
©2015 Software AG. All rights reserved.

Application Platform
Users Guide

Version 9.8

April 2015

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 2

This document applies to webMethods Application Platform Version 9.8 and to all subsequent releases. Specifications

contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2014-2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its

subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG

and/or Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product

names mentioned herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at

http://softwareag.com/licenses.

This software may include portions of third-party products. For third-party copyright notices, license terms, additional

rights or restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain

specific third-party license restrictions, please refer to section E of the Legal Notices available under "License Terms and

Conditions for Use of Software AG Products / Copyright and Trademark Notices of Software AG Products". These documents

are part of the product documentation, located at http://softwareag.com/licenses and/or in the root installation directory

of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License

Agreement with Software AG.

DOCUMENT ID: PLD-UG-98-20150415

http://softwareag.com/licenses
http://softwareag.com/licenses

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 3

CONTENTS

1 About this Guide ... 6

1.1 Document Conventions .. 6

1.2 Online Information ... 6

2 Introduction ... 7

2.1 Architecture ... 7

2.1.1 Diagrams ... 7

2.1.2 OSGi Foundation ... 10

2.1.3 Designer IDE .. 10

2.1.4 Server ... 11

2.1.5 Deployer .. 11

2.1.6 Platform Manager and Command Central 12

3 Development Activities ... 13

3.1 Getting Started .. 13

3.1.1 Open Application Platform Perspective .. 13

3.1.2 Server Runtime Environment .. 14

3.1.3 Server Configuration .. 17

3.1.4 Integration Server Considerations .. 20

3.1.5 Optional Configuration ... 22

3.2 Application Platform Perspective ... 23

3.2.1 Views .. 23

3.2.2 Context Menu .. 26

3.3 Building a Project Using App Platform Project Wizards 28

3.3.1 Project Facets .. 29

3.3.2 Application Platform Runtime .. 30

3.3.3 Java Project .. 30

3.3.4 Web Project .. 35

3.3.5 Classpath Containers ... 37

3.3.6 Project Manifests .. 45

3.3.7 Including Jars in a Project ... 46

3.4 Server Management ... 47

3.4.1 General Information .. 47

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 4

3.4.2 Server Properties .. 52

3.4.3 Server Operations ... 54

3.5 Project Publisher .. 56

3.5.1 Project Builds .. 56

3.5.2 Server Operations for Projects .. 58

3.5.3 Assemble the Project Bundle .. 61

3.6 Managing Dependencies .. 63

3.6.1 Bundle Publisher... 63

3.6.2 Bundle Manager .. 72

3.7 App Platform Configuration .. 74

3.7.1 Bundle Publisher... 74

3.7.2 Bundle Manager .. 76

3.7.3 Capabilities .. 77

3.7.4 Server View Configuration ... 79

3.7.5 Project Configuration ... 81

3.7.6 Customer Applications .. 84

3.8 Integration Server Features .. 85

3.8.1 Calling Integration Server Services from App Platform Projects 86

3.9 Calling App Platform Services from Integration Server Services 90

3.9.1 Annotate a method ... 90

3.9.2 Publish the Project .. 90

3.9.3 Verify the IS package ... 91

3.9.4 Coding Considerations .. 91

4 Production Activities .. 92

4.1 Project Deployment ... 92

4.1.1 Asset Build Environment ... 92

4.1.2 Shared Bundles .. 94

4.1.3 Deploying Assets ... 94

4.2 Project Configuration ... 94

4.2.1 Project Dynamic Configuration .. 94

4.2.2 Software AG Platform Manager (SPM) ... 95

4.2.3 Command Central Client Tools .. 97

5 Troubleshooting .. 98

5.1 Logging .. 98

5.1.1 Designer Log Files ... 98

5.1.2 Designer Trace Logging ... 98

5.1.3 Server Log Files .. 98

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 5

5.1.4 Configure Server Debug Output ... 98

5.2 OSGi Console ... 98

5.2.1 Server Configuration .. 99

5.2.2 Terminal View Configuration .. 99

5.2.3 OSGi Console ... 100

5.3 Server Views Problems .. 100

5.3.1 Server is installed as a service .. 100

5.3.2 Server immediately fails to start ... 100

5.3.3 Server fails to start after timeout ... 101

5.4 Common Project Problems ... 101

5.4.1 Unable to Publish Web Projects ... 101

5.4.2 Can’t Add Project to Server ... 101

5.4.3 Unable to Create Bundle ... 101

5.4.4 Manually Uninstall Bundle from Server 101

5.4.5 Class Loader Issues in Published Projects 102

5.4.6 References to Local Resources .. 104

5.4.7 Unable to Publish Any Project Bundle.. 104

5.5 Miscellaneous .. 104

5.5.1 Configuring an Eclipse project for Application Platform.................. 104

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 6

1 About this Guide

Software AG Application Platform IDE components are installed as a set of features within Software
AG Designer. Online help is included in Designer Guide node of the Eclipse Help table of contents.
Expand this node to view the available help sets. If a feature is not installed, there will be no help
set available for it. However, you can view PDF versions of all designer features on the Software AG
Documentation website.

1.1 Document Conventions

Convention Description

Bold Identifies elements on a screen

Italic Identifies variables for which you must supply values specific to your own
situation or environment. Identifies new terms the first time they occur in
text.

{ } Indicates a set of choices from which you must choose one. Type only the
information found inside the curly braces. Do not type the { } symbols.

| Separates two mutually exclusive choices in a syntax line. Type one of the
choices only. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

… Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (…).

1.2 Online Information

This document and other Software AG documents mentioned in this guide may be found at the Soft-
ware AG Documentation website.

http://documentation.softwareag.com/
http://documentation.softwareag.com/
http://documentation.softwareag.com/
http://documentation.softwareag.com/

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 7

2 Introduction

The Application Platform consists of a collection of components including development tools and
runtime components. Java applications are constructed using Designer as the main development
tool. The applications are deployed as OSGi bundles into a dedicated development server. A design
goal for the product is to provide the means for developers to create projects with as little OSGi
knowledge as possible. Nonetheless, developers are strongly encouraged to become familiar with
OSGi given it is a foundational cornerstone if the Software AG server architecture.

This guide is organized into following areas of interest:

• Introduce the architecture

• Development environment setup pre-requisites

• Visually describe the development activities with emphasis on Designer’s Application Platform
tooling

• Briefly discuss activities required to deploy and configure projects outside of development
setting

• Finish up with a miscellaneous assortment of troubleshooting topics

2.1 Architecture

The architecture is based upon a composite list of integrated components as illustrated below. The
sections that follow briefly describe each component and often provide references to more docu-
mentation for each component.

2.1.1 Diagrams

The architecture can be visualized in several different contexts.

2.1.1.1 Component Stack
At a lower level, the development IDE and server represent containers which manage encapsulated
components.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 8

2.1.1.2 Bundle Deployment
This publish model applies to both project source as well as 3rd party bundles.

Each large rectangle represents a different physical computer. Each shaded rectangular shape
represents a Java VM.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 9

2.1.1.3 Application Platform Configuration
In the diagram below, we have the following components:

• Client tools (Web browser or Command Line)

• Command Central Server

o The server may be configured to manage a group of SPM nodes in the customer
landscape

• SPM running in its own dedicated JVM

• Product server hosting the customer projects

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 10

Each large rectangle represents a different physical computer. Each shaded shape represent a Java
VM.

2.1.2 OSGi Foundation

OSGi plays a crucial role in the Application Platform’s architecture. In OSGi, a deployment module is
typically a Java jar file containing a META-INF/MANIFEST.MF file with additional headers. This spe-
cial jar file is called a bundle by convention. The metadata in these headers is used by an OSGi con-
tainer when it is time to install the bundle into a server. Equinox (also used by Eclipse) is the OSGi
container implementation found in Application Platform-supported servers. It is important to under-
stand the distinction between a plain Java jar file versus an OSGi bundle. The Application Platform
tooling creates and installs bundles into the server. Generally, 3rd party dependencies must be bun-
dles or use Application Platform tools to create bundles from a simple jar; however, it is possible to
embed a simple jars if included in the “lib/” folder. Please see the Lib Folder section for more de-
tails.

2.1.3 Designer IDE

Designer is the supported IDE for building Application Platform components. Additional Eclipse fea-
tures each with its own set of plugins are included in the product. Some examples of the features
supported are as follows:

• Project wizards for creating Java and Web applications

• Eclipse server tools (WST) integration for publishing and debugging projects in the server

• Dialog wizards to create Java bindings to server components

http://www.osgi.org/Technology/WhatIsOSGi
http://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html
http://www.osgi.org/Specifications/ReferenceHeaders
https://projects.eclipse.org/projects/rt.equinox/releases/3.9.0

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 11

• Custom perspective and views

• Various utilities to assist with project development in the OSGi environment

For more Designer general details outside of the Application Platform scope, please refer to the
“Working with Software AG Designer”, or one of the product-specific guides such as “Service Devel-
opment Help”

2.1.4 Server

Software AG servers capable of receiving Application Platform projects have the following character-
istics:

• based upon OSGi runtime containers

• contain a collection of Software AG product bundles called the Software AG Common Plat-
form

• managed by a similar set of scripts and files to manage cross-cutting concerns in a consistent
manner. Some examples include the following:

o Logging,

o Configuration,

o Lifecycle scripts

For more details, please refer to the following guides:

• “Working with the webMethods Product Suite and the Java Service Wrapper”

• “Working with Software AG Runtime”

• Product-specific guides such as “Integration Server Administrator’s Guide”.

2.1.5 Deployer

After completing the development phase, projects may be deployed into servers using command line
scripts via Software AG Deployer

• Projects are built and packaged as assets using repeatable processes via the Asset Build Envi-
ronment (ABE)

• These assets are deployed to a one or more target systems using Deployer

For more details regarding Deployer or ABE, please refer to the “Deployer User’s Guide” cross-
product document.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 12

2.1.6 Platform Manager and Command Central

Every server may participate in a common infrastructure for managing configuration and monitoring
product statuses.

• Each product has a manager running in a separate process called the Software AG Platform
Manager (SPM)

• A centralized product called Command Central to administer a collection of products across
networked servers via client tools

o Command Line Interface

o Web Browser-based GUI

For more details regarding SPM, please refer to the “Working with Software AG Runtime” cross-
product document.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 13

3 Development Activities

This section describes the features added to Designer to support Application Platform development.

3.1 Getting Started

After installing Application Platform, the following sections discuss tasks that should be performed
immediately before building projects.

3.1.1 Open Application Platform Perspective

Application Platform has a dedicated Eclipse perspective. This perspective contains the basic views
which are most often used when developing applications. In the Window menu, select the Open Per-
spective submenu and then click on the Other… menu item. Select the App Platform perspective
from the list.

After the perspective is opened first time, it will be cached for quick access.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 14

Each time the perspective opens, a warning dialog is presented to remind the user to create a
runtime environment if one does not exist. A runtime environment must be configured before creat-
ing a project or publishing to the server.

Pressing the Yes button will take the user to the App Platform Runtime configuration view as dis-
cussed in the next section.

3.1.2 Server Runtime Environment

The Application Platform must have a server runtime configured so projects may reference its
runtime container. Runtime containers are Eclipse configuration elements that define a set of prod-
uct libraries a project should include in its classpath. An absolute path to the product installation is
required for the runtime configuration. Users cannot change the bundles included in the runtime.
Initially, the preference view will not have any runtimes defined, so the first step is to define one.

The configuration screen may be accessed from Designer by selecting the Win-
dow/Preferences/Server/Runtime Environments menu item. Navigate to this preference panel and
click the Add button.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 15

Scroll down and choose the Application Platform server for the server product. E.g. Application Plat-
form Integration Server.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 16

Note: The only server available for the 9.8 release is the Integration Server.

Provide the path to the root directory Software AG installation folder.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 17

Note: This configuration pane will not enable its Finish button until a valid root directory has been
selected – i.e. a root directory containing a profiles directory.

Important: The Designer installation root directory configuration is stored in the Eclipse work-
space metadata area. If installing another instance of Designer on the same computer, you
should not share the same workspace directory. Doing so can lead to errors since both instal-
lations will be sharing the same runtime configuration and communicating to the same server.

Click the Finish button to complete the configuration step.

3.1.3 Server Configuration

Once a Runtime Environment has been created and the dialog is closed, a server configuration must
be created before projects may be published. Server configurations are managed from the Servers

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 18

view located at the bottom of the App Platform perspective. The first time the Servers view is
opened, a link is available to create a new server.

Click the link to create a server. The default values should be correct if none of the server proper-
ties were changed during installation.

Important: The server should be installed as a “application” rather than a “service” as de-
scribed in the installer. In this situation, errors can occur due to a mismatch between the ser-
vice and Designer’s configuration used to launch the server. Please see the Server is in-
stalled as a service section for more details.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 19

Important: The Instance name must be default for this release.

Here is a completed server configuration. Once a runtime and server configuration have been creat-
ed, it is possible to manage the development server from Designer. For example, the server may be
started and stopped by clicking the appropriate toolbar action icon or from a context menu by right-
clicking the server in the view. For more details, please refer to the Using the Server Tools section
of the Web Tools Platform User Guide in Designer’s Help Contents.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 20

3.1.4 Integration Server Considerations

The following tasks are required to ensure a functional environment for publishing bundles into the
Integration Server.

3.1.4.1 Disable the WmTomcat package

The Application Platform uses the Software AG Web Server included in the Software AG Common
Platform environment. The Integration Server also provides its own Tomcat instance via the
WmTomcat IS core package. This package must not be enabled in a server profile hosting Application
Platform web modules.

Using the Integration Server Administrator utility, delete or disable the WmTomcat package, and
restart the server. Consult the “webMethods Integration Server Administrator’s Guide” for more
details.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 21

3.1.4.2 Common Tomcat Platform
Application Platform uses a Software AG common platform component called the Common Tomcat
Platform (CTP). This component is enabled when Application Platform is installed.

Note: The Integration Server’s profile is modified during the installation process by updating the
${sagHome}/profiles/IS_default/configuration/config.ini file. The config.ini file should contain this
entry “com.softwareag.platform.catalina.launcher.gemini.skip=true” when the Application Platform
is installed.

The default ports are 8072 for HTTP and 8074 for HTTPS. The Tomcat configuration file is located
here : ${sagHome}/profiles/IS_default/configuration/tomcat/conf/server.xml.

To confirm CTP’s availability after installation, start the Integration Server installation, and enter
http://localhost:8072 in a web browser.

http://localhost:8072/

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 22

3.1.5 Optional Configuration

This section discusses additional tasks to perform; however, these steps are not required.

3.1.5.1 Eliminate NLS Warnings in Designer Error View
Eclipse may produce warning messages for any localized messages which go unused. This can lead to
situations where many log messages are generated with the following format:

Warning: NLS unused message: {resource key} in: {file reference}

These messages do not indicate a problem with the installation. They may be suppressed by defining
a system property for the Designer instance via its eclipse.ini file. Simply add the following property
at the end of the eclipse.ini file.

-Dosgi.nls.warnings=ignore

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 23

Note: The eclipse.ini file is found in the ${sag.install.dir}/Designer/eclipse/ directory path.

3.1.5.2 Enable OSGi Console for Server Profile
Once developers are more familiar with OSGi, it can be helpful to use the OSGi console to assist in
troubleshooting efforts, or simply as a means to gain additional insight into OSGi. Eclipse’s Terminal
view is included in the App Platform perspective; however, it requires additional configuration.
Please refer to the OSGi Console section for more details.

Note: The OSGi console must be enabled if using the terminal view in the Application Platform
perspective.

Important: The OSGi console uses unsecured telnet. This console should be disabled for
production systems.

3.2 Application Platform Perspective

Eclipse uses perspectives to organize a set of editors and views in the workbench to assist with spe-
cific development tasks. The Application Platform provides a custom perspective to assist with pro-
ject development. The perspective contains a collection of default views which are described in the
sections to follow. Many of the views are core Eclipse components, so in these cases, please refer to
Eclipse documentation for more details.

Note: Users may customize this perspective using core Eclipse tooling. It is easy to return the per-
spective back to its original defaults by right-clicking on the “App Platform” button in the upper
right and select “Reset”.

3.2.1 Views

The perspective default layout contains the following views:

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 24

3.2.1.1 Project Explorer
Use this view to access projects. Consult the Workbench User Guide in Designer’s Help Contents for
more details.

3.2.1.2 Package Explorer
Use this view to access projects. Consult the Workbench User Guide in Designer’s Help Contents for
more details.

3.2.1.3 Main Code Editor
Use this view to edit selected resources. Consult the Workbench User Guide in Designer’s Help
Contents for more details.

3.2.1.4 Outline
Use this view to display an outline of the current resource in the code editor window. Consult the
Workbench User Guide in Designer’s Help Contents for more details.

Note: Not every resource will have content in the outline view.

3.2.1.5 Properties
Use this view to display properties of the current resource in the code editor window. Consult the
Workbench User Guide in Designer’s Help Contents for more details.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 25

Note: Not every resource will have content in the properties view.

3.2.1.6 Servers
Use this view to start and stop the server or to publish (or unpublish) Application Platform projects.

Add a picture here.

3.2.1.7 Problems
Use this view to resolve errors such as compilation errors in project source files. Consult the
Workbench User Guide in Designer’s Help Contents for more details.

3.2.1.8 Java Doc
Use this view to display Javadoc source documentation for the selected Java source file in the code
editor window. Consult the Workbench User Guide in Designer’s Help Contents for more details.

3.2.1.9 Console
Use this view to display content written to the system IO streams (i.e. stdout & stderr) or process
input (i.e. stdin). Consult the Designer Workbench User Guide for more details.

3.2.1.10 Error Log
Use this view to display messages written to the Designer’s log file located in this location:
{workspace directory}/.metadata/.log Consult the Workbench User Guide in Designer’s Help
Contents for more details.

3.2.1.11 Bundle Publisher
Use this view to publish or un-publish additional bundles to the server. See the Bundle Publisher
section for more details.

Note: Application Platform product documentation uses publish and unpublish as a means to clearly
distinguish between deployment activities performed in a development environment using Designer.
References to deploy and undeploy implies project deployment performed outside of Designer using
ABE and Deployer. For more details regarding deployment via Deployer, please see the Project
Deployment section.

3.2.1.12 Bundle Manager
Use this view to create or delete wrapper bundles that wrap non-OSGi jars. See the Bundle Manager
section for more details.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 26

3.2.1.13 Terminal
Use this view to open a telnet connection to the server profile’s OSGi console.

Note: This requires editing the server’s OSGi configuration and restarting the server. Please see
OSGi Console section for the steps needed to enable an OSGi console in a server instance.

3.2.2 Context Menu

Application Platform contributes its own context menu for executing wizards and utilities. The tools
are divided into two categories:

• Core Tools – available regardless of the server product

• Product-Specific Tools - only available for a specified server product.

The following screenshot illustrates the distinction between core and product-specific. Note the
product-specific sub-menu called “IS Tools”. It contains an Integration Server-specific wizard called
“IS Service Wizard”. Conversely, the Core tools (“Create Project Bundle” and “Create Project Mani-
fest” are available for all supported server products.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 27

Note: the IS Tools menu will not be included unless the Service Integration install component is se-
lected when installing Application Platform components for Designer.

3.2.2.1 Create Project Bundle
This menu item creates an OSGi bundle for the project currently selected in the Package or Project
view. The bundle will be written to an artifacts folder that resides in the current workspace. The
location is partially based upon the project name. For example, given a project named
MyJavaProject, a bundle will be created in

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 28

{workspace}/.metadata/.plugins/com.softwareag.ide.eclipse.pld.bundle.builder.ui/MyJavaProject/a
rtifacts/JavaProject.jar

Note: This is a diagnostic tool that can be used to create a project bundle without defining a server
configuration and publishing a project to a server. It is not required to publish bundles into a
server.

3.2.2.2 Create Project Manifest
This menu item creates a MANIFEST.MF file for the selected project. The file is written to the
project’s “src/main/resources/META-INF“ folder. This can be useful when the default manifest
produced during bundle creation requires additional customization. See this Project Manifests
section for more details.

3.3 Building a Project Using App Platform Project Wizards

The Application Platform includes two project wizards in the App Platform perspective. These wiz-
ards create projects that meet the requirements for publishing projects into the server. There are
two project wizards available.

• Web Project – Required for servlet-based projects

• Java Project – Required for all other projects.

Note: Using other project wizards (e.g. the Java perspective’s “Java project” wizard) will require
selection of additional Application Platform project facets before it may be published to a supported
server. For more details, please refer to the Configuring an Eclipse project for Application Platform
section.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 29

The Application Platform project wizards possess some common characteristics

• Eclipse WST Project facets are used to define project attributes

• An Application Platform Runtime must be selected

Consult the Web Tools Platform Users Guide under Designer’s Help Contents more details regarding
facets or server runtimes.

3.3.1 Project Facets

Application Platform project wizards utilize project facets to capture additional configuration
needed for publishing projects into the server. A Project Facets wizard page containing all the
project facets registered in Designer is displayed for all of the project wizards.

Each project facet may include validation to enforce any requirements it may have. For example, it
is not possible to select any of the SoftwareAG Application Platform facets without also selecting
both the Application Platform Core and Java facets.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 30

Note: Each selected project facet may optionally have a wizard page to support additional
configuration. Therefore, the order and number of wizard pages displayed will vary depending upon
the selected project facets.

3.3.2 Application Platform Runtime

The server runtime must be selected for a project before it may be published to the server.

3.3.3 Java Project

This project wizard may be used to create application components that do not require servlet sup-
port.

Note: The Java perspective also has a “Java Project” wizard that is different from this one. The
Application Platform wizards are prominently displayed as the first two wizard options under the
File/New menu path.

3.3.3.1 Initial Wizard Page
This is the first page for this project wizard. Enter a project name and location and press Next.

Note: It is possible to press the Finish button if enabled and the default values for the subsequent
pages will be accepted.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 31

3.3.3.2 Project Facets
This page contains all the project facets which are registered in Designer. Select the necessary
project facets and press the “Next” button to continue. Each project facet may include validation to
enforce any requirements it may have. For example, it is not possible to select any of the
“SoftwareAG Application Platform“ group facets unless the “Application Platform Core“ facet is
included.

Each selected project facet may optionally have a wizard page to support additional configuration.
The rest of this section will only discuss facet configuration for Application Platform project facets.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 32

Note: Once a project has been created, its project facets may be modified by selecting the project
in the package or project explorer and selecting Properties from the context menu.

3.3.3.3 Java Facet
This is the Eclipse core project facet required for Java projects. The Application Platform requires
the Java source directory follow the Maven 2 convention of using src/main/java.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 33

Note: The Eclipse Java facet uses src/ as its default. The Application Platform project wizard will
remove this default and substitute with “src/main/java“.

3.3.3.4 Integration Server Extensions Project Facet

A source path must be created and added to the project’s classpath when exposing Integration
Server services to an Application Platform project. Checking the check box on this wizard page will
ensure the directory path specified in the “Generated Source Path” text field is created for the
project if it does not exist. Removing this project facet on an existing project via Project properties
will remove the source directory from the project’s list of source paths; however, no files or
directories are deleted.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 34

Note: The generated source directory must be src/main/java when deploying the project to a
project environment using ABE and Deployer.

3.3.3.5 Folder Structure
After completing the project wizard, the following folder structure is created.

3.3.3.5.1 Source Folders
The source folders must follow the Maven convention (i.e. “src/main/java“) to be compatible with
the Asset Build Environment (ABE) tool. Unit test source code may be added to a src/test/java path.

Note: Unit tests will be included in the bundle when the project is published from Designer.

3.3.3.5.2 Config Folder
The src/main/config directory is a special location in the project designated to contain property files
with configuration data to be passed to the server. When the bundle is published to the server, the
files contained in this directory are extracted from the bundle and installed in a common directory in
the server containing all the configuration files for that server. For more details, please refer to the
Project Dynamic Configuration section.

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 35

3.3.3.5.3 Resource Folder
Any non-Java source files should be included in the resources directory. These files and folders
defined in this location will be included in the root directory path of the bundle.

3.3.3.5.4 Lib Folder
A project may include non-OSGi jar files in its classpath by including them in a lib folder. See the
Including Jars in a Project section for more details.

3.3.4 Web Project

This project wizard may be used to create servlet-based application components.

3.3.4.1 Web Project Facet

This project facet has one configuration field. The Web Context for the application defaults to the
project name.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 36

Note: When building projects using ABE intended for Deployer, the Web Context is defined by the
“Web-ContextPath:
“ OSGi manifest header property. For more details, please refer to the Project Bundle section.

3.3.4.2 Folder Structure
After completing the project wizard, the following folder structure is created.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 37

In addition to the directories discussed in the prior section for Java projects, an additional folder,
‘src/main/webapp/’, is created for the web-related content (e.g. HTML, JSP, JavaScript, CSS, etc.).

3.3.5 Classpath Containers

Classpath containers represent a collection of libraries which may be added to a project’s classpath.
Application Platform has two such containers. One container contains a fixed collection of product
libraries (Application Platform server runtime container) while the other (Application Platform
shared bundles) may be configured for each project to contain an arbitrary set of libraries.

3.3.5.1 Application Platform Server Runtime Container

The Application Platform server container delivers a subset of the server’s runtime libraries. When a
project is created using one of App Platform project wizards, this container is automatically added to
its classpath. Clicking on the triangle in the screenshot below will show the available server librar-
ies. The list of libraries is pre-determined for the product and cannot be changed by users.

Application projects should take care to use these libraries rather than include duplicate versions.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 38

3.3.5.1.1 Adding the Application Platform Server Runtime Container
Click the Add Library button in the Java build path and select Server Runtime.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 39

Next, select the Application Platform server container and click Finish.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 40

The runtime server container should be visible on the project.

3.3.5.2 Application Platform Shared Bundles
The Application Platform shared bundles container also represents a collection of libraries that may
be added to a project’s classpath. These dependencies in turn can be one of the following:

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 41

• shared common jar that is not a bundle

• shared common bundles

The shared common jars can reside in some external location that is version controlled or is present
in a repository library such as Artifactory or Maven Repository (Nexus).

Common jars which are not bundles can be used in two ways:

1. Included within the project as a local dependency when the project is published

2. Published as a bundle in the runtime so it can be shared with other published projects

In the 1st case, the common jars are included in the project’s “lib” directory; therefore, they are
duplicated across different projects during publish time.

In the 2nd case, it is wrapped as a bundle and published once into the runtime and then referred by
the projects that require it. Please refer to the Managing Dependencies section for more details.
Next, each project may define its own “Application Platform Shared Bundles Container” classpath
container. This custom classpath container allows the user to specify the directory where the
common bundles reside on their file system. Selecting this directory would create a new classpath
library entry for the project with the bundles in it. Only valid OSGi bundles should reside in this
directory; if any non-OSGi jars are present, they will not be included as part of the library entry.

Bundles included in this fashion will not be packaged with the project and will only be used for
compile dependencies and to compute the OSGi manifest’s Import-Package OSGi header values when
the project bundle is built. Hence, the referenced bundles must reside in the runtime before the
project bundle is used. The imports will be set to be optionally required to ensure the bundle can be
installed and resolved

The screenshot below shows a shared bundles container for the /common-libs directory path.
Clicking on the triangle in the screenshot below will show the available libraries.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 42

3.3.5.2.1 Adding a Shared Bundle Container
Click the Add Library button in the Java build path and select Application Platform Shared Bundles.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 43

Next, Click the browse button and navigate to the directory containing the bundles.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 44

Note: All bundles in the directory will be added to the project’s classpath.

The shared bundles should be visible on the project.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 45

Note: If bundles are added, removed, or changed in the configured directory, it may be necessary to
refresh the project and perform a clean build to ensure the project’s classpath is current.

3.3.6 Project Manifests

In the simplest case, when a project is published to the server, an OSGi-compliant manifest is auto-
matically generated for the project. This manifest will contain reasonable default values for the
minimal set of required OSGi headers. However, sometimes this will not be sufficient, and additional
customization to the manifest will be required. In those cases, a context menu tool is available to
create a manifest. To invoke this tool, please refer to Create Project Manifest section. This tool
will create a MANIFEST.MF file in the src/main/resources/META-INF/ directory containing default
values based upon the project contents. Any customization to this file should be persisted and in-
cluded in source control.

Note: Since all packages are exported by default, users are strongly encouraged to not use the same
package name across projects. This can lead to a scenario where the same package and version is
exported by more than one bundle. While OSGi supports this situation, it requires additional tricky
manifest manipulation via split packages to avoid runtime errors.

http://wiki.osgi.org/wiki/Split_Packages

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 46

3.3.7 Including Jars in a Project

Libraries may be included in the project’s lib folder. When included in this location, the project
bundle will include these additional libraries within the bundle’s classpath. This provides a simple
mechanism for including non-OSGi jars in a project bundle’s classpath. The packages contained with-
in these libraries will be available only to the bundle’s classloader. Put another way, this means
these jars will only be available to the project’s classes.

For example, assume the following jfind.jar file is on this project’s classpath.

The generated project bundle will contain the jar and the OSGi manifest will contain a Bundle-
ClassPath header attribute.

Bundle-ClassPath: .,lib/jfind.jar

This ensures the OSGi container will include this jar’s classes on the project bundle’s classpath when
the bundle is published. However, the jar’s packages will not exported, so they are only resolved by
classes inside the project bundle.

Note: For creating bundles from non-OSGi jars or publishing existing bundles to be shared across
more than one project, please refer to the Managing Dependencies section.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 47

3.4 Server Management

The Application Platform’s server management is based upon the Eclipse Web Server Tools (WST)
project. This screenshot shows the main configuration view for a server configuration. This configu-
ration window is accessible by double-clicking on a server in the “Servers” view. The sections that
follow describe these elements. The server configuration is an extension of an Eclipse feature in-
cluded in the Web Tools Platform. For more details, please consult the “Using the server tools” sec-
tion under the Web Tools Platform Guide in Designer’s Help Contents.

Note: When making changes to the server configuration, unpredictable results may occur if modify-
ing a configuration of a running server. Always stop a server before making configuration changes.

3.4.1 General Information

As indicated in the screenshot, this section includes those fields that are common to any server con-
figuration produced by the WST framework.

3.4.1.1 Server Name
This is a free text field to provide a meaningful name for the server.

https://eclipse.org/webtools/server/

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 48

3.4.1.2 Host Name
This field contains the server’s hostname.

Note: Remote servers are not supported for this release. Please do not change the localhost default
value.

3.4.1.3 Runtime
The “Runtime Environment” link associates a server to a runtime. The runtime environment includes
an absolute directory path to the Application Platform installation. This absolute path is used in con-
junction with relative paths to the platform bundles which represent those server libraries which are
available to a project’s compile path.

Note: The runtime configuration settings is also accessible from Win-
dow/Preferences/Server/Runtime Environment

3.4.1.4 Launch Configuration
The Open Launch Configuration link contains the configuration elements used by Designer when
launching a process to execute operating system scripts used to start and stop the server. The
default values found here are dependent upon the server configuration values, so they should be
adequate for managing the Integration Server startup and shutdown.

3.4.1.4.1 Server
The Server tab shows the currently edited server.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 49

3.4.1.4.2 Arguments
The Arguments tab contains arguments to be passed to the server OS script responsible for starting
the server.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 50

Important: Do not modify or delete the existing program arguments.

3.4.1.4.3 Environment
The Environment tab contains environment variables that are defined in the OS process used to
launch the start script.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 51

Important: Do not modify or delete the existing environment variables.

3.4.1.5 Publishing
This section has a radio group of options available.

3.4.1.5.1 Never Publish Automatically
This is the default setting. Users must take action to publish their project to the server. This
option gives the most control for the user.

3.4.1.5.2 Automatically Publish When Resources Change
This setting will trigger an automatic project publish 15 seconds after a resource in the project has
changed. The time interval is configurable as well.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 52

Note: Using this option can be very resource intensive.

3.4.1.5.3 Automatically Publish After a Build Event
This setting will trigger an automatic project publish after project build event – i.e. Clean, full or
incremental project builds.

Note: Using this option can be very resource intensive by.

3.4.1.6 Timeouts
There are two timeouts for a server configuration.

3.4.1.6.1 Server Startup
This timeout determines how long Designer will wait for a server to start before assuming failure.
The default is 300 seconds. An error dialog is presented to the user if the timeout is exceeded. See
the Start section below for more details.

3.4.1.6.2 Server Shutdown
This timeout determines how long Designer will wait for a server to shut down before assuming
failure. The default is 60 seconds. A Terminate Server dialog is presented to the user after this
time out has elapsed. See the Stop section below for more details.

3.4.2 Server Properties

The properties that follow are specific for the Integration Server.

3.4.2.1 Integration Server Instance Name

This field matches the instance name of the Integration Server. The default value is default.

Important: Only the ‘default’ instance is supported for this release. Do not delete the “IS_default”
profile defined with the product installation.

3.4.2.2 Server Port
This is the HTTP port for the configured Integration Server. This port is necessary to verify the
server startup sequence. The default value is 5555.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 53

3.4.2.3 Server Debug Port
This is the JPDA debugger port configured for the Integration Server’s JVM. This port value is passed
to the startup scripts when the Integration Server is started by Designer. During the server startup
sequence, if Designer cannot connect to the configured debugger port, the server will still start;
however, any breakpoints will be ignored. The default value is 9191.

3.4.2.4 Server JMX Port
This field contains the JMX port used to execute a service in the server that supports publishing
bundles into the OSGi container. The default port is 8075 which matches the configured port for the
server. This port number is configured in the server by a property file found in
${sag.install.dir}/profiles/IS_default/configuration/com.softwareag.platform.config.propsloader/
directory. Please refer to document guides in the Server section for more details.

Note: If the port is in use while installing Application Platform, the port number may change in the
server’s configuration. If you are uncertain of the server’s state, use a OS utility to see if the JMX
port is in LISTEN mode.

3.4.2.5 Server Connection Mode
The server connection mode property determines how the Servers view gets synchronized to the
state of the external servers when the IDE is started or when the server is stopped or started from
outside of Designer. There are three possible states for this field.

• Debug

• No Action

• Run

Note: Since the server states are synchronized via a polling mechanism, there may be a small delay
until the Servers view is updated.

3.4.2.5.1 Debug
With this setting selected, Designer will automatically synchronize the state of the server in the
Servers view to “Debugging”. This is the default value when creating a server configuration. For
example, if Designer is stopped and restarted, the server instance in the “Servers” view will
automatically transition to “Debugging”.

3.4.2.5.2 No Action
With this setting selected, the state of the server in Designer is not synchronized to the server. If
Designer is started and a server is running, its Servers view will indicate the server is “Stopped”. In
this case, the user must execute the Start or Debug action in the Servers view. Additionally, if the

http://docs.oracle.com/javase/8/docs/technotes/guides/jpda/conninv.html
http://docs.oracle.com/javase/8/docs/technotes/guides/jmx/

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 54

server’s state changes while Designer is launched, e.g. the server is stopped using the “Stop Servers”
menu option, Designer’s Server view will still indicate the server is “Started”.

3.4.2.5.3 Run
With this setting selected, Designer will automatically synchronize the server state to “Started”. It is
not possible to remotely debug applications while Designer is connected to the server in this state.

3.4.3 Server Operations

The Servers View is an Eclipse WST component customized to fulfill the needs of Software AG serv-
ers. The following operations are possible from the servers view. A view-specific toolbar contains
actions for managing the server state. These actions include the following:

• Starting the server

• Stopping the server

• Debugging the server

• Publishing or un-publishing projects

The screenshot below shows the toolbar actions available in this view. The same actions are also
available on the right-click context menu when selecting server instance.

Note: The toolbar action “Starting the server in profile mode” is not supported.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 55

3.4.3.1 Start
The start action executes a shell script designated to start the server. The executing script must
block while the server remains started. The runtime environment for the server includes an
environment variable to ensure the script blocks. Otherwise, if the server is started asynchronously,
Designer will report an error immediately when the start executes. See the Server Fails to Start
section for more details. Designer changes the state from “Stopped” to “Starting”. Designer uses a
polling mechanism to periodically ping the server. Once the server has been started and responds to
the HTTP request, the server state transitions from “Starting” to “Started”.

For the Integration Server, the IS server connection details defined in the
Window/Preferences/Software AG/Integration Servers settings are used to connect to the Integration
Server and execute a GET request using basic authentication. If the server returns the expected
response code in the [200-300) range, Designer will change the state of the server from starting to a
started state. This implies there should be an enabled server connection for the local profile with
valid IS credentials.

Note: See the Server Fails to Start section for troubleshooting details.

3.4.3.2 Stop
The stop action executes a shell script for stopping the server. If the server fails to stop within the
timeout period, the user may terminate the stopping server (or continue to wait) as shown in
Designer.

Note: Termination does not affect the state of the actual server; it only resets Designer’s view of it.

Designer’s server shutdown detection uses a polling mechanism involving two steps. The first step
concludes once the server fails to provide a valid response code to Designer’s HTTP “ping” request.
The server pinged periodically until it gets the expected failure or the stop timeout has been
exceeded. The second step concludes once the OS process executing the shutdown script to
terminates. This gives time for the server to achieve a complete shutdown and cleanup. Once the
second step completes, the server state changes from “Stopping” to “Stopped”.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 56

3.4.3.3 Debug

When the server is started from Designer, the configured debug port for the server is always opened
even when the server is not started with the “Debugging” action. In other words, there is no
difference between how the server is started for the “Started” versus the “Debugging” action. The
distinction between these two actions occurs when Designer is updating its server state. For the
“Debugging” action, Designer will open a socket connection to the JPDA port to make debugging
source code possible.

Note: If the server is launched outside of Designer, make certain it is launched in Debug mode;
otherwise, it is not be possible for Designer to connect to the server in Debug mode if that JPDA port
is not open. In this case, Designer will change the server state to “Started”.

Note: If you are uncertain of the server’s state, use an OS utility to see if the JPDA port is in LISTEN
mode.

3.4.3.4 Restart
The “Restart” and “Restart in Debug” actions are a combination of the stop action followed by the
“Start” or “Debug” action.

3.5 Project Publisher

This section describes all the steps that occur when an Application Platform project is built in De-
signer and published into the server. There are three major phases to publishing.

• Building the project

• Assembling the project into a module

• Deploying the module into the server

3.5.1 Project Builds

Before a project can be published it must first be validated and compiled. During the build phase,
source code is compiled, additional metadata files may be produced, etc., but no additional bundle-
related activities occur at this time.

3.5.1.1 Build Actions
There are three Eclipse project build actions that are relevant to Application Platform project
building.

• Clean – purges transient files for a project

• Incremental Build – execute build tasks for only those modified resources since a prior build

• Full Build – build or rebuild all project resources regardless of current build state

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 57

For more details, please consult the Workbench User Guide in the Designer Help Contents.

3.5.1.2 Application Platform Project Builders
Application Platform includes custom Eclipse project builders. These builders execute in the pre-
scribed order as a means to silently perform Application Platform tasks on a project during the
Eclipse build actions – clean, incremental build, and full build. This screenshot illustrates Applica-
tion Platform’s project builders.

3.5.1.2.1 Application Platform Builder
The Application Platform Builder is installed when the Application Platform Core facet is enabled for
the project. It performs additional tasks in response to Eclipse build actions. For example, it passes
additional context information captured during project compilation to the Project Publisher when it
is time to assemble the project bundle.

Note: Do not disable or remove this builder from the project.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 58

3.5.1.2.2 Application Platform Service Publishing Builder
This builder is installed when the Application Platform Core facet is enabled for the project. . It
performs additional tasks such as creating additional files necessary to publish a project’s services in
the OSGi container.

Note: Do not disable or remove this builder from the project.

3.5.2 Server Operations for Projects

A project must be added to a server in the Servers view before it can be published into the server’s
OSGi container. The Servers view provides three actions to support this task.

3.5.2.1 Add or Remove Project

A project may be added to or removed from a server in the Servers view. Select the configured
server and select “Add and Remove…” menu item from the Servers context menu shown above. This
will present a new dialog where the user can add new projects or remove projects from the server.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 59

In this example, “MyJavaProject” is selected from the left pane and moved to the right pane.
Configured projects already published in the server, may be removed by moving them from the right
pane to the left. The list of configured projects on the right will be published to the server when the
Finish button is pressed.

3.5.2.1.1 Publish Changed Immediately
If the “If server is started, publish changes immediately” check box is checked, Designer will
immediately attempt to add or remove the projects as selected after clicking the Finish button.
When the check box is unchecked, the user must manually execute a publish request to install the
project bundle on the server.

Note: The checkbox also determines when projects are “unpublished”. When this check box is
unchecked and a project is removed from the server in the view shown above, the project’s bundle is
not removed from the server until the next time a publish operation is requested.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 60

3.5.2.1.2 Available Projects
As demonstrated in this screen shot, not every project created in Designer can be published into the
server. Notice there is a project called “NoAppPlatformProjectFacet” which is not included in the
available list of projects for the Add and Remove dialog.

For a project to be eligible for installation into the server, the following must be true:

• Project must not be closed

• Project must have at least the Application Platform Core project facet

Once a project has been added to the server, it may still be removed from the server’s Configured
list even if the project is later closed in the explorer view.

Important: Do not delete a project from explorer that is published to the server. This will
leave the project orphaned in the server with no easy means to remove it. See the section

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 61

called Manually Uninstall Bundle from Server for the manual steps required to remove a
published project.

For example, this screenshot shows a server named “webMethods Integration Server at localhost” in
a “started” state with a “synchronized” project named “MyJavaProject”.

Note: For more details regarding server states and project statuses, please refer to the “Server
Views” section of the “Web Tools Platform User Guide” under Designer’s Help Contents.

3.5.2.2 Publish
The server publish operation will assemble a project bundle from the project files from the most
recent build. Use this operation if making small incremental changes for the fastest results.

3.5.2.3 Clean
The clean operation will ensure the project is fully rebuilt and not incrementally published into the
container.

3.5.3 Assemble the Project Bundle

Once the project has been built, it is time to assemble the project into a module – i.e. create an
OSGi bundle. This process is divided into several steps as well.

• Create the OSGi manifest

• Create the jar and stage it in an Artifacts directory

• Copy the jar to the bundle repository

3.5.3.1 OSGi Manifest
The first stage of bundle creation pertains to the OSGi manifest for the project. If an OSGi
MANIFEST.MF file is included in the project’s src/main/resources/ folder, it will serve as a template
during bundle creation. Otherwise, a manifest is created automatically. Often the default manifest
will be sufficient for many projects; however, at times it will be necessary to create a custom

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 62

manifest. A couple of examples where this will be necessary is included to convey the point, but this
list is not complete.

3.5.3.1.1 Indirect Package Imports
The default OSGi manifest is created with a list of package imports by analyzing the project classes’
imports to locate external package dependencies found in the bundle. Since everything the project
is compiled against is also a bundle, the analysis can match package imports to specific bundle
versions. Sometimes dependencies are declared in additional metadata such as XML files and invoked
indirectly. (e.g. class references in web.xml descriptors.) These additional dependencies must
exported by another bundle in the container, and a custom manifest must be produced so the
additional package(s) may also be imported.

3.5.3.1.2 Reduced Scope of Package Exports
By default all packages defined in the project bundle are exported. If this is undesirable, then an
alternate set of exports may be declared in a custom manifest. For example, it is considered an
OSGi best practice to only export packages representing a public API while the implementation
packages remain private to the bundle.

3.5.3.2 Artifacts directory
Once the project has been completely compiled, its contents are inserted into a bundle jar and
copied to a working directory outside of the project’s workspace. The location must be outside of
the workspace because Eclipse locks the entire workspace while building projects. This special
“artifacts” directory can be found in the following location: ${user
workspace}/.metadata/.plugins/com.softwareag.ide.eclipse.pld.bundle.builder.ui/${project
name}/artifacts/.

When executing the Create Project Bundle context menu, the project bundle is copied to this
location. The bundle will be deleted from the artifacts directory after a successful clean build
action.

Note: The location of the artifacts directory is an implementation detail documented here for
diagnostic purposes. Do not depend upon its existence or location as these details could change in
the future.

3.5.3.3 Repository directory
When publishing a project to a server, the project bundle is copied from its artifacts directory to the
repository directory in the server. This directory is the active location for all customer-developed
projects published to the server. The repository directory can be found in the following location:
${Application Platform install home}/profiles/IS_default/workspace/app-
platform/deployer/bundles/. This relative path is not configurable. When project bundles are
published or unpublished from the container, they are either added or removed from the repository
directory.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 63

Note: “IS_default” is the only instance name supported at this time.

3.5.3.4 Deployment
The server uses an OSGi service provided by the Common Platform which is used to install and/or
remove bundles in the repository directory. Any errors are returned by this server-side service to the
Project Publisher and updated in the Designer’s error view.

Note: The server does not support dynamic “hot” deployment. One cannot install or remove bundles
by simply adding or removing files in this directory.

3.6 Managing Dependencies

Applications are usually composed of more than just one or more source projects developed in De-
signer. Projects may have dependencies to 3rd party bundles not currently in the platform as well as
bundles produced by other teams. Two views in the Application Platform facilitate this purpose.
The Bundle Publisher view is used to publish (or unpublish) a bundle into (or from) a container. The
Bundle Manager view is used to create a bundle from a plain jar – i.e. a jar that is not an OSGi bun-
dle.

3.6.1 Bundle Publisher

The Bundle Publisher provides a convenient mechanism for installing or removing additional bundles
into the server from Designer.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 64

Note: Bundle Publisher is not used to publish a project’s bundle into the server. The Servers view
should be used for that activity.

Important: Consult Software AG documentation for details regarding the Asset Builder Envi-
ronment and Deployer components. These tools should be used to deploy assets outside of
Designer – e.g. automated builds.

3.6.1.1 View Contents
The list of items displayed in the view comes from the following locations

• A selected project’s classpath

• A directory configured for the Bundle Manager preferences settings.

• The server runtime container

Depending upon the Bundle Publisher’s preference settings, certain categories of items may be
excluded from the display. See the Bundle Publisher section for more details.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 65

The view uses different icons to distinguish between plain Java jars and OSGi bundles. In the
example below, My-Project-A.jar is an OSGi bundle whereas Jakarta-oro.jar is a plain Java jar.

3.6.1.2 Server State and View Checkboxes
The Bundle Publisher uses the checkbox state to perform publish and unpublish operations from one
view at the same time. This is best described with an example. The next sections will demonstrate
the various combinations in which bundles may be installed or removed.

3.6.1.2.1 Initial View
Assume there are two bundles residing in a directory included in the Bundle Manager’s configuration.
Neither bundle has been installed in the server. There is no server status, and neither bundle is
checked.

3.6.1.2.2 Publish A Bundle
The user selects a bundle by checking it, and presses the server update toolbar action. Now the view
shows that MyProject-A has a server status. Notice the bundle is still checked after the view has
refreshed. The checked state implies this bundle is already published in the server.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 66

3.6.1.2.3 Bundle Publish and Unpublish Another Bundle
Next, the user decides to unpublish the MyProject-A bundle by unchecking the published MyProject-A
bundle, and at the same time checking the MyProject-B bundle. So to be clear, two actions are
performed before the user clicks the server update toolbar action. After pressing the update button
(i.e. the floppy disk icon), the view refreshes to the following state. Notice MyProject-A bundle is no
longer checked whle MyProject-B is checked.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 67

Using the checkbox idiom to reflect the current deployment status of a bundle provides the means to
quickly alter a collection of bundles. This is very useful when generating a dependency graph to in-
clude or remove bundles from a collection.

3.6.1.3 Dependency Graphs
The Bundle Publisher uses a dialog to convey potential warnings and errors that are discovered when
validating a collection of bundles. The group of bundles is used to form a dependency graph by ex-
amining all of the OSGi manifests in the collection to determine dependencies between the bundles.
When the server is started, those active bundles are also included in the graph unless they are ex-
plicitly removed. Several examples are provided to explain the purpose for this validation.

3.6.1.3.1 Publish a Bundle with Missing Dependency
Assume there are two bundles named MyProject-A and MyProject-B, and neither have been published
to the server. MyProject-B has a dependency upon MyProject-A and MyProject-A has a dependency
on a package (com.softwareag.demo.c) that is not exported by the project or any bundle in the
server. This represents a missing dependency. Attempts to publish MyProject-A will fail since the
import is required.

 Imports Package Exports Package

MyProject-A com.softwareag.demo.c com.softwareag.demo.a

MyProject-B com.softwareag.demo.a com.softwareag.demo.b

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 68

In this scenario, selecting the two bundles above and performing a validation will return a warning
message as follows.

3.6.1.3.2 Remove a Bundle that Provides a Dependency

Assume there are two bundles named MyProject-A and MyProject-B. MyProject-B has a dependency
upon MyProject-A and both have been published to the server.

 Imports Package Exports Package

MyProject-A com.softwareag.demo.a

MyProject-B com.softwareag.demo.a com.softwareag.demo.b

Unselecting MyProject-A (by unchecking its checkbox)

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 69

Pressing the validation toolbar action will produce a warning message because MyProject-B is still
installed on the server and removing MyProject-A will result in a missing dependency.

3.6.1.3.3 Circular Dependencies
Assume there are three bundles named MyProject-A, MyProject-B and MyProject-C, and none have
been published to the server. MyProject-A has a dependency upon MyProject-B and MyProject-B has
a dependency on MyProject-C. MyProject-C has a dependency upon MyProject-A which represents a
circular dependency. Attempts to publish these bundles will fail.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 70

 Imports Package Exports Package

MyProject-A com.softwareag.demo.b com.softwareag.demo.a

MyProject-B com.softwareag.demo.c com.softwareag.demo.b

MyProject-C com.softwareag.demo.a com.softwareag.demo.c

In this scenario, selecting the two bundles above and performing a validation will return a warning
message as follows. So in the first warning message, MyProject-C bundle is a dependency for
Myproject-B. MyProject-C depends upon MyProiect-A which depends upon MyProject-B which
completes the circular reference.

3.6.1.3.4 Message Details
There are three kinds of messages displayed in the dialog.

• Info Messages – Status messages conveying information

• Warning Messages – Usually implies a dependency issue that may prevent bundles from
reaching an active state

• Error Messages – This implies the bundle is invalid. E.g. a corrupt file or jar with an invalid
OSGi manifest

3.6.1.3.5 Dependency Checks
The following validation checks are performed when creating a dependency graph for a collection of
bundles.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 71

Warning Notes

Attempt to publish a bundle that exports the
same package and version.

Attempt publish a bundle that imports a package
that is not exported.

Note, there is a Bundle Publisher preference
setting to ignore optional missing imports. i.e.
Bundles with package imports containing this
manifest qualifier: ;resolution:=optional
configuration

Attempt to unpublish a bundle that exports a
package imported by another bundle.

Attempt to unpublish a bundle when one more
bundles require it.

Attempt to publish a bundle that will produce a
cyclic dependency or circular reference.

3.6.1.4 Refresh Publisher View
The Refresh toolbar action is used to refresh the contents displayed in the Bundle Manager view.

3.6.1.5 Validate Bundles
The Validate Bundles toolbar action is used to perform a dependency check on a selection of
bundles. Its purpose is to catch potential errors before an attempt to publish to the server is
performed. A dependency graph is produced for the checked bundles based upon each bundle’s
declared package import and exports. When the server is started, the collection of checked bundles
will include those items which are currently published to the server. This gives the opportunity to
test the potential impact to the server when bundles are removed.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 72

Note: The text filter must be cleared before validation or update toolbar actions may be invoked.

3.6.1.6 Update Server
The update server toolbar action is used to publish or unpublish selected bundles into the server.

Note: The text filter must be cleared before validation or update toolbar actions may be invoked.

3.6.1.7 Configure Bundle Publish Settings
This configuration settings toolbar action launched the preference settings dialog for the Bundle
Publisher. Please refer to Bundle Publisher section for configuration details.

3.6.2 Bundle Manager

The Bundle Manager view is used to create bundles from non-OSGi jars. The screenshot below shows
a “jfind.jar” plain jar and a “guava-17.0.jar” bundle and are used to illustrate the functions de-
scribed in the next sections.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 73

3.6.2.1 Create Wrapper Bundle
This toolbar action is used to create an OSGi bundle to host an ordinary jar so it may be published
into the server. In the screenshot below, an OSGi bundle (guava-17.0.jar) and a plain jar (jfind.jar)
are shown. Notice the icons are different for each type. Attempts to create a wrapper bundle while
selecting the guava bundle will result in an error dialog.

One or more plain jars may be selected when invoking this action. In that case, all of the selected
jars will be included in the wrapper bundle.

3.6.2.2 Delete Bundle
This toolbar action is used to delete a bundle or jar from the any of the directories defined for the
Bundle Manager’s configuration settings. Bundles that are published into the development server
must first be unpublished via the Bundle Publisher before they are deleted in this view.

Note: The server must be started before bundles may be removed.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 74

3.6.2.3 Configure Bundle Manager Settings
This configuration settings action configures the preference settings for the Bundle Manager. Please
refer to the Bundle Manager section for configuration details.

3.7 App Platform Configuration

Application Platform configuration is supported for the following elements

• Bundle Publisher View

• Bundle Manager View

• Eclipse Capabilities

• Servers View

• Project Configuration

• Customer Applications

3.7.1 Bundle Publisher

The Bundle Publisher configuration is divided into two sections. View contents determine what items
are shown in the Bundle Publisher view. The View Contents section contains check boxes to provide
fine-grained control over the contents included in the view. The Bundle Dependency Validation sec-
tion may be used to limit the amount of content that is returned to the user during bundle validation
or conveying bundle changes to the server.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 75

3.7.1.1 Plain Jars
When the “Plain Jars (not OSGi)“ checkbox is enabled, plain jars (i.e. jars which are not OSGi
bundles) will be included in the Bundle Publisher view.

Note: Plain jars are not eligible for publish, so all plain jars are not eligible for selection in the view.

3.7.1.2 User Bundles
The “User Bundles“ checkbox is included simply for the sake of clarity. By default, the view will
always display bundles included in the selected project as well as any bundles that reside in one of
the directories configured for the Bundle Manager. Therefore it is always enabled and cannot be
unchecked.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 76

3.7.1.3 Platform Bundles
Check the “Platform Server Bundles“ checkbox, to see a list of the platform bundles which are
delivered with the server profile. These bundles should not be removed; therefore, the Bundle
Publisher view excludes these bundles by default. When this checkbox is enabled, the additional
server bundles will be included in the view.

Note: Enabling this checkbox will add dozens of platform bundles to the Bundle Manager view.

3.7.1.4 Server Bundle Warnings
The Bundle Publisher only displays OSGi manifest warnings for active server bundles when the
“Server Bundle Warnings” is enabled.

Note: Enabling this checkbox may produce excessive warning messages in unrelated bundles when
publishing or validating bundles.

3.7.1.5 Optional Imports

Check the “Show warnings for missing optional imports“ checkbox to include warning messages when
imported packages for a bundle are not included. These warnings are displayed when Bundle
Publisher is validating bundles or applying updates to the server. If one of the bundles in the set has
a MANIFEST.MF containing an Import-Package header with the “resolution := optional” qualifier, and
no active bundle exports this package, a warning will only be returned if this check box is enabled.

Note: There may be a valid case where a missing package does not cause trouble – e.g. imports to
test frameworks.

3.7.2 Bundle Manager

The Bundle Manager configuration settings is used to define one or more directories that may contain
additional bundles to install into the server. Bundles that reside in one of these directories may be
shared across user projects.

The screenshot below shows one directory added to the preference settings.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 77

3.7.3 Capabilities

Eclipse capabilities are used to associate a collection of views or activities to a specific purpose. For
example, Eclipse includes a J2EE capability including many wizards and views which are useful when
working on J2EE projects. Once defined, a capability can be used to quickly hide those related
items.

The Application Platform defines its own capabilities as well. The configuration settings are found
under the Window/Preferences/General/Capabilities menu path.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 78

Note: Unchecking the App Platform capability will cause the App Platform perspective to become
hidden.

Press the “Advanced…” button to display the next configuration view. For example, uncheck the
Integration Server Extensions checkbox to hide Application Platform features such as the IS Service
Wizard.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 79

3.7.4 Server View Configuration

There Servers view has configuration preferences that are accessible under Win-
dow/Preferences/Server menu.

3.7.4.1 Servers View Updates
When this check box is enabled, focus will be redirected to the Servers whenever there is activity
during startup, shutdown or project changes in the server.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 80

3.7.4.2 Server Launch Preferences

The Eclipse WST project offers configuration for the items shown below. For more details regarding
these preference settings, please consult the Web Tools Platform User Guide in Designer’s Help
Contents.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 81

3.7.5 Project Configuration

User projects created in Designer contain project-specific properties. Those projects containing the
Application Platform Core project facet will include an Application Platform project property con-
figuration.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 82

3.7.5.1 Project Version
This version string must be valid for an OSGi bundle version. Specifically, it must include three
numeric values separated by periods which are used to convey a version for the project’s
component. When a bundle is created for the project, its Bundle-Version manifest header will be set
to the same value defined here.

Note: If an explicit manifest is created using the Create Project Manifest tool from the project
context menu, the manifest must be updated (or recreated) if the version is changed to ensure the
“Bundle-Version:” manifest header is up to date.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 83

Important: To use this version property for projects deployed using Deployer, a project
manifest must be explicitly created. The manifest must be included with other project files
committed to source control, so it is available when using the Asset Builder Environment. This
ensures the bundle produced by ABE will contain the expected Bundle-Version property.

3.7.5.2 Project Bundle

For web application projects created with the “Application Platform Web” project facet, a project’s
web context path may be changed after the project has been created.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 84

3.7.6 Customer Applications

Developed applications may include property files containing key-value pairs so these values may be
configured in each server the application is deployed into. The Application Platform expects these
key-value pairs to be implemented as properties files. This section explains how these properties
files are created and installed into the server.

The following rules apply

• All properties files must be in the “src/main/config” folder for its project.

• Each property file must have a unique name so there is no filename collision once these files
are deployed to the server.

• The file name should follow a reverse domain name convention. E.g. Company “XYZ” might
have a com.xyz.demo.dataSource.properties file.

• File names beginning with “com.softwareag.*” are reserved for internal use. These files will
not be deployed.

• Properties files may not be shared across projects since they are removed when a project is
unpublished.

The diagram below illustrates the steps for managing configuration data while in Designer.

3.7.6.1 Step 1: Create Project
Use Designer to create a properties file in the “src/main/config” directory and implement a Java
class to use these configuration properties.

Note: When a project is unpublished from the server using Designer’s Servers view, the affected
properties file will be removed from the server.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 85

3.7.6.2 Step 2: Publish the Project
When the project is published from Designer, a bundle will be created and the contents from the
“src/main/config” folder are included in the bundle. When the project bundle is created, a special
“AP-Bundle-ConfigFiles” header is inserted into the manifest.

Note: Do not remove this property header from the bundle. This header is only produced when
projects are published from Designer; The Asset Build Environment tool does not create this header
when it produces a project bundle.

Important: Each time a project is published to the server, the configuration properties files
contained in the project will overwrite any files that may reside on the server.

3.7.6.3 Step 3: Project Properties Extraction
When a project bundle is installed into the server, the Application Platform will inspect the bundle
looking for the special “AP-Bundle-ConfigFiles” header. If found, it extras all listed property files and
installs them into the server profile’s directory for dynamic configuration – i.e.
${sag.install.dir}/profiles/${server
instance}/configuration/com.softwareag.platform.config.propsloader/ directory.

3.7.6.4 Step 4: Notify Application Service of File Updates
After an application is published in the server, the server will respond to any subsequent edits to the
properties file by notifying the managed service. For specific details, please consult the “Application
Platform API and Programming Guide” in Designer’s Help Contents.

3.8 Integration Server Features

Application Platform has features for exposing IS Java and Flow services to Application Platform pro-
jects. Java source file binding classes are code-generated to facilitate calling these IS services. The
reverse scenario is also supported. Application Platform includes annotations that can be attached
to methods. When projects containing these annotated methods are published to the Integration
Server, IS service bindings are created which can be invoked in IS Flow services or executed from IS
Java services.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 86

3.8.1 Calling Integration Server Services from App Platform Projects

The following steps are necessary to create Java source files that are essentially client stubs used to
invoke IS Java and Flow Services from an Application Platform project. For specific details, please
consult the “Application Platform API and Programming Guide” in Designer’s Help Contents.

3.8.1.1 IS Service Wizard
The IS Service Wizard is a tool for selecting the one or more IS services. It is used in the Application
Platform perspective. One or more IS services may be selected. Once a destination project is
selected and the user clicks the Finish button, a set of Java source files is generated. Only
customer-developed services with valid IO specifications should be used. Only projects that have the
IS Service Extensions project facet enabled may be selected.

Note: None of the Integration Server product services contained in packages that begin with Wm* are
visible in the wizard. Therefore, no services are available for selection until at least one custom
service has been created by the user.

For example, this screenshot shows one custom service in the demo package called “today”.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 87

Note: Control-Shift-Z key binding may be used to launch the wizard.

Two context menu actions are available when selecting a node in the tree view.

3.8.1.1.1 Connect to Server
The “Connect to Server” context menu is enabled if Designer’s Service Development perspective has
not connected to server yet.

3.8.1.1.2 Refresh Tree Contents
The “Refresh Tree Contents” context menu is used to refresh the view to contain all created services
and packages.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 88

3.8.1.2 Generated Java Bindings
Pressing the Finish button completes the wizard and Java bindings are created for the selected
services. The source files will be inserted into the source directory as defined for the IS Extensions
project facet. The default location is “genSource”. The package name is determined from the
Integration Server service and its parent folder name(s). Each selected IS service has its own
dedicated Java package to ensure there is no overlap with the generated input and output classes.
Minimally, source files are created for the input, output and service invocation. Given the previous
example, this is the package layout that is created for the generated source files.

Note: If deploying the project into production, the generated source directory should be set to
“src/main/java”. This restriction may be removed in future releases.

3.8.1.3 Coding considerations
There are some architectural differences between coding with Java and with IS services that should
be kept in mind when using this Application Platform capability.

• Where Java is Object-Oriented, IS services are stateless operations on a pipeline. When a
Java class is generated to represent an IS service, the class has a single method to represent
service invocation. The IS pipeline is essentially a collection of name/value pairs, or map.

• Where Java methods are defined in classes which are in packages, IS services are defined in
folders and in IS packages. Java packages and IS packages are different concepts. A class’s
Java package path uniquely represents the class in the Java class namespace. An IS package
(‘Default’ in the example above) is a unit of packaging, but not part of the service
namespace. In the IS namespace, the folder and service name uniquely identify a service
(‘demo:today’ in the example above). The folder name in this example is very simple - in

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 89

general a folder name is a dot-separated list of words; for example, this.is.my.folder.name.
It’s not uncommon for IS folders to include capital letters, Java packages are almost always
lowercase. Application Platform combines the IS folder and service names to create a Java
package name (‘demo.today’ in the example above).

• Java and IS use different data types. Java’s data type system is very rich, including primitive
types and every class ever created. IS has a much smaller data type system. See the table
below for data type mapping. IS supports String and Java primitive wrapper types, but
complex structures IS services are typically modeled using Document data type. A Document
is essentially a map where each element associates a name with a value. The values can be
String, primitive wrapper or Document. So an IS Document with nested Document elements is
very much like a map representing properties in a Java Bean. Application Platform takes
advantage of this similarity. The generated input and output classes (‘PLS_TodayInput’ and
‘PLS_TodayOutput’ in the example above) are simple Java Beans with a property representing
each input or output value. Is the IS service input signature includes a Document type then a
Java (Bean) class is generated to represent the Document structure.

Java Data Type IS Data Type

java.lang.String String

Primitives; int, float, … Object->Primitive Wrapper; Integer, Float, …

Primitive Wrappers;

java.lang.Integer,

java.lang.Float, …

Object->Primitive Wrapper; Integer, Float, …

java.util.Date Object->Primitive Wrapper; Date

Java Bean class Document

Map of property name => property value, where
String and primitive properties are represented as
described above and other types are represented as
nested Documents.

• Application Platform and IS use different class loaders, so object references are not
transferred between them. Only String, Date, primitive wrappers and arrays of these
elements have the same representation in IS and Java. More complex object structures are
represented by Java Beans on the Java side and by IS Documents on the IS. The list of
elements with similar representation includes byte array, so it is possible to pass serialized
objects, but the Application Platform user must handle serialization and ensure that
appropriate classes are available on both sides.

• Java and IS recognize different words as having special meaning. An IS service can have input
parameter named ‘class’, but ‘class’ is a reserved word in Java. Also, a reserved word in
Java may be a valid IS service or folder name. The AP code generation will prepend ‘PLS_’ or
‘pls_’ to generated class and property names to avoids some issues. But there may still be

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 90

situations where generated code does not compile properly. The simplest work-around for
this situation is to use Flow mapping on the IS side to change parameter or service names.

• Java and IS recognize different sets of characters as having special meaning. An IS service
and parameter names can use ‘@’, ‘*’ and other characters that are not allowed in Java class
and variable names. The AP code generation does not currently attempt to detect or avoid
this situation. As in the previous bullet, a simple work-around is to avoid the conflict by
changing service and property names on the IS side.

• AP code generation relies on the IS service to have an explicit service signature defining all
input and output elements. Such a signature is not required on the IS side, though
recommended. If an IS service without signature must be called from Java and it’s not
possible to add a signature, then a Flow wrapper should be created that has an appropriate
signature and invokes the service. The AP code generation can then work with this new Flow
service.

3.9 Calling App Platform Services from Integration Server Services

Exposing Java methods to the Integration Server requires the use of annotations to mark the specific
method(s) to expose. This section provides an overview of the required functional steps. For
specific details, please consult the “Application Platform API and Programming Guide” in Designer’s
Help Contents.

3.9.1 Annotate a method

The first step is to mark the class and method with the necessary annotations. The @Service class
annotation identifies the class as a service, so it can be included in the server’s OSGi service registry.
The @ExposeToIS class annotation provides additional details needed for the Integration Server. The
@ExposedMethod method annotation identifies the method to be used when creating an Integration
Server service.

Method

3.9.2 Publish the Project

When the project’s bundle is assembled, it will contain additional metadata to be used by the Inte-
gration Sever when creating IS service bindings.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 91

3.9.3 Verify the IS package

Confirm the IS package described in the @ExposeToIS annotation exists, and it contains the proper
service signatures.

3.9.4 Coding Considerations

There are some architectural differences between coding with Java and with IS services that should
be kept in mind when using this Application Platform capability.

• IS services are stateless operations on a pipeline. There is no provision for holding references
to Java objects in the IS pipeline. So, exposed operations should not depend on Java objects
holding state.

• Application Platform and IS use different class loaders, so object references are not
transferred between them. Java objects used in a method signature must be Java Beans.
The IS services that are generated will include signatures that use Documents to represent the
Java Bean objects.

• See the ‘Coding considerations’ section for ‘Generated Java Bindings’ above.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 92

4 Production Activities

This section discusses tasks that occur after an application project is implemented, and it is time to
deploy the project into servers which are downstream from the developer’s environment. In this
case, two items are discussed:

• Project deployment

• Project configuration

4.1 Project Deployment

Application Platform projects use the Software AG Deployer product to ensure reproducible builds of
their developed applications are produced outside of Designer. This section presents a high-level
explanation of the steps necessary to deploy a project. For precise details including configuration of
properties files, please refer to the Deployer product documentation mentioned in the Deployer sec-
tion. There are two steps to deploying a project using these tools.

4.1.1 Asset Build Environment

First, the Asset Build Environment (ABE) command line tool is used to create bundles from source for
each of the projects. The Deployer documentation refers to these generated files as “assets”. Be-
fore the tool can be executed, a set of properties files must be configured. There are two sets of
properties files: one for the ABE tool, and one for each application project.

4.1.1.1 ABE Configuration
ABE has its own “build.properties” file in the
“${sag.install.home}/common/AssetBuildEnvironment/master_build” directory. This file includes
properties to control which products are included, the location of project source, etc.

4.1.1.2 User Project Configuration
For each of the customer’s application projects, there is an “assetBuild.properties” file produced by
Designer when the project is published. The file is created in the project’s root folder. This file
should be committed to source control with the rest of the project source files.

Property name Value
type

description Required?

 component.name String Name used for bundle file
name, the Bundle-Name:
and Bundle-SymboliName:
manifest headers

Yes

component.type String For Application Platform,
this value should always

Yes

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 93

be “bundle”

component.home String Path to project source
location

No, ABE will
assume a pro-
ject with “com-
ponent.name” in
mas-
ter_build/build.
properties
“build.source.pr
ojects”

component.dependencies Comma
delim-
ited
String

List of component names
to be included on the
classpath when building
this project.

No

build.external.dir Reserved for future use. No

component.webcontext Reserved for future use. No, the web
context path
defaults to the
project name,
but it may be
over-ridden via
the Web-
ContextPath:
OSGi manifest
header.

component.version Reserved for future use. No, Specify bun-
dle version in
the project’s
MANIFEST.MF
file via Bundle-
Version: header.

component.src.dirs Reserved for future use. No, all source
files must be
under
“src/main/java”
directory.

component.dependencies.external Reserved for future use. No

For more details regarding ABE, please refer to the “Deployer User’s Guide” cross-product docu-
ment.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 94

4.1.2 Shared Bundles

Currently, it is not possible to deploy bundles using ABE in the same manner as the Bundle Publisher
in Designer. There are two alternatives available at this time.

4.1.2.1 Embedded in the Project
The current approach is to include bundles in the “lib” directory of the project so they will be part
of that project bundle’s classpath. This approach implies that every project requiring the dependen-
cy must include this bundle in its own project.

4.1.2.2 Manual Installation
Manually install a bundle into the target server. Please refer to third party OSGi documentation for
more details.

4.1.3 Deploying Assets

Once assets are created using the ABE command-line tool, the Deployer tool is used to install assets
into the target servers. For more details regarding Deployer, please refer to the “Deployer User’s
Guide” cross-product document.

4.2 Project Configuration

Application Platform projects may include configuration data with the projects which is included
when the projects are published to the server. Once a project is on the server, those configuration
values may be modified as needed.

4.2.1 Project Dynamic Configuration

The App Platform runtime supports dynamic configuration of project properties at runtime through
the use of the OSGi ConfigurationAdmin service. In order to get the benefit of this feature, users
must follow some guidelines when using configurable properties in their projects.

In traditional Java/JEE projects, configuration files such as properties files are loaded using the
class/classloader of the currently executing method or thread. This implies that the files are present
in the classpath of the running program and are accessible at runtime either with the project bundle
that is published in the runtime or globally as part of the runtime container. The drawback of this
approach is that the properties file contents cannot be dynamically updated through some external
mechanism such as an admin interface without re-publishing the project bundle or restarting the
runtime container.

To support dynamic updates to project properties, App Platform projects should use the following
steps during development time.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 95

1. Keep the .properties file in the src/main/config directory of the project

2. Name the properties file with a unique name – this name acts as a persistent identifier
(PID) that identifies this resource. See the section Customer Applications for additional
recommendations regarding the properties file.

3. Classes that need dynamic updates to this resource must:

o Implement the OSGi org.osgi.service.cm.ManagedService interface and the associ-
ated updated (Map properties) callback method.

o Publish this class as a managed service so that it can be notified about configura-
tion file changes

 This is done using the @Service annotation to publish the class as an OSGi
service

 The annotation must specify the org.osgi.service.cm.ManagedService type as
one of the exported interfaces

The .properties file is packaged with the bundle being published in the container, but it is extracted
and stored in the common configuration store in the installed runtime under this directory path:
${sag.install.dir}/profiles/IS_default/configuration/com.softwareag.platform.config.propsloader/

For more details, please consult the “Application Platform API and Programming Guide” in Designer’s
Help Contents.

4.2.2 Software AG Platform Manager (SPM)

The platform manager is used to monitor and manage a product installation. The default URL is
http://hostname:8092/spm/. This URL may be used to provide a read-only view of the Application
Platform configuration details.

Note: The port number is determined by the product installer. This number will be different if the
port is in use on the target system.

This screenshot shows an example of the Application Platform engine for the Integration Server’s
default instance. A project’s configuration properties may be viewed by clicking through a sequence
of pages starting with the Component Id hyperlink shown below.

https://osgi.org/javadoc/r4v42/org/osgi/service/cm/ManagedService.html
http://hostname:8092/spm/

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 96

Next, Click on the Configuration Instances hyperlink.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 97

Clicking on the “ID” column hyperlink for the Application Platform component shown below will dis-
play the key-value pairs from the configuration file referenced in the “Description” column.

Note: After undeployment of a project, its configuration instance may still be cached in the Plat-
form Manager. Append a “?refresh=true” query parameter to the URL to ensure the most current
data is returned in the browser.

Please refer to product documentation found under the Platform Manager and Command Central sec-
tion for more details.

4.2.3 Command Central Client Tools

The Command Central product includes command line interface and a server for hosting a web appli-
cation used to access a configured group of products across one or more servers. For more details,
please see the documentation referenced in the Platform Manager and Command Central section.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 98

5 Troubleshooting

This section provides guidance to some of the more common issues. The sections are divided be-
tween Application Platform issues encountered in Designer versus the server.

5.1 Logging

5.1.1 Designer Log Files

The log file for Designer is “.log” and may be found in a directory under the workspace. ${work-
space}\.metadata\.log

5.1.2 Designer Trace Logging

Eclipse includes a tracing convention for capturing additional content in the event something goes
wrong. Application Platform supports this convention too; however, some additional configuration
steps are required. Please consult the Workbench Users Guide

5.1.3 Server Log Files

There are several log files produced in the server. For Integration Server’s default instance, the path
is: ${sag.install.dir}/profiles/IS_default/logs/. There are two files wrapper.log and sag-osgi.log.

5.1.4 Configure Server Debug Output

Additional debug output maybe captured by configuring appenders found in the server. For the Inte-
gration Server’s default instance, the path is:
${sag.install.dir}/profiles/IS_default/configuration/logging/log_config.xml.

For example, to capture Application Platform debug messages, add this formatter to the
log_config.xml and restart the server.

<logger name="com.softwareag.applatform.pls" additivity="true">
 <level value="debug" />
</logger>

For additional details, please refer to the product documentation under the Server section.

5.2 OSGi Console

Designer includes a “Host OSGi” console in the Console view which may be used to examine the sta-
tus of bundles installed in the Eclipse JVM. Similarly, it is possible to configure the server to permit
access to an OSGi console too. The steps that follow illustrate how to setup an unauthenticated con-
nection to the server in a development environment. It is not intended for productions systems.

Important: The OSGi console is an advanced feature. Proceed with caution when using this diagnostic
tool.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 99

5.2.1 Server Configuration

Before the OSGi console may be used to connect to the server, its OSGi configuration must be
updated first. Edit the config.ini file for the server and add an unused port value for the key.

For example, c:\SoftwareAG\profiles\IS_default\configuration\config.ini

Note: If the server is running, it must be stopped and restarted before this change will take effect.

5.2.2 Terminal View Configuration

Once the server has been started, configure a view to connect to the port and press the Ok button.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 100

5.2.3 OSGi Console

Click in the Terminal view and press the return key. An ‘osgi>’ prompt should appear. This
screenshot shows the bundle state for a published project bundle. Help is available by typing “help”
to get a list of the registered commands.

5.3 Server Views Problems

This section discusses the most common scenarios for publishing projects into the server.

5.3.1 Server is installed as a service

It is strongly advised that the server is installed as an “application” instead of a “service” when in-
stalling the product. This is because the service wrapper scripts will not start the server with the
expected configuration. This can lead to a mismatched configuration between Designer and the
server. For example, the service will be started without the JPDA debugging port configured and
opened.

In the event of this situation, stopping the server and then restarting it from Designer should resolve
the problem.

5.3.2 Server immediately fails to start

If the server state in Server views transitions to an error immediately after it is started, confirm the
server start up script runs synchronously. Confirm the server’s runtime environment

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 101

Note: Please confirm the following environment variable BLOCKING_SCRIPT is not set or set to yes –
i.e. BLOCKING_SCRIPT=yes Consult the Integration Server product documentation for more details.

5.3.3 Server fails to start after timeout

Confirm the HTTP primary port number configured in the Servers view matches the port configured
for the server instance.

Verify valid user credentials exist for the matching Integration Server port configuration found in
Window/Preferences/Software AG/Integration Servers menu path.

5.4 Common Project Problems

This section covers some of the more common issues that can occur while creating and publishing
project bundles.

5.4.1 Unable to Publish Web Projects

The WmTomcat package must be deleted or disabled to ensure no interference with the Common
Tomcat Platform component. Leaving this package enabled can lead to failed publish attempts or
projects whose web context fails to initialize.

5.4.2 Can’t Add Project to Server

This can happen if the required Application Platform project facet(s) have not been included for the
project. Projects cannot be added to the server unless they have the Application Platform core fac-
et enabled. Be sure to use the Application Platform project wizards when building new projects.

5.4.3 Unable to Create Bundle

A project containing Java source files in the default package is not currently supported. Ensure your
source files have a qualified package name.

5.4.4 Manually Uninstall Bundle from Server

If a project is deleted from Designer while it is published to the server, the bundle will be orphaned.
In this situation, manual steps must be taken to remove the bundle from the server. Two steps are
required to complete this task while the server is started. For details about setting up an OSGi con-
sole to the server, please see OSGi Console section.

1. Delete the file from the repository directory.
${sag.install.home}/profiles/IS_default/workspace/app-platform/deployer/bundles/. This en-
sures the bundle is not re-deployed the next time the server is restarted.

2. Open an OSGi console to the server and uninstall the bundle using its bundle id.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 102

5.4.5 Class Loader Issues in Published Projects

Careful inspection of the stack trace can provide helpful clues as to the nature of the problem. The
following sections describe the most common scenarios.

5.4.5.1 ClassNotFoundException
A java.lang.ClassNotFoundException usually implies a situation where a class within the bundle fails
to instantiate a class (e.g. Class.forName(classname)) for one of these scenarios:

• The class is not in the bundle raising the exception

• The class is not exported by any other bundle in the server,

• The class is exported from a bundle in the server; however, the bundle raising the exception
does not import it

Usually, the 3rd scenario will be caught when the project is published as long as there is a source
code reference to the class. Please see the Indirect Package Imports section for an explanation.

Note: Jars added to a project’s classpath via its “lib” directory do not have its packages exported
with the project bundle. This feature is intended as a means to extend a project bundle’s classloader
by including additional classes that are private to the project.

5.4.5.2 NoClassDefFoundError
A java.lang.NoClassDefFoundError usually indicates that a loaded class in the bundle’s classloader
fails to reference another class while executing the loaded class.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 103

5.4.5.3 LinkageError and ClassCastException
These errors are usually symptomatic of classloader pollution. Under normal circumstances, a
collection of related bundles can be represented by a dependency graph based upon the chain of
package imports and exports formed between these bundles. It’s important to ensure that within a
specific graph, only one instance of a class type is loaded and accessed across the graph. If there are
multiple versions of the same class in the graph, then java.lang.LinkageError or
java.lang.ClassCastException are produced.

OSGi provides the means to ensure multiple versions of class instances can be loaded in the JVM, but
it’s important to ensure one execution thread consistently uses the same class type. The OSGi
“Export-Package:” header supports a “uses” directive to help provide clarity in the situation.

For example, in the diagram below, imagine bundle A imports a package from bundle B. One of the
exported packages contains a class with a method signature that includes parameters that are found
in bundle C. Meanwhile, bundle A has dependencies to another version of bundle C which leads to an
invalid classloader graph.

Note: If jars are added to a project’s classpath via its “lib” directory, care should be taken to ensure
these classes are not already exported by another bundle for the reasons mentioned above.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 104

5.4.6 References to Local Resources

Traditional Java programming techniques that rely upon access to metadata files (e.g. Java service
provider), Thread context classloader, etc. may not be remotely referenced across bundle bounda-
ries.

5.4.7 Unable to Publish Any Project Bundle

The server and designer must be co-located under the same root installation directory. The Runtime
Environment configuration is stored in a file under the workspace. This can lead to confusion if mul-
tiple workspaces are used with multiple installations of Application Platform. Confirm the runtime
environment’s directory path is correct for the current workspace. For example, if using Designer
installed under c:\SoftwareAG with workspace C:\dev\workspace_98\, make sure the Runtime Envi-
ronment configuration indicates C:\SoftwareAG\ for the installation home.

See the Server Runtime Environment section for more details.

5.5 Miscellaneous

This section covers a variety of issues.

5.5.1 Configuring an Eclipse project for Application Platform

This section provides the minimum steps which are required for importing an Eclipse project that was
not created using an Application Platform project wizard. The steps are defined for the two most
likely scenarios.

Note: The Application Platform project facets may be safely unselected and re-selected for a pro-
ject. No files are deleted when uninstalling one of these project facets.

5.5.1.1 Java Perspective Project Wizard
This section covers the steps for a project that was created using the basic “Java Project” project
wizard from the Java perspective.

1. Configure the project to use project facets for Application Platform. This can be done by
performing the following steps

a. Select the project in the Package or Project Explorer and invoke the context menu by
right-clicking and selected “Properties”

b. Select “Project Facets” from the Project preferences dialog.

c. Click the “Convert to faceted form…” link.

d. Ensure the Java project facet is selected for the appropriate version

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 105

e. Click the Software AG Application Platform group and select the “Application Platform
Core” facet.

f. Click the server extensions facet if necessary. For example, “Integration Server
Extensions” should be selected if using the IS Service Wizard.

g. Click the “Further configuration available…” link to provide additional configuration if
necessary. See the Project Facets section for more details.

2. Confirm the following actions were performed on the project after applying the facet
changes.

a. The source code folder “src” moved to “/src/main/java” and selected in project’s
“Build Paths” dialog.

b. A “src/main/resources” folder was created and selected in the project’s “Build Paths”
dialog.

c. A “lib/” folder was created.

d. A “src/main/config” folder was created.

5.5.1.2 Dynamic Web Project Wizard
This section covers the steps for a Servlet-based project that was created using the “Dynamic Web
Project”.

1. Edit the org.eclipse.wst.common.project.facet.core.xml file by removing the fixed element
for the “jst.web” facet. This file is in the “.settings” folder under the project’s directory in
the Eclipse workspace.

2. Refresh the project in the Package or Project Explorer.

3. Configure the project to use project facets for Application Platform. This can be done by
performing the following steps

a. Select the project in the Package or Project Explorer and invoke the context menu by
right-clicking and selected “Properties”

b. Select “Project Facets” from the Project preferences dialog.

c. Ensure the Java project facet is selected for the appropriate version

d. Uncheck the “Dynamic Web Module” facet. (The fixed element in step 1 must be
removed before this can be accomplished.)

e. Click the Software AG Application Platform group and select the “Application Platform
Core” and “Application Platform Web” facets.

f. Click the server extensions facet if necessary. For example, “Integration Server
Extensions” should be selected if using the IS Service Wizard.

g. Click the “Further configuration available…” link to provide additional configuration if
necessary.

4. Confirm the following actions were performed on the project after applying the facet
changes.

Application Platform User‘s Guide

©2014-2015 Software AG. All rights reserved. Page 106

a. The source code folder “src” moved to “/src/main/java” and the new location is
selected in Project’s “Build Paths” dialog.

b. A “src/main/resources” folder was created and selected in the project’s “Build Paths”
dialog.

c. A “lib/” folder was created.

d. A “src/main/config” folder was created.

e. A “src/main/webapp/WEB-INF” folder was created.

5. Use Designer to move the servlet content (e.g. jsp, css, javascript, html, etc.) from its
current location to the “src/main/webapp/…” path. For example, if the dynamic web
project “A” had its images under / “{A}/WebContent/images/…”, then the images folder
would move to “{A}/src/main/webapp/images/…”.

6. Repeat Step 5 until all of the web content has been re-located under the
“src/main/webapp” directory path.

	1 About this Guide
	1.1 Document Conventions
	1.2 Online Information

	2 Introduction
	2.1 Architecture
	2.1.1 Diagrams
	2.1.1.1 Component Stack
	2.1.1.2 Bundle Deployment
	2.1.1.3 Application Platform Configuration

	2.1.2 OSGi Foundation
	2.1.3 Designer IDE
	2.1.4 Server
	2.1.5 Deployer
	2.1.6 Platform Manager and Command Central

	3 Development Activities
	3.1 Getting Started
	3.1.1 Open Application Platform Perspective
	3.1.2 Server Runtime Environment
	3.1.3 Server Configuration
	3.1.4 Integration Server Considerations
	3.1.4.1 Disable the WmTomcat package
	3.1.4.2 Common Tomcat Platform

	3.1.5 Optional Configuration
	3.1.5.1 Eliminate NLS Warnings in Designer Error View
	3.1.5.2 Enable OSGi Console for Server Profile

	3.2 Application Platform Perspective
	3.2.1 Views
	3.2.1.1 Project Explorer
	3.2.1.2 Package Explorer
	3.2.1.3 Main Code Editor
	3.2.1.4 Outline
	3.2.1.5 Properties
	3.2.1.6 Servers
	3.2.1.7 Problems
	3.2.1.8 Java Doc
	3.2.1.9 Console
	3.2.1.10 Error Log
	3.2.1.11 Bundle Publisher
	3.2.1.12 Bundle Manager
	3.2.1.13 Terminal

	3.2.2 Context Menu
	3.2.2.1 Create Project Bundle
	3.2.2.2 Create Project Manifest

	3.3 Building a Project Using App Platform Project Wizards
	3.3.1 Project Facets
	3.3.2 Application Platform Runtime
	3.3.3 Java Project
	3.3.3.1 Initial Wizard Page
	3.3.3.2 Project Facets
	3.3.3.3 Java Facet
	3.3.3.4 Integration Server Extensions Project Facet
	3.3.3.5 Folder Structure

	3.3.4 Web Project
	3.3.4.1 Web Project Facet
	3.3.4.2 Folder Structure

	3.3.5 Classpath Containers
	3.3.5.1 Application Platform Server Runtime Container
	3.3.5.2 Application Platform Shared Bundles

	3.3.6 Project Manifests
	3.3.7 Including Jars in a Project

	3.4 Server Management
	3.4.1 General Information
	3.4.1.1 Server Name
	3.4.1.2 Host Name
	3.4.1.3 Runtime
	3.4.1.4 Launch Configuration
	3.4.1.5 Publishing
	3.4.1.6 Timeouts

	3.4.2 Server Properties
	3.4.2.1 Integration Server Instance Name
	3.4.2.2 Server Port
	3.4.2.3 Server Debug Port
	3.4.2.4 Server JMX Port
	3.4.2.5 Server Connection Mode

	3.4.3 Server Operations
	3.4.3.1 Start
	3.4.3.2 Stop
	3.4.3.3 Debug
	3.4.3.4 Restart

	3.5 Project Publisher
	3.5.1 Project Builds
	3.5.1.1 Build Actions
	3.5.1.2 Application Platform Project Builders

	3.5.2 Server Operations for Projects
	3.5.2.1 Add or Remove Project
	3.5.2.2 Publish
	3.5.2.3 Clean

	3.5.3 Assemble the Project Bundle
	3.5.3.1 OSGi Manifest
	3.5.3.2 Artifacts directory
	3.5.3.3 Repository directory
	3.5.3.4 Deployment

	3.6 Managing Dependencies
	3.6.1 Bundle Publisher
	3.6.1.1 View Contents
	3.6.1.2 Server State and View Checkboxes
	3.6.1.3 Dependency Graphs
	3.6.1.4 Refresh Publisher View
	3.6.1.5 Validate Bundles
	3.6.1.6 Update Server
	3.6.1.7 Configure Bundle Publish Settings

	3.6.2 Bundle Manager
	3.6.2.1 Create Wrapper Bundle
	3.6.2.2 Delete Bundle
	3.6.2.3 Configure Bundle Manager Settings

	3.7 App Platform Configuration
	3.7.1 Bundle Publisher
	3.7.1.1 Plain Jars
	3.7.1.2 User Bundles
	3.7.1.3 Platform Bundles
	3.7.1.4 Server Bundle Warnings
	3.7.1.5 Optional Imports

	3.7.2 Bundle Manager
	3.7.3 Capabilities
	3.7.4 Server View Configuration
	3.7.4.1 Servers View Updates
	3.7.4.2 Server Launch Preferences

	3.7.5 Project Configuration
	3.7.5.1 Project Version
	3.7.5.2 Project Bundle

	3.7.6 Customer Applications
	3.7.6.1 Step 1: Create Project
	3.7.6.2 Step 2: Publish the Project
	3.7.6.3 Step 3: Project Properties Extraction
	3.7.6.4 Step 4: Notify Application Service of File Updates

	3.8 Integration Server Features
	3.8.1 Calling Integration Server Services from App Platform Projects
	3.8.1.1 IS Service Wizard
	3.8.1.2 Generated Java Bindings
	3.8.1.3 Coding considerations

	3.9 Calling App Platform Services from Integration Server Services
	3.9.1 Annotate a method
	3.9.2 Publish the Project
	3.9.3 Verify the IS package
	3.9.4 Coding Considerations

	4 Production Activities
	4.1 Project Deployment
	4.1.1 Asset Build Environment
	4.1.1.1 ABE Configuration
	4.1.1.2 User Project Configuration

	4.1.2 Shared Bundles
	4.1.2.1 Embedded in the Project
	4.1.2.2 Manual Installation

	4.1.3 Deploying Assets

	4.2 Project Configuration
	4.2.1 Project Dynamic Configuration
	4.2.2 Software AG Platform Manager (SPM)
	4.2.3 Command Central Client Tools

	5 Troubleshooting
	5.1 Logging
	5.1.1 Designer Log Files
	5.1.2 Designer Trace Logging
	5.1.3 Server Log Files
	5.1.4 Configure Server Debug Output

	5.2 OSGi Console
	5.2.1 Server Configuration
	5.2.2 Terminal View Configuration
	5.2.3 OSGi Console

	5.3 Server Views Problems
	5.3.1 Server is installed as a service
	5.3.2 Server immediately fails to start
	5.3.3 Server fails to start after timeout

	5.4 Common Project Problems
	5.4.1 Unable to Publish Web Projects
	5.4.2 Can’t Add Project to Server
	5.4.3 Unable to Create Bundle
	5.4.4 Manually Uninstall Bundle from Server
	5.4.5 Class Loader Issues in Published Projects
	5.4.5.1 ClassNotFoundException
	5.4.5.2 NoClassDefFoundError
	5.4.5.3 LinkageError and ClassCastException

	5.4.6 References to Local Resources
	5.4.7 Unable to Publish Any Project Bundle

	5.5 Miscellaneous
	5.5.1 Configuring an Eclipse project for Application Platform
	5.5.1.1 Java Perspective Project Wizard
	5.5.1.2 Dynamic Web Project Wizard

