, the following search is valid:

Search search = beanPool.createSearch(User.class);
Predicates.eq("telephoneNumbers.countryCode",
"someCountryCode");

But the following search is not valid:

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 237

Search search = beanPool.createSearch(EmailAddress.class);

beanType The bean type for which the predicate will be applied.

Important: If no beanType is specified then the predicate is
applied to the first bean type in the Search object's
list of bean types. Note that the first item of that list
must support the property passed to the predicate,
otherwise the search will fail. In cases where the
search object is created for all supported bean
types, the list is filled randomly so the user must be
aware of all common properties supported by these
RegistryBean types.

Each predicate can be added to the search object by invoking the search method:
addPredicate(Predicate predicate);

A search object can add multiple predicates, which can be treated as predicates joined by
an and operator. For example:
Search search = beanPool.createSearch();
search.addPredicate(predicate1);
search.addPredicate(predicate2);
search.addPredicate(predicate3);

is equal to predicate1 and predicate2 and predicate3 in the query to be executed.

There are two more methods in the Predicates class: and(Predicate p1, Predicate p2) and
or(Predicate p1, Predicate p2). These methods create a so-called combine predicate. They join
two predicates by logical conjunction or logical disjunction respectively. This predicate
can be added to the search object in the same way as the common predicates explained
above.

Supported predicates description

All supported predicates are created from methods in the Predicates class
(com.softwareag.centrasite.appl.framework.persistence.search.Predicates).

Like Predicate

A predicate that supports usage of wildcards. The value field of the creating methods:
like(String propertyName, String value)
like(String propertyName, String value, Class<? extends
RegistryBean> beanType)

is of Type String, so the user may add strings (possibly including wildcards).

Example:
like("name","%partOfExpectedName");

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 238

Wildcards

The like predicate supports wildcards in the manner of SQL and UDDI. The wildcard
characters are as follows:

Wildcard character Indicates

% Any value for any number of characters

_ Any value for a single character

The following special cases are supported:

To represent... use the character string...

% \%

_ _

\ \\

Greater Than Predicate

A predicate that compares Number, Date or Calendar, returning true if the compared
object value is greater than the value given in the predicate's creating method “value”
field:
gt(String propertyName, Object value)
gt(String propertyName, Object value, Class<? extends
RegistryBean> beanType)

The value must be one of the following types: Number, Date, Calendar.

Example:
Calendar calendar = Calendar.getInstance();
Predicate predicate = Predicates.gt("requestDate",calendar);

Less Than Predicate

A predicate that compares Number, Date or Calendar, returning true if the compared
object value is less than the value given in the predicate's creating method “value” field:
lt(String propertyName, Object value)
lt(String propertyName, Object value, Class<? extends
RegistryBean> beanType)

The value must be one of the following types: Number, Date, Calendar.

Example:
Predicate predicate = Predicates.lt("copyNumber",203);

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 239

Greater or Equal Predicate

A predicate that compares Number, Date or Calendar, returning true if the compared
object value is greater than or equal to the value given in the predicate's creating method
“value” field:
ge(String propertyName, Object value)
ge(String propertyName, Object value, Class<? extends
RegistryBean> beanType)

The value must be one of the following types: Number, Date, Calendar.

Example:
Predicate predicate = Predicates.ge("copyNumber",203);

Less or Equal Predicate

A predicate that compares Number, Date or Calendar, returning true if the compared
object value is less than or equal to the value given in the predicate's creating method
“value” field:
le(String propertyName, Object value)
le(String propertyName, Object value, Class<? extends
RegistryBean> beanType)

The value must be one of the following types: Number, Date, Calendar.

Example:
Predicate predicate = Predicates.le("copyNumber",203);

Equal Predicate

A predicate that returns true if the compared object value is equal to the value given in
the predicate's creating method “value” field:
eq(String propertyName, Object value)
eq (String propertyName, Object value, Class<? extends
RegistryBean> beanType)

The value must be one of the following types: Number, Date, Calendar, String, Key,
RegistryBean.

If the value is of type RegistryBean then the comparison is made by the RegistryBean's
key.

Example:
Predicate predicate = Predicates.eq("name","somePropertyname");

Not Equal Predicate

A predicate that returns true if the compared object value is not equal to the value given
in the predicate's creating method “value” field:
ne(String propertyName, Object value)
ne (String propertyName, Object value, Class<? extends
RegistryBean> beanType)

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 240

The value must be one of the following types: Number, Date, Calendar, String, Key,
RegistryBean.

If the value is of type RegistryBean then the comparison is made by the RegistryBean's
key.

Example:
Predicate predicate = Predicates.ne("name","somePropertyname");

AND Predicate

A predicate that joins two predicates in a logical conjunction. The method that creates
this predicate:
public static Predicate and(Predicate p1, Predicate p2)

expects two predicates as arguments.

Example:
Predicate predicate1 = Predicates.eq("name","somePropertyname");
Predicate predicate2 = Predicates.eq("name","somePropertyname2");
Predicate andPredicate = Predicates.and(predicate1, predicate2);

OR Predicate

A predicate that joins two predicates in a logical disjunction. The method that creates
this predicate:
public static Predicate or(Predicate p1, Predicate p2)

expects two predicates as arguments.

Example:
Predicate predicate1 = Predicates.eq("name","somePropertyname");
Predicate predicate2 = Predicates.eq("name","somePropertyname2");
Predicate orPredicate = Predicates.or(predicate1, predicate2);

Defining the Order of the Search Results
You can define the order using one of the following Order
(com.softwareag.centrasite.appl.framework.persistence.search.Order) static methods,
which create ascending or descending order for a given property:

asc(String propertyName) for ascending

desc(String propertyName) for descending

The rules for the property name when creating Order are the same as when creating
a Predicate. The user must know whether the bean types added to the search object
support the property passed to the Order asc(String propertyName) or desc(String
propertyName) methods. You can add multiple orders to the search object.

Example:
Order order = Order.asc("description");

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 241

Invoking the Search
After adding the necessary predicates and orders to the search object, the search can
be executed by invoking the result() method on the search object. It returns a list of all
RegistryBean objects in the registry that applied the predicate conditions in the specified
order. The result is lazy loading compatible.

Here is an example of a Search lifecycle:
List searchTypes = new ArrayList();
searchTypes.add(ReviewRequestOutcome.class);
searchTypes.add(ServiceInterfaceVersion.class);

Search search = beanPool.createSearch(searchTypes);

Predicate predicate1 = Predicates.eq("ExternalLink.URI",
"http://www.softwareag.com");
Predicate predicate2 = Predicates.eq("name","somePropertyname2");
Predicate orPredicate = Predicates.or(predicate1, predicate2);

Search.addPredicate(orPredicate);

search.addOrder("name");

List<RegistryBean> result = (List<RegistryBean>) search.result();

This means that all ReviewRequestOutcomes and ServiceInterfaceVersions will be
searched and the ones that have name equal to “somePropertyname2” or ExternalLink
with URI equal to “hp://www.softwareag.com” will be returned in the resulting List of
RegistryBean objects ordered by name.

Extending the Application Framework
There are several points where the user can extend the existing Application Framework
functionality.

Properties

Each Java bean property is internally represented as a
com.softwareag.centrasite.appl.framework.mapping.Property instance.

The recommended way of creating a new property is by extending, directly or indirectly,
the BaseProperty class (com.softwareag.centrasite.appl.framework.mapping.BaseProperty).

To map the information from a given annotation to the new Property correctly,
a user-defined Property Processor that implements the PropertyAnnotationProcessor
(com.softwareag.centrasite.appl.framework.PropertyAnnotationProcessor) must be created.

Then the newly created PropertyProcessor must be added to the list of processors in the
BeanTypeAnnotationProcessor (com.softwareag.centrasite.appl.framework.BeanTypeAnnotationProcessor)
using the addAnnnotationProcessor(Class<?> annotationType, PropertyAnnotationProcessor
annotationProcessor) method.

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 242

Property Mapper

Each property value must be transferred to/from the
underlying registry object. For that purpose, CSAF provides the
(com.softwareag.centrasite.appl.framework.persistence.mapper.PropertyMapper) interface.

Users can provide their own implementation of the PropertyMapper interface by
hooking it to a given type of Property. Such a property mapper is registered using
the com.softwareag.centrasite.appl.framework.persistence.mapper.PropertyMapperFactory.addHandler
(PropertyMapperFactory.Handler) method.

Predicate

The preferred method of creating a custom-defined predicate is to extend the
DefaultPredicate (com.softwareag.centrasite.appl.framework.persistence.search.impl.DefaultPredicate)
class directly or indirectly. Another way is to directly implement the Predicate interface
(com.softwareag.centrasite.appl.framework.persistence.search.Predicate), although this is not
recommended because it does not offer default behavior.

To use this newly-created predicate, the user must create a custom defined
predicate handler, which must implement the PredicateHandler interface
(com.softwareag.centrasite.appl.framework.persistence.search.PredicateHandler).
This predicate handler must be added to the PredicateFactory
(com.softwareag.centrasite.appl.framework.persistence.search.impl.PredicateFactory) list of predicate
handlers by calling addPredicateHandler(PredicateHandler handler).

Application Framework JAXR-Based Search
Whereas the BeanPool interface takes care of the standard CRUD operations
to the registry, the queries are performed using the Query interface
(com.softwareag.centrasite.appl.framework.persistence.Query):
package com.softwareag.centrasite.appl.framework.persistence;
public interface Query<T extends RegistryBean> {
 List<T> run(QueryContext pContext) throws JAXRException,
 CSAppFrameworkException;
}

In order to do a query, one should implement this interface and place the querying
routines in the run() method implementation. The query is then executed via
BeanPool.run():
<T extends RegistryBean> List<T> run(Query<T> pQuery)
 throws CSAppFrameworkException;

The returned data is then in the form of beans.

This mechanism still requires knowledge of JAXR. The benefit is that JAXR is isolated in
this interface. Below is a sample implementation of Query:
final Query<EntryCode> q = new Query<EntryCode>() {
 public List<EntryCode> run(QueryContext context) throws JAXRException {
 final RegistryAccessor regDAO = context.getRegistryAccessor();
 final Concept concept = regDAO.findConceptByPath("CSAF-Taxonomy",
 "/ClassificationInstances/EntryCodeType");

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 243

 final List<EntryCode> result = new ArrayList<EntryCode>();
 for (Concept c : (Collection<Concept>) concep.getChildrenConcepts()) {
 try {
 EntryCode ec = context.getCurrentBeanPool().read(EntryCode.class,
 c.getKey().getId());
 result.add(ec);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage(), e);
 }
 }
 return result;
 }
};
List<RegistryBean> queryResult = getBeanPool().run(q);

In general, a Query would use the JAXR-based API to find and retrieve the data, and
then the keys of registry objects that were found are passed to the BeanPool to build the
beans. These beans are then returned as the result of the query execution.

Event Mechanism
The CSAF allows the user to register and receive notifications when certain events
occur. Currently, three persistence events are supported: objectDeleted, objectCreated,
objectUpdated. These events can be intercepted by implementing the interface
com.softwareag.centrasite.appl.framework.persistence.PersistenceEventListener. Such listeners are
registered via the BeanPool, which has methods for adding, removing and retrieving
listeners.

All of the supported events are post events; in other words, they are fired after an action
has been performed.

Using CSAF in pre-action events has some limitations. This is because the CSAF tries
to establish its own connection to the registry data. Under certain circumstances, it
may happen that a user searches the registry for a transient object (for example, an
object which is still not persisted into the database) and, on which a pre-action event is
executing; in such case the user may not be able to retrieve the transient object created
using another connection. As a best practice, we recommend that you use the JAXR-
based API connection for any pre-action events.

Asset Types
Type Management provides CRUD (create, read, update and delete) operations for
custom object types. CSAF provides its own classes describing object (asset) types and
their aributes. Type Management supports operations on the following aributes:
file, classification, relationship and slot, where slot can be one of the
following types:

xs:boolean

xs:dateTime

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 244

xs:date

xs:time

xs:duration

xs:anySimpleType

xs:integer

xs:string

xs:anyURI

xs:double

xs:decimal

Type Management also provides CRUD operations for profiles, and functionality to
associate aributes with profiles and aach profiles to types. A manager interface
com.softwareag.centrasite.appl.framework.types.TypeManager is the entry point for the application
that uses CSAF.

Note: In order to use Type Management functionality, the StandaloneRegistryProvider
instance must be created with the browserBehaviour flag set to true.

Usage Sample for Type Management
private String TYPE_LOCAL_NAME = "TypeLocalName";

private String TYPE_NAMESPACE = "http://test.namespace.test";

private String TYPE_NAME = "{" + TYPE_NAMESPACE + "}"
 + TYPE_LOCAL_NAME;

//Get a sessionContext instance
SessionContext sessionContext = initSessionContext();

// Get a TypeManager instance from sessionContext
TypeManager typeManager = sessionContext.getTypeManager();

// Create a custom object type
TypeDescription typeDescription = typeManager.createType("TypeDisplayName",
 "TypeDescription", TYPE_LOCAL_NAME, TYPE_NAMESPACE);

// Create a Classification Attribute
AttributeDescription attrClass = typeManager.createClassificationAttribute(
 "ClassificationAttributeName","ClassificationAttributeDescription",
 Constants.CLASSIFICATION_SCHEME_PRODUCTS);

//Add attribute to custom type
typeDescription.addAttribute(attrClass);

//Create Profile
Profile profile = typeManager.createProfile("ProfileName");

// Create a File Attribute
AttributeDescription attrFile = typeManager.createFileAttribute(

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 245

 "nameFileAttribute", "descriptionFileAttribute");

//Add attribute to profile
profile.addAttribute(attrFile);

//Add profile to custom type
typeDescription.addProfile(profile);

// Save custom type
typeManager.saveType(typeDescription);

//Get custom type by name
TypeDescription type = typeManager.getType(TYPE_NAME);

//Delete custom type
typeManager.deleteType(type);

Association Types
In general, registry objects can be related to each other via associations. An association
belongs to a specified association type. CentraSite supports predefined association types,
such as HasParent and Uses; in addition, you can create custom association types.

In CentraSite, an association type is uniquely identified by its value (for example:
HasParent, Uses, etc.). The value is specified when the association type is created; it
cannot be subsequently modified.

An association type can optionally have one or more locale-specific display names. If
no locale-specific display names are specified, the association type's value is used by
default.

Each association type has a forward label; this is shown, for example, when a
corresponding association is displayed by the impact analysis.

You can optionally specify a backward label. Multiple association types can share
forward and/or backward labels.

The CentraSite Application Framework type management feature provides methods for
creating, updating, deleting and finding association types.

Usage Sample for Association Type Management
//Get a sessionContext instance
SessionContext sessionContext = initSessionContext();

// Get a TypeManager instance from sessionContext
TypeManager tm = sessionContext.getTypeManager();

AssociationType at = tm.createAssociationType(
 "MyAssociationType", "MyDisplayName", "MyForwardLabel",
 "MyBackwardLabel", Locale.EN);
tm.saveAssociationType(at);

// find an association type by its value
AssociationType myAssociationType = tm.getAssociationType("MyAssociationType");

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 246

// find an association type by its display name
myAssociationType = tm.getAssociationTypeByName("MyDisplayName");

// add a display name with a different locale
myAssociationType.setName("MonNom", Locale.FRENCH);
tm.saveAssociationType(myAssociationType);

// delete an association type
tm.deleteAsssociationType(myAssociationType);

Lifecycle Management
The Application Framework supports the Lifecycle Model (LCM) functionality. The
LCM provides the ability to define and track the life-cycle of a service and also provides
a way to define and enforce policies that govern the path of an asset through the
lifecycle. As a result, these policies can be automated or enforced consistently. Using
registry beans, we now support lifecycle-aware registry beans.

The definition of an LC Model starts with the definition of an LC Model taxonomy. The
state model of an LC Model is a standard state model (deterministic finite automaton,
DFA). The model itself is represented as the concepts of the LC Model taxonomy.
A taxonomy is not defined for this, so associations are used to represent the state
transitions. The states themselves are just concepts within the taxonomy.

In order to create a lifecycle-aware registry bean, the user must create a registry
bean that extends com.softwareag.centrasite.appl.framework.lcm.beans.LifeCycleAware.
Also, the implementation of this registry bean must extend the
com.softwareag.centrasite.appl.framework.lcm.beans.LCAwareDynamicRegistryBean. This ensures that
the registry bean is lifecycle-aware and is ready to use for lifecycle operations.

In order to manage the lifecycle models and states, the LCM Manager must first be
initialized:
com.softwareag.centrasite.appl.framework.SessionContext
sessionContext = initSessionContext();
com.softwareag.centrasite.appl.framework.lcm.LCMAdminManager
lcmAdminManager = sessionContext.getLCMAdminManager();

The com.softwareag.centrasite.appl.framework.lcm.LCMAdminManager provides all operations for
creating, modifying and deleting LCModels. State models for Lifecycle Management
models can theoretically be complex and encompass multiple machines and LCStates.

LCModels are state machines for Lifecycle Management and the
state machines may not have any states that cannot be reached. The
com.softwareag.centrasite.appl.framework.lcm.LCModel provides methods for all operations that
can be performed on an LCModel. When the LCModel becomes active, no changes to
the LCModel are possible; instead, a new version of the LCModel can be created using
LCModel.createVersion().

The com.softwareag.centrasite.appl.framework.lcm.LCState provides access to the LCState and
state specific operations.

For more information about the methods and functionality supported by LCModel, check
the Javadoc of the framework.

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 247

Usage Sample for LCM
// initialize SessionContext
SessionContext sessionContext = initSessionContext();

// get the LCMAdminManager
LCMAdminManager lcmAdminManager = sessionContext.getLCMAdminManager();

// Create a LCModel
LCModel lcModel = lcmAdminManager.createLCModel();
lcModel.setDisplayName("DisplayName");
lcModel.setDescription("Description");

// the LCModel must set a standard mapping Organization:
//com.softwareag.centrasite.appl.framework.beans.standard.Organization
lcModel.setOrganization((Organization)organization, false);

// Create LCStates
LCState lcStateA = lcModel.createLCState();
String stateAName = "State A";
lcStateA.setName(stateAName);
lcStateA.setDescription("stateADesc");
Collection<LCState> states = new ArrayList<LCState>();
states.add(lcStateA);

// add LCStates to lcModel
lcModel.addStates(states);

//lcModel must set an initial State
lcModel.setInitialState(lcStateA);

// add the keys of all Types that should be enabled for LCM
Collection<String> typesToBeEnabledForLCM = new ArrayList<String>();
typesToBeEnabledForLCM.add(typeToEnableForLCMKeys);
lcModel.addEnabledTypes(typesToBeEnabledForLCM);

//Save the lcModel using the LCMAdminManager
lcmAdminManager.saveLCModel(lcModel);

//Find existing LCModel.
//The result will contain all LCModels (active and inactive)
//that have the corresponding display name.
List<LCModel> listOfModels =
 lcmAdminManager.findLCModelByDisplayName("DisplayName",false);

Revision Management
CentraSite versioning capabilities make it possible to create a new version of an object
at any point in time. However, the new version is per definition a new object instance
which has to go through the whole lifecycle again, firing creation policies etc. There is
often a demand for versioning capabilities that allow a defined state of the same object to
be restored and referenced. Such a defined state is referred to as a checkpoint.

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 248

The CSAF interfaces related to versioning are
com.softwareag.centrasite.appl.framework.persistence.revision.RevisionManager and
com.softwareag.centrasite.appl.framework.beans.RevisionBean.

The CentraSite revisioning feature can be enabled system-wide, which means that every
object modification (create/update) of any instance of any type leads to the creation of a
checkpoint.

A checkpoint has the following identifying aributes: a minor version number, a label
and a timestamp. The minor version number is incremented each time a checkpoint is
created. The label is an optional description that can be used to add information about
the change. Also a timestamp that reflects the date of the checkpoint creation is recorded
with the checkpoint. The creation of a new checkpoint is recorded in the audit log.

It is possible to reference one specific checkpoint of an object directly and retrieve all
of its data as it was at the point in time when the checkpoint was created. This implies
that changes made to the object after the checkpoint took place are not reflected in the
retrieved checkpoint. Note that the checkpoints provide read-only access to the data; any
aempt to update a checkpoint raises an exception. However the current object can be
updated.

Reading a bean instance from the registry using BeanPool.read() always returns the current
(latest) state of an object.

Deleting an object also deletes all of its checkpoints.

It is possible to purge a set of checkpoints to reduce the amount of data consumed by
keeping older states of the object.

Note that in order to use the Revision functionality, the StandaloneRegistryProvider instance
must be created with the browser Behaviour flag set to false.

Usage Sample for Revision Management
package com.softwareag.centrasite.appl.framework.persistence.tests;

import java.util.ArrayList;
import java.util.Collection;

import com.softwareag.centrasite.appl.framework.SessionContext;
import com.softwareag.centrasite.appl.framework.beans.RevisionBean;
import com.softwareag.centrasite.appl.framework.beans.standard.Service;
import com.softwareag.centrasite.appl.framework.persistence.BeanPool;
import
com.softwareag.centrasite.appl.framework.persistence.revision.RevisionManager;

public class Revisioning {
 private static String checkpointName = "MyLabel";

 public void revisioning() throws Exception {
 SessionContext sessionContext = initSessionContext();
 BeanPool beanPool = sessionContext.getCurrentBeanPool();

 RevisionManager revManager = sessionContext.getRevisionManager();

 //enable the feature if needed

M
Odd Header

Application Framework

CentraSite Developer's Guide Version 9.8 249

 if (!revManager.isRevisioningEnabled()) {
 revManager.enableRevisioning();
 }

 // create new checkpoint
 Service bean = beanPool.read(Service.class, "uddikey");
 revManager.setCheckpoint(bean, checkpointName);

 // get all checkpoints including the current state object
 Collection<RevisionBean> checkpoints = revManager.getRevisionBeans(bean);

 // restore to the only checkpoint
 Collection<RevisionBean> restoreObjs = new ArrayList<RevisionBean>();
 for (RevisionBean rev : checkpoints) {
 if (rev.isRevision()) {
 restoreObjs.add(rev);
 break;
 }
 }

 revManager.restoreBeans(restoreObjs);

 // delete checkpoints based on label
 revManager.deleteBeans(checkpointName);
 }

 private SessionContext initSessionContext() {
 //initialize CSAF
 return null;
 }

}

Multi-User Scenarios
In order to address multi-user scenarios successfully, several aspects of the framework
should be noted.

A SessionContext is an expensive-to-create, threadsafe object intended to be shared
by all application threads. It is created once, usually on application startup, from a
Configuration instance. A BeanPool is an inexpensive, non-threadsafe object that should
be used once, for a single request (single unit of work) and then discarded. The
CurrentBeanPoolContext interface defines the contract for implementations that know
how to scope the notion of a current bean pool. ThreadLocalCurrentBeanPoolContext, which
maintains current bean pools for the given execution thread, is provided as an example
implementation of this interface.

The specification of JAXR does not support transactions or locking. CSAF and
CentraSite's implementation extend the API with some locking and transaction
capabilities. Here are some points to note:

Transactions are handled internally and control over them (including
isolation, demarcation, etc.) is not exposed through CSAF. There is only
support for bulk operations by using the BeanPool.delete(java.util.Collection) and
BeanPool.update(java.util.Collection) methods. These methods guarantee the atomicity

M
Even Header

Application Framework

CentraSite Developer's Guide Version 9.8 250

of the performed operation. There is also a BeanPool.flush() which performs one bulk
operation for the deleted beans and one for the created and updated beans.

Each modification to a registry bean (RegistryBean instance) leads to obtaining an
exclusive lock for writing on the whole registry object in the database. This is a
pessimistic locking strategy, as the lock is obtained when the object is modified and
not when it is actually persisted.

Whenever a lock on a registry object cannot be obtained (because it is taken by
another client), the following exception is thrown:
com.softwareag.centrasite.appl.framework.persistence.LockNotAvailableExcep
tion

The notion of an outdated object denotes a registry object whose database
representation has been changed since it was read. This is usually caused by a
different client modifying the same instance. Trying to modify an outdated object
leads to the following exception:
com.softwareag.centrasite.appl.framework.persistence.ObjectOutdatedExcept
ion

CSAF supports automatic re-reading of outdated objects; this forces a re-read of the
object from the database before applying the changes.

In general, the application should minimize the time a registry object is kept locked in
the database, i.e., the time during which there are ongoing modifications on it.

Setting the Classpath
In order to be able to use the CentraSite Application Framework features, the Java
classpath must include all the relevant class files. The easiest way to do this is to
include all the JAR files that are contained in the folder redist (including the subfolder
redist/csaf). The redist folder is typically located at C:\SoftwareAG\CentraSite\redist
(Microsoft Windows) or /opt/softwareag/CentraSite/redist (UNIX).

Examples
The CentraSite Application Framework SDK comes with two examples. One is for the
persistence functionality and the other is for the validation functionality.

CRUD Example
The CRUD example demonstrates the abilities of the persistence framework. It shows
how the BeanPool is initialized, configured and connected to the registry. Also it shows
how CRUD (create, read, update and delete) operations are performed and queries
implemented and executed. It also includes the bean model and sample mapping of the
most commonly used bean relationships and their JAXR-based representation.

M
Odd Header

API for JAXR

CentraSite Developer's Guide Version 9.8 251

6 API for JAXR

■ Introduction to the CentraSite API for JAXR ... 252

■ Creating and Closing a JAXR-based Connection .. 252

■ Defining a Service .. 255

■ Service that Uses Another Service .. 255

■ Service with Additional Information .. 256

■ Pre-Defined Classification Schemes (Taxonomies) ... 256

■ Impact Analysis .. 258

■ CentraSite API for JAXR Reference Information ... 258

M
Even Header
API for JAXR

CentraSite Developer's Guide Version 9.8 252

Introduction to the CentraSite API for JAXR
The CentraSite API for JAXR (Java Application Program Interface for eXtensible Markup
Language Repositories) is based on the Java API for XML Registries (JAXR) standard.
CentraSite supports JAXR capability level 1. In addition, it has some extensions
that enable you to exploit specific functions of CentraSite. The reader should be an
experienced Java programmer, with knowledge of XML and the concepts of enterprise
repositories.

CentraSite extends the JAXR standard with the following:

Ability to create user-defined object types.

CentraSite extends the JAXR object model by user-defined types, which may have
triggers and operations aached. Correspondingly, the “CentraSite JAXR-based
extensions” interface extends the JAXR query interface and allows you to search
user-defined objects.

Ability to use XQuery to access to the stored data.

CentraSite allows a client to access the stored data directly using XQuery via the
XQJ-based (XQuery API for Java) interface.

Creating and Closing a JAXR-based Connection

Creating a JAXR-based Connection
To create a JAXR-based connection

1. Ensure that the CLASSPATH includes directories that contain the following files:
activation.jar
CentraSiteCommons.jar
CentraSiteDynLoader.jar
CentraSiteJAXR-API.jar
CentraSiteLCM.jar
CentraSiteLCM-api.jar
CentraSiteLCM-L10N.jar
CentraSitePolicy-API.jar
CentraSiteResourceAccess-API.jar
CentraSiteUtils.jar
CentraSiteUtils-L10N.jar
CentraSiteVMS.jar
CentraSiteVMS-L10N.jar
commons-codec.jar
commons-hpclient.jar

M
Odd Header

API for JAXR

CentraSite Developer's Guide Version 9.8 253

commons-lang.jar
commons-logging.jar
cstUtils.jar
groovy-all*.jar
inmUtil.jar
inmUtilConf.jar
jaxen.jar
jaxr-api.jar
jaxrpc.jar
jdom.jar
log4j.jar
PolicyLogBindings.jar
saaj.jar
saxpath.jar
script-api.jar
sin-common.jar
sin-misc.jar
sin-ssx.jar
sin-xmlserver.jar
stax-api.jar
TaminoAPI4J.jar
TaminoAPI4J-l10n.jar
uddiKeyConverter.jar
wstx-asl.jar
wvcm.jar
xmlbeans.jar
xqjapi.jar
xqj-ino-api.jar

Note: You can find these files in the CentraSiteredist folder.

Note: If you have activated an e-mail policy, the CLASSPATH must additionally
include the file mail.jar, which you can find in the rts/bin folder.

2. Start your client program with the following parameter:
-Djavax.xml.registry.ConnectionFactoryClass=com.centrasite.jaxr.Connectio
nFactoryImpl

Or:

Set this property during program startup:
System.setProperty("javax.xml.registry.ConnectionFactoryClass",
 "com.centrasite.jaxr.ConnectionFactoryImpl");

3. Create a factory:
ConnectionFactory connFactory = ConnectionFactory.newInstance();

4. Supply the queryManagerURL to the connection:
Properties p = new Properties();

M
Even Header
API for JAXR

CentraSite Developer's Guide Version 9.8 254

p.setProperty("javax.xml.registry.queryManagerURL",
 "http://localhost:53307/CentraSite/CentraSite");

Note: In CentraSite, the lifeCycleManagerURL is always the same as the
queryManagerURL, hence it need not be specified.

Note: The port number, in the example above specified as 53307, may need to be
changed to suit your local configuration.

5. Set the BrowserBehaviour option:
p.setProperty("com.centrasite.jaxr.BrowserBehaviour", "yes");
connFactory.setProperties(p);

Enabling BrowserBehaviour mode is the preferred way of creating a JAXR-based
connection. This is beneficial for several reasons. The BrowserBehaviour mode uses
a less strict locking paern, and this can result in an increased number of parallel
read and update operations. For example in CentraSite Control, while one user is
looking at some asset, another user can update the same asset in parallel. In the same
scenario without BrowserBehaviour, the update would fail as the necessary lock
cannot not be granted.

Moreover, with BrowserBehaviour mode, the assets cached on the client side are
refreshed more often. After an asset is read, it will be refreshed in the cache if it is
returned as the result of a subsequent query with a newer timestamp.

6. Create the connection and set the user credentials. The setCredentials() method expects
a Set containing a java.net.PasswordAuthentication object.
Connection connection = connFactory.createConnection();

HashSet credentials = new HashSet(1);
credentials.add(new PasswordAuthentication("userid",
 "password".toCharArray()));

connection.setCredentials(credentials);

7. With the connection given, the other environment objects can easily be constructed:
RegistryService regService = connection.getRegistryService();
BusinessLifeCycleManager lcManager =
 regService.getBusinessLifeCycleManager();
BusinessQueryManager bqManager = regService.getBusinessQueryManager();

Closing a JAXR-based Connection
A JAXR-based connection uses some resources in the CentraSite XML Server. We
therefore strongly recommend making sure that a connection is closed in case of a
JAXR-based client failure. Otherwise the resources are released only after a non-activity
timeout; this might hinder parallel users.

To close a JAXR-based connection

1. Use the following:

connection.close();where connection is as specified in the example above.

M
Odd Header

API for JAXR

CentraSite Developer's Guide Version 9.8 255

Defining a Service
A service is provided by an organization. It should have a name and a description, and
the details are specified by service bindings which are further detailed by specification
links. The following code snippet, which assumes that the providing organization is
known, shows how to create a new service:
Organization providingOrganization = ...;

Service service = m_lcManager.createService("service name");
service.setProvidingOrganization(providingOrganization);
InternationalString description =
 lcManager.createInternationalString("service description");
service.setDescription(description);

ServiceBinding serviceBinding = ...;
// create service binding with specification links

service.addServiceBinding(serviceBinding);

ArrayList serviceList = new ArrayList();
serviceList.add(service);
lcManager.saveServices(serviceList);
// save service and related modified objects

Service that Uses Another Service
If a service calls another service, this should be modeled with the pre-defined Uses
association.
Service callingService = ...;
Service calledService = ...;

// find the "Uses" concept
ClassificationScheme associationType = bqManager.findClassificationSchemeByNam
e(Collections.singleton(FindQualifier.EXACT_NAME_MATCH), "AssociationType");
Concept usesConcept =
 bqManager.findConceptByPath("/" + associationType.getKey().getId() + "/Uses");

// create association of type "Uses"
Association usesAssociation =
 lcManager.createAssociation(calledService, usesConcept);

// callingService is now the source object of the association
callingService.addAssociation(usesAssociation);

ArrayList associationList = new ArrayList();
associationList.add(usesAssociation);

// save association and related modified objects
lcManager.saveAssociations(associationList, false);

M
Even Header
API for JAXR

CentraSite Developer's Guide Version 9.8 256

Service with Additional Information
Each JAXR-based object instance may be supplied with arbitrary additional information.
JAXR uses the "slot" mechanism to provide this kind of extensibility.

Note: JAXR allows arbitrary strings as slot names. The CentraSite implementation
stores a slot by creating an XML element whose tag name is the slot name.
Consequently, a slot name should be a valid XML QName. If a QName has a
non-null URI, the lexical representation of the slotname is the URI enclosed in
curly braces, followed by the local-name, for example {myUri}mySlotname.

The following code snippet shows how to add a slot to a service object:
Service service = ...;

Slot slot = lcManager.createSlot("{myUri}mySlotName", "slotValue", null);
service.addSlot(slot);

ArrayList serviceList = new ArrayList();
serviceList.add(service);
lcManager.saveServices(serviceList);

Pre-Defined Classification Schemes (Taxonomies)
The CentraSite registry comes with several pre-defined classification schemes:

All the classification schemes that are defined in the JAXR standard.

A classification scheme for the products using CentraSite. Thus, each registry object
can be classified with its product. This makes it easy to find all registry objects
originating from a particular product.

The name of this classification scheme is Products, and its member concepts are
CentraSite itself and products that use CentraSite.

A classification scheme for database management systems: This can be used to
classify data sources by the type of the database management system they represent.

The name of this classification scheme is Databases, and its member concepts are:
Adabas
Tamino
DB2
Enabler
MSSQL
Oracle

A classification scheme for content types: This can be used to classify external links
with their content type/MIME type.

M
Odd Header

API for JAXR

CentraSite Developer's Guide Version 9.8 257

The name of this classification scheme is ContentType. This is an external
classification scheme.

A classification scheme for the types of objects in the CentraSite repository: This can
be used to classify external links with their repository object type.

The name of this classification scheme is RepositoryObjectType, and its member
concepts are:

BPEL
BPELObject
CustomComponent
Documentation
DTD
E-mailEvent
Emerger
FileEvent
HTML
Icon
JAR
JMSEvent
Layout
Ontology
Payload
ProjectFolder
ReportDefinition
ScheduledTask
Sequence
SOAP
Template
TypeIcon
WSDD
WSDL
XML
XSD
XSLT

Some external classification schemes used for UDDI mapping:
ClassificationGroup
Object
UseType
uddi-org:protocol:hp
uddi-org:protocol:soap
uddi-org:wsdl:address
uddi-org:wsdl:categorization:protocol
uddi-org:wsdl:categorization:transport
uddi-org:wsdl:portTypeReference

M
Even Header
API for JAXR

CentraSite Developer's Guide Version 9.8 258

uddi-org:wsdl:types
uddi-org:xml:localName
uddi-org:xml:namespace

Impact Analysis
Impact analysis means finding dependencies between objects: which object depends
on which other object, or vice-versa: if one object is modified or deleted, which other
objects are affected? For example, if a web service interface changes, which callers must
be adapted?

In JAXR, dependencies between objects are established via associations. There are a
variety of pre-defined association types, and moreover a JAXR-based client can create
its own association types. Although the names of the association types - for example
HasChild or HasMember - suggest a certain semantic, JAXR itself does not imply any
semantics with the association types. CentraSite supports the following conventions for
associations.

If there is a dependency between two objects, each of which can exist on its own, then
this dependency should be expressed by a Uses association. Example: one web service
calls another web service. Remember that JAXR-based associations are directed: the
association's source object should be the caller/user (in general, the object that depends
on another object), and the association's target is the called/used object.

If there is an object C that cannot exist without another object P, then C should have a
HasParent association to P. Example: A table object cannot exist without a database object,
hence there is a HasParent association from each table to the corresponding database.

The reason for preferring HasParent over the “inverse” HasChild association is as follows:
CentraSite tries to maintain referential integrity; this means, among other things, that is
not possible to delete an object that is still the target of an association. Hence associations
should be directed in such a way that an object cannot be deleted if someone else still
depends on it: an object should not be deleted if it still has children, or if it is still in use
by someone else.

CentraSite API for JAXR Reference Information
This section explains the differences between the JAXR standard and our APIs,
particularly, the CentraSite-specific extensions to the JAXR standard.

Creating User-Defined Objects
In addition to the pre-defined object types such as organizations, services and
associations, CentraSite allows you to define your own object types. Once such a type
has been created using the CentraSite Control, a corresponding concept exists in the
ObjectType classification scheme.

M
Odd Header

API for JAXR

CentraSite Developer's Guide Version 9.8 259

To create an instance of a user-defined object type

1. Create a RegistryEntry object.

2. Classify it with the type concept.

The following code example assumes that a user-defined type “{User-Uri}UserType”
exists:
RegistryEntry userTypeObject
 = (RegistryEntry)lcManager.createObject(LifeCycleManager.REGISTRY_ENTRY);

// find the "{User-Uri}UserType" concept
ClassificationScheme objectType
 = bqManager.findClassificationSchemeByName(null, "ObjectType");
Concept userTypeConcept
 = bqManager.findConceptByPath("/" + objectType.getKey().getId()
 + "/{User-Uri}UserType");

// create classification
Classification userTypeClassification
 = lcManager.createClassification(userTypeConcept);
userTypeObject.addClassification(userTypeClassification);

/*
 * from now on the userTypeObject is of type "UserType", and
 * userTypeObject.getObjectType() will return a concept equal to
 * userTypeConcept
 */

// save object
ArrayList objectList = new ArrayList();
objectList.add(userTypeObject);
lcManager.saveObjects(objectList);

Direct XQuery Access to the Stored Data
A CentraSite JAXR client can call XQJ (XQuery API for Java technology) functionality
directly in order to access the registry data. JAXR itself also uses XQJ to access the
registry.

The CentraSiteCentraSiteConnection maintains an XQConnection object which it uses for its
own purposes as well as for direct client access. The client can get this object as follows,
assuming he already has a JAXR-based connection:
Connection jaxrCon = ...;
XQConnection xqjCon = ((CentraSiteConnection)jaxrCon).getXQConnection();

As both the client and JAXR use the same XQJ connection, the following restrictions
apply (assuming the client uses JAXR and XQJ in parallel):

The client must not call any JAXR-based save... method if he has an open transaction,
because JAXR performs the save... methods as one atomic operation based on an XQJ
transaction.

The client should never close the XQJ connection. Instead, he must close the JAXR-
based connection. This action cleans up anything else.

M
Even Header
API for JAXR

CentraSite Developer's Guide Version 9.8 260

Unique Keys
This implementation does not support client supplied keys. The method
RegistryObject.setKey() throws an UnsupportedCapabilityException. CentraSite rejects client-
supplied keys.

Simultaneous Database Access and Locking
The CentraSite implementation stores all RegistryObjects in a common repository, which
is a database. If multiple JAXR-based clients (or, to be more precise, multiple JAXR-
based connections) are active simultaneously, it is possible that they might read and
update the data in the common database concurrently.

Multiple clients that update a RegistryObject must be synchronized in order to prevent
lost updates. Usually, this is handled by the underlying database's locking mechanism.
However, since it is likely that many JAXR-based clients would be browsing or
searching the repository and only a few JAXR-based clients would be modifying data,
the CentraSite implementation has been optimized to allow maximum concurrent
access. In particular, if one or more JAXR-based clients are reading a RegistryObject,
another JAXR-based client may update it concurrently.

For example, if a user has opened CentraSite Control to look for a particular object and
then keeps his or her UI open for a protracted period – maybe even for several days –
this should not prevent other users from updating that object.

Locks for read access are therefore relatively permissive, but of course it must be
ensured that two JAXR-based clients cannot modify the same object at the same time.
This is achieved as follows:

When a JAXR-based client starts to modify a RegistryObject, JAXR acquires an exclusive
lock for this object from the database management system. This prevents any other client
from updating the same object at the same time. When the JAXR-based client saves the
modified object, the lock is released as a side-effect of calling LifeCyclemanager.saveObjects().
Alternatively, if the JAXR-based client decides to discard the changes, it should release
the lock by calling CentraSiteConnection.rollback().

With this locking behavior, there are two principal scenarios when two JAXR-based
clients aempt to modify the same object at the same time. Bear in mind that in order to
modify an object, the JAXR-based client always has to read it first, then modify the Java
instance, then call saveObjects() in order to write the modified object back to the database.

Scenario A

JAXR-based Client A JAXR-based Client B

1. Read a RegistryObject.

M
Odd Header

API for JAXR

CentraSite Developer's Guide Version 9.8 261

JAXR-based Client A JAXR-based Client B

 2. Read the same RegistryObject.

3. Start to modify the object. This
automatically locks the object.

 4. Start to modify the object. The
aempt to lock the object fails and a
LockNotAvailableException is thrown.

As long as client A holds the exclusive lock for the object, client B is unable to modify it.

Scenario B

JAXR-based Client A JAXR-based Client B

1. Read a RegistryObject.

 2. Read the same RegistryObject.

3. Start to modify the object. This
automatically locks the object.

4. Save the object. This releases the
lock.

 5. Start to modify the object. The
aempt to lock the object fails and an
ObjectOutdatedException is thrown.

In scenario B, client A has finished making its changes and has released the lock, so the
lock is now available for acquisition by another client, for example client B. However,
client B's local copy of the object does not reflect the current database status of the object,
which has been modified in the meantime by client A. If client B were allowed to save
object, client A's modifications would be overwrien.

To avoid this, each RegistryObject has a last-modification date. When a lock is acquired,
the API checks whether the last-modification date of the object in the database is the
same as the last-modification date of the client's local copy of the object. If the dates are
not the same, an ObjectOutdatedException is thrown. This ensures that updates are not lost
and that all modifications are based on the latest state of the object.

Immediately before the ObjectOutdatedException is thrown, the API cleans up its internal
structures. When the client catches the exception, it should release all references to the
RegistryObject and then re-read it. This should return the latest copy of the object from

M
Even Header
API for JAXR

CentraSite Developer's Guide Version 9.8 262

the database; the client can now continue to make the necessary modifications to this
clean copy.

Caller
The caller identifies himself by issuing Connection.setCredentials(). The corresponding
User object is retrieved from the registry using the name given in the credentials. If the
user record does not yet exist, it is created. This new user object is not added to any
organization.

Here, the user name is the name aribute as inherited from the RegistryObject interface. It
should not be confused with the user's PersonName.

The caller must be known before a connection can be used. In other words, setCredentials()
is required, otherwise a security error occurs.

Note: The user name must be unique in the registry.

Semantics of Remove Operations
There are several methods that allow an object to be removed from its parent.
Depending on the kind of object, the remove operation has different effects:

Associations, Classifications, External Identifiers, Service Bindings, Specification Links. If
such an object is removed from its parent and the parent is then saved, the object is
automatically deleted because it cannot exist as a standalone object. Remove these
objects using the following methods:

RegistryObject.removeClassification()
RegistryObject.setClassifications()
RegistryObject.removeAssociation()
RegistryObject.setAssociations()
RegistryObject.removeExternalIdentifier()
RegistryObject.setExternalIdentifiers()
ServiceBinding.removeSpecificationLink()
Service.removeServiceBinding()

Other Objects. Other objects are delinked from their parents during the remove
operation. They continue to exist as separate objects. If the parent object is saved, the
removed objects are also automatically saved.

The remove operations for these objects are:
ClassificationScheme.removeChildConcept()
Concept.removeChildConcept()
Organization.removeUser()
Organization.removeService()
Organization.removeChildOrganization()
RegistryObject.removeExternalLink()
RegistryObject.setExternalLinks()

M
Odd Header

API for JAXR

CentraSite Developer's Guide Version 9.8 263

RegistryPackage.removeRegistryObject()

Delete Operation
Deleting an object means deleting it from the persistent store. Optionally, the delete
operation can be called with an objectType parameter, which is one of the pre-defined
LifeCycleManager interface names. If this parameter is specified, only objects of that type
are accepted for delete. The interface names shown in the following list are allowed for a
deletion; all others are rejected with an InvalidRequestException.

LifeCycleManager.ASSOCIATION
LifeCycleManager.CLASSIFICATION
LifeCycleManager.CLASSIFICATION_SCHEME
LifeCycleManager.CONCEPT
LifeCycleManager.EXTERNAL_IDENTIFIER
LifeCycleManager.EXTERNAL_LINK
LifeCycleManager.ORGANIZATION
LifeCycleManager.REGISTRY_ENTRY
LifeCycleManager.REGISTRY_PACKAGE
LifeCycleManager.SERVICE
LifeCycleManager.SERVICE_BINDING
LifeCycleManager.SPECIFICATION_LINK
LifeCycleManager.USER

Objects have relationships to each other: some relationships prohibit object deletion,
while other relationships are automatically cleaned up during deletion.

RegistryObject
In general, an aempt to delete a registry object is rejected if:

it is a new object, i.e., it has not yet been saved, or

it is the target of an association.

Deleting a registry object has the following side-effects:

1. Remove the object from all its packages; update the packages.

2. Delink the object from all its external links; update the external links.

3. Delete all associations whose source object is the object to be deleted.

4. Delete all classifications whose classified object is the object to be deleted.

5. Delete all external identifiers whose registry object is the object to be deleted.

Association
1. Remove the association from its source object.

2. Update the source object. This automatically deletes the association.

M
Even Header
API for JAXR

CentraSite Developer's Guide Version 9.8 264

AuditableEvent
It is not possible to delete an auditable event explicitly.

Classification
1. Remove the classification from its classified object.

2. Update the classified object. This automatically deletes the classification.

ClassificationScheme
1. Reject deletion if there are child concepts; otherwise:

2. Delete the classification scheme.

Concept
1. Reject deletion if there are child concepts; otherwise:

2. Remove the concept from its parent object.

3. Update the parent object.

4. Delete the concept.

ExternalIdentifier
1. Remove the external identifier from its registry object.

2. Update the registry object. This automatically deletes the external identifier.

ExternalLink
1. Reject deletion if there are linked objects; otherwise:

2. Delete the external link.

Organization
1. Reject deletion if there are child organizations, services, or users; otherwise:

2. Remove the organization from its parent organization.

3. Update the parent organization.

4. Delete the organization.

RegistryEntry
1. Delete the registry entry.

M
Odd Header

API for JAXR

CentraSite Developer's Guide Version 9.8 265

RegistryPackage
1. Reject deletion if there are member objects; otherwise:

2. Delete the registry package.

Service
1. Remove the service from its organization.

2. Update the organization.

3. Delete all service bindings whose service is the service to be deleted.

4. Delete the service.

ServiceBinding
1. Remove the service binding from its service.

2. Delete all specification links whose service binding is the service binding to be
deleted.

3. Update the service. This automatically deletes the service binding.

SpecificationLink
1. Remove the specification link from its service binding.

2. Update the service binding's enclosing service. This automatically deletes the
specification link.

User
1. Remove the user from its organization.

2. Update the organization.

3. Delete the user.

Unsupported Methods
The following methods are not supported and throw an UnsupportedCapabilityException
exception:

RegistryService.getDeclarativeQueryManager()

RegistryService.makeRegistrySpecificRequest()

M
Even Header
API for JAXR

CentraSite Developer's Guide Version 9.8 266

Unsupported FindQualifiers
The following FindQualifiers are not supported:

COMBINE_CLASSIFICATIONS

SERVICE_SUBSET

SOUNDEX

Using Wildcards
The wildcard character, which is the percent (“%”) character, represents zero or more
characters. Thus, for example, the search string “ABC%DEF finds all strings that begin
with “ABC” and end with “DEF”, with any number of characters in between. The
search string “ABC%DEF%” finds all strings that begin with “ABC” and include “DEF”
anywhere else. If you do not include a wildcard character in the search string, the search
assumes that there is a wildcard character at the end of the search string, unless the find
qualifier EXACT_NAME_MATCH is specified. Thus, for example, if you specify “ABC” as the
search string, the search in fact looks for and finds strings that match the paern “ABC
%”, i.e. all strings that begin with the characters “ABC”.

Using Namespaces
Some names, for example type names and slot names, comprise a namespace and a
name. When programming a JAXR-based client, these names must be represented in the
following format:
{namespace}name

In other words, the namespace is enclosed in curly braces and is used as a prefix for the
name.

Strings in this format are used in the following methods:

for objectType in CentraSiteQueryManager.findObjects()

for typeName in CentraSiteQueryManager.getTypeDescription()

for name in LifeCycleManager.createSlot()

for slotName in ExtensibleObject.getSlot()

Method createSlot
The method createSlot in the interface LifeCycleManager takes 3 parameters; its signatures
are as follows:
Slot createSlot (String name, String value, String slotType)
Slot createSlot (String name, Collection values, String slotType)

M
Odd Header

API for JAXR

CentraSite Developer's Guide Version 9.8 267

The CentraSite implementation accepts any value of type String, or a null reference,
for the third parameter, slotType. This parameter is stored with the slot, but it is not
interpreted in any way. Note, however, that the JAXR standard does not indicate how
this parameter should be interpreted; it might, for example, be interpreted as indicating
the data type of the slot in some future implementation. We recommend specifying the
slotType as an xs:string.

Caching Considerations
This topic describes the following aspects of caching behavior as it affects the API:

JAXR-based Caching Strategy
Objects that are retrieved from the registry by means of the CentraSite API for JAXR
are stored in a cache by the JAXR-based connection. All objects stored in the cache are
inspected from time to time by the Java garbage collector, which may delete them if
there are no references to them from the application.

Any object reference that results from a call to getRegistryObject(), getRegistryObjects() or any
of the find methods is, if possible, resolved from the cache. If an application already holds
a reference to an object that resulted from any of these calls, the reference will also be in
the cache, and the call will return the same Java reference.

There are situations, however, where the cache is cleared completely. This occurs, for
example, after executing saveObjects or deleteObjects. Any Java reference that is retrieved
after the cache is cleared will be different from a reference that was retrieved before the
cache is cleared.

Note: This does not affect data integrity, since objects read cannot be concurrently
updated.

Caching in User Interfaces
The CentraSite user interfaces, i.e. Control and Eclipse, browse JAXR-based data; this
means that they make use of the JAXR-based caching mechanism, but they do not block
concurrent updates. Control and Eclipse users should be aware that, in general, the data
display does not immediately reflect changes that another user may make.

Note: This does not affect data integrity in the sense that outdated data may be the
source of any updates.

You can see the current data at any time by choosing the Refresh buon.

Dynamically Loaded JAR Files
The system locally caches dynamically-loaded JAR files. You should be aware that the
date and time of the cached files are compared with the date and time of the library files
whenever a new connection is created; the JAR files in the cache are refreshed if they are

M
Even Header
API for JAXR

CentraSite Developer's Guide Version 9.8 268

found to be out of date. This could mean that processing continues with a newer version
of a JAR file after a connection has been created.

Note also that problems may arise if a custom security manager has been implemented,
because the connection to the database will be refused.

Cache Location
The system uses the following strategy to determine the location of the cache store:

If the system property com.softwareag.centrasite.dynloader.cache-dir is
defined, then its value is used as the location of the cache store.

Otherwise, the location of the cache store is derived from:

1. A directory whose name is taken from the system property java.io.tmpdir;

2. A sub-directory whose name is constructed from the string CentraSite, a
package name, and the string Jars.

M
Odd Header
API for XQJ

CentraSite Developer's Guide Version 9.8 269

7 API for XQJ

■ Introduction to the API for XQJ ... 270

■ What is XQJ? ... 270

■ Working with the XQJ Interface ... 271

■ CentraSite-Specific Extensions to XQJ .. 275

■ XQDataSource Properties .. 276

M
Even Header

API for XQJ

CentraSite Developer's Guide Version 9.8 270

Introduction to the API for XQJ
You can use XQJ, the XQuery API for Java™, for processing XML and for data
integration applications. This chapter introduces the CentraSite implementation of XQJ
and its features. It explains how to use the API and provides examples for each type of
task.

The reader of the document should be an experienced Java programmer.

What is XQJ?
XQJ, the XQuery API for Java, is based on XQuery, a query language promulgated
by the W3C that can operate both on physical XML documents, and also on virtual
XML documents that have been derived from data sources such as relational or object
databases. XQJ is a powerful new API standard developed for invoking XQuery
expressions against virtually any XML or relational database and processing query
results. XQJ makes the full power of the XQuery language available to Java applications.
You can programmatically process the results in your Java code in a JDBC-like manner.
XQJ is to XQuery what JDBC is to SQL.

The XQJ standard specifies a number of Java interfaces. The CentraSite XQJ interface
implements the functionality defined by these interfaces, and thus makes XQJ available
to the application; in addition, the CentraSite XQJ interface implements extensions that
support CentraSite-specific features.

Note: Beginning with version 8.2, CentraSite supports the final release of the
XQJ specification (in contrast, earlier versions of CentraSite supported a
preliminary release of the XQJ specification). Note that the XQJ interface that
is implemented by current versions of CentraSite is not compatible with the
interface that was implemented by versions of CentraSite prior to version
8.2. Documentation of the prior XQJ interface is available to Software AG
customers who have a current maintenance contract in Empower.

Features of the XQJ Interface
The CentraSite XQJ interface supports:

Prepared XQueries

The submission of queries to the CentraSite registry/repository

XQuery updates

Transaction control (commit, rollback)

User authentication prior to connecting to the database

M
Odd Header
API for XQJ

CentraSite Developer's Guide Version 9.8 271

Variable binding to parameterize queries

Handling registry/repository errors and warnings

The creation and execution of materialized sequences and items

Different models for accessing data in the CentraSite registry/repository (DOM, SAX,
and StAX-compatible streams)

Working with the XQJ Interface
If you want to develop an XQJ application, you will find the classes of the CentraSite
XQJ implementation in the jar file rts/bin/xqj.jar under the CentraSite installation
location.

You can use the CentraSite XQJ interface to perform an XQuery on the basis of a
standard XQExpression or an XQPreparedExpression. With a standard XQExpression,
the query is parsed each time it is executed. If a query is to be executed many times, it
can be more efficient to use an XQPreparedExpression, which is parsed only once.

Executing an XQuery with a Standard XQExpression
To execute an XQuery with a standard XQExpression

1. Invoke the getXQConnection() method to get the XQConnection object from the
JAXRConnection.

Example
/* Get the XQConnection from the JAXRConnection */
XQConnection connection = jaxrConnection.getXQConnection ();

You have now established an XQConnection.

2. Create an XQExpression object from the XQConnection object. The XQExpression is
used to invoke several other methods to perform various tasks using the CentraSite
XQJ interface. You may create more than one XQExpression from a single connection
if required.

Example
/* Create XQExpression from XQConnection to execute an XQuery. */
XQExpression expression = connection.createExpression();

3. Optionally, you can bind one or more external variables. An external variable is a
type of variable that can be dynamically added to the query by declaring the variable
in the query. The value of the variable can be set externally and added to the pre-set
variable while executing the XQuery.

Example
String xquery = "declare variable $year as xs:int external" +
 "for $q in input()/bib/book where $q/@year > $year return $q" ;
XQExpression expression = connection.createExpression();

M
Even Header

API for XQJ

CentraSite Developer's Guide Version 9.8 272

expression.bindInt(new QName("year"),
 1993,XQItemTypeHelper.createIntXQItemType());
XQResultSequence xqResultSequence = expression.executeQuery(xquery);

4. Invoke the executeQuery() method. This returns an XQResultSequence.

Example
/* Executing an XQuery */
/* Instance of the query string: */
String xquery = "for $b in input()/book return $b/title";
/* Execute the above XQuery String, which returns an XQResultSequence */
XQResultSequence xqResultSequence = expression.executeQuery(xquery);

5. The XQResultSequence represents the XQuery result. Retrieve the query result
and read/print it in XML format. The query result sequence is displayed item by
item. Using XQJ, it is possible to get the result sequence in DOM, SAX and StAX-
compatible formats.

Note: You cannot scroll the XQResultSequences backwards.

Example
/* Iterating the XQResultSequence */
XMLStreamReader reader = null;
While(xqResultSequence.next())
{
 reader = xqResultSequence.getItemAsStream();
 /* Iterate the XML StreamReader using StAX-compatible APIs */
}
connection.commit();
connection.close();

Example using the getInt() method
/* Instance of the XQuery String */
String xquery =" for $b in input()/bib/book return xs:int($b/@year) ";

/* This query on execution will return the year as an integer value */
XQResultSequence xqResultSequence = expression.executeQuery(xquery);

xqResultSequence.next();
int I = xqResultSequence.getInt();

Example using the getAtomicValue() method
/* Instance of the XQuery String */
String xquery = "for $p in input()/book return xs:string($p/title)";
XQResultSequence xqResultSequence = expression.executeQuery(xquery);

/* This query on execution will return the title as a String */
xqResultSequence.next();
String str = xqResultSequence.getAtomicValue();

Example using the getNode() method
/* Instance of the XQuery String */
String xquery = "for $q in input()/bib/book return $q";
XQResultSequence xqResultSequence = expression.executeQuery(xquery);
xqResultSequence.next();
Node node = result.getNode();

Example using the writeItemToSAX() method

M
Odd Header
API for XQJ

CentraSite Developer's Guide Version 9.8 273

xqResultSequence.next();
StringWriter sw = new StringWriter();

/* Provide a org.xml.sax.ContentHandler, which is saxhandler */
/* in our case */
XQSAXTextEventHandler saxhandler = new XQSAXTextEventHandler(sw);
resultSequence.writeItemToSAX(saxhandler);
System.out.println(sw);

6. Finally, invoke the XQConnection.close() method to close the connection to the registry/
repository.

Example
/* Commit and close the XQConnection once you have completed */
/* working with it */
connection.commit();
connection.close();

Executing an XQuery with an XQPreparedExpression
To execute an XQuery with an XQPreparedExpression

1. Invoke the getXQConnection() method to get the XQConnection object from the
JAXRConnection.

Example
/* Get the XQConnection from the JAXRConnection */
XQConnection connection = jaxrConnection.getXQConnection ();

You have now established an XQConnection.

2. Create an XQPreparedExpression object from the XQConnection object. The
XQPreparedExpression is used to invoke several other methods to perform
various tasks using the CentraSite XQJ interface. You may create more than one
XQPreparedExpression from a single connection if required.

Example
/* Create XQPreparedExpression from XQConnection */
String pQuery = "for $q in input()/bib/book return $q";
XQPreparedExpression preparedExpression = conn.prepareExpression(pQuery);

3. Optionally, you can bind one or more external variables. An external variable is a
type of variable that can be dynamically added to the query by declaring the variable
in the query. The value of the variable can be set externally and added to the pre-set
variable while executing the XQuery.

Example
/* Binding variables in Prepared Expressions */
String pQuery = "declare variable $int as xs:int external" +
 "for $q in input()/bib/book where $q/@year = $int return $q";

XQPreparedExpression preparedExpression = conn.prepareExpression(pQuery);

/* Bind the appropriate value to the prepared expression */
/* using the matching binding API provided. */

M
Even Header

API for XQJ

CentraSite Developer's Guide Version 9.8 274

Using bindInt() to bind an int value to the prepared expression
preparedExpression.bindInt(new QName("int"),
 1994, XQItemTypeHelper.createIntXQItemType());

Using bindNode() to bind a node to the prepared expression
/* Get a node to bind by executing an expression */
XQExpression expression = connection.createExpression();
XQResultSequence xqResultSequence =
 expression.executeQuery("for $q in input()/bib/book
 where $q/@year = 1994 return $q/title");
xqResultSequence.next();

/* Get a node from the result sequence retrieved above */
Node node = xqResultSequence.getNode();

/* PreparedQuery */
String pquery = "declare variable $node external " +
 "for $q in input()/bib/book where $q/title = $node return $q";
XQPreparedExpression prepared = connection.prepareExpression(pQuery);

/* Bind the above retrieved node to the prepared query */
prepared.bindNode(new QName("node"), node);

4. Invoke the executeQuery() method. This returns an XQResultSequence.

Example
/* Execute the prepared expression which returns an XQResultSequence */
XQResultSequence xqResultSequence = preparedExpression.executeQuery();

5. The XQResultSequence represents the XQuery result. Retrieve the query result
and read/print it in XML format. The query result sequence is displayed item by
item. Using XQJ, it is possible to get the result sequence in DOM, SAX and StAX-
compatible formats.

Example
/* Iterating the XQResultSequence */
XQResultSequence xqResultSequence = preparedExpression.executeQuery();
XMLStreamReader reader = null;
While(xqResultSequence.next())
{
 reader = xqResultSequence.getItemAsStream();
 /* Iterate the XML StreamReader using StAX-compatible APIs */
}

Example using the getInt() method
XQResultSequence xqResultSequence = preparedExpression.executeQuery();
xqResultSequence.next();
int I = xqResultSequence.getInt();

Example using the getAtomicValue() method
XQResultSequence xqResultSequence = preparedExpression.executeQuery();
xqResultSequence.next();
String str = xqResultSequence.getAtomicValue();

Example using the getNode() method
XQResultSequence xqResultSequence = preparedExpression.executeQuery();
xqResultSequence.next();
Node node = result.getNode();

M
Odd Header
API for XQJ

CentraSite Developer's Guide Version 9.8 275

Example using the writeItemToSAX() method
XQResultSequence xqResultSequence = preparedExpression.executeQuery();
xqResultSequence.next();
StringWriter sw = new StringWriter();

/* Provide an org.xml.sax.ContentHandler, which is saxhandler in our case */
XQSAXTextEventHandler saxhandler = new XQSAXTextEventHandler(sw);
resultSequence.writeItemToSAX(saxhandler);
System.out.println(sw);

6. Finally, invoke the XQConnection.close() method to close the connection to the registry/
repository.

Example
/* Commit and close the XQConnection once you have completed working */
/* with it */
connection.commit();
connection.close();

Working with a Materialized XQSequence
A materialized sequence is not bound to any connection or XQuery expression. It can be
created from XQResultSequences or from a java.util.iterator.

Examples

Creating a Sequence

This example demonstrates how to create a materialized sequence from Java collection
via the java.util.iterator interface. It creates a materialized sequence holding 3 int items.
ArrayList items = new ArrayList();
items.add(conn.createItemFromInt(123,null));
items.add(conn.createItemFromInt(456,null));
items.add(conn.createItemFromInt(789,null));
XQSequence sequence = conn.createSequence(items.iterator());

Creating a Copy from an XQResultSequence

This example demonstrates how an XQResultSequence can be copied into a materialized
sequence. The materialized sequence will exist independently of the XQResultSequence.
String query = "for $q in input()/bib/book where $q/@year = 1994 return $q";
XQExpression expression = connection.createExpression();
XQResultSequence resultSequence = expression.executeQuery(query);

XQSequence Sequence = connection.createSequence(resultSequence);

CentraSite-Specific Extensions to XQJ
CentraSite adds useful facilities to the XQJ interface for updating a database and for
inserting a document into the CentraSite registry/repository.

M
Even Header

API for XQJ

CentraSite Developer's Guide Version 9.8 276

Updating a Database Using XQJ
Using the CentraSite XQJ interface, you can update the registry/repository. This feature
is a Software AG specific extension of XQJ.

To update an XQuery

1. Specify the string or the reader object containing the update XQuery

2. Invoke the executeUpdate() method on the expression.
String updateQuery =
"update for $q in input()/bib/book where $q/@year = 1994" +
"do replace $q/title with <title>XQJ from SoftwareAG </title>";
XQResultSequence xqResultSequence =
((XQExpressionImpl)expression).executeUpdate(updateQuery);
// execute update

Inserting a Document in the Registry/Repository
This feature is a Software AG specific extension of XQJ.

To insert a document in the

1. Specify the XML instance to be inserted as a string or the reader object.

2. Execute the executeInsert() method in XQExpression to insert a document.
String insertStr = "<your xml goes here>";
(XQExpressionImpl)expression).executeInsert(insertStr);

XQDataSource Properties
In addition to the standard properties, CentraSite offers the following properties for
parameterizing XQJ connections. Note that user credentials, i.e. user-ID and password,
are passed via standard properties, as shown below:

Standard Properties and Descriptions

javax.xml.xquery.property.UserName

Unique user ID for connecting to the registry/repository.

javax.xml.xquery.property.Password

The password for the specified user ID.

javax.xml.xquery.property.MaxConnections

M
Odd Header
API for XQJ

CentraSite Developer's Guide Version 9.8 277

Standard Properties and Descriptions

The maximum number of open connections that can be established from the
datasource.

CentraSite-Specific Properties and Descriptions

com.softwareag.tamino.xqj.dbUri

Mandatory. The URI of the database to which the user is connecting. This
information is mandatory to connect to the datasource, which is the CentraSite
registry/repository in this context.

com.softwareag.tamino.xqj.defaultCollection

Mandatory. The name of the collection in the registry/repository that the user
will access to query, update, or insert a document.

com.softwareag.tamino.xql.locale

The locale to be set for the connection.

com.softwareag.tamino.xqj.isolationLevel

Together with the _lockMode parameter, this parameter specifies the way in
which two or more transactions in a session context can access the same data
simultaneously. The isolation level can be set to None.

com.softwareag.tamino.xqj.lockMode

Together with the _isolationLevel parameter, this parameter specifies the way
in which two or more transactions in a session context can access the same data
simultaneously.

com.softwareag.tamino.xqj.lockWait

The action to be taken if data is not accessible to the current transaction because
another transaction has used the _isolationLevel or _lockMode parameter to
restrict access to the data.

com.softwareag.tamino.xqj.fetchSize

The number of records to be retrieved at a time for display. This property accepts
an integer value.

com.softwareag.tamino.xqj.sensitive

M
Even Header

API for XQJ

CentraSite Developer's Guide Version 9.8 278

CentraSite-Specific Properties and Descriptions

The parameter _sensitive is required when opening a cursor with _xquery.
Valid values are no and vague. If you specify _sensitive=no, an insensitive
cursor is opened. This means that the query is calculated on a fixed input when
the cursor is opened, and thus the result sequence remains unchanged as long as
the cursor is active. If you specify _sensitive=vague, a vague cursor is opened.
The query is calculated on an input that takes modification operations of parallel
transactions into account. Thus, the result sequence can vary during the lifetime
of the cursor if documents that match the original query criteria are inserted,
updated or deleted in the meantime.

com.softwareag.tamino.xqj.nonactivityTimeout

The non-activity timeout in seconds.

M
Odd Header

Java Management Interface

CentraSite Developer's Guide Version 9.8 279

8 Java Management Interface

■ Introduction the Java Management Interface .. 280

■ Description .. 280

■ Attributes and Operations .. 281

M
Even Header

Java Management Interface

CentraSite Developer's Guide Version 9.8 280

Introduction the Java Management Interface
Use the CentraSite Java Management Interface to manage the CentraSite Registry/
Repository. With the CentraSite Java Management Interface, you can:

Monitor certain parameters of the CentraSite Registry/Repository.

Change certain parameters of the CentraSite Registry/Repository. CentraSite
parameters are known here as aributes.

Perform operations such as starting and stopping the CentraSite Registry/Repository.

The JMX-based CentraSite Java management interface is provided as an open MBean
(managed bean) that interfaces to CentraSite.

To activate the CentraSite Java Management Interface, the MBean must be registered
in an MBeanServer, which must run on the same host as the CentraSite Registry/
Repository.

The CentraSite Java management interface is based on the Java Management Extensions
(JMX) standard and the Java Management Extensions so that it can be used with JMX
MBeanServers that are based on this standard.

Description
Recent version of Java contain a JMX MBeanServer that can be requested by the
ManagementFactory class.

If no other MBeanServer is running, you can have a look at the CentraSite Java
management interface by registering the MBean by the MBeanServer of a Java process.
Add the following three lines to the Java code:
MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();
ObjectName csAdmin = new ObjectName("CentraSite:id=CentraSiteAdminImp");
mbs.createMBean("com.centrasite.jmx.admin.CentraSiteAdminImpl", csAdmin);

For correct operation of the MBean, the following points must be fulfilled:

The name of the MBean must be an ObjectName. In our case, it is
CentraSite:id=CentraSiteAdminImp

The CLASSPATH must include the following JAR files:

<CentraSiteInstallDir >/rts/jmx/CentraSiteJMXAdmin.jar

<CentraSiteInstallDir >/rts/jmx/CentraSiteJMXAdmin-L10N.jar

<CentraSiteInstallDir >/rts/jmx/CentraSiteAdminAPI.jar

<CentraSiteInstallDir >/rts/bin/inmUtil.jar

<CentraSiteInstallDir >/rts/bin/inmUtilConf.jar

M
Odd Header

Java Management Interface

CentraSite Developer's Guide Version 9.8 281

<CentraSiteInstallDir >/rts/bin/log4j.jar

The PATH must include the following directory

<CentraSiteInstallDir >/bin

Other system properties may be required, depending on the environment. For
example, to use JConsole, the Java process must be started with the following Java
system property:

-Dcom.sun.management.jmxremote

Note: The above example shows how the CentraSite Java management interface
works for the default MBean server of a JVM. In a production environment
the integration in a MBean server may be different.

The CentraSite Java management interface works with Java version 5.0.

Attributes and Operations
The following topics are discussed in this topic:

Attributes
Each aribute corresponds to a CentraSite parameter. The name, type, access mode (R
= read-only; RW = read/write), current value and description of each of the following
aributes are output, for example via the CentraSite Java management console:

cache size
The size of the cache, in megabytes. If you change this aribute, the CentraSite Registry/
Repository is automatically restarted to activate the new value.

max threads
The maximum number of threads used. If you change this aribute, the CentraSite
Registry/Repository is automatically restarted to activate the new value.

max users
The maximum number of users that can be active concurrently. If you change this
aribute, the CentraSite Registry/Repository is automatically restarted to activate the
new value.

non-activity timeout
The session timeout period, in seconds. If no activity has occurred in a session for this
period of time, the changes are rolled back and the session is terminated. If you change
this aribute, the change takes effect immediately.

state
The current state of the CentraSite Registry/Repository. You cannot change this value.

M
Even Header

Java Management Interface

CentraSite Developer's Guide Version 9.8 282

transaction timeout
The maximum transaction duration, in seconds. If you change this aribute, the change
takes effect immediately.

Registry/Repository Start/Stop Operations
The CentraSite Java management interface provides access to the following operations.
For each operation that has one or more parameters, the name, type and description of
each parameter are output and the value of each parameter can be input. If you access
the CentraSite Java management interface via console software (e.g. a web browser), the
operation is initiated when you select the Invoke buon.

Start the CentraSite Registry/Repository;

Stop the CentraSite Registry/Repository in normal mode;

Stop the CentraSite Registry/Repository in the specified mode;

Possible termination modes are:

Code Meaning

0 (normal) Terminates the server session normally and waits for currently
active processing to finish. The maximum waiting time (in
seconds) can be set with the aribute transaction timeout.

1 (rollback) Terminates the server immediately. User transactions that have
not finished are rolled back.

2 (abort) Terminates the server session immediately. All processing is
stopped immediately. Crash dump files are wrien. Using this
option initiates an automatic repair (autorepair) the next time the
server is started. It should only be used as a last resort.

Back up the contents of the CentraSite Registry/Repository. Write the backup file to
the default location.

Back up the contents of the CentraSite Registry/Repository. Write the backup file to
the specified location.

Backs up the CentraSite Registry/Repository, writing the backup file to the default
location or to the specified location. In either case, the backup identification is
returned. Also, the backup will now be listed in the output of the list all
backups operation. A backup is done to freeze the current state of the CentraSite
Registry/Repository.

Restore the contents of the CentraSite Registry/Repository from the latest backup
with or without recovery.

M
Odd Header

Java Management Interface

CentraSite Developer's Guide Version 9.8 283

Restore the contents of the CentraSite Registry/Repository from the specified backup
with or without recovery.

The restore operation can only be used when the CentraSite Registry/Repository
is not active. It is used to restore the CentraSite Registry/Repository to the state that
was stored in a previously-made backup. If you want to restore the most recent
backup, you do not have to specify the identification of the backup.

Repository changes that occur between one backup and the next are stored in session
logs. When restoring from a backup, you can optionally choose to include ("with
recovery") or omit ("without recovery") the session log data.

Delete the specified backup file.

A backup that is no longer required can be deleted. Deleting a backup removes the
backup spaces, but the associated session log data is not removed, since it may be
needed if the database has to be recovered. The backup file to be deleted is specified
by means of the backup identification.

List all backups.

Creates a list of CentraSite Registry/Repository backups. Each entry contains the
corresponding backup identifier.

Show more information about the last operation.

Shows additional information about the most recently processed command.
Additional information can be displayed for the following operations: start, stop,
back-up, restore, delete backup. If an operation fails, this command can be used
to find the reason for the failure.

M
Even Header

CentraSite Developer's Guide Version 9.8 284

M
Odd Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 285

9 Web Service Interfaces

■ Introduction to the Web Service Interfaces .. 286

■ Approval Service .. 286

M
Even Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 286

Introduction to the Web Service Interfaces
This chapter describes some of the web services that CentraSite provides. You can obtain
a complete list of services at:

http://server :port /wsstack/services/listServices

Where server is the machine on which the Software AG Runtime is running and port
is the port on which Software AG Runtime is listening (port 53307 if CentraSite is
configured to use the default Software AG Runtime port number). For example:

http://myServer:53307/wsstack/services/listServices

The information in this chapter is intended for developers who want to integrate custom
applications or third-party tools with CentraSite using web services.

CentraSite provides the following web services for each of the predefined importers:
ImportWsdlService
ImportXsdService
ImportXPDLService
ApprovalService

For information about importing objects using API, see the CentraSite Administrator’s
Guide.

As an example, this chapter describes the ApprovalService in detail.

Approval Service

About the Approval Service
The Approval service provides a set of operations that enables you to programmatically
interact with CentraSite's approval system. Using the Approval service, you can develop
client applications that let users view requests that they have submied for approval and
let approvers accept or reject these requests.

The WSDL for the Approval service is located here:

hp://server:port /wsstack/services/ApprovalService?wsdl

Where server is the machine on which the Software AG Runtime is running and port
is the port on which Software AG Runtime is listening (port 53307 if CentraSite is
configured to use the default Software AG Runtime port number).

The following lists the operations that the Approval service provides:
getPendingApprovals
getApprovalRequests
getApprovalActions

M
Odd Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 287

approve
reject
getApprovalHistory
revertPendingStateChange

Invoking Operations from the Approval Service

Specifying the Authenticated User
The Approval service returns results that are specific to the authenticated user (that is,
the user who invokes the operation). For example, when a client application invokes the
getPendingApprovals operation, the operation returns the set of approval requests that
require the authenticated user's approval.

The authenticated user is identified by the basic hp authentication credentials that the
client application provides when it invokes an operation in the Approval service. The
supplied credentials must identify an active user account on the instance of CentraSite
to which the client application is connecting. If the client application submits invalid
credentials, the Approval service will return a SOAP fault.

Specifying the Location of the Approval Log
All of the operations provided by the Approval service have an input parameter called
locationCentraSite. This parameter identifies the address of the CentraSite registry/
repository whose approval log is to be queried. A client application must specify the
locationCentraSite parameter if the registry/repository is running anywhere other
than its default location (that is., port 53307 on the machine where the Approval service
is running).

If the registry/repository is running at its default location, a client is not required to
specify the locationCentraSite parameter.

Retrieving the List of Approval Requests that a User Has Submitted
You use the getApprovalRequests operation to retrieve the list of approval requests that the
authenticated user has submied to CentraSite. By default, this operation returns all of
the approval requests that a user has submied. However, you can optionally set the
objectType, submittedAfter, submittedBefore, and/or status parameters to filter
the list by the following criteria:

The type of object on which the request was submied

The time period during which the request was submied

The status of the request (e.g., retrieve only those requests that have not yet been
approved)

You would use this operation, for example, to show users a list of their requests that are
pending approval.

M
Even Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 288

Tip: This operation provides functionality like that of the Approval Requests list in
CentraSite Control.

ApprovalRequestList Message
The getApprovalRequests operation (and other operations provided by the Approval
service) returns an ApprovalRequestList message. This message contains an array of
ApprovalRequest elements. Each ApprovalRequest element in the array represents a
single approval request and contains the following information:

The key of the approval request object (this key is required to perform operations
that act directly on a specific approval request)

The key of the user who submied the approval request

The date on which the approval request was submied

The key of registry object for which the approval request was submied

The type of object for which the approval request was submied

The status of the request

Remarks, if any, that were submied with the approval request

The approval requests in the array are not sorted.

The ApprovalRequestList message also returns an aribute called count, which indicates
the total number of approval requests in the result set. If the operation did not find
any approval requests that satisfied the operation's criteria, there will be no elements
returned in ApprovalRequest[] and the count value will be zero.

If you want to receive the result set a few entries at a time instead of all at once, you can
use the scroll parameter in the request message to specify which block of entries you
want the operation to return. For more information about using the scroll parameter,
see "Scrolling Through the List of Returned Approval Requests" on page 290.

Getting Details about the Actions of the Approvers Associated with a Request
Once you have an ApprovalRequestList, you can use the getApprovalActions operation to obtain
detailed information about the approvers associated with any request in the list.

The getApprovalActions operation takes an approval request key as input (which you
can get from the ApprovalRequestList) and returns the set of approvers associated with
the specified request. (You can specify multiple keys if you want to get the details for
multiple approval requests.)

The getApprovalActions operation returns an ApprovalActionResult message. The
ApprovalAction[] array in this message identifies the set of approvers associated with
a particular approval request. Each ApprovalAction element in this array contains the
following information:

M
Odd Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 289

The key for the approver (that is, the key to the User object that represents the
approver)

The status of the approver's action on this request, as follows

If the request has not yet been processed to completion (i.e., it has not yet been
approved or rejected) and the approver has not taken any action on the request,
the status will be "Pending".

If the approver has approved the request, the status will be "Approved".

If the approver has rejected the request, the status will be “Rejected”.

If the request has been processed to completion (i.e., it has been approved or
rejected), approvers who did not make the approval decision will have the status
"No Action". (If the approval request was auto-approved, all of the approvers
will have the status "No Action".)

Tip: This operation provides functionality like that of the Approval Requests list
when you use CentraSite Control to display the details for an approval
request.

Approving or Rejecting Approval Requests
To enable a user to approve or reject a request, do the following:

1. Use the getPendingApprovals operation to obtain the list of requests that require the
user's approval.

2. Apply the approve or reject operation to the requests in the list according to the
approval decisions that the user makes.

When you invoke the approve or reject operation, you must specify the key of the
approval request on which the operation is to act. You can obtain this key from the
ApprovalRequestList message that was returned by the getPendingApprovals operation.

Note: You can apply the approve or reject operation to a single approval request or
to multiple requests.

The approve and reject operations return an ApprovalRequestList message. This message
will contain the approval requests that were approved or rejected by the operation.

For more information about working with the contents of the ApprovalRequestList message,
see "ApprovalRequestList Message" on page 288.

Tip: This operation provides functionality like that of the Pending Approvals list in
CentraSite Control.

M
Even Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 290

Scrolling Through the List of Returned Approval Requests
The getPendingApprovals, getApprovalRequests and getApprovalHistory operations each return
an array of approval requests (that is, their result set) in an ApprovalRequestList message.
In certain cases, the result set can be quite large (for example., if you were to retrieve
the entire Approval History log). Instead of receiving the entire result set in a single
message, you can use the scroll parameter to retrieve the results in blocks of a
specified size (e.g., 15 entries at a time). You might use this feature, for example, to
display approval requests a page at a time in your client application.

To receive a specified block of results, set the following elements in the scroll
parameter when you invoke the getPendingApprovals, getApprovalRequests or getApprovalHistory
operation.

In this element... Specify...

start The first element in the block that you want to retrieve
(where 1 represents the first element in the entire set of
results).

number The total number of elements that you want to retrieve in
that block (i.e., the size of the block).

For example, let's say you are using the getApprovalHistory operation, and you want to
retrieve the contents of the log 20 entries at a time. To do this you would:

Invoke... Set... Set...

getApprovalHistory scroll.start = 1 scroll.number = 20

getApprovalHistory again scroll.start = 21 scroll.number = 20

getApprovalHistory again scroll.start = 41 scroll.number = 20

You would continue until you reach the end of the result set.

To determine when you have reached the end of the result set, you can check the value
in the count parameter in the ApprovalRequestList. This parameter reports the total number
of entries in the entire result set.

Note: If the last block in the set contains fewer entries than what you specify in
scroll.number, the operation simply returns the remaining entries in that
last block. If the element that you specify in scroll.start does not exist in
the result set, the operation returns an empty list.

M
Odd Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 291

Reverting a Pending Approval Request
There might be times when you need to retract a pending request from the approval
system. For example, if a request that is awaiting approval requires the approval of
a user who has left the company, the request can become stuck in "pending" mode.
To resolve this condition, you must back that request out of the approval system and
resubmit it (after updating the approver group, of course).

When you have an approval request that is stuck in the "pending" mode, you can use the
revertPendingStateChange operation to remove the request from the approval system. This
operation also reverts the object that was pending approval to its previous state so that a
user can submit the object for approval again.

Note that when you invoke this operation, you must specify the key of the registry
object whose state you want to revert. You can obtain this key from the approval request
that is stuck in "pending" mode. (You would need to retrieve that request, and the
object's key, using one of the operations that returns an ApprovalRequestList.)

This operation returns a revertPendingStateChangeResponse message. The value of
the revertedState parameter in this message reports the lifecycle state of the object on
which the revertPendingStateChange operation was executed. For example, if you execute
this operation on an object whose lifecycle state is pending a change from state A to state
B, the operation will revert the object to state A and return state A in the revertedState
parameter.

Note: Only users in the CentraSite Administrator role are permied to execute the
revertPendingStateChange operation. If the authenticated user is not a member of
this role, the operation returns a SOAP fault.

Operations

getPendingApprovals
This operation returns a list of the approval requests that are awaiting the authenticated
user's approval (where the "authenticated user" is the user who invoked the
getPendingApprovals service). You can optionally filter the list by object type and/or
submission date.

For additional information about using this operation, see "Approving or Rejecting
Approval Requests" on page 289.

Input Message

Parameter Name Description

locationCentraSite String Optional. The address of the CentraSite registry/
repository from which you want to retrieve the approval

M
Even Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 292

Parameter Name Description
requests. The registry/repository runs at the following
URL:

hp://server:port /CentraSite/CentraSite

Where server is the machine on which the CentraSite
registry/repository is running and port is the port on which
Apache is configured to listen for requests (port 53307 if
CentraSite is configured to use the default Apache port
number).

If you do not specify locationCentraSite, the Approval
service will use the following default URL:

hp://localhost:53307/CentraSite/CentraSite

objectType String Array Optional. If you want to retrieve approval
requests for only certain object types, use this element to
specify the types by name.

Note: You must specify the type's "schema name", not its
display name. You can find the schema name on the
type's Asset Type Details page in CentraSite Control.

submittedAfter DateTime Optional. If you want to retrieve requests after a
particular date, specify that date in this element.

submittedBefore DateTime Optional. If you want to retrieve requests before
a particular date, specify that date in this element.

locale String Optional. The locale in which you want the results
returned.

Scroll Optional. If you want to return a particular block
of entries from the result set, specify the following values
in the scroll element. For information about using
the scroll element, see "Scrolling Through the List of
Returned Approval Requests" on page 290.

start Integer The first entry that you want to include
in the block (where 1 represents the first entry in
the entire result set).

scroll

number Integer Optional. The number of entries to be
returned in the block of approval requests.

M
Odd Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 293

Parameter Name Description

If you specify a start value, but no number
value, the remainder of the result set is returned.

Output Message

ApprovalRequestList

getApprovalRequests
This operation returns the list of requests that the authenticated user has submied
for approval (where the "authenticated user" is the user who invoked the
getApprovalRequests service). You can optionally filter the list by object type,
submission date, and/or approval status.

For additional information about using this operation, see "Retrieving the List of
Approval Requests that a User Has Submied" on page 287.

Input Message

Parameter Name Description

locationCentraSite String Optional. The address of the CentraSite registry/
repository from which you want to retrieve the approval
requests. The registry/repository runs at the following
URL:

hp://server:port /CentraSite/CentraSite

Where server is the machine on which the CentraSite
registry/repository is running and port is the port on
which Apache is configured to listen for requests (port
53307 if CentraSite is configured to use the default Apache
port number).

If you do not specify locationCentraSite, the Approval
service will use the following default URL:

hp://localhost:53307/CentraSite/CentraSite

String Optional. If you want to retrieve only requests with
a specified approval status, specify one of the following
values shown here:

status

Specify... To retrieve...

M
Even Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 294

Parameter Name Description

In
Progress

Approval requests that are pending
(awaiting approval).

Approved Approval request that have been approved
(excluding requests that were auto-
approved).

Rejected Approval requests that have been rejected.

No
Action

Approval requests that were auto-approved.

objectType String Array Optional. If you want to retrieve approval
requests for only certain object types, specify the types by
name in this element.

Note: You must specify the type's "schema name", not its
display name. You can find the schema name on the
type's Asset Type Details page in CentraSite Control.

submittedAfter DateTime Optional. If you want to retrieve requests after a
particular date, specify that date in this element.

submittedBefore DateTime Optional. If you want to retrieve requests before
a particular date, specify that date in this element.

locale String Optional. The locale in which you want the results
returned.

Scroll Optional. If you want to return a particular block
of entries from the result set, specify the following values
in the scroll element. For information about using
the scroll element, see "Scrolling Through the List of
Returned Approval Requests" on page 290.

start Integer The first entry that you want to
include in the returned block of approval
requests (where 1 represents the first entry
in the entire result set).

scroll

number Integer Optional. The number of entries to be
returned in the block of approval requests.

M
Odd Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 295

Parameter Name Description

If you specify a start value, but no number
value, the remainder of the result set is
returned.

Output Message

ApprovalRequestList

getApprovalActions
This operation returns detailed information about specified approval requests.

For additional information about using this operation, see "Geing Details about the
Actions of the Approvers Associated with a Request" on page 288.

Input Message

Parameter Name Description

locationCentraSite String Optional. The address of the CentraSite registry/
repository from which you want to retrieve the approval
requests. The registry/repository runs at the following
URL:

hp://server:port /CentraSite/CentraSite

Where server is the machine on which the CentraSite
registry/repository is running and port is the port on
which Apache is configured to listen for requests (port
53307 if CentraSite is configured to use the default
Apache port number).

If you do not specify locationCentraSite, the
Approval service will use the following default URL:

hp://localhost:53307/CentraSite/CentraSite

approvalRequestKeys String Array The keys for the approval requests whose
details you want to retrieve.

locale String Optional. The locale in which you want the
results returned.

Output Message

ApprovalActionResult

M
Even Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 296

approve
This operation approves specified approval requests.

For additional information about using this operation, see "Approving or Rejecting
Approval Requests" on page 289.

Input Message

Parameter Name Description

locationCentraSite String Optional. The address of the CentraSite registry/
repository on which the approval requests reside. The
registry/repository runs at the following URL:

hp://server:port /CentraSite/CentraSite

Where server is the machine on which the CentraSite
registry/repository is running and port is the port on
which Apache is configured to listen for requests (port
53307 if CentraSite is configured to use the default
Apache port number).

If you do not specify locationCentraSite, the
Approval service will use the following default URL:

hp://localhost:53307/CentraSite/CentraSite

approvalRequestKeys String Array The keys for the requests that are to be
approved.

comment String Optional. A comment from the approver.

locale String Optional. The locale in which you want the results
returned.

Output Message

ApprovalRequestList (will contain the requests that were approved)

reject
This operation rejects the specified approval requests.

For additional information about using this operation, see "Approving or Rejecting
Approval Requests" on page 289.

M
Odd Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 297

Input Message

Parameter Name Description

locationCentraSite String Optional. The address of the CentraSite registry/
repository on which the approval requests reside. The
registry/repository runs at the following URL:

hp://server:port /CentraSite/CentraSite

Where server is the machine on which the CentraSite
registry/repository is running and port is the port on
which Apache is configured to listen for requests (port
53307 if CentraSite is configured to use the default
Apache port number).

If you do not specify locationCentraSite, the
Approval service will use the following default URL:

hp://localhost:53307/CentraSite/CentraSite

approvalRequestKeys String Array The keys for the requests that are to be
rejected.

comment String Optional. A comment from the approver.

locale String Optional. The locale in which you want the
requests returned.

Output Message

ApprovalRequestList (will contain the requests that were rejected)

getApprovalHistory
This operation returns entries from the approval history log based on specified search
criteria. If the user belongs to the CentraSite Administrator role, he or she will receive all
entries in the log. If the user belongs to the Organization Administrator role, he or she
will receive all log entries for his or her organization. Otherwise, the user receives only
those approval requests that he or she has submied.

M
Even Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 298

Input Message

Parameter Name Description

locationCentraSite String Optional. The address of the CentraSite registry/
repository on which the approval history log resides. The
registry/repository runs at the following URL:

hp://server:port /CentraSite/CentraSite

Where server is the machine on which the CentraSite
registry/repository is running and port is the port on which
Apache is configured to listen for requests (port 53307 if
CentraSite is configured to use the default Apache port
number).

If you do not specify locationCentraSite, the Approval
service will use the following default URL:

hp://localhost:53307/CentraSite/CentraSite

String Optional. If you want to retrieve only requests
with a specified approval status, specify one of the values
shown here:

Specify... To retrieve...

In
Progress

Approval requests that are pending (i.e.,
awaiting approval).

Approved Approval requests that have been approved
(excluding requests that were auto-
approved).

Rejected Approval request that have been rejected.

status

No
Action

Approval requests that were auto-approved.

objectType String Array Optional. If you want to retrieve approval
requests for only certain object types, specify the types by
name in this element.

Note: You must specify the type's "schema name", not its
display name. You can find the schema name on the
type's Asset Type Details page in CentraSite Control.

M
Odd Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 299

Parameter Name Description

submittedAfter DateTime Optional. If you want to retrieve requests after a
particular date, specify that date in this element.

submittedBefore DateTime Optional. If you want to retrieve requests before
a particular date, specify that date in this element.

locale String Optional. The locale in which you want the results
returned.

Scroll Optional. If you want to return a specified block of
entries from the result set, specify the following values
in the scroll element. For information about using
the scroll element, see "Scrolling Through the List of
Returned Approval Requests" on page 290.

start Integer The first entry that you want to
include in the block (where 1 represents the
first entry in the entire result set).

scroll

number Integer Optional. The number of entries to be
returned in the block.

If you specify a start value, but no number
value, the remainder of the result set is
returned.

Output Message

ApprovalRequestList

revertPendingStateChange
This operation removes an object that is pending approval from the approval system,
and returns the object to its prior lifecycle state. Only users that belong to the CentraSite
Administrator role can execute this operation.

For additional information about using this operation, see "Reverting a Pending
Approval Request" on page 291.

M
Even Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 300

Input Message

Parameter Name Description

locationCentraSite String Optional. The address of the CentraSite registry/
repository on which the object resides. The registry/
repository runs at the following URL:

hp://server:port /CentraSite/CentraSite

Where server is the machine on which the CentraSite
registry/repository is running and port is the port on
which Apache is configured to listen for requests (port
53307 if CentraSite is configured to use the default
Apache port number).

If you do not specify locationCentraSite, the
Approval service will use the following default URL:

hp://localhost:53307/CentraSite/CentraSite

key String The key of the object whose state you want to
revert.

Output Message

revertPendingStateChangeResponse

Parameter Name Description

revertedState String The lifecycle state to which the object was reverted
by the revertPendingStateChange operation. For example, if you
executed this operation on an object whose state was pending a
change from state A to state B, the operation would return state
A in the revertedState parameter.

ApprovalRequestList
This data structure holds a list of approval requests.

For additional information about working with this structure, see "ApprovalRequestList
Message" on page 288.

M
Odd Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 301

Parameter Name Description

An array of ApprovalRequest elements. Each
ApprovalRequest entry in the array represents one
approval request and has the following structure:

name String Optional. The name of the
approval request (as specified by the
Approval Flow Name parameter in
the approval policy action).

ApprovalRequest[]

requestor String The key that identifies the user
who submied the approval request.

 registryObject String The key of the registry object on
which the user is requesting approval.

 requestType String The type of event that triggered
the approval request (e.g., "Pre-State
Change").

 reasonForRequest String Optional. The remark (if any)
that was assigned to the request by
the approval policy action.

 key String The approval request's key.

 String The state of the approval
request. The value of this element will
be one of the following:

 Value Description

status

In
Progress

The approval request is
pending (i.e., awaiting
approval).

 Approved The approval request
has been approved.

 Rejected The approval request
has been rejected.

M
Even Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 302

Parameter Name Description

 No
Action

The approval request
was auto-approved.

 submittedDate DateTime The date on which the
request was submied for approval.

Scroll Optional. The scroll values, if any, that were
submied when the operation that produced this
ApprovalRequestList was invoked.

start Integer The start value that was
specified in the input message when
the operation was invoked.

scroll

number Integer Optional. The number value
that was specified in the input
message when the operation was
invoked.

count Number The number of approval requests in the entire
result set.

ApprovalActionResult
This data structure holds the details for a specified set of approval requests.

For additional information about working with this structure, see "Geing Details about
the Actions of the Approvers Associated with a Request" on page 288.

Parameter Name and Description

ApprovalActionList[]

An array of ApprovalActionList elements. Each ApprovalActionList entry in the
array holds the details for one approval request and has the following structure:

ApprovalAction[]
ApprovalRequestKey

String The key to the approval request.

An array of ApprovalAction elements. Each
ApprovalAction element in the array holds the approval
details for one approver. This array will contain one
entry for each approver in the approver group. Each
ApprovalAction element has the following structure:

M
Odd Header

Web Service Interfaces

CentraSite Developer's Guide Version 9.8 303

Parameter Name and Description

 approver String The key that identifies the user
who is the approver.

 statuscomment String Optional. A remark from the
approver (typically indicating why
he or she approved or rejected the
request).

 String The approver's decision on the
request. Possible values are shown
below:

Pending

The approver has not taken action on
the request.

Approved

The approver approved the request.

Rejected

The approver rejected the request.

No Action

The request has been approved or
rejected, however, this approver did
not make the approval decision on
the request. Can also indicate that the
request was auto-approved.

	Table of Contents
	About this Guide
	Document Conventions
	Online Information

	Developing Custom Actions
	Planning to Create Custom Actions
	About Action Categories
	Predefined Action Categories Installed with CentraSite
	Custom Action Categories

	About Action Templates
	Types of Actions
	Supported Object Events

	About Parameter Templates
	Who Can Create and Manage Action Categories or Templates?
	Viewing the Action Categories List
	Adding Custom Actions Using the CentraSite UI
	Creating a Custom Action Category
	Adding an Action Template to a Custom Action Category
	Adding a Parameter Template to the Action Template

	Adding Custom Actions Using APIs
	Creating Action Rules
	Creating a Rule in a Java Class
	Creating a Rule Using a Groovy Script

	Uploading Action Rules to Action Templates

	Viewing or Editing Action Categories or Templates
	Viewing or Editing an Action Category
	Viewing or Editing an Action Template

	Downloading Rules from System Action Templates
	Structure of the Zip File

	Deleting Custom Action Categories and Templates
	Deleting a Parameter Template
	Deleting a Custom Action Template
	Deleting a Custom Action Category

	Versioning a Custom Action Template
	Sample Custom Actions
	Sample Java Action: Enforce Unique Asset Names
	Sample Groovy Script Action: Service Attribute Checker

	Built-In Design/Change-Time Actions Reference
	Summary of Actions in the ARIS Category
	Summary of Actions in the Change-Time Category
	Summary of Actions in the Collector Category
	Summary of Actions in the Design-Time Category
	Summary of Actions in the Global Category
	Summary of Actions in the Handler Category
	Summary of Actions in the WS-I Category
	Built-In Actions for Design/Change-Time Policies
	Call Web Service
	Change Activation State
	Change Deployment Status
	Classify
	Consumer WSDL Generator
	Default Move Handler
	Delete RuntimeEvents and RuntimeMetrics
	Enforce Unique Name
	Initiate Approval
	Initiate Group-Dependent Approval
	Mark Pending on Runtime Policy Change
	Notify ARIS Service
	On Consumer Registration Request Send Email to Owner
	Processing Steps Status
	Promote Asset
	Publish to API-Portal
	Register Consumer
	Send Email Notification
	Set Attribute Value
	Set Consumer Permission
	Set Instance and Profile Permissions
	Set Permissions
	Set Profile Permissions
	Set State
	Set View Permission for Service and Service Related Object to Everyone Group
	Send Email Notification to Watchers
	UnClassify
	UnPublish from API-Portal
	Validate Attribute Value
	Validate Classification
	Validate Description
	Validate Lifecycle Model Activation
	Validate Name
	Validate Namespace
	Validate Policy Activation
	Validate Policy Deactivation
	Validate Service Binding
	Validate State
	Validate WSDL Size
	webMethods REST Publish

	Access via UDDI
	Overview of the UDDI Standard
	Summary of UDDI Support in CentraSite
	CentraSite UDDI Architecture
	Overview
	Client Access via UDDI
	Localization
	Modeling of the Node Business Entity
	Key Generator tModel
	Node Business Entity
	Inquiry Service
	Publish Service
	Security Service
	Custody and Ownership Transfer Service
	WSDL

	UDDI Representation of the Object Model
	Attributes
	Key/Value Pair Attributes
	Rich Text Attributes
	Document Attributes
	Relationship Attributes

	Metrics Definition
	Metrics Reference Taxonomy
	Metrics Types Taxonomy
	Total Request Count Taxonomy
	Success Request Count Taxonomy
	Fault Request Count Taxonomy
	Average Response Time Taxonomy
	Minimum Response Time Taxonomy
	Maximum Response Time Taxonomy
	Availability Taxonomy
	Service Liveliness Taxonomy

	Representing Targets and Target Types
	Representing Status
	Representing Version
	Mapping WS-PolicyAttachments

	Configuring the UDDI Environment
	Configuration Properties
	UDDI in a Multi-CAST Environment
	CAST Registration/Deregistration
	Registering a CAST
	Registering a CAST
	Deregistering a CAST

	Deployment Descriptors
	Changing the User ID/Password of the Web Application Login Account

	Setting Global and Local UDDI Properties
	Setting Global UDDI Properties
	Setting Local UDDI Properties

	Getting Global and Local UDDI Properties

	Schema Validation of UDDI Requests
	Checked Value Set Validation

	Predefined Value Sets
	Predefined tModels
	UDDI V3 APIs
	Overview
	Classes and Interfaces
	RegistryService
	RegistryConfiguration
	RegistryFramework
	RegistryAgent
	UDDI_Security_SoapService
	UDDI_Inquiry_SoapService
	UDDI_Publication_SoapService
	UDDI_Taxonomy_SoapService
	CentraSiteBusinessService

	Examples
	Getting the Value of an Attribute
	Getting the Proxy Services for a Specified Target
	Inquiring about a Business Service
	Publishing a Business Service
	Fetching Taxonomies

	Using Third-Party IDE Tools with CentraSite
	Overview
	Supported IDE Tools
	Specifying the Inquiry, Publish and Security URLs

	WTP Eclipse 1.5.2 Plug-In
	IBM Rational Application Developer 6.0
	Connecting to CentraSite
	Publishing Entities

	UDDI Extensions
	Using WSDL in a UDDI Registry
	Using WS-PolicyAttachment
	Version 1.2 Support
	Supported Policy Subjects
	Referencing Remote Policy Expressions
	Registering Reusable Policy Expressions
	Registering Policies in UDDI Version 3
	tModels to Support UDDI-Based WS-PolicyAttachments

	Version 1.5 Support

	Extending UDDI Publisher API Set to Enable Physical Deletion of tModels
	Arguments
	Behavior
	Returns
	Caveats

	Pluggable Architecture
	Introduction to CentraSite Control Pluggable Architecture
	Customizing the Welcome Page
	Introduction
	Technical Implementation of the Welcome Page
	Overview of Java Methods Used
	Screen Component: Welcome Page
	Screen Component: Widget
	Screen Component: Item
	Methods Not Related to Screen Components

	Java Interface Hierarchy

	Installing the Customized Welcome Page
	Stop Software AG Runtime
	Updating the plugin.xml Configuration File
	Deploying the New Java Classes to the PluggableUI Environment
	Start Software AG Runtime

	Example of a Customized Welcome Page
	Location of Demo Files
	Differences Between the Standard Welcome Page and the Demo Welcome Page
	Implementation of Welcome Page Layout
	Header Area
	Separator Between Header Part and Widget Part
	Widget CentraSite
	Widget Useful Links
	Widget User Preferences
	Default Settings for Widgets

	Implementing the Demo as an Eclipse Java Project
	Building the Deployment Files for Software AG Runtime
	The build.properties File
	Building the Deployment Files
	Building the Deployment Files Using Eclipse (Method 1)
	Building the Deployment Files from the Command Line (Method 2)

	Deploying the Demo to Software AG Runtime
	Displaying the Demo Welcome Page

	Special Programming Techniques

	Customizing Content Pages
	Extension Points
	I18N for Layouts
	Parameters for Plug-ins
	ConnectionHandler - Logon and Logoff / Exit
	Perspectives
	Topic
	Command for Item
	Bulk Command for Items
	Add Property
	Tab in Detail View
	Add Source of Notification
	Impact Analysis: NodeDecorator
	Append Root Node to Topic
	Replace Standard Detail View by Another Editor
	Extend Search Dialog by Additional Conditions
	Download Documents
	Making the Download Menu Entry Visible/Invisible for Guest Users
	Changing the Text String Displayed in the Context Menu
	Changing the Format of the Zipped Archive

	Attach Documents

	Activating the IDE
	Step-by-Step Guide

	Setting the Preferred Plug-In and Order of Plug-Ins
	Installing and Uninstalling Plug-Ins
	Directory Structure
	Installing a Plug-In
	Uninstalling a Plug-In
	Plug-In Management Perspective

	Special and Advanced Topics
	Icons
	Class Loading
	Multithreading and Synchronization
	Nested Layouts

	Javadoc Documentation of the APIs
	Step-by-Step Guide
	Eclipse Prerequisites
	Setting up the Plug-in Project
	Plugging into CentraSite Control
	Bring Your Own Layouts to the Screen

	Application Framework
	Introduction
	RegistryBean
	BeanPool
	StandaloneRegistryProvider

	Configuration
	Bean Types Managed by CSAF
	Bean Modes
	Persistence Modes
	Cache Configuration

	Re-Reading Outdated Objects

	Mapping Beans to Registry Objects with Annotations
	Introduction to Bean Mapping
	Standard Mappings
	Standard Mappings Usage Sample

	Generating Beans from the Command Line

	Querying the Registry
	Application Framework Simple Search
	Creating a Search Object
	Restricting the Search Results by Adding Search Predicates
	Defining the Order of the Search Results
	Invoking the Search

	Extending the Application Framework
	Application Framework JAXR-Based Search

	Event Mechanism
	Asset Types
	Usage Sample for Type Management

	Association Types
	Usage Sample for Association Type Management

	Lifecycle Management
	Usage Sample for LCM

	Revision Management
	Usage Sample for Revision Management

	Multi-User Scenarios
	Setting the Classpath
	Examples
	CRUD Example

	API for JAXR
	Introduction to the CentraSite API for JAXR
	Creating and Closing a JAXR-based Connection
	Creating a JAXR-based Connection
	Closing a JAXR-based Connection

	Defining a Service
	Service that Uses Another Service
	Service with Additional Information
	Pre-Defined Classification Schemes (Taxonomies)
	Impact Analysis
	CentraSite API for JAXR Reference Information
	Creating User-Defined Objects
	Direct XQuery Access to the Stored Data
	Unique Keys
	Simultaneous Database Access and Locking
	Caller
	Semantics of Remove Operations
	Delete Operation
	RegistryObject
	Association
	AuditableEvent
	Classification
	ClassificationScheme
	Concept
	ExternalIdentifier
	ExternalLink
	Organization
	RegistryEntry
	RegistryPackage
	Service
	ServiceBinding
	SpecificationLink
	User

	Unsupported Methods
	Unsupported FindQualifiers
	Using Wildcards
	Using Namespaces
	Method createSlot
	Caching Considerations
	JAXR-based Caching Strategy
	Caching in User Interfaces
	Dynamically Loaded JAR Files
	Cache Location

	API for XQJ
	Introduction to the API for XQJ
	What is XQJ?
	Features of the XQJ Interface

	Working with the XQJ Interface
	Executing an XQuery with a Standard XQExpression
	Executing an XQuery with an XQPreparedExpression
	Working with a Materialized XQSequence
	Examples

	CentraSite-Specific Extensions to XQJ
	Updating a Database Using XQJ
	Inserting a Document in the Registry/Repository

	XQDataSource Properties

	Java Management Interface
	Introduction the Java Management Interface
	Description
	Attributes and Operations
	Attributes
	Registry/Repository Start/Stop Operations

	Web Service Interfaces
	Introduction to the Web Service Interfaces
	Approval Service
	About the Approval Service
	Invoking Operations from the Approval Service
	Specifying the Authenticated User
	Specifying the Location of the Approval Log

	Retrieving the List of Approval Requests that a User Has Submitted
	ApprovalRequestList Message
	Getting Details about the Actions of the Approvers Associated with a Request

	Approving or Rejecting Approval Requests
	Scrolling Through the List of Returned Approval Requests
	Reverting a Pending Approval Request
	Operations
	getPendingApprovals
	getApprovalRequests
	getApprovalActions
	approve
	reject
	getApprovalHistory
	revertPendingStateChange
	ApprovalRequestList
	ApprovalActionResult

