
©2015 Software AG. All rights reserved.

Application Platform
API Guide

Version 9.8

April 2015

Application Platform API Guide

©2014-2015 Software AG. All rights reserved. Page 2

This document applies to webMethods Application Platform Version 9.8 and to all subsequent releases. Specifications

contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2014-2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its

subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG

and/or Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product

names mentioned herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at

http://softwareag.com/licenses.

This software may include portions of third-party products. For third-party copyright notices, license terms, additional

rights or restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain

specific third-party license restrictions, please refer to section E of the Legal Notices available under "License Terms and

Conditions for Use of Software AG Products / Copyright and Trademark Notices of Software AG Products". These documents

are part of the product documentation, located at http://softwareag.com/licenses and/or in the root installation directory

of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License

Agreement with Software AG.

DOCUMENT ID: PLD-API-98-20150415

http://softwareag.com/licenses
http://softwareag.com/licenses

Application Platform API Guide

©2014-2015 Software AG. All rights reserved. Page 3

CONTENTS

1 About this Guide ... 4

1.1 Document Conventions .. 4

1.2 Online Information ... 4

2 Introduction ... 5

2.1 Publishing POJOs as OSGi services ... 5

2.1.1 @Service ... 5

2.2 Inject service dependencies into other service 7

2.2.1 @ServiceReference ... 7

2.3 Looking up Services from the OSGi registry 9

2.3.1 Dynamic POJO service configuration ... 10

2.4 Exposing POJO classes as IS assets .. 10

2.4.1 @ExposeToIS .. 10

2.4.2 @ExposedMethod .. 11

Application Platform API Guide

©2014-2015 Software AG. All rights reserved. Page 4

1 About this Guide

Software AG Application Platform IDE components are installed as a set of features within Software
AG Designer. Online help is included in Designer Guide node of the Eclipse Help table of contents.
Expand this node to view the available help sets. If a feature is not installed, there will be no help
set available for it. However, you can view PDF versions of all designer features on the Software AG
Documentation website.

1.1 Document Conventions

Convention Description

Bold Identifies elements on a screen

Italic Identifies variables for which you must supply values specific to your own
situation or environment. Identifies new terms the first time they occur in
text.

{ } Indicates a set of choices from which you must choose one. Type only the
information found inside the curly braces. Do not type the { } symbols.

| Separates two mutually exclusive choices in a syntax line. Type one of the
choices only. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

… Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (…).

1.2 Online Information

This document and other Software AG documents mentioned in this guide may be found at the Soft-
ware AG Documentation website.

http://documentation.softwareag.com/
http://documentation.softwareag.com/
http://documentation.softwareag.com/
http://documentation.softwareag.com/

Application Platform API Guide

2 Introduction

This document provides the API documentation for 9.8.0 (April 2015) release of webMethods
Application Platform.

2.1 Publishing Plain Old Java Objects (POJOs) as OSGi services

2.1.1 @Service

This annotation is used to mark a POJO class to be exposed as an OSGi service. It should be
specified on a class type. An example usage is as follows:

@Service(name = "my-service", init = "start", destroy = "stop", ranking = "10", inter-
faces = { "com.example.MyInterface" }, properties = { @Property(key = "key1", values =
{1, 2, 3 }, valueType = "java.lang.Integer") })
public class MyService implements MyInterface {
}

interface MyInterface {
}

Properties Default Value Type Required Description

name Simple name of
the annotated
class

String No The name of the bean backing this service; if
unspecified will default to the simple name of
the bean class

value Simple name of
the annotated
class

String No An alternate way to specify the name of the
service bean; useful when not specifying any
other attributes

ranking 0 Integer No The ranking value to be published as the
'service.ranking' property for this service to
distinguish between

init "" String No The method to invoke when the bean backing
the service is initialized

destroy "" String No The method to invoke when the bean backing
the service is destroyed

interfaces FQN of
annotated class

String[] No The list of interfaces under which the service
will be published; If not specified, the service
will only be published under the name of the
implementation class

dependsOn "" String No Used to express a dependency on another
component that must be fully initialized before

Application Platform API Guide

this service can be initialized and exported

properties {} Property[] No The list of service properties to be published
with the service

2.1.1.1 @Property
Declare the property for this service; There can be more than one value for the key and it can
optionally specify the type of the key and the type of the values

Properties Default Value Type Required Description

key "" String Yes The name or key of the property

values {} String[] Yes The values to be associated with the property
name

valueType java.lang.String String No The type of the values of this property

Example

The example below shows the GreeterImpl POJO class registered as an OSGi service under the
name "greeter-impl" and two interfaces and one service property

public interface IGreeter {
 public String greetMe(String name);
}

@Service(
 name="greeter-impl",
 interfaces = {"com.example.osgi.greet.api.IGreeter",
"org.osgi.service.cm.ManagedService"},
 properties = {@Property(key="service.pid", val-
ues="com.example.osgi.greet")}
)
public class GreeterImpl implements IGreeter, ManagedService {
 @Override
 public String greetMe(String name) {
 return "Hello, " + name;
 }
}

Application Platform API Guide

2.2 Inject service dependencies into other service

2.2.1 @ServiceReference

This annotation is used to inject a service from the runtime registry into another service
being published (using the @Service annotation). This provides a form of dependency
injection

where there the injected dependency is another POJO/bean already published in the runtime
as an OSGi service.

A setter method to set the injected POJO reference must be specified in the same class
accompanying the field declaration (containing the @ServiceReference annotation)

The following are the configurable annotation properties:

Properties Default
Value

Type Required Description

id "" String Yes

An unique identifier for this service
reference. The specified id must not
conflict with any other implicit or explicit
@Service annotation name attribute value

interfaces {} String[]
Yes (if
filter not
specified)

The interfaces that the service reference
proxy should implement when it is wired in
from the service registry. A service that
implements these interfaces must be
available in the registry. At least one
interface or class name must be specified
for this service reference

filter "" String

Yes (if
interfaces
not
specified)

An OSGi filter expression that constrains
the service registry lookup to only those
services that match the given filter. The
filter string is of the form "(property-name
= value)".

E.g. (asynchronous-delivery=true) restricts
the service lookup to those services that
have the property named asynchronous-
delivery set to value true.

timeout 5000 ms Integer No

The amount of time (in milliseconds) to
wait for a backing service to be available
when an operation is invoked. If no
matching service becomes available within
the timeout period, an
unchecked ServiceUnavailableException will
be thrown

Application Platform API Guide

componentName "" String No

A convenient shortcut for specifying a filter
expression that matches on the property
named
org.eclipse.gemini.blueprint.bean.name
that is automatically advertised for beans
published using the @Service annotation

dependsOn "" String No Used to specify that the service reference
should not be looked up in the service
registry until the named dependent bean
has been instantiated

availability
Availability.

OPTIONAL

ServiceReference.

Availability
No

Indicates the requirement for the
availability of this service reference

By default, the reference is treated as an
optional requirement. If set to
MANDATORY, then the @Service registration
will only succeed if the referenced service
is also already available

Note: It is an error to declare a mandatory
reference to a service that is also exported
by the same bundle, this can cause
application context creation to fail through
either deadlock or timeout.

Example

The example below shows the GreeterImpl class published as an OSGi service that depends on
the ResourceUtil class that is in turn published as another OSGi service

@Service(name = "greeter-impl", interfaces = { "com.example.osgi.greet.api.IGreeter",
 "org.osgi.service.cm.ManagedService" }, properties = { @Property(key
= "service.pid", values = "com.example.osgi.greet") })

public class GreeterImpl implements IGreeter, ManagedService {
 public static final String KEY_HELLO = "hello";
 private String key = KEY_HELLO;

 @ServiceReference(id = "resourceUtilRef", interfaces =
{"com.example.osgi.greet.impl.ResourceUtil"})
 ResourceUtil resUtil;

 public void setResUtil(ResourceUtil resUtil) {
 this.resUtil = resUtil;
 }

 ...
}

Application Platform API Guide

@Service
public class ResourceUtil {
 ...
}

2.3 Looking up Services from the OSGi registry

Class Description

com.softwareag.applatform.sdk.ServiceUtil
A helper class that provides utility methods when
working with OSGi services to look up registered
services.

The following are the public API methods in ServiceUtil class:

Name Return type Arguments Description

getService T
ServletContext servletCtx

Class<T> serviceCls

Returns the instance of the
OSGi service of type
serviceCls from the given
ServletContext. This
method will look for an
instance of BundleContext
in the ServletContext under
the attribute name 'osgi-
bundlecontext' and use the
obtained BundleContext to
look up the service.

getService T
Class<T> serviceCls

BundleContext bundleCtx

Get the OSGi service of
given serviceCls type using
the given BundleContext or
null if there is no service of
that type registered

getBundleContext BundleContext Class<?> bundleCls
Get the BundleContext
from the bundle containing
the given class or null

getService T Class<T> serviceCls

Get the OSGi service for
given service class type, or
null if there is no service of
that type registered

Application Platform API Guide

2.3.1 Dynamic POJO service configuration

Application Platform provides the ability to dynamically configure a published POJO service
(using the @Service annotation mentioned in section: Publishing POJOs as OSGi services)

Please see the section “Project Dynamic Configuration“ in the Application Platform User’s
Guide for the steps to take to enable dynamic service configuration in Application Platform
projects.

The table below outlines the related API documentation:

Class Description

org.osgi.service.cm.ManagedService See OSGi v4.3 javadoc:

http://www.osgi.org/javadoc/r4v43/cmpn/org/osgi/service/cm
/ManagedService.html

The following methods must be implemented from the ManagedService interface:

Name
Return
type

Arguments Description

update void
java.util.Dictionary<java.lang.String,?>
properties

See OSGi v4.3 javadoc for updated method:

http://www.osgi.org/javadoc/r4v43/cmpn/
org/osgi/service/cm/
ManagedService.html#updated(java.util.Dictionary)

2.4 Exposing POJO classes as IS assets

2.4.1 @ExposeToIS

This annotation is used to identify a class containing one or more methods to be exposed as IS
services. It is combined with the @Service and @ExposedMethod annotations to support
presentation of methods in a Java POJO as IS services. Because the generated IS assets
assume that the Java class is registered in OSGi as a service, this annotation must be used
with the @Service annotation. This Java fragment demonstrates use of the @ExposeToIS
annotation:
@ExposeToIS(packageName="OrdersService")
public class OrdersServiceImpl implements OrdersService {
}

http://www.osgi.org/javadoc/r4v43/cmpn/org/osgi/service/cm/ManagedService.html
http://www.osgi.org/javadoc/r4v43/cmpn/org/osgi/service/cm/ManagedService.html
http://www.osgi.org/javadoc/r4v43/cmpn/org/osgi/service/cm/ManagedService.html%23updated(java.util.Dictionary)
http://www.osgi.org/javadoc/r4v43/cmpn/org/osgi/service/cm/ManagedService.html%23updated(java.util.Dictionary)
http://www.osgi.org/javadoc/r4v43/cmpn/org/osgi/service/cm/ManagedService.html%23updated(java.util.Dictionary)

Application Platform API Guide

This annotation has one optional property.

Properties Default
Value

Type Required Description

packageName "" String No The name of the IS package where services from this
class will be created. Note that this is the name of an
IS package, not a Java package. If no value is
supplied, at IS generation time, the value of the
@Service.name property will be used for IS package
name.

2.4.2 @ExposedMethod

This annotation identifies a method to be exposed as an IS service. It is valid only on public
methods. Since IS does not support service name overloading, there are restrictions on
exposing methods from a Java class. If the exposed Java class defines methods using
overloaded names, only one method with a given name can be exposed.
@ExposedMethod
public String createReceipt(Order inOrder) {
}

This annotation has no properties.

Example

In this example, the OrdersServiceImpl class implements the OrdersService interface which
declares several methods, including the two exposed here. The result of publishing this POJO
in an Application Platform project will be creation of several artifacts in the IS namespace.

As a result of the 'packageName' property, an IS package named 'OrdersService' will be
created if necessary. From the name of the Java package where the OrdersService interface
is defined, the new IS package will contain a folder named
'com.softwareag.demp.orders.api'.

Each of the exposed methods will create an IS service in the new folder. The service name
will match the exposed method name. The signatures for these new IS services will match the
method signatures For example, the orderReceipt service signature will include a String
output and one input, named inItem, of type Document, where the document structure
matches the properties from the Order POJO.

Application Platform API Guide

package com.softwareag.demo.orders.impl;

@Service(name="RegisteredOrdersService", interfac-
es={"com.softwareag.demo.orders.api.OrdersService"})
@ExposeToIS(packageName="OrdersService")
public class OrdersServiceImpl implements OrdersService {

 @Override
 @ExposedMethod
 public float calculateCharge(LineItem inItem) {

 }

 @Override
 @ExposedMethod
 public String createReceipt(Order inOrder) {
 ...
 }
 }

public interface OrdersService {
 public String createReceipt(Order inOrder);
 public float calculateCharge(LineItem inItem);
 ...
}

If the 'packageName' property were omitted from this example code, then the package name
in the IS namespace would be 'RegisteredOrdersService', from the @Servce annotation.

	1 About this Guide
	1.1 Document Conventions
	1.2 Online Information

	2 Introduction
	2.1 Publishing Plain Old Java Objects (POJOs) as OSGi services
	2.1.1 @Service
	2.1.1.1 @Property

	2.2 Inject service dependencies into other service
	2.2.1 @ServiceReference

	2.3 Looking up Services from the OSGi registry
	2.3.1 Dynamic POJO service configuration

	2.4 Exposing POJO classes as IS assets
	2.4.1 @ExposeToIS
	2.4.2 @ExposedMethod

