5 software

Using webMethods Integration Server to
Build a Client for JMS

Version 9.7

October 2014

» WEBMETHODS

This document applies to webMethods Integration Server Version 9.7 and Software AG Designer Version 9.7 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2007-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third Party Products”. This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: IS-JMS-DG-97-20141015

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

Table of Contents

Table of Contents

ADOUL thiS GUILE.......cererercrrerererecs s s a e s anene s 7
DOCUMENT CONVENTIONS........oveeieiireiieisiee st 7
Documentation INSEAllALIoN............ccurrieeercee e 8
ONliNe INFOMMALION. ..ottt es 8

INtroduction £0 JMS...........o o 11
JMS MESSAGING.....cvcvveiiiiiercie sttt bbb bbb bbb 12
MESSAGING STYIES......c.cviiiiecieeceectc ettt bbb bbbt 12

Point-to-point (PTP) MESSAQING........c.vviuriiiriririirieieineiei s 12
Publish-Subscribe MeSSaging......cccvveveueriiiiicieessecee e 13
Durable SUDSCHPLONS.......ccciicieieicee et 14
Non-durable SUDSCIPHONS..........covririireereee s 14
JMS API Programming MOGEL........c.cveueuiiiiriceirs st 14
AdMINIStEred OBJECES......cvivieeircieeiccccte e 14
Types of Administered ODJECES...........cvieiriiie s 15
CoNNECON FACIOMES.........vueeieecieirerce s 15
DESHINALIONS.veei ettt 15
CONNEBCHIONS. ...ttt 16
SESSIONS ...ttt 16
MESSAGE PrOUUCET........ccvviiicirisiss ettt nenenes 16
MESSAGE CONSUMET........ceiiiriiiiieisiieteit et 16
MESSAQE SEIECION. ...t 16
MESSAGES.cueeiiriiesisie ettt ettt se e et bbbttt bbb bbb Rttt e 17
MESSAGE SHUCIUIE........vieiiiciect e 17
Message AcknOwlEdgmENt..........ccocviicieieicee e 18

Working With JMS TrigQers.....ccoummnmsmmrmmnmsesssmsmssssessssssssssesessssssssesessssssssssesssssssssssssssssssssssessases 19
ADbOUL SOAP-JMS THGGETS....cvcviveirerereteiieciete sttt bbbt ssaeans 20
Overview of Building @ Non-Transacted JMS THGGer.........cccovrrirnieniirescesieseies 21
Standard JMS Trigger Service ReQUIrEMENES..........coceveviicieercee e 22
Creating @ JMS THGQEI......ciuireieceeece ettt bbb s 23

Adding JMS Destinations and Message Selectors to @ JMS Trigger........ccocevevniinen. 26
Creating a Destination on the JMS Provider..........cccccoveeeiiviiceesscecess e, 28

About Durable and Non-Durable SUDSCHIDEFS...........ccccveerienicreseeeieeseeis 30
Creating @ MesSage SeleCtOr........c.oucuiiriirirreeese e 30

Adding Routing Rules to a Standard JMS THGQEr........cccoerviveierieeee e 31
Creating @ Local Filter.........c.cviiiieieiccctctee et 31
Managing Destinations and Durable Subscribers on the JMS Provider through Designer....... 32
Modifying Destinations or Durable Subscribers via a JMS Trigger in Designer................ 33
Building Standard JMS Triggers with Multiple Routing Rules.............cccocvceeniiivicrcececinen, 34
Guidelines for Building a JMS Trigger that Performs Ordered Service Execution............. 34

Using webMethods Integration Server to Build a Client for JMS Version 9.7 3

Table of Contents

Enabling or Disabling @ JMS THGQN. ..o 35
JMS THGQEr SEAES....cvcviiiicictescce e 36
Setting an Acknowledgement MOGE..........ccueiiicriiiiieccc e 36
ADBOUL JOIN TIME-OULS... ettt 37
Join Time-Outs for All (AND) JOINS......ccociiiieieeieerce et 38
Join Time-Outs for Only One (XOR) JOINS.........coceiiiiiiiceiiececee e 38
Setting @ Join TIME-OUL..........coiiirrc s 38
About Execution Users for JMS THGQEIS......covvviriiierieereiesssere e 39
Assigning an Execution User t0 @ JMS THGQer.......ccocoeeiiviicreeseeeee e, 40
ADOUL MESSAJE PrOCESSING.ceviriiriiisiieirieie it 40
Serial PrOCESSING......civeveveiiiiiccteie sttt 40
CONCUITENE PrOCESSING. ... ettt ettt sttt 41
Message Processing and Message CONSUMETS...........cvuueerieiriiinmniieeniseineeieeneieisnsens 41
Message Processing and Load BalanCing...........cccceeeeeeecrennnnnsnnnsrereneseseseneens 42

About Batch Processing for Standard JMS THQGETS.......cccovievererreiecreeeeeece e 42
Guidelines for Configuring Batch Processing...........cccoceenieirinnienesneeinns 43

Using Multiple Connections to Retrieve Messages for a Concurrent JMS Trigger............ 43
Retrieving Multiple Messages for a JMS Trigger with Each Request..........cccccoceveveinnnnee. 44
Configuring Message PrOCESSING.........cvu vt 46
Fatal Error Handling for Non-Transacted JMS THQQErS.......ccouvviiereeiieceee e 47
Configuring Fatal Error Handling for Non-Transacted JMS Triggers.......c.cccocoevevevivennnee. 48
Transient Error Handling for Non-Transacted JMS THGQers........cooevvninnennesneicineenns 49
About Retry Behavior for Trgger SEIVICES.........uouimiiiieerieeeees e 50
Service Requirements for Retrying a Trigger SErVICe........couviiieeniceece e 50
Handling Retry Failure. ..o 51
Overview of Throw an EXCEPHON.......ccccvviiiieeiicce e 51
Overview of Suspend and Retry Later.........c..cccceeeivicceeieceee e, 52
Configuring Transient Error Handling for a Non-Transacted JMS Trigger..........cccovvuvenee. 53
Exactly-Once Processing for JMS THGQETS......coviiiieiiiieteeeseee et 55
Duplicate Detection Methods for JMS THQQErS......cccveieeieiriieccreeeeeee e 55
Configuring Exactly-Once Processing for @ JMS THQQer........ccovverirneinneinineiereeinens 56
Disabling Exactly-Once Processing for a JMS Trgger........cccovveeivviecessicienene, 57
Debugging @ JMS THGGEI......ccieiececeee ettt sttt bbbttt 58
Enabling Trace Logging for All JMS THQQErS.......ccveeriirrieirieinieieneeiseesesieessieinenes 58
Enabling Trace Logging for a Specific JMS TrgGer.......cccovvvvierivviiieeee e 58
Building a Transacted JMS THQGET.......couieiiereeisieeeete ettt b b 59
Prerequisites for a Transacted JMS THGGEr.......cvririiniiireneseeseee 59
Properties for Transacted JMS THGGEIS.....ccvuveuerrriiceesseeee s 60
Steps for Building a Transacted JMS THQQEr.......ccoviiieeericcee e 61
Fatal Error Handling for Transacted JMS Trggers.........cocvrnmnninnienescessieinenas 63
Configuring Fatal Error Handling for Transacted JMS Triggers.......c.ccoovuveeivireenen. 64
Transient Error Handling for Transacted JMS THQQErS.......ccocevviviceeviiececee e, 64
Overview Of RECOVET ONIY........c.oviuriiiiiieiriee e 65
Overview of Suspend and RECOVET...........ccccviiieceicece et 66
Configuring Transient Error Handling for Transacted JMS Triggers..........ccccoeevenne. 68

Using webMethods Integration Server to Build a Client for JMS Version 9.7 4

Table of Contents

Sending and Receiving JMS MeSSages........ccecvurmrrmnmneseminmnesessssssssssessssssssssesessssssssesessssssssssesens 69
TRE JMS SEIVICES. ...ttt 70
SeNding @ JMS MESSAQE.......c.vcveueiriieecie sttt 70

How t0 Send @ JMS MESSAGE.......cceuriieireretiisiecte et 70

Sending a JMS Message and Waiting for @ Reply..........ccooerivnincncnccncsesne 75
How to Send a Request Message and Wait for a Reply........ccoeevvivccivvvccccevcee, 76

RepIyiNG 10 @ JMS MESSAGE.......ccueviiiiciiresieetete ettt bbb 80
How to Send @ Reply MESSAGE. ... 81

Receiving a JMS Message Using Built-In SErvices..........couveevviieeesseeeee e 82
How to Actively Receive a JMS MESSAGE........cccuiirirereriiieietee e, 82

Sending a JMS Message as Part of @ Transaction..............ccoererirninnenecceeees 86
How to Send a JMS Message within @ Transaction............cccceveveeeenveerceesesecenenns 87

Setting Properties in @ JMS MESSAFE.......c.cviuiriiiiiiece ettt 88
Assigning an Activation t0 @ JMS MeSSage.........ccoiurirniinieieeeeesee s 89
SEttiNg the UUID.......ooceeiecce ettt bbb 89

Exactly-Once Processing for JMS Triggers.......ouunmmmmmrmrensssmmmesesesssssmssesessssssssssesessssssssssesassss 91
Overview of Exactly-Once Processing for JMS THQQErs.......cccoevivieceeniceerce e 92
Duplicate Detection Methods for JMS THQQETS. ..o 92
Summary of Duplicate Detection Process for JMS TrgQers.......cccoveeevvieeessiiseessninns 93
Delivery Count for JMS MESSAQES........cccrveriiriiieriieietieeie ettt s b 95
Document History Database for Use with JMS THQQGers.........ccovueurerrirnienesneeeeesen 97

What Happens when the Document History Database Is Not Available for a JMS

THIGGEI 7 ettt bbb bbb bbb bbbt b s 98
Managing the Size of the Document History Database.............ccccovevnininnicnicnns 100
Clearing Expired Entries from the Document History Database............c.cccovnevnirnnnnnne 100

Document Resolver Service for @ JMS TrHGGET......cvvviereiiieeee s 100
Document Resolver Service and Exceptions for a JMS Trigger..........cccovevcvnirnnnnnnn 101

Extenuating Circumstances for Exactly-Once Processing..........c.cocvrveennenneenenerneeens 102
Circumstances in which Duplicate Messages Can Be Processed..........ccoovvcveenirinnen. 102
Circumstances in which New Messages Are Treated as Duplicates..........cccccovvrvrrennee. 103

Exactly-Once Processing and Performance.............oceereninninnieneseeseeseeeeens 103

Consuming JMS Messages Concurrently in a Load-Balanced Fashion...........c.ccocecvvrvnreenes 105
INEFOAUCHION. ... 106
Consuming JMS Messages Concurrently from the webMethods Broker.............cccccoovueeee. 107
Configuring JMS Triggers, Integration Server, and webMethods Broker for Load-

BalANCING......coiveiiiiiccte et 107
Automatic Load Balancing Configuration for Durable Subscribers when Using the
WEDMENOAS BIOKET ...t 108

Consuming JMS Messages in Order with Multiple CONSUMErS.........ccccevvveeeenriceeinennns 109
Consuming JMS Messages in Order Using the webMethods Broker................ccccuuee.. 109

Working with Cluster POlICIES........ccourrrercnnnnnnrcscssssnnsesess s ssssesssssssssesssssses 111
INEFOAUCHION. ...t 112

Using webMethods Integration Server to Build a Client for JMS Version 9.7 5

Table of Contents

Working with the Multisend Guaranteed POIICY............ccceviirniinicrce e 112
Error Handling with the Multisend Guaranteed PoliCy...........cccccevviceeivicicecee 113
Error Handling for Transaction Type of NO_TRANSACTION..........cccccoevvivivirirenenne. 113

Error Handling for Transaction Type of XA_TRANSACTION or
LOCAL_TRANSACTION.ocviiiieiiieiieieieiete sttt 114
Transaction Logging with the Multisend Guaranteed Policy...........cccoocceeinviccreiiinnnns 114
Working with the Multisend Best Effort POlICY...........cccoceviiiincccccccce 115
Overriding the Cluster Policy when Sending JMS MeSSages..........coovurrvrieeriirninireinencenenen. 115
How to Override the Cluster Policy when Sending a JMS Message...........cccococevvivinnee. 116
Exceptions when Overriding Cluster POlICIES.............ccoviiniiiienceceee 118
Building a Resource Monitoring ServiCe.........cms 119
About a Resource Monitoring SEIVICE. ..o 120
SErvICE REQUITEMENES.......iieivcviiciecce et bbb 120
Building a Document ReSOIVEr SErVIiCe........ccounmnmmnmnnssssssssss s 121
About a Document RESOIVET SEIVICE.ccuririieirieirrieieieie s 122
SErVICE REQUITEMENTS.oiieieeeeieieeee et 122
Transaction ManagemMeNt............ccecemrereresssmsseresessssss s s s s sesessasassnes 123
Transaction Management OVEIVIEW. ... 124
L 4= 10 (0] TSP 124
TraNSACHON TYPES.....eucveeireiiiieiciei sttt 124
XA TraNSACHONS.ceeeeeeeeirireeieieie ettt 125
Implicit and EXpliCit TranSaCtONS.cevrvrieererrceee s 125
IMPICIt TrANSACHONS.cvcveveiriiicieieie e 125
EXPICt TranSaCHONS........cceveiceccccccece s 126
Built-In Transaction Management SErVICES..........uveririiirienieseeee e 127

Using webMethods Integration Server to Build a Client for JMS Version 9.7 6

About this Guide

Using webMethods Integration Server to Build a Client for JMS is for the developer who is
responsible for developing solutions that use webMethods Integration Server to send
and receive messages using the Java Message Service (JMS) standard.

This guide explains:

® How to build services that send and receive J]MS messages using built-in services.
® How to create and configure JMS triggers for receiving JMS messages

® How Integration Server works with cluster policies when sending JMS messages.
|

How to configure JMS triggers to consume messages from a destination in a load-
balanced fashion.

This guide assumes that you are familiar with the following:
B Basic concepts of webMethods architecture and terminology.
m Usage of Designer to create elements and build services.

® General knowledge of programming, the Java programming language, and the JMS
APIL.

® How to establish connections to one or more JMS providers by creating JMS
connection aliases. For more information about creating a JMS connection alias, see
webMethods Integration Server Administrator’s Guide.

Note: An in-depth treatment of messaging architecture is beyond the scope of this guide
but is available elsewhere.

Note: This guide describes features and functionality that may or may not be available
with your licensed version of webMethods Integration Server For information about
the licensed components for your installation, see the Settings > License page in the
webMethods Integration Server Administrator.

Document Conventions

Convention Description
Bold Identifies elements on a screen.
Narrowfont Identifies storage locations for services on webMethods

Integration Server, using the convention folder.subfolder:service .

Using webMethods Integration Server to Build a Client for JMS Version 9.7

Convention Description

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace Identifies text you must type or messages displayed by the

font system.

{} Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

Documentation Installation

You can download the product documentation using the Software AG Installer. The
documentation is downloaded to a central directory named _documentation in the main
installation directory (SoftwareAG by default).

Online Information

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at http://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at https://empower.softwareag.com.

Using webMethods Integration Server to Build a Client for JMS Version 9.7

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com

To submit feature/enhancement requests, get information about product availability,
and download products and certified samples, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center
Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at http://techcommunity.softwareag.com. You can:

B Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation” as an area of interest.

m Access articles, demos, and tutorials.

®m Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

®m Link to external websites that discuss open standards and web technology.

Using webMethods Integration Server to Build a Client for JMS Version 9.7

https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

Using webMethods Integration Server to Build a Client for JMS Version 9.7

10

Introduction to JMS

1 Introduction to JMS

B JMS MESSAGING .vuvuiriiriieieieieis et 12
B MESSAQING SEYIES .oiiiieeee bbb res 12
B JMS API Programming MOGE! ..o 14

Using webMethods Integration Server to Build a Client for JMS Version 9.7 1

Introduction to JMS

JMS Messaging

The Java Message Service (JMS) is a Java API that allows applications to communicate
with each other using a common set of interfaces. The JMS API provides messaging
interfaces, but not the implementations.

A JMS provider, such as webMethods Universal Messaging or webMethods Broker, is a
messaging system that supports the JMS message interfaces and provides administrative
and control features. It supports the routing and delivery of JMS messages.

JMS clients are the programs or components, written in Java, that produce and consume
messages.

Messaging Styles

A messaging style refers to how messages are produced and consumed. JMS supports
the publish-subscribe (pub-sub) and point-to-point (PTP) messaging styles.

Point-to-point (PTP) Messaging

In point-to-point (PTP) messaging, message producers and consumers are known as
senders and receivers.

The central concept in PTP messaging is a destination called a queue. A queue represents
a single receiver. Message senders submit messages to a specific queue and another
client receives the messages from the queue.

In the PTP model, a queue may receive messages from many different senders and may
deliver messages to multiple receivers; however, each message is delivered to only one
receiver.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 12

Introduction to JMS

Sending Clients

JMS Provider Receiving Client

JMS Trigger
(Receiver)

Publish-Subscribe Messaging
In publish-subscribe messaging, message producers and consumers are known as
publishers and subscribers.

The central concept in the publish-subscribe messaging is a destination called a topic.
Message publishers send messages of specified topics. Clients that want to receive that
type of message subscribe to the topic.

The publishers and subscribers never communicate with each other directly. Instead,
they communicate by exchanging messages through a JMS provider.

Subscribing Clients
Publishing Clients

JMS Trigger
[Subscriber)
JMS Provider

JMS Trigger

(Subscriber)

(Subscriber)

Using webMethods Integration Server to Build a Client for JMS Version 9.7 13

Introduction to JMS

Publishers and subscribers have a timing dependency. Clients that subscribe to a topic
can consume only messages published after the client has created a subscription. In
addition, the subscriber must continue to be active to consume messages.

The messaging APIs relax this dependency by making a distinction between durable
subscriptions and non-durable subscriptions.

Durable Subscriptions

Durable subscriptions allow subscribers to receive all the messages published on a

topic, including those published while the subscriber is inactive. When the subscribing
applications are not running, the messaging provider holds the messages in nonvolatile
storage. It retains the messages until one of the following occurs:

m The subscribing application becomes active, identifies itself to the provider, and
sends an acknowledgment of receipt of the message.

B The expiration time for the messages is reached.

Non-durable Subscriptions

Non-durable subscriptions allow subscribers to receive messages on their chosen topic only
if the messages are published while the subscriber is active. You generally use this type
of subscription for any kind of data that is time sensitive, such as financial information.

JMS API Programming Model

The following section summarizes the most important components of the JMS APL
The building blocks of a JMS application consist of the following:

Administered objects (connection factories and destinations)

Connections

Sessions

Message producers

Message consumers

Messages

Administered Objects

Administered objects are pre-configured objects that an administrator creates for use with
JMS client programs. Administered objects serve as the bridge between the client code
and the JMS provider.

By design, the messaging APIs separate the task of configuring administered objects
from the client code. This architecture maximizes portability: the provider-specific

Using webMethods Integration Server to Build a Client for JMS Version 9.7 14

Introduction to JMS

work is delegated to the administrator rather than to the client code. However, the
implementation must supply its own set of administrative tools to configure the
administered objects.

JMS administered objects are stored in a standardized namespace called the Java
Naming and Directory Interface (JNDI). JNDI is a Java API that provides naming and
directory functionality to Java applications. JNDI provides a way to store and retrieve
objects by a user supplied name.

Types of Administered Objects

There are two types of administered objects: connection factories and destinations.

Connection Factories

A connection factory is the object a client uses to create a connection with a JMS provider.
It encapsulates the set of configuration parameters that a JMS administrator defines for a
connection.

The type of connection factory determines whether a connection is made to a topic

(in a publish-subscribe application), a connection is make to a queue (in a point-to-
point application), or a connection can be made to both (generic connection). The
connection factory type also determines whether messages are managed like elements in
a distributed transaction in the client application.

You use XA-based connection factories in JMS applications managed by an application
server, in the context of a distributed transaction.

Destinations

Destinations are the objects that a client uses to specify the target of messages it
produces and the source of messages it consumes. These objects specify the identity of
a destination to a JMS API method. Four types of destinations exist; only the first two
(queues and topics) are administered objects.

B Queue. An object that covers a provider-specific queue name. This object is how a
client specifies the identity of a queue to JMS methods.

m Topic. An object that covers a provider-specific topic name. This object is how a client
specifies the identity of a topic to JMS methods.

®m Temporary Queue. A queue object created for the duration of a particular connection
(or QueueConnection). It can only be consumed by the connection from which it was
created.

m Temporary Topic. A topic object that is created for the duration of a particular
connection (or TopicConnection). It can only be consumed by the connection from
which it was created.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 15

Introduction to JMS

Connections

A connection object is an active connection from a client to its JMS provider. In JMS,
connections support concurrent use. A connection serves the following purposes:

B A connection encapsulates an open connection with a JMS provider. It typically
represents an open TCP/IP socket between a client and the service provider software.

® The creation of a connection object is the point where client authentication takes
place.

B A connection object can specify a unique client identifier.
B A connection object supports a user-supplied ExceptionListener object.

A connection should always be closed when it is no longer needed.

Sessions

A session object is a single-threaded context for producing and consuming messages. If a
client uses different threads for different paths of message execution, then a session must
be created for each of the threads.

A session is used to create message producers, message consumers, temporary topics,
and temporary queues; it also supplies provider-optimized message factories.

In JMS, a session provides the context for grouping a set of send and receive messages
into a transactional unit.

Message Producer

A message producer is an object that a session creates to send messages to a destination (a
topic or a queue).

Message Consumer

A message consumer is an object that a session creates to receive messages sent to a
destination. A message consumer allows a client to register interest in a destination,
which manages the delivery of messages to the registered consumers of that destination.

Message Selector

A client may want to receive subsets of messages. A message selector allows a client to
filter the messages it wants to receive by use of a SQL92 string expression in the message
header. That expression is applied to properties in the message header (not to the
message body content) containing the value to be filtered.

If the SQL expression evaluates to true, the message is sent to the client; if the SQL
expression evaluates to false, it does not send the message.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 16

Introduction to JMS

Messages

Messages are objects that communicate information between client applications.
Following are descriptions of several key concepts related to JMS messages.

Message Structure

Messages are composed of the following parts:

® Header. All messages support the same set of header fields. Header fields contain
predefined values that allow clients and providers to identify and route messages.
Each of the fields supports its own set and get methods for managing data. Some
fields are set automatically by the send and publish methods, whereas others must
be set by the client.

Examples of header fields include:

®m JMSDestination, which holds a destination object representing the
destination to which the message is to be sent.

® JMSMessageID, which holds a unique message identifier value and is set
automatically.

®m JMSCorrelationID, which is used to link a reply message with its requesting
message. This value is set by the client application.

®m JMSReplyTo, which is set by the client and takes as a value a Destination object
representing where the reply is being sent. If no reply is being sent, this field is
set to null.

m Properties (optional). Properties are used to add optional fields to the message header.
Several types of message property fields exist:

m Application-specific properties are typically used to hold message selector values.
Message selectors are used to filter and route messages.

m Standard properties. The API provides some predefined property names that
a provider may support. Support for the JMSXGroupID and JMSXGroupSeq is
required; however, support for all other standard properties is optional.

m Provider-specific properties are unique to the messaging provider and typically
refer to internal values.

= Body (optional). The JMS standard defines various types of message body formats
that are compatible with most messaging styles. Each form is defined by a message
interface.

®m StreamMessage. A message whose body contains a stream of Java primitive
values. It is filled and read sequentially.

®m MapMessage. A message whose body contains a set of name-value pairs where
names are Strings and values are Java primitive types. The entries can be

Using webMethods Integration Server to Build a Client for JMS Version 9.7 17

Introduction to JMS

accessed sequentially by enumerator or randomly by name. The order of the
entries is undefined.

®m TextMessage. A message whose body contains a java.lang.String.
®m ObjectMessage. A message that contains a Serializable Java object.

®m BytesMessage. A message that contains a stream of uninterpreted bytes. This
message type is for literally encoding a body to match an existing message
format. In many cases, it will be possible to use one of the other, self-defining,
message types instead.

Both StreamMessage and MapMessage support the same set of primitive data types.
Conversions from one data type to another are possible.

Message Acknowledgment

A message is not considered to be successfully consumed until it is acknowledged.
Depending on the session acknowledgment mode, the messaging provider may send
a message more than once to the same destination. Several message acknowledgment
constants exist.

Value Description

AUTO ACKNOWLEDGE Automatically acknowledges the successful receipt of
a message.

CLIENT ACKNOWLEDGE Acknowledges the receipt of a message when the

client calls the message’s acknowledge() method.

DUPS_OK_ACKNOWLEDGE Instructs the session to automatically, lazily
acknowledge the receipt of messages, which reduces
system overhead but may result in duplicate messages
being sent.

Using webMethods Integration Server to Build a Client for JMS Version 9.7

18

Working with JMS Triggers

2 Working with JMS Triggers

B ADOUt SOAP-JMS THGGEIS ...vvireiireiieieiseieisieises et 20
m Overview of Building a Non-Transacted JMS TrHQQETccouvreriierierieireecsseeseeeseee e 21
m Standard JMS Trigger Service REQUIFEMENTSccvviiiririririereee e 22
B Creating @ JMS THQGET ... 23
m Managing Destinations and Durable Subscribers on the JMS Provider through Designer 32

m Building Standard JMS Triggers with Multiple Routing RUIES ..o, 34
B Enabling or Disabling @ JMS THJGEE ...cvcviviiiicieeiisicete s 35
m Setting an Acknowledgement MOTE ..o 36
B ADOUL JOIN TIME-OULS ... 37
m About Execution Users for JMS THQGEIScovrriiriiirieiereesiese e 39
B ADOUt MESSAJE PrOCESSING ...cvcvevivcucririririiii ittt bbb 40
m Fatal Error Handling for Non-Transacted JMS THGErs ... 47
m Transient Error Handling for Non-Transacted JMS TrgQers ... 49
B Exactly-Once Processing for JMS THGGENSviveveriiiiieeiicetee et 55
B Debugging @ JMS THOGET ..ot 58
B Building a Transacted JMS THOGEI ...c.viivieieiicceee e 59

Using webMethods Integration Server to Build a Client for JMS Version 9.7 19

Working with JMS Triggers

A JMS trigger subscribes to destinations (queues or topics) on a JMS provider and then
specifies how Integration Server processes messages the JMS trigger receives from those
destinations. Integration Server and Designer support two types of JMS triggers:

m Standard JMS triggers use routing rules to specify which services can process messages
received by the trigger. The trigger service in the routing rule receives the entire J]MS
message as an IData.

m SOAP- JMS triggers are used to receive JMS messages that contain SOAP messages.
When a SOAP-JMS trigger receives a message, Integration Server extracts the SOAP
message from the JMS message and passes the SOAP message to the internal web
services stack. The web services stack processes the message according to the web
service descriptor specified in the SOAP-JMS request.

Note: WS endpoint triggers are SOAP-JMS triggers. However, WS endpoint triggers
can be created and managed using Integration Server Administrator only. For
more information about WS endpoint triggers, see webMethods Integration Server
Administrator’s Guide.

Standard JMS triggers and SOAP-JMS triggers can be transacted or non-transacted
triggers. The transactionality of a JMS trigger along with the trigger type affect the
properties and functionality that can be configured for the trigger.

Note: Information about using Integration Server for JMS is located in webMethods
Integration Server Administrator’s Guide, webMethods Service Development Help, and Using
webMethods Integration Server to Build a Client for JMS.

B webMethods Integration Server Administrator’s Guide contains information about how
to configure Integration Server to work with a JMS provider, how to create a WS
endpoint trigger, and how to manage JMS triggers at run time.

B webMethods Service Development Help includes this Working with JMS Triggers topic
which provides procedures for using Designer to create JMS triggers and set JMS
trigger properties.

B Using webMethods Integration Server to Build a Client for JMS contains information
such as how to build services that send and receive JMS messages, how Integration
Server works with cluster policies when sending JMS messages, and detailed
information regarding how Integration Server performs exactly-once processing.
For completeness, Using webMethods Integration Server to Build a Client for JMS also
includes the Working with JMS Triggers topic that appears in webMethods Service
Development Help.

About SOAP-JMS Triggers

A SOAP-JMS trigger is a JMS trigger that receives SOAP over JMS messages and routes
the SOAP message to the web services stack for processing. More specifically, the
SOAP-JMS trigger receives JMS messages from a destination (queue or topic) on the
JMS provider. Note that a SOAP-JMS trigger can specify a message selector which
limits the messages the SOAP-JMS trigger receives from that destination. Integration
Server extracts the SOAP message and passes it to the internal web services stack for

Using webMethods Integration Server to Build a Client for JMS Version 9.7 20

Working with JMS Triggers

processing. Integration Server also retrieves JMS message properties that it passes

to the web services stack, including targetService, soapAction, contentType, and
JMSMessagelD. These properties specify the web service descriptor and operation

for which the SOAP request is intended. The web services stack then processes the
SOAP message according to the web service descriptor (for example, executing request
handlers) and invokes the web service operation specified in the SOAP request message.

A SOAP-JMS trigger is associated with one or more provider web service descriptors via
a provider web service endpoint alias. The provider web service endpoint alias specifies
the SOAP-JMS trigger that receives messages from destinations on the JMS provider.
The provider web service endpoint alias is assigned to a JMS binder in a provider web
service descriptor. In this way, SOAP-JMS triggers act as listeners for provider web
service descriptors.

Note: Even though a SOAP-JMS trigger is associated with one or more provider web
service descriptors, the SOAP-JMS trigger can pass any SOAP-JMS message to the web
services stack for processing.

The properties assigned to the SOAP-JMS trigger determine how Integration Server
acknowledges the message, provides exactly-once processing, or handles transient or
fatal errors.

While SOAP-JMS triggers and standard JMS triggers share many properties and
characteristics, some properties available to standard JMS triggers are not available to
SOAP-JMS triggers, specifically:

® SOAP-JMS triggers can subscribe to one destination only. Consequently, SOAP-JMS
triggers do not have joins. Designer does not display the Join expires and Expire after
properties for a SOAP-JMS trigger.

m SOAP-JMS triggers use web services to process the payload of the JMS message.
Designer does not display the Message Routing table for SOAP-JMS triggers.

® SOAP-JMS triggers cannot be used to perform ordered service execution. Standard
JMS triggers use multiple routing rules and local filters to perform ordered service
execution. Because SOAP-JMS triggers do not use routing rules, SOAP-JMS triggers
cannot be used to perform ordered service execution.

B A SOAP-JMS trigger, specifically a connection for a SOAP-JMS trigger, can process
only one message at a time. Batch processing is not available for SOAP-JMS triggers.
Designer does not display the Max batch processing property for SOAP-JMS triggers.

®m A transacted SOAP-JMS trigger (one that executes as part of a transaction) has
additional requirements and limitations when used with web service descriptors. For
more information, see the Web Services Developer’s Guide.

Overview of Building a Non-Transacted JMS Trigger

Building a JMS trigger is a process that involves the following basic stages.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 21

Working with JMS Triggers

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Create a new JMS trigger on Integration Server.

During this stage, you use Designer to create the new JMS trigger on the
Integration Server where you will do your development and testing.

Specify a JMS connection alias.

During this stage, you specify the JMS connection alias that Integration
Server uses to create connections to the JMS provider. The transaction
type of the JMS connection alias determines whether or not the J]MS
trigger receives and processes messages as part of transaction.

Specify JMS destinations and message selectors.

During this stage, you specify the destinations (queues or topics) on
the JMS provider to which the JMS trigger subscribes. That is, the
destination is the source of the messages that the JMS trigger consumes.
You also specify any message selectors that you want the JMS provider
to use to filter the messages it enqueues for the JMS trigger.

Create routing rules (for standard JMS triggers only).

During this stage, you specify the service that Integration Server
invokes when the standard JMS trigger receives messages. You can also
specify a local filter that Integration Server applies to messages.

Set JMS trigger properties.

During this stage, you determine the type of message processing,
the acknowledgement mode, fatal and transient error handling, and
exactly-once processing.

Test and debug the JMS trigger.

During this stage, you test and debug the trigger using the tools
provided by Integration Server. For more information, see "Debugging
a JMS Trigger" on page 58.

Standard JMS Trigger Service Requirements

The service that processes a message received by a standard JMS trigger is called a
trigger service. Each routing rule in a standard JMS trigger specifies a single trigger

service.

Before a JMS trigger can be enabled, the trigger service must already exist on the same
Integration Server.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 22

Working with JMS Triggers

The signature for the trigger service must reference one of the following specifications:

m Use pub.jms:triggerSpec as the specification reference if the trigger service will process
one message at a time.

®m Use pub.jms:batchTriggerSpec as the specification reference if the trigger service will
process multiple messages at one time. That is, the trigger service will receive a
batch of messages as input and process all of those messages in a single execution. A
trigger that receives and processes a batch of messages is sometimes referred to as a
batch trigger.

Creating a JMS Trigger

When you create a JMS trigger, keep the following points in mind:

® The JMS connection alias you want Integration Server to use to obtain connections
to and receive messages from the JMS provider must already exist. Although a JMS
connection alias does not need to be enabled at the time you create the JMS trigger,
the JMS connection alias must be enabled for the JMS trigger to execute at run time.

Note: If you want to manage destinations and durable subscribers on a webMethods
Broker that is used as a JMS provider, the JMS connection alias must be enabled
when you work with the JMS trigger.

®m If you use a JNDI provider to store JMS administered objects, the Connection
Factories that you want the JMS trigger to use to consume messages must already
exist.

®m If you use a JNDI provider to store JMS administered objects and the JMS provider
is not webMethods Broker, the destinations (queues and topics) from which this J]MS
trigger will receive messages must already exist.

m If the JMS provider is webMethods Broker, webMethods Universal Messaging, or
webMethods Nirvana the destinations (queues and topics) from which the JMS
trigger receives messages do not need to exist before you create the JMS trigger.
Instead, you can create destinations using the JMS trigger editor. You can also create,
modify, and delete durable subscribers via the JMS trigger. For more information,
see "Managing Destinations and Durable Subscribers on the JMS Provider through
Designer " on page 32.

® The transaction type of the J]MS connection alias determines whether or not the
JMS trigger is transacted (that is, it receives and processes messages as part of a
transaction). Transacted JMS triggers have slightly different properties and operate
differently than non-transacted JMS triggers. For more information about building a
transacted JMS trigger, see "Building a Transacted JMS Trigger" on page 59.

m The trigger service that you want to specify in the routing rule must already exist
on the same Integration Server on which you create the JMS trigger. For more
information, see "Standard JMS Trigger Service Requirements” on page 22.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 23

Working with JMS Triggers

A standard JMS trigger can contain multiple routing rules. Each routing rule must
have a unique name. For more information about using multiple routing rules, see
"Building Standard JMS Triggers with Multiple Routing Rules" on page 34.

A standard JMS trigger that contains an All (AND) or Only one (XOR) join can only
have one routing rule and cannot have a batch processing size (Max batch messages
property) greater than 1. A JMS trigger with an Any (Or) join can have multiple
routing rules. For more information about batch processing, see "About Batch
Processing for Standard JMS Triggers" on page 42.

Integration Server uses a consumer to receive messages for a JMS trigger.
This consumer encapsulates the actual javax.jms.MessageConsumer and
javax.jms.Session.

To create a JMS trigger

1.
2.

In the Package Navigator view of Designer, click File > New > JMS Trigger.

Inthe New JMS Trigger dialog box, select the folder in which you want to save the IMS
trigger.

In the Element name field, type a name for the IMS trigger using any combination of letters,
numbers, and/or the underscore character.

Click Finish.
In the JMS connection alias name field in the Trigger Settings tab, click L..].

Note: A transacted JMS connection alias cannot be assigned to a JMS trigger if a
cluster policy is applied to the connection factory used by the JMS connection alias.

In the Select a JMS connection alias for triggerName dialog box, select the IMS connection
alias that you want this IMS trigger to use to receive messages from the IM S provider. Click
OK.

Designer sets the Transaction type property to match the transaction type specified for
the JMS connection alias.

If a JMS connection alias has not yet been configured on Integration Server, Designer
displays a message stating the JMS subsystem has not been configured. For
information abut creating a JMS connection alias, see webMethods Integration Server
Administrator’s Guide.

In the JMS trigger type list, select one of the following:

Select To...
Standard Create a standard JMS trigger.
SOAP-JMS Create a SOAP-JMS trigger.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 24

Working with JMS Triggers

8. Under JMS destinations and message selectors, specify the destinations from which the IMS
trigger will receive messages. For more information, see "Adding JMS Destinations and
Message Selectors to a JMS Trigger" on page 26.

10.

11.
12.
13.

Note: For SOAP-JMS triggers, you can specify one destination only.

If you selected multiple destinations, select the join type. The join type determines whether
Integration Server needs to receive messages from al, any, or only one of destinations to
execute the trigger service.

Select...

If you want...

All (AND)

Any (OR)

Only one (XOR)

Integration Server to invoke the trigger service when the
trigger receives a message from every destination within
the join time-out period. The messages must have the same
activation.

Integration Server to invoke the trigger service when
the trigger receives a message from any of the specified
destinations.

This is the default join type.

Note: Using an Any (OR) join is similar to creating multiple
JMS triggers that listen to different destinations. While a JMS
trigger with an Any (OR) join will use fewer resources (a single
thread will poll each destination for messages), it may cause a
decrease in performance (it may take longer for one thread to
poll multiple destinations).

Integration Server to invoke the trigger service when it
receives a message from any of the specified destinations.
For the duration of the join time-out period, the Integration
Server discards any messages with the same activation that
the trigger receives from the specified destinations.

If thisisastandard IMStrigger, under Message routing, add routing rules. For more
information, see "Adding Routing Rules to a Standard JMS Trigger" on page 31.

In the Properties view, set properties for the IMS trigger.

Enter comments or notes, if any, in the Comments tab.

Click File > Save.

Using webMethods Integration Server to Build a Client for JMS Version 9.7

25

Working with JMS Triggers

Adding JMS Destinations and Message Selectors to a JMS Trigger

The destination is the queue or topic to which the JMS trigger subscribes on the JMS
provider. When a JMS trigger subscribes to a topic, you can also indicate whether
Integration Server creates a durable subscriber or a non-durable subscriber for the topic.

To add a JMS destination to a JMS trigger

1.
2.
3.

In the Package Navigator view of Designer, open the IMS trigger.

In the Trigger Settings tab, under JMS destinations and message selectors, click [3° .

In the Destination Name column, do one of the following to specify the destination from
which you want the IMS trigger to receive messages.

If the JMS connection alias uses JNDI to retrieve administered objects, specify the
lookup name of the Destination object.

If the JMS connection alias uses the native webMethods API to connect directly to
Broker, specify the provider-specific name of the destination.

If the JMS connection alias creates a connection on Broker, Universal Messaging,
or Nirvana, click [...] to select from a list of existing destinations. You can also
create a destination and then select it. After you select the destination, click OK.

If the Order By mode for the selected destination does not match the existing
message processing mode, Designer prompts you to change the processing
mode. This situation can occur only when the JMS provider is Broker.

For instructions for creating a destination, see "Creating a Destination on the JMS
Provider" on page 28.

In the Destination Name column, in the Destination Type column, select the type of

destination:

Select... If...

Queue The destination is a queue. This is the default.
Topic The destination is a topic.

Topic (Durable Subscriber) The destination is a topic for which there is a

durable subscriber.

Note: Designer populates Destination Type automatically if you selected a destination
from the list of existing destinations on the JMS provider.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 26

Working with JMS Triggers

5.

9.

In the JMS Message Selector column, click [...]. In the Enter IMS Message Selector dialog
box, enter the expression that you want to use to receive a subset of messages from this
destination and click OK.

For more information about creating a JMS message selector, see "Creating a
Message Selector” on page 30.

If you specified the destination type as Topic (Durable Subscriber), in the Durable Subscriber
Name column, do one of the following:

m Enter a name for the durable subscriber.

m If the JMS connection alias creates a connection on Broker, Universal Messaging,
or Nirvana click [...] to select from a list of existing durable subscribers for the
topic. In the Durable Subscriber List dialog box select the durable subscriber and
click OK.

If the durable subscriber that you want this JMS trigger to use does not exist, you
can create it by entering in the name in the Durable Subscriber Name column. The
name must be unique for the connection where the connection name is the client
ID of the JMS connection alias. Broker, Universal Messaging, or Nirvana will
create the durable subscriber name using the client ID of the JMS connection alias
and the specified durable subscriber name.

Note: Designer populates Durable Subscriber Name automatically if you selected a
Topic (Durable Subscriber) destination from the list of existing destinations on
Broker or Universal Messaging.

If you want the IM S trigger to ignore messages sent using the same JM S connection alias as
the IM S trigger, select the check box in the Ignore Locally Published column. This property
applies only when the Destination Typeis Topic or Topic (Durable Subscriber).

Note: If the JMS connection alias specified for this trigger has the Create New
Connection per Trigger option enabled, then Ignore Locally Published will not work. For
the JMS trigger to ignore locally published messages, the publisher and subscriber
must share the same connection. When the JMS connection alias uses multiple
connections per trigger, the publisher and subscriber will not share the same
connection.

Repeat this procedure for each destination from which you want the IMS trigger to receive
messages.
Click File > Save.

Notes:

If you specify a new durable subscriber name and the JMS connection alias that

the JMS trigger uses to retrieve messages is configured to manage destinations,
Integration Server creates a durable subscriber for the topic when the JMS trigger is
first enabled.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 27

Working with JMS Triggers

If you specify a destination type of Topic (Durable Subscriber) but do not specify a
durable subscriber name, Designer changes the destination type to Topic when you
save the JMS trigger.

Creating a Destination on the JMS Provider

If the JMS connection alias that the JMS trigger uses to retrieve messages is configured to
manage destinations, you can create a destination on the JMS provider while using the
JMS trigger editor.

Keep the following points in mind when creating destinations using Designer:

The JMS connection alias used by the JMS trigger must use Universal Messaging,
Nirvana, or Broker as the JMS provider.

Note: Prior to version 9.5 SP1, webMethods Universal Messaging was named
webMethods Nirvana.

The JMS connection alias used by the JMS trigger must be configured to manage
destinations.

The JMS connection alias must be enabled when you work with the JMS trigger.

If the JMS connection alias creates a connection on a Broker in a Broker cluster, you
will not be able to create a destination at the Broker.

To create a destination on the JMS provider

1.

ARl

In the Package Navigator view of Designer, open the IMS trigger that uses a JM S connection
aliasthat connectsto the IMS provider on which you want to create the destinations.

In the Trigger Settings tab, under JMS destinations and message selectors, click [§ .
In the Destination Name column, click [...].

In the Destination List dialog box, click Create New Destination.

In the Create New Destination dialog box, provide the following information:

In this field... Specify...
Destination Name A name for the destination.
Destination Key A name for the destination key. If you do not

specify a destination key, Integration Server uses the
destination name as the destination key.

In the Destination List, when a destination

has a destination key Designer displays the
destination name using this format: destinationKey
(destinationName)

Using webMethods Integration Server to Build a Client for JMS Version 9.7 28

Working with JMS Triggers

In this field...

Specify...

Destination Type

Durable Subscriber Name

Order By

The type of destination. Select one of the following:

Select... To...
Queue The destination is a queue.
This is the default.
Topic The destination is a topic.
Topic (Durable The destination is a topic for which
Subscriber) you want to create a durable
subscriber.

A name for the durable subscriber. The name must be
unique for the connection, where the connection name
is the client ID of the JMS connection alias. The JMS
provider (Broker, Universal Messaging, or Nirvana)
will create the durable subscriber name using the
client ID of the JMS connection alias and the specified
durable subscriber name.

This field only applies if the destination is Topic
(Durable Subscriber).

How Broker distributes messages received by this
destination.

This field only apples if the JMS provider used y the
trigger JMS connection alias is the Broker and the
destination is Queue.

Select... To...

Publisher Distribute messages received by
this destination one at a time in the
order in which they were received
from the publisher.

None Distribute the messages received by
this destination in any order.

This is the default.

Using webMethods Integration Server to Build a Client for JMS Version 9.7

29

Working with JMS Triggers

In this field... Specify...

Note: An order mode of publisher maps to a serial
message processing mode. An order mode of none maps
to a concurrent message processing mode.

Click OK to create the destination.

7. 1f you want the current IM S trigger to retrieve messages from the new destination, select the
destination and click OK.

Designer adds the destination to the JMS destinations and message selectors list. If
the Order By mode for the new destination does not match the existing message
processing mode, Designer prompts you to change the processing mode.

Notes:
®m Integration Server adds the new destination to the Broker as a shared-state client.

®m If you specify a destination type of Topic (Durable Subscriber) but do not specify a
durable subscriber name, Designer changes the destination type to Topic when you
save the JMS trigger.

About Durable and Non-Durable Subscribers

When a JMS trigger receives messages from a topic, you can specify whether or not the
JMS trigger is a durable subscriber.

A durable subscriber establishes a durable subscription with a unique identity on the JMS
provider. A durable subscription allows subscribers to receive all the messages published
on a topic, including those published while the subscriber is inactive (for example, if the
JMS trigger is disabled). When the associated JMS trigger is disabled, the JMS provider
holds the messages in guaranteed storage. If a durable subscription already exists for the
specified durable subscriber on the JMS provider, this service resumes the subscription.

A non-durable subscription allows subscribers to receive messages on their chosen
topic only if the messages are published while the subscriber is active. A non-durable
subscription lasts the lifetime of its message consumer. Note that non-durable
subscribers cannot receive messages in a load-balanced fashion.

Creating a Message Selector

If you want the JMS trigger to receive a subset of messages from a specified destination,
create a message selector. A message selector is an expression that specifies the criteria
for the messages in which the JMS trigger is interested.

The JMS provider applies the message selector to messages it receives. If the selector
evaluates to true, the message is sent to the JMS trigger. If the selector evaluates to false,
the message is not sent to the JMS trigger.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 30

Working with JMS Triggers

By creating message selectors, you can delegate some filtering work to the JMS provider.
This can preserve Integration Server resources that otherwise would have been spent
receiving and processing unwanted messages.

The message selector must use the message selector syntax specified in the Java Message
Service standard. The message selector can reference header and property fields in the
JMS message only.

Note: If you want to filter on the contents of the J]MS message body, write a local filter.
Integration Server evaluates a local filter after the JMS trigger receives the message from
the JMS provider. Only standard JMS triggers can use local filters.

Adding Routing Rules to a Standard JMS Trigger

The routing rule specifies the service that Integration Server invokes when the standard
JMS trigger receive a message from a destination.

To add a routing rule to a standard JMS trigger
1. Inthe Package Navigator view of Designer, open the IMS trigger.
2. Inthe Trigger Settings tab, under Message routing, click [§° to add anew routing rule.

3. Inthe Name column, type a name for the routing rule. By default Designer assigns the first
rule the name “Rule 1”.

4. Inthe Service column, click [...] to navigate to and select the service that you want to invoke
when Integration Server receives messages from the specified destinations.

5. Inthe Local Filter column, click [...J to enter the filter that you want Integration Server to
apply to messages this IM S trigger receives. For more information about creating a local
filter, see "Creating a Local Filter" on page 31.

6. Click File > Save.

Creating a Local Filter

You can further refine the messages received and processed by a standard JMS trigger
by creating local filters. A local filter specifies criteria for the contents of the message
body. Integration Server applies a local filter to a message after the JMS trigger receives
the message from the JMS provider. If the message meets the filter criteria, Integration
Server executes the trigger service specified in the routing rule. If the message does not
meet the filter criteria, Integration Server discards the message and acknowledges the
message to the JMS provider.

If a JMS trigger contains multiple routing rules to support ordered service execution,
you can use local filters to process a series of messages in a particular order. For more
information about ordered service execution, see "Building Standard JMS Triggers with
Multiple Routing Rules" on page 34.

When creating a local filter, you can omit the JMSMessage document from the filter
expression even though it is part of the pipeline provided to the JMS trigger service.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 31

Working with JMS Triggers

For example, a filter that matches those messages where the value of the myField field is
“XYZ"” would look like the following:

$properties/myField% == "XYz"

Note that even though the properties field is a child of the []MSMessage document, the
JMSMessage document does not need to appear in the filter expression.

The following filter matches those messages where the data document within the
JMSMessage /body document contains a field named myField whose value is “A”:
$body/data/myField% == "A"

Note: When receiving a batch of messages, Integration Server evaluates the local filter
against the first message in the batch only. Integration Server does not apply the filter
to subsequent messages in the batch. For more information about batch processing, see
"About Batch Processing for Standard JMS Triggers" on page 42.

Managing Destinations and Durable Subscribers on the JMS
Provider through Designer

When editing a JMS trigger in Designer, you can create and manage destinations and
durable subscribers on webMethods Universal Messaging, webMethods Nirvana, or
webMethods Broker. Specifically, you can do the following:

m Create a destination.
B Create and delete a durable subscriber.

m Select the destination from which you want the JMS trigger to receive messages from
a list of existing destinations.

®m Select a durable subscriber that you want the JMS trigger to use from a list of existing
durable subscribers for a specified topic.

m Change the Shared State or Order By mode for a queue or durable subscriber by
changing the message processing mode of the JMS trigger. You can do this only
when Broker is the JMS provider only.

Designer uses the JMS connection alias specified by the JMS trigger to make the changes
on the JMS provider. To manage destinations on the JMS provider, the JMS connection
alias that the JMS trigger uses must be

® Configured to manage destinations
® Enabled when you create and edit the JMS trigger.

® To manage destinations on Broker, Integration Server must be version 8.0 SP1 or
higher.

® To manage destinations on Universal Messaging, Integration Server must be version
9.0 SP1 or higher.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 32

Working with JMS Triggers

Note: Prior to version 9.5 SP1, webMethods Universal Messaging was named
webMethods Nirvana.

For a complete list of the requirements for using Designer to manage destinations
and durable subscribers on the JMS provider, see webMethods Integration Server
Administrator’s Guide.

Note: The ability to use Designer to manage JMS destinations on Broker, Nirvana,
and Universal Messaging is a design-time feature. In a production environment, this
functionality should be disabled.

Modifying Destinations or Durable Subscribers via a JMS Trigger in
Designer

If a JMS trigger uses a JMS connection alias that is configured to manage destinations,
you can modify the destination or durable subscribers while editing a JMS trigger.
Changes to destinations or durable subscriptions can result in unused durable
subscriptions on the JMS provider. Changing destinations can make the JMS trigger
out of sync with the destination. For example, when using the Broker, modifying the
destination could result in out of sync Shared State or Order By mode settings.

When you make a change that results in a change to a destination or durable subscriber,
Designer informs you about the necessary change and then prompts you to confirm
making change to the destination or durable subscriber on the JMS provider.

For example, if you change the name of the durable subscriber for a Topic (Durable
Subscriber) destination, Designer displays a message stating, “By making this change
the trigger will no longer subscribe to durable subscriber oldDurableSubscriberName .
Would you like to remove this durable subscriber from the JMS provider?” If you
confirm the change, Integration Server removes the durable subscriber from Broker. If
you do not confirm the change, the durable subscriber will remain on Broker. You will
need to use the Broker interface in My webMethods to remove the durable subscriber.

Note: If another client, such as another JMS trigger, currently connects to the queue

or durable subscriber that you want to modify or remove, then Integration Server
cannot update or remove the queue or durable subscriber. If the JMS provider is Broker,
updates must be made through My webMethods. If the JMS provider is Universal
Messaging, updates must be made through Universal Messaging Enterprise Manager.
If the JMS provider is Nirvana, updates must be made through Nirvana Enterprise
Manager.

For more information about managing destinations and durable subscriptions on the
JMS provider, see "Managing Destinations and Durable Subscribers on the JMS Provider

through Designer " on page 32.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 33

Working with JMS Triggers

Building Standard JMS Triggers with Multiple Routing Rules

A JMS trigger can contain more than one routing rule. Each routing rule can specify a
different local filter and a different service to invoke.

You might create multiple routing rules so that a JMS trigger processes a group of
messages in a specific order. Each routing rule might execute a different trigger service
based on the contents or type of message received. When a JMS trigger receives a
message, Integration Server determines which service to invoke by evaluating the local
filters for each routing rule.

Integration Server evaluates the routing rules in the same order in which the rules
appear in the editor. It is possible that a message could satisfy more than one routing
rule. However, Integration Server executes only the service associated with the first
satisfied routing rule and ignores the remaining routing rules. Therefore, the order in
which you list routing rules on the editor is important.

You might want to use multiple routing rules to control service execution when a

service that processes a message depends on successful execution of another service.

For example, to process a purchase order, you might create one service that adds a new
customer record to a database, another that adds a customer order, and a third that bills
the customer. The service that adds a customer order can only execute successfully if the
new customer record has been added to the database. Likewise, the service that bills the
customer can only execute successfully if the order has been added. You can ensure that
the services execute in the necessary order by creating a trigger that contains one routing
rule for each expected message.

Note: SOAP-JMS triggers do not have routing rules.

Guidelines for Building a JMS Trigger that Performs Ordered Service
Execution

Use the following general guidelines to build a JMS trigger that performs ordered
service execution.

B Because the JMS provider cannot guarantee message order across destinations, the
JMS trigger must specify a single destination. That is, the JMS trigger cannot include
a join.

®m Each routing rule, except the last one, must contain a local filter. For example, you
might create a filter based on a custom property that the sending client adds to
the message. Integration Server uses the local filters to differentiate between the
messages. Without a local filter, only the first routing rule would ever execute.

B Routing rules must appear in the order in which you want the messages to be
processed. Each routing rule must have a unique name.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 34

Working with JMS Triggers

m Set the Processing mode property to serial to ensure that the Integration Server
processes the messages in the same order in which the JMS trigger receives them.
Serial processing ensures that the services that process the messages do not execute
at the same time.

®m Set Max batch messages to 1 (the default). When a trigger service processes a batch of
messages, Integration Server only applies the filter to the first message in the batch.

Important: Messages must be sent to JMS provider in the same order in which you want
the messages to be processed.

Enabling or Disabling a JMS Trigger

You can enable or disable a JMS trigger.

Note: If you disable a SOAP-JMS trigger that acts as a listener for one or more provider
web service descriptors, Integration Server will not retrieve any messages for those web
service descriptors.

To enable or disable a JMS trigger

1. Inthe Package Navigator view of Designer, open the IMS trigger that you want to enable or
disable.

2. Inthe Properties view, under General, set the Enabled property to one of the following:

Select... To...
True Enable a JMS trigger that is currently disabled.
False Disable a JMS trigger that is currently enabled.

3. Click File > Save.

Notes:

® When you disable a JMS trigger, Integration Server interrupts any server threads
that are processing messages. If the JMS trigger is currently processing messages,
Integration Server waits 3 seconds before forcing the JMS trigger to stop processing
messages. If it does not complete within 3 seconds, Integration Server stops the
message consumer used to receive messages for the JMS trigger and closes the J]MS
consumer. At this point the server thread for the JMS trigger may continue to run to
completion. However, the JMS trigger will not be able to acknowledge the message
when processing completes. If the message is persistent, this can lead to duplicate
messages.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 35

Working with JMS Triggers

B You can disable one or more JMS triggers using the pub.triggers:disableJMSTriggers
service.

B You can enable one or more JMS triggers using the pub.triggers:enableJMSTriggers
service.

B You can enable, disable, and suspend one or more JMS triggers using Integration
Server Administrator.

JMS Trigger States

A JMS trigger can have one of the following states:

Trigger State Description

Enabled The JMS trigger is running and connected to the JMS provider.
Integration Server retrieves and processes messages for the JMS
trigger.

Disabled The JMS trigger is stopped. Integration Server neither retrieves

nor processes messages for the JMS trigger. The JMS trigger
remains in this state until you enable the trigger.

Suspended The JMS trigger is running and connected to the JMS provider.
Integration Server has stopped message retrieval, but continues
processing any messages it has already retrieved. Integration
Server enables the JMS trigger automatically upon server restart
or when the package containing the JMS trigger reloads.

Note: You can suspend a JMS trigger using Integration Server
Administrator or the pub.triggers:suspendJMSTriggers service.

Setting an Acknowledgement Mode

Acknowledgment mode indicates how Integration Server acknowledges messages received
on behalf of a JMS trigger. A message is not considered to be successfully consumed
until it is acknowledged.

Note: The Acknowledgement mode property is not available for transacted JMS
triggers. That is, if the JMS connection alias is of type XA_TRANSACTION or
LOCAL_TRANSACATION, Designer does not display the Acknowledgement mode

property.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 36

Working with JMS Triggers

To set an acknowledgment mode

1. Inthe Package Navigator view of Designer, open the IMS trigger for which you want to set
the acknowledgment mode.

2. Inthe Properties view, under General, select one of the following for Acknowledgement

mode:

Select... To...

CLIENT_ACKNOWLEDGE Acknowledge or recover the message only
after the JMS trigger processes the message
completely.

This is the default.

DUPS_OK_ACKNOWLEDGE Lazily acknowledge the delivery of messages.
This may result in the delivery of duplicate
messages.

AUTO_ACKNOWLEDGE Automatically acknowledge the message
when it is received by the JMS trigger.
Integration Server will acknowledge the
message before the trigger completes
processing. The JMS provider cannot
redeliver the message if Integration Server
becomes unavailable before message
processing completes.

3. Click File > Save.

About Join Time-Outs

When you create a standard JMS trigger that receives messages from two or more
destinations), you create a join. Consequently, you need to specify a join time-out. A join
time-out specifies how long Integration Server waits for additional messages to fulfill the
join. Integration Server starts the join time-out period when it receives the first message
that satisfies the join.

The implications of a join time-out are different depending on the join type.

Note: You need to specify a join time-out only when the join type is All (AND) or Only one
(XOR). You do not need to specify a join time-out for an Any (OR) join.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 37

Working with JMS Triggers

Join Time-Outs for All (AND) Joins

A join time-out for an All (AND) join specifies how long Integration Server waits for
messages from all of the destinations specified in the join.

When a JMS trigger receives a message that satisfies part of an All (AND) join,
Integration Server stores the message. Integration Server waits for the JMS trigger to
receive messages from the remaining destinations specified in the join. Only messages
with the same activation ID as the first received message will satisfy the join.

If Integration Server receives messages from all of the destinations specified in the join
before the time-out period elapses, Integration Server executes the service specified

in the routing rule. If Integration Server doe not receive messages from all of the
destinations before the time-out period elapses, Integration Server discards the messages
and writes a log entry.

When the time-out period elapses, the next message that satisfies the All (AND) join causes
the time-out period to start again.

Join Time-Outs for Only One (XOR) Joins

A join time-out for an Only one (XOR) join specifies how long Integration Server discards
instances of the other messages received from the specified destinations.

When a JMS trigger receives a message that satisfies part of an Only one (XOR) join,
Integration Server executes the service specified in the routing rule. Integration Server
starts the join time-out when the JMS trigger receives the message. For the duration of
the time-out period, Integration Server discards any messages the JMS trigger receives
from a destination specified in the JMS trigger. Integration Server only discards those
messages with the same activation ID as the first message.

When the time-out period elapses, the next message that the JMS trigger receives that
satisfies the Only one (XOR) join causes the trigger service to execute and the time-out
period to start again.

Setting a Join Time-Out

When configuring JMS trigger properties, you can specify whether a join times out and
if it does, what the time-out period should be. The time-out period indicates how long
Integration Server waits for messages from the other destinations specified in the join
after Integration Server receives the first message.

Note: You need to specify a join time-out only when the join type is All (AND) or Only one
(XOR). You do not need to specify a join time-out for an Any (OR) join.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 38

Working with JMS Triggers

To set a join time-out

1. Inthe Package Navigator view of Designer, open the IMS trigger for which you want to set
the join time-out.

2. Inthe Properties view, under General, next to Join expires, select one of the following:

Select... To...

True Specify that Integration Server should stop waiting for
messages from other destinations in the join after the time-out
period elapses.

In the Expire after property, specify the length of the join time-
out period. The default join time-out period is 1 day.

False Specify that the join does not expire. Integration Server should
wait indefinitely for messages from the additional destinations
specified in the join condition. Set the Join expires property to
False only if you are confident that all of the messages will be
received eventually.

Important: A join is persisted across server restarts.

3. Click File > Save.

About Execution Users for JMS Triggers

For a JMS trigger, the execution user indicates which credentials Integration Server
should use when invoking services associated with the JMS trigger. When a client
invokes a service via an HTTP request, Integration Server checks the credentials and
user group membership of the client against the Execute ACL assigned to the service.
Integration Server performs this check to make sure that the client is allowed to invoke
that service. When a JMS trigger executes, however, Integration Server invokes the
service when it receives a message rather than as a result of a client request. Integration
Server does not associate user credentials with a message. You can specify which
credentials Integration Server should supply when invoking a JMS trigger service by
setting an execution user for a JMS trigger.

You can instruct Integration Server to invoke a service using the credentials of one of
the predefined user accounts (Administrator, Default, Developer, Replicator). You can
also specify a user account that you or another server administrator defined. When
Integration Server receives a message for the JMS trigger, Integration Server uses the
credentials for the specified user account to invoke the service specified in the routing
rule.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 39

Working with JMS Triggers

Assigning an Execution User to a JMS Trigger

Make sure that the user account you select includes the credentials required by the
execute ACL assigned to the services associated with the JMS triggers.

To assign an execution user for a JMS trigger

1. Inthe Package Navigator view of Designer, open the IMS trigger for which you want to
assign the execution user.

2. Inthe Properties view, under General, in the Execution user property, type the name of the
user account whose credentials Integration Server uses to execute a service associated with
the IMS trigger. Y ou can specify alocally defined user account or a user account defined in a
central or external directory.

3. Click File > Save.

About Message Processing

Message processing determines how Integration Server processes the messages received
by the JMS trigger. You can specify serial processing or concurrent processing.

®m In serial processing, Integration Server processes messages received by a JMS trigger
one after the other in the order in which the messages were received from the JMS
provider.

® In concurrent processing, Integration Server processes messages received from the
JMS provider in parallel.

Serial Processing

In serial processing, Integration Server processes messages received by a JMS trigger
one after the other in the order in which the messages were received from the JMS
provider. Integration Server uses a single thread for receiving and processing a message
for a serial JMS trigger. Integration Server evaluates the first message it receives,
determines which routing rule the message satisfies, and executes the service specified
in the routing rule. Integration Server waits for the service to finish executing before
processing the next message received from the JMS provider.

If you want to process messages in the same order in which JMS clients sent the
messages to the JMS provider, you will need to configure the JMS provider to ensure
that messages are received by the JMS trigger in the same order in which the messages
are published.

For information about using serial JMS triggers in a cluster to process messages from
a single destination in publishing order, see the Using webMethods Integration Server to
Build a Client for [MS.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 40

Working with JMS Triggers

Tip: If your trigger contains multiple routing rules to handle a group of messages that
must be processed in a specific order, use serial processing.

Concurrent Processing

In concurrent processing, Integration Server processes messages received from the

JMS provider in parallel. That is, Integration Server processes as many messages for

the JMS triggers as it can at the same time, using a separate server thread to process
each message. Integration Server does not wait for the service specified in the routing
rule to finish executing before it begins processing the next message. You can specify
the maximum number of messages Integration Server can process concurrently. This
equates to specifying the maximum number of server threads that can process messages
for the JMS trigger at one time.

Concurrent processing provides faster performance than serial processing. Integration
Server processes the received messages more quickly because it can process more than
one message for the trigger at a time. However, the more messages Integration Server
processes concurrently, the more server threads it dispatches, and the more memory the
message processing consumes.

Additionally, for JMS triggers with concurrent processing, Integration Server does not
guarantee that messages are processed in the order in which they are received.

A concurrent trigger can connect to the JMS provider through multiple connections,
which can increase trigger throughout. For more information about multiple
connections, refer to "Using Multiple Connections to Retrieve Messages for a Concurrent
JMS Trigger" on page 43.

Message Processing and Message Consumers

Integration Server uses a consumer to receive messages for a JMS trigger. This consumer
encapsulates the actual javax.jms.MessageConsumer and javax.jms.Session. The type of
message processing affects how Integration Server uses consumers to receive messages.

Serial JMS triggers have one consumer and will use one thread from the server thread
pool to receive and process a message.

Concurrent JMS triggers use a pool of consumers to receive and process messages. Each
consumer uses one thread from the server thread pool to receive and process a message.
For a concurrent JMS trigger, the Max execution threads property specifies how many
threads can be used to process messages for the trigger at one time. For concurrent J]MS
triggers, Integration Server also dedicates a thread to managing the pool of consumers.
Consequently, the maximum number of threads that can be used by a JMS trigger is
equal to the Max execution threads value plus 1. For example, a concurrent JMS trigger
configured to use 10 threads at a time can use a maximum of 11 server threads.

When there are multiple connections to the Broker, the threads are divided among the
connections. Therefore, if a trigger is configured so that Connection count is 2 and Max

Using webMethods Integration Server to Build a Client for JMS Version 9.7 41

Working with JMS Triggers

execution threads is set to 10, each connection will have 5 threads plus 1, for a total of 12
threads.

Message Processing and Load Balancing

Load balancing allows multiple consumers on one or more Integration Servers to
retrieve and process messages concurrently. Load balancing is necessary for concurrent
JMS triggers regardless of whether or not they are running in a cluster of Integration
Servers. This is because concurrent JMS triggers use multiple consumers. Each consumer
receives a message from the JMS provider, processes the message, and acknowledges
the message to the JMS provider. Each consumer needs to consume a message from

the same destination, but not process any duplicate message. For information about
configuring load-balancing, see the Using webMethods Integration Server to Build a Client
for JMS.

About Batch Processing for Standard JMS Triggers

You can configure a standard JMS trigger and its associated trigger service to process

a group or “batch” of messages at one time. Batch processing can be an effective way
of handling a high volume of small messages for the purposes of persisting them or
delivering them to another back-end resource. For example, you might want to take

a batch of messages, create a packet of SAP IDocs, and send the packet to SAP with a
single call. Alternatively, you might want to insert multiple messages into a database at
one time using only one insert. The trigger service processes the messages as a unit as
opposed to in a series.

The Max batch messages property indicates the maximum number of messages that the
trigger service can receive at one time. For example, if the Max batch messages property
is set to 5, Integration Server passes the trigger service up to 5 messages received by the
JMS trigger to process during a single execution.

Integration Server uses one consumer to receive and process a batch of messages. During
pre-processing, Integration Server checks the maximum delivery count for each message
and, if exactly-once processing is configured, determines whether or not the message is

a duplicate. Integration Server then bundles the message into a single IData and passes
it to the trigger service. If the message has exceeded the maximum delivery count or is

a duplicate message, Integration Server does not include it in the message batch sent to
the trigger service.

Note: The watt.server.jms.trigger.maxDeliveryCount property determines the maximum
number of times the JMS provider can deliver a message to a JMS trigger.

Integration Server acknowledges all the messages received in a batch from the JMS
provider at one time. This includes messages that failed pre-processing. As described by
the Java Message Service standard, when a client acknowledges one message, the client
acknowledges all of the messages received by the session. Because Integration Server
uses a consumer that includes a javax.jms.MessageConsumer and a javax.jms.Session,
when Integration Server acknowledges one message in the batch, it effectively
acknowledges all the messages received in the batch.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 42

Working with JMS Triggers

If a batch of messages is not acknowledged or they are recovered back to the JMS
provider, the JMS provider can redeliver all of the messages in the batch to the J]MS
trigger. However, when using webMethods Broker, Integration Server can acknowledge
individual messages that fail pre-processing.

Guidelines for Configuring Batch Processing
When configuring JMS trigger for batch processing, keep the following in mind:

m The trigger service must be coded to handle multiple messages as input. That is, the
trigger service must use the pub.jms.batchTriggerSpec as the service signature.

B When receiving a batch of messages, Integration Server evaluates the local filter in
the routing rule against the first message in the batch only.

®m A transacted JMS trigger can be used for batch processing if the JMS connection alias
used by the trigger connects to a JMS provider that supports reuse of transacted JMS
sessions. If the JMS provider does not support reuse of transacted JMS sessions, set
Max batch processing to 1.

Consult the documentation for your JMS provider to determine whether or not the
JMS provider supports the reuse of transacted JMS sessions. Note that webMethods
Broker version 8.2 and higher, webMethods Universal Messaging version 9.5 SP1
and higher, and webMethods Nirvana version 7 and higher support the reuse of
transacted JMS sessions.

m A JMS trigger that contains an All (AND) or Only one (XOR) join cannot use batch
processing.

m SOAP-JMS triggers cannot process messages in batches.

Using Multiple Connections to Retrieve Messages for a Concurrent
JMS Trigger

You can configure a concurrent JMS trigger to obtain multiple connections to the J]MS
provider. Multiple connections can improve trigger throughput. Keep in mind, however,
that each connection used by the JMS trigger requires a dedicated Integration Server
thread, regardless of the current throughput.

For a JMS trigger to have multiple connections to the JMS provider, the JMS connection
alias used by the trigger must be configured to create a new connection for each trigger.
For more information about JMS connection aliases, refer to webMethods Integration
Server Administrator’s Guide.

A concurrent JMS trigger can use multiple connections to retrieve messages from a JMS
provider. For a trigger to use multiple connections, the following must be true:

® The JMS trigger must be configured for concurrent processing. Serial JMS triggers
cannot use multiple connections.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 43

Working with JMS Triggers

® The JMS trigger must receive messages from a queue or from a topic with a durable
subscriber. JMS triggers that receive messages from non-durable subscribers (topics)
cannot use multiple connections.

® The JMS trigger must not have the Ignore locally published option selected when
the JMS connection alias is configured to use the Create New Connection per Trigger
option. For the JMS trigger to ignore locally published messages, the publisher and
subscriber must share the same connection. When the JMS connection alias uses
multiple connections per trigger, the publisher and subscriber will not share the
same connection.

® The JMS connection alias used by the JMS trigger must be configured to create an
individual connection for each trigger. To configure a JMS alias to create individual
connections for each JMS trigger, select the Create New Connection per Trigger option
on the Settings > Messaging > JMS Settings > JMS Connection Alias screen on Integration
Server Administrator.

Note: When using multiple connections to the Broker, Integration Server uses a different
client ID for each JMS trigger that uses the JMS connection alias. However, when
Integration Server connects to other JMS providers, it uses the same client ID for each
connection. Some JMS providers do not permit multiple connections to use the same
client ID to retrieve messages from a Topic with a durable subscriber. Review the JMS
provider documentation before configuring the use of multiple connections for a J]MS
connection alias and any concurrent JMS triggers that use the JMS connection alias.

Retrieving Multiple Messages for a JMS Trigger with Each Request

You can instruct Integration Server to retrieve multiple messages for a JMS trigger

with each request by using the prefetch cache. When a JMS trigger is configured to

use the prefetch cache, Integration Server retrieves multiple messages for the trigger
each time Integration Server requests more messages from the Broker. When the J]MS
trigger needs a new message to process, the JMS trigger retrieves the message from the
local, prefetched cache instead of requesting a new message from the Broker. Use of the
prefetch cache may improve performance of the JMS trigger because it reduces the time
spent retrieving messages for the JMS trigger.

Using the prefetch cache is most likely to improve performance for JMS triggers that
process many small messages and have trigger services that execute quickly. If the JMS
trigger receives large messages or the JMS trigger has long-running trigger services,
using the prefetch cache may increase the overall time needed to retrieve and process

a message. For JMS triggers that fit this use case, including concurrent JMS triggers,
reducing the number of prefetched messages may actually decrease the time needed to
retrieve and process a message. You may need to set the number of prefetched messages
to 1 (one).

Note: This prefetch cache can be used with JMS triggers that receive messages from
Broker only.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 44

Working with JMS Triggers

The use of the prefetch cache for a JMS trigger and the number of messages Integration
Server might retrieve with each request are determined by the Max prefetch size property
for the JMS trigger and the value of the watt.server.jms.trigger.maxPrefetchSize
parameter.

® When the Max prefetch size property is greater than 0, Integration Server uses the
prefetch cache with the JMS trigger. The Max prefetch size property value specifies the
number of messages that Integration Server might retrieve and cache for the trigger.
The default is 10.

® When the Max prefetch size property is set to -1, Integration Server uses the prefetch
cache with the JMS trigger. The watt.server.jms.trigger.maxPrefetchSize parameter
value determines how many messages Integration Server might retrieves and cache
for the JMS trigger.

® When the Max prefetch size property is set to 0, Integration Server does not use the
prefetch cache with the JMS trigger.

When the prefetch cache is in use and the number of messages retrieved by Integration
Server is greater than one, the same server thread might process all of the messages
retrieved by the prefetch request. This is true even for concurrent JMS triggers. The first
thread for the concurrent JMS trigger processes the first set of prefetched messages. The
second thread for the concurrent JMS trigger processes the second set of prefetched
messages.

For example, suppose that the number of available messages is 22, Max execution threads
is 4, and Max prefetch size is 10. In the initial request for messages, the first server thread
may retrieve 10 messages. The same server thread will process these first 10 messages.
The second server thread may retrieve 10 messages, all of which will be processed by the
second server thread. The third server thread may retrieve the remaining 2 messages,
both of which will be processed by the third server thread. While the concurrent J]MS
trigger can use up to 4 server threads, Integration Server might use only 3 server threads
to retrieve and process messages due to the way in which a JMS trigger processes
prefetched messages. A concurrent JMS trigger will use all of the configured execution
threads to process messages only when the number of messages on the Broker is greater
than the number of messages that can be prefetched.

Note: When you are working with a cluster of Integration Servers, the prefetch behavior
might appear at first to be misleading. For example, suppose that you have a cluster

of two Integration Servers. Each Integration Server contains the same JMS trigger.
Twenty messages are sent to a destination from which JMS trigger receives messages. It
might be expected the JMS trigger on Integration Server 1 will receive the first message,
the JMS trigger on Integration Server 2 will receive the second message, and so forth.
However, what may happen is that the JMS trigger on Integration Server 1 will receive
the first 10 messages and the JMS trigger on Integration Server 2 will receive the second
10 messages.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 45

Working with JMS Triggers

Configuring Message Processing

Keep the following points in mind when configuring message processing for a JMS
trigger:

You can configure a standard JMS trigger and its associated trigger service to
process a group or “batch” of messages at one time. For information about batch
processing, see "About Batch Processing for Standard JMS Triggers" on page 42
and "Guidelines for Configuring Batch Processing" on page 43.

If the JMS provider from which the JMS trigger retrieves messages does not support
concurrent access by durable subscribers, you must set the Max execution threads
property to 1 for the concurrent JMS trigger. Consult the documentation for your
JMS provider for more information.

Non-durable subscribers, i.e., JMS triggers that subscribe to topics but do not specify
a durable subscriber, cannot receive messages in a load-balanced fashion. Because it
is possible for a JMS trigger using a non-durable subscriber to process duplicates of a
message, set Max execution threads to 1.

For a destination that acts as a shared state client, the serial processing mode
corresponds to a shared state order mode of publisher; a concurrent processing
mode corresponds to a shared state order mode of none.

If you use webMethods Broker as the JMS provider, changing the message
processing mode for a JMS trigger can create a mismatch with the corresponding
destination on the Broker. If you do not use Designer to make the changes, you need
to use the Broker interface of My webMethods to update the destination.

A concurrent JMS trigger can use multiple connections to retrieve messages from the
JMS provider. For information about requirements for using multiple connections,
see "Using Multiple Connections to Retrieve Messages for a Concurrent JMS Trigger"
on page 43.

You can only use the Max prefetch property with webMethods Broker.

To configure message processing for a JMS trigger

1.

In the Package Navigator view of Designer, open the IM S trigger for which you want to
specify message processing.

In the Properties view, under Messaging processing, next to Processing mode, select one of
the following:

Select... To...

Serial Specity that Integration Server should process messages
received by the trigger one after the other.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 46

Working with JMS Triggers

Select... To...

Concurrent Specify that Integration Server should process multiple
messages for this trigger at one time.

In the Max execution threads property, specify the maximum
number of messages that Integration Server can process
concurrently.

3. If youwant thistrigger to perform batch processing, next to Max batch messages, specify the
maximum number of messages that the trigger service can receive at onetime. If you do not
want the trigger to perform batch processing, leave this property set to 1. The default is 1.

4. If you want thistrigger to use multiple connections to receive messages from the IMS
provider, next to Connection count, specify the number of connections you want the IMS
trigger to make to the IMS provider. The default is 1.

5. If you want Integration Server to use the prefetch cache with this IMS trigger, in the
Properties view, under webMethods Broker do one of the following for Max prefetch size:

m Specify the number of messages you want Integration Server to retrieve and
cache for this JMS trigger. The default is 10 messages.

m Specify -1 if you want the value of watt.server.jms.trigger.maxPrefetchSize
parameter to determine how many messages Integration Server retrieves and
caches for the JMS trigger.

m Specify 0 if you do not want to use the prefetch cache with this JMS trigger.
6. Click File > Save.

If the destination is Queue or Topic (Durable Subscriber) and the JMS trigger is
connected to the queue or durable subscriber, Designer prompts you to update
the corresponding destination on the Broker with the changed shared state order
mode, click Yes to update the destination. Click No to skip the destination update.
Note that messages might be lost while Designer and Integration Server make the
update because Integration Server deletes and recreates the subscription as part of
the update.

Note: A JMS trigger is connected to the Broker when the specified JMS connection
alias is enabled and connected to the Broker.

Fatal Error Handling for Non-Transacted JMS Triggers

You can specify that Integration Server suspend a JMS trigger automatically if a fatal
error occurs during trigger service execution. A fatal error occurs when the trigger
service ends because of an exception.

If a trigger service ends because of an exception, and you configured the JMS trigger
to suspend on fatal errors, Integration Server suspends the trigger and acknowledges

Using webMethods Integration Server to Build a Client for JMS Version 9.7 47

Working with JMS Triggers

the message to the JMS provider. The JMS trigger remains suspended until one of the
following occurs:

B You enable the trigger using the pub.trigger:enableJMSTriggers service.
B You enable the trigger using Integration Server Administrator.

B Integration Server restarts or the package containing the trigger reloads. (When
Integration Server suspends a trigger because of a fatal error, Integration Server
considers the change to be temporary. For more information about temporary
vs. permanent state changes for triggers, see webMethods Integration Server
Administrator’s Guide.)

Automatic suspension of a trigger can be especially useful for serial triggers that are
designed to process a group of messages in a particular order. If the trigger service
ends in error while processing the first message, you might not want the trigger to
proceed with processing the subsequent messages in the group. If Integration Server
automatically suspends the trigger, you have an opportunity to determine why the
trigger service did not execute successfully.

Important: If you disable or suspend a SOAP-JMS trigger that acts as a listener for one
or more provider web service descriptors, Integration Server will not retrieve any
messages for those web service descriptors until the trigger is enabled.

You can handle the exception that causes the fatal error by configuring Integration
Server to generate JMS retrieval failure events for fatal errors and by creating an
event handler that subscribes to JMS retrieval failure events. Integration Server passes
the event handler the contents of the JMS message as well as information about the
exception.

Integration Server handles fatal errors for transacted JMS differently than for non-
transacted JMS triggers. For information about fatal error handling for transacted JMS
triggers, see "Fatal Error Handling for Transacted JMS Triggers" on page 63.

Configuring Fatal Error Handling for Non-Transacted JMS Triggers

To configure fatal error handling for a non-transacted JMS trigger

1. Inthe Package Navigator view of Designer, open the IMS trigger for which you want to
specify document processing.

2. Inthe Properties view, under Fatal error handling, set the Suspend on error property to True if
you want Integration Server to suspend the trigger when atrigger service ends with an error.
Otherwise, select False. The default is False.

3. Click File > Save.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 48

Working with JMS Triggers

Transient Error Handling for Non-Transacted JMS Triggers

When building a JMS trigger, you can specify what action Integration Server takes when
the trigger service fails because of a transient error caused by a run-time exception. A
transient error is an error that arises from a temporary condition that might be resolved
or corrected quickly, such as the unavailability of a resource due to network issues or
failure to connect to a database. Because the condition that caused the trigger service

to fail is temporary, the trigger service might execute successfully if Integration Server
waits and then re-executes the service.

A run-time exception (specifically, an ISRuntimeException) occurs in the following
situations:

B The trigger service catches and wraps a transient error and then re-throws it as an
ISRuntimeException.

® The web service operation that processes the message received by a SOAP-
JMS trigger catches and wraps a transient error and then re-throws it as an
ISRuntimeException.

Note: For a service handler invoked by a SOAP-JMS trigger, Integration Server treats
all errors as fatal. Service handlers invoked by SOAP-JMS triggers cannot be retried.

m A pub.jms:send, pub.jms:sendAndWait, or pub.jms:reply service fails because a resource (such
as the JNDI provider or JMS provider) is not available.

m If the JMS provider is not available, and the settings for the pub.jms* service indicate
that Integration Server should write messages to the client side queue, Integration
Server does not throw an ISRuntimeException.

B A transient error occurs on the back-end resource for an adapter service. Adapter
services built on Integration Server 6.0 or later, and based on the ART framework,
detect and propagate exceptions that signal a retry automatically if a transient error
is detected on their back-end resource.

Note: A web service connector that sends a JMS message can throw an
ISRuntimeException, such as when the JMS provider is not available. However,
Integration Server automatically places the ISRuntimeException in the fault document
returned by the web service connector. If you want the parent flow service to catch the
transient error and re-throw it as an ISRuntimeException, you must code the parent
flow service to check the fault document for an ISRuntimeException and then throw an
ISRuntimeException explicitly.

You can configure transient error handling for a trigger to instruct Integration Server
how and when to retry the trigger service.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 49

Working with JMS Triggers

About Retry Behavior for Trigger Services

When you configure transient error handling for a non-transacted JMS trigger, you
specify the following retry behavior:

m Whether Integration Server should retry trigger services for the standard JMS
trigger. Keep in mind that a trigger service can retry only if it is coded to throw
ISRuntimeExceptions. For more information, see "Service Requirements for Retrying
a Trigger Service" on page 50.

® For a SOAP-JMS trigger, whether Integration Server should retry web service
operation that throw and an ISRuntimeException.

Note: Integration Server does not apply the SOAP-JMS trigger transient error
handling behavior to service handlers executed as part of processing web services.
Integration Server treats all errors thrown by service handler as fatal errors.

B The maximum number of retry attempts Integration Server should make for each
trigger service.

B The time interval between retry attempts.

® How to handle a retry failure. That is, you can specify what action Integration
Server takes if all the retry attempts are made and the trigger service or web service
operation still fails because of an ISRuntimeException. For more information about
handling retry failures, see "Handling Retry Failure" on page 51.

Service Requirements for Retrying a Trigger Service

To be eligible for retry, the trigger service or web service operation must do one of the
following to catch a transient error and re-throw it as an ISRuntimeException:

m If the trigger service or web service operation is a flow service, the trigger
service must invoke pub.flow:throwExceptionForRetry. For more information about the
pub.flow:throwExceptionForRetry, see the webMethods Integration Server Built-In Services
Reference.

m If the trigger service or web service operation is written in Java, the service can
use com.wm.app.b2b.server. ISRuntimeException(). For more information about
constructing ISRuntimeExceptions in Java services, see the webMethods Integration
Server Java API Reference for the com.wm.app.b2b.server.ISRuntimeException class.

When a service invokes a pub.jms* service that sends a JMS message and the service fails
because a resource needed by the pub.jms* service is not available, Integration Server
automatically detects and propagates an ISRuntimeException.

Adapter services built on Integration Server 6.0 or later, and based on the ART
framework, detect and propagate exceptions that signal a retry if a transient error is
detected on their back-end resource. This behavior allows for the automatic retry when
the service functions as a trigger service.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 50

Working with JMS Triggers

Note: Integration Server does not retry a trigger service that fails because a
ServiceException occurred. A ServiceException indicates that there is something
functionally wrong with the service. A service can throw a ServiceException using the
EXIT step.

Handling Retry Failure

Retry failure occurs for a standard JMS trigger when Integration Server makes the
maximum number of retry attempts and the trigger service still fails because of an
ISRuntimeException. Retry failure occurs for a SOAP-JMS trigger when Integration
Server makes the maximum number of retry attempts to process a web service operation
and the operation still fails because of an ISRuntimeException.

When you configure retry properties, you can specify one of the following actions to
determine how Integration Server handles retry failure for a trigger.

m Throw exception. When Integration Server exhausts the maximum number of retry
attempts, Integration Server treats the last trigger service or web service operation
failure as a service error. This is the default behavior.

m Suspend and retry later. When Integration Server reaches the maximum number of
retry attempts, Integration Server suspends the trigger and then retries the trigger
service or web service operation at a later time.

Overview of Throw an Exception

The following table provides an overview of how Integration Server handles retry
failure when the Throw exception option is selected.

Step Description

1 Integration Server makes the final retry attempt and the trigger service or
web service operation fails because of an ISRuntimeException.

2 Integration Server treats the last trigger service or web service operation
failure as a ServiceException.

3 Integration Server rejects the message.

If the message is persistent, Integration Server returns an
acknowledgement to the JMS provider.

4 Integration Server generates a JMS retrieval failure event if the
watt.server.jms.trigger.raiseEventOnRetryFailure property is set to true
(the default).

Using webMethods Integration Server to Build a Client for JMS Version 9.7 51

Working with JMS Trigge

rs

Step

Description

If the JMS trigger is configured to suspend on error when a fatal
error occurs, Integration Server suspends the JMS trigger. Otherwise,
Integration Server processes the next message for the JMS trigger.

In summary, the default retry failure behavior (Throw exception) rejects the message and
allows the trigger to continue with message processing when retry failure occurs for a
trigger service.

Overview of Suspend and Retry Later

The following table provides more information about how the Suspend and retry later
option works.

Step

Description

1

Integration Server makes the final retry attempt and the trigger service or
web service operation fails because of an ISRuntimeException.

Integration Server suspends the JMS trigger temporarily.

Note: The change to the trigger state is temporary. Message processing will
resume for the trigger if Integration Server restarts, the trigger is enabled or
disabled, or the package containing the trigger reloads. You can also enable
triggers manually using Integration Server Administrator or by invoking
the pub.trigger:enableJMSTriggers service.

Important: If you disable or suspend a SOAP-JMS trigger that acts as a
listener for one or more provider web service descriptors, Integration
Server will not retrieve any messages for those web service descriptors
until the SOAP-JMS trigger is enabled.

Integration Server recovers the message back to the JMS provider. This
indicates that the required resources are not ready to process the message
and makes the message available for processing at a later time. For serial
triggers, it also ensures that the message maintains its position at the top
of trigger queue.

Optionally, Integration Server schedules and executes a resource
monitoring service. A resource monitoring service is a service that you
create to determine whether the resources associated with a trigger
service are available. A resource monitoring service returns a single
output parameter named isAvailable .

Using webMethods Integration Server to Build a Client for JMS Version 9.7

52

Working with JMS Triggers

Step Description

5 If the resource monitoring service indicates that the resources are
available (that is, the value of isAvailable is true), Integration Server
enables the trigger. Message processing and message retrieval resume for
the JMS trigger.

If the resource monitoring service indicates that the resources are not
available (that is, the value of isAvailable is false), Integration Server waits
a short time interval (by default, 60 seconds) and then re-executes the
resource monitoring service. Integration Server continues executing the
resource monitoring service periodically until the service indicates the
resources are available.

Tip: You can change the frequency with which the resource
monitoring service executes by modifying the value of the
watt.server.jms.trigger.monitoringInterval property.

6 After Integration Server resumes the JMS trigger, Integration Server
passes the message to the trigger. The trigger and trigger service (or web
service operation) process the message just as they would any message
received by the JMS trigger.

Note: At this point, the retry count is set to 0 (zero).

In summary, the Suspend and retry later option provides a way to resubmit the message
programmatically. It also prevents the trigger from retrieving and processing other
messages until the cause of the transient error condition has been remedied.

Configuring Transient Error Handling for a Non-Transacted JMS
Trigger

Use the following procedure to configure transient error handling and retry behavior for
a non-transacted JMS trigger.

Note: If you do not configure service retry for a trigger, set the Max retry attempts property
to 0. Because managing service retries creates extra overhead, setting this property to 0
can improve the performance of services invoked by the trigger.

To configure transient error handling for a non-transacted JMS trigger

1. Inthe Package Navigator view of Designer, open the IMS trigger for which you want to
configure retry behavior.

2. Inthe Properties view, under Transient error handling, in the Max retry attempts field, specify
the maximum number of times Integration Server should attempt to re-execute the trigger
service. The default is O retries (the trigger service does not retry).

Using webMethods Integration Server to Build a Client for JMS Version 9.7 53

Working with JMS Triggers

3. Inthe Retry interval property, specify the time period the Integration Server waits between
retry attempts. The default is 10 seconds.

4. Set the On retry failure property to one of the following:

Select... To...

Throw exception Specify that Integration Server should throw a service
exception when the last allowed retry attempt ends
because of an ISRuntimeException.

This is the default.

Suspend and retry later Specity that Integration Server should recover the
message back to the JMS provider and suspend the
trigger when the last allowed retry attempt ends
because of an ISRuntimeException.

Note: If you want Integration Server to automatically
enable the trigger when the trigger’s resources become
available, you must provide a resource monitoring
service that Integration Server can execute to determine
when to resume the trigger.

5. If you selected Suspend and retry later, then in the Resource monitoring service property
specify the service that Integration Server should execute to determine the availability of
resources associated with the trigger service. Multiple triggers can use the same resource
monitoring service. For information about building a resource monitoring service, see Using
webMethods Integration Server to Build a Client for [MS.

6. Click File > Save.

Notes:

m Standard JMS triggers and services can both be configured to retry. When a trigger

invokes a service (that is, the service functions as a trigger service), Integration
Server uses the trigger retry properties instead of the service retry properties.

SOAP-JMS triggers and services used as operations in provider web service
descriptors can both be configured to retry. When a web service operation processes
a message received by a SOAP-JMS trigger, Integration Server uses the trigger retry
properties instead of the service (operation) retry properties.

Integration Server does not retry service handlers invoked by a SOAP-JMS trigger.

When Integration Server retries a trigger service and the trigger service is configured
to generate audit data on error, Integration Server adds an entry to the audit log for
each failed retry attempt. Each of these entries will have a status of “Retried” and an
error message of “Null”. However, if Integration Server makes the maximum retry
attempts and the trigger service still fails, the final audit log entry for the service

Using webMethods Integration Server to Build a Client for JMS Version 9.7 54

Working with JMS Triggers

will have a status of “Failed” and will display the actual error message. Integration
Server makes the audit log entry regardless of which retry failure option the trigger
uses.

®m Integration Server generates the following journal log message between retry
attempts:

[155.0014.0031D] Service serviceName failed with ISRuntimeException. Retry x of y
will begin in retryInterval milliseconds.

B You can invoke the pub.flow:getRetryCount service within a trigger service to determine
the current number of retry attempts made by Integration Server and the maximum
number of retry attempts allowed for the trigger service. For more information about
the pub.flow:getRetryCount service, see the webMethods Integration Server Built-In Services
Reference.

Exactly-Once Processing for JMS Triggers

Within Integration Server, exactly-once processing is a facility that ensures one-time
processing of a persistent message by a JMS trigger. The trigger does not process
duplicates of the message. Integration Server provides exactly-once processing when all
of the following are true:

® The message is persistent.
® The JMS trigger has an acknowledgement mode set to CLIENT ACKNOWLEDGE.

®m Exactly-once properties are configured for the JMS trigger.

Note: Software AG does not recommend using exactly-once processing for JMS triggers
subscribing to topics. However, if you require exactly-once processing for a JMS trigger
that subscribes to a topic, use a durable subscriber.

Duplicate Detection Methods for JMS Triggers

Integration Server ensures exactly-once processing by performing duplicate detection
and by providing the ability to retry trigger services. Duplicate detection determines
whether the current message is a copy of one previously processed by the trigger.

Duplicate messages can be introduced in to the webMethods system in the following
situations:

® The sending client sends the same message more than once.

B When receiving persistent messages from the JMS provider, Integration Server
and the JMS provider lose connectivity before the JMS trigger processes and
acknowledges the message. The JMS trigger will receive the message again when the
connection is restored.

Integration Server uses duplicate detection to determine the message’s status. The
message status can be one of the following:

Using webMethods Integration Server to Build a Client for JMS Version 9.7 55

Working with JMS Triggers

® New. The message is new and has not been processed by the trigger.
®m Duplicate. The message is a copy of one already processed the trigger.

® InDoubt.Integration Server cannot determine the status of the message. The trigger
may or may not have processed the message before.

To resolve the message status, Integration Server evaluates, in order, one or more of the
following:

m Delivery count indicates how many times the JMS provider has delivered the message
to the JMS trigger.

= Document history database maintains a record of all persistent message IDs processed
by JMS triggers that have an acknowledgment mode of CLIENT ACKNOWLEDGE and
for which exactly-once processing is configured.

® Document resolver service is a service created by a user to determine the message
status. The document resolver service can be used instead of or in addition to the
document history database.

The steps that Integration Server takes to determine a message’s status depend on the
exactly-once properties configured for the JMS trigger.

Note: For detailed information about exactly-once processing for messages received by
JMS triggers, see Using webMethods Integration Server to Build a Client for JMS.

Configuring Exactly-Once Processing for a JMS Trigger

Configure exactly-once processing for a JMS trigger when you want the trigger to
process persistent messages once and only once. If it is acceptable for a trigger service to
process duplicates of a message, you should not configure exactly-once processing for
the trigger.

Keep the following points in mind when configuring exactly-once processing:

B Integration Server can perform exactly-once processing for persistent messages only.
The sending client must set the JMSDeliveryMode to persistent.

® The JMS trigger must specify CLIENT ACKNOWLEDGE for the acknowledgement mode.

B You do not need to configure all three methods of duplicate detection. However,
if you want to ensure exactly-once processing, you must use a document history
database or implement a custom solution using the document resolver service.

A document history database offers a simpler approach than building a custom
solution and will typically catch all duplicate messages. There may be exceptions
depending on your implementation. For more information about these exceptions,
see "Building a Transacted JMS Trigger" on page 59. To minimize these
exceptions, it is recommended that you use a history database and a document
resolver service.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 56

Working with JMS Triggers

®m Stand-alone Integration Servers cannot share a document history database. Only a

cluster of Integration Servers or a non-clustered group of Integration Servers can
(and must) share a document history database.

Make sure the duplicate detection window set by the History time to live property is
long enough to catch duplicate messages but does not cause the document history
database to consume too many server resources. If sending JMS clients reliably send
messages once, you might use a smaller duplicate detection window. If the J]MS
clients are prone to sending duplicate messages, consider setting a longer duplicate
detection window.

If you intend to use a document history database as part of duplicate detection, you
must first install the document history database component and associate it with

a JDBC connection pool. For instructions, see Installing webMethods and Intelligent
Business Operations Products.

Note: For detailed information about exactly-once processing for messages received by
JMS triggers, see Using webMethods Integration Server to Build a Client for JMS.

To configure exactly-once processing for a JMS trigger

1.

5.

In the Package Navigator view of Designer, open the IMS trigger for which you want to
configure exactly-once processing.

In the Properties view, under Exactly Once, set the Detect duplicates property to True.
To use adocument history database as part of duplicate detection, do the following:
Set the Use history property to True.

b. Inthe History time to live property, specify how long the document history database
maintains an entry for a message processed by this trigger. This value determines the
length of the duplicate detection window.

To use aservice that you create to resolve the status of In Doubt messages, specify that
service in the Document resolver service property.

Click File > Save.

Disabling Exactly-Once Processing for a JMS Trigger

If you later determine that exactly-once processing is not necessary for a JMS trigger,
you can disable it.

To disable exactly-once processing for a JMS trigger

1.

In the Package Navigator view of Designer, open the trigger for which you want to configure
exactly-once processing.

In the Properties view, under Exactly Once, set the Detect duplicates property to False.
Designer disables the remaining exactly-once properties.

Click File > Save.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 57

Working with JMS Triggers

Debugging a JMS Trigger

To debug and test a JMS trigger you can:

Instruct Integration Server to produce an extra level of verbose logging. You can
enable debug trace logging for all JMS triggers or for individual JMS triggers

Send messages to which the JMS trigger subscribes to the JMS provider. You can
create a service that sends the messages. Alternatively, you can create a launch
configuration that publishes a JMS message that contains an instance of a specified IS
document type to the JMS provider.

Enabling Trace Logging for All JMS Triggers

To enable debug trace logging for all JMS triggers

1.

2
3.
4

o

Open Integration Server Administrator if it isnot already open.
In the Settings menu of the Navigation panel, click Extended.
Click Edit Extended Settings.

Under Extended Settings, type the following:

watt.server.jms.debugTrace=true
Click Save Changes.
Suspend and then enable all IMS triggers.

For information about suspending and enabling all JMS triggers at one time, see
webMethods Integration Server Administrator’s Guide.

Enabling Trace Logging for a Specific JMS Trigger

To enable debug trace logging for a specific JMS trigger

1.

2
3.
4

Open Integration Server Administrator if it is not already open.
In the Settings menu of the Navigation panel, click Extended.
Click Edit Extended Settings.

Under Extended Settings, type the following:

watt.server.jms.debugTrace. triggerName =true

Where triggerName is the fully qualified name of the trigger in the format
folder .subfolder :triggerName .

Click Save Changes.
Disable and then enable the trigger.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 58

Working with JMS Triggers

Building a Transacted JMS Trigger

A transacted [MS trigger is a JMS trigger that executes within a transaction. A transaction
is a logical unit of work composed of one or more interactions with one or more
resources. The interactions within a transaction are either all committed or all rolled
back. A transaction either entirely succeeds or has no effect at all.

For a transacted JMS trigger, Integration Server uses a transacted JMS connection
alias to receive messages from the JMS provider and to process the messages. A JMS
connection alias is considered to be transacted when it has a transaction type of XA
TRANSACTION or LOCAL TRANSACTION.

The execution of a transacted JMS trigger is an implicit transaction. In an implicit
transaction, Integration Server starts and completes the transaction automatically,
without the need for executing any of the transaction management services.

Integration Server starts the implicit transaction when it uses the specified transacted
JMS connection alias to connect to the JMS provider and receive messages for the
transacted JMS trigger. Integration Server implicitly commits or rolls back the
transaction based on the success or failure of the trigger service.

® Integration Server commits the transaction if the trigger service executes
successfully.

® Integration Server rolls back the transaction if the trigger service fails with an
ISRuntimeException (a transient error). For detailed information about how
Integration Server handles a transient error within a transaction, see "Transient Error
Handling for Transacted JMS Triggers" on page 64.

® Integration Server rolls back the transaction if the trigger service fails with a Service
Exception (a fatal error). For detailed information about how Integration Server
handles a fatal error within a transaction, see "Fatal Error Handling for Transacted
JMS Triggers" on page 63.

Because Integration Server handles the transaction implicitly, you do not need to use
any of the transaction management services, such as pub.art.transaction:startTransaction, in the
trigger service. However, if the trigger service includes a nested transaction, you can use
the transaction management services to explicitly manage the nested transaction.

Like a non-transacted JMS trigger, a transacted JMS trigger specifies a destination from
which it would like to receive documents and specifies routing rules to process messages
it receives. However, a transacted JMS trigger has some prerequisites as well as some
properties that are different from a non-transacted JMS trigger.

Prerequisites for a Transacted JMS Trigger

Before you build a transacted JMS trigger, make sure the following points are true:

Using webMethods Integration Server to Build a Client for JMS Version 9.7 59

Working with JMS Triggers

A transacted JMS connection alias exists. A JMS connection alias is considered to
be transacted when it has a transaction type of XA TRANSACTION or LOCAL
TRANSACTION.

Note: A transacted JMS connection alias cannot be assigned to a JMS trigger if a
cluster policy is applied to the connection factory used by the JMS connection alias.

The WmART package is installed and enabled.

Properties for Transacted JMS Triggers

Integration Server and Designer provide different properties for a transacted JMS trigger
than for a non-transacted JMS trigger. The following list identifies properties that are
specific to transacted JMS triggers, specific to non-transacted JMS triggers, or apply to
both but must be set to a particular value for transacted JMS triggers.

For transacted JMS triggers, message acknowledgement is handled by the
transaction; the acknowledgement mode does not apply. Consequently, Designer
does not display the Acknowledgement mode property for a transacted JMS trigger.

A transacted JMS trigger can only use Any (OR) joins, for which you do not need to
specify a join time-out. Because All (AND) and Only one (XOR) joins cannot be used,
Designer does not display the Join expires and Expire after properties for a transacted
JMS trigger.

A transacted JMS trigger can be used for batch processing if the JMS connection alias
used by the trigger connects to a JMS provider that supports reuse of transacted JMS
sessions. If the JMS provider does not support reuse of transacted JMS sessions, set
Max batch processing to 1.

Consult the documentation for your JMS provider to determine whether or not the
JMS provider supports the reuse of transacted JMS sessions. Note that webMethods
Broker version 8.2 and higher, webMethods Universal Messaging version 9.5 SP1
and higher, and webMethods Nirvana version 7 and higher support the reuse of
transacted JMS sessions.

Because a transaction is an all or nothing situation, a trigger service cannot retry

a message if a trigger service ends because of a transient error. Designer does not
display the retry properties (Max retry attempts, Retry interval, and On retry failure) for a
transacted JMS trigger.

You can specify how Integration Server handles a transient error that causes the
transaction to be rolled back. Designer displays an On transaction rollback property
that you can use to specify whether Integration Server simply recovers the message
from the JMS provider or whether it suspends the JMS trigger in addition to
recovering the message. For more information about transient error handling for
transacted JMS triggers, see "Transient Error Handling for Transacted JMS Triggers"
on page 64.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 60

Working with JMS Triggers

Steps for Building a Transacted JMS Trigger

Building a transacted JMS trigger is a process that involves the following basic stages.

Stage 1 Create a new JMS trigger on Integration Server.

Stage 2 Specify a JMS connection alias with a transaction type of XA
TRANSACTION or LOCAL TRANSACTION.

Stage 3 Specity the destination (queues or topics) on the JMS provider from
which you want to receive messages. You also specify any message
selectors that you want the JMS provider to use to filter messages for the
JMS trigger.

If this a SOAP-JMS trigger, you can specify one destination only.

Stage 4 For a standard JMS trigger, create routing rules and specify the services
that Integration Server invokes when the JMS trigger receives messages.

SOAP-JMS triggers do not use routing rules.
Stage 5 Set the following JMS trigger properties:

Property name... Description

Enabled Enables or disables a JMS trigger as follows:

m If set to True, enables a JMS trigger that is
currently disabled.

m If set to False, disables a JMS trigger that is
currently enabled.

Execution user Name of the user account whose credentials
Integration Server uses to execute a service
associated with the JMS trigger.

Message processing Specifies whether Integration Server should
process messages serially or concurrently. When
set to:

m Serial, Integration Server processes messages
received by the trigger one after the other.

m Concurrent, Integration Server processes
multiple messages for the trigger at one time.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 61

Working with JMS Triggers

Fatal error handling >
Suspend on error

Transient error

Specifies whether you want Integration Server
to suspend the trigger when a trigger service
ends with an error. Select True or False.

Specifies how Integration Server responds

handling when a transaction is rolled back due to a
transient error that occurs during processing

of a transacted JMS trigger. When the On

transaction rollback property is set to:

® Recover only, Integration Server recovers the
message after a transaction is rolled back due
to a transient error. This is the default.

m Suspend and recover, Integration Server
suspends the JMS trigger and recovers the
message after a resource monitoring service
indicates that the resources needed by the
trigger service are available.

Exactly once Specifies whether you want the trigger to
process persistent messages once and only once.

Set Detect duplicates to True to configure exactly

once processing.

Permissions In Designer, select the ACLs that you want to
assign for each level of access as follows:

®m For the List ACL permission, specify the
ACL whose allowed member can see that
the element exists and view the element’s
metadata (input, output, etc.).

® For the Read ACL, specify the ACL whose
allowed member can view the source code and
metadata of the element.

®m For the Write ACL, specify the ACL whose
allowed member can lock, check out, edit,
rename, and delete the element.

m For the Execute ACL, specify the ACL whose
allowed member can execute the service. This
level of access only applies to services and web
service descriptors.

Stage 6 Test and debug the JMS trigger. For more information, see "Debugging a

JMS Trigger" on page 58.

Using webMethods Integration Server to Build a Client for JMS Version 9.7

62

Working with JMS Triggers

Fatal Error Handling for Transacted JMS Triggers

You can specify that Integration Server suspend a transacted JMS trigger automatically
if a fatal error occurs during trigger service execution. For a standard JMS trigger, a

fatal error occurs when the trigger service ends because of a ServiceException. For a
SOAP-JMS trigger, a fatal error occurs when the web service operation ends because of a
ServiceException.

When a transacted JMS trigger is configured to suspend when a fatal error occurs,
Integration Server does the following when the trigger service or web service operation
ends with a ServiceException:

Step

Description

1

The trigger service for a transacted JMS trigger fails because of a
ServiceException. Or, a web service operation invoked via a transacted
SOAP-JMS trigger fails because of a ServiceException.

Integration Server rolls back the entire transaction and Integration Server
recovers the message back to the JMS provider. The JMS provider marks the
message as redelivered and increments the value of the J]MSXDeliveryCount
property in the J]MS message.

If the JMS trigger is configured to use a document history database for
exactly-once processing, Integration Server adds an entry with a status of
“completed” for the message to the document history database.

Because Integration Server does not acknowledge the message when it is
rolled back, the JMS provider makes the message available for redelivery
to the JMS trigger. However, a message that causes a trigger service to

end because of a Service Exception typically does not process successfully
upon redelivery. Integration Server adds the “completed” entry so that the
message is treated as a duplicate when it is received from the JMS provider.
The message is rejected after it is resent.

If the JMS trigger does not use a document history database, Integration
Server continues to receive and attempt message processing until the
message processes successfully or the maximum delivery count has been
met. The maximum delivery count determines the maximum number of
time the JMS provider can deliver the message to the JMS trigger. It is
controlled by the watt.server.jms.trigger.maxDeliveryCount property.

Integration Server suspends the JMS trigger.

Important: If you disable or suspend a SOAP-JMS trigger that acts as a listener
for one or more provider web service descriptors, Integration Server will not

Using webMethods Integration Server to Build a Client for JMS Version 9.7 63

Working with JMS Triggers

Step Description

retrieve any messages for those web service descriptors until the trigger is
enabled.

5 The JMS trigger remains suspended until one of the following occurs:
B You enable the trigger using the pub.trigger:enableJMSTriggers service.
B You enable the trigger using Integration Server Administrator.

m Integration Server restarts or the package containing the trigger reloads.
(When Integration Server suspends a trigger because of a fatal error,
Integration Server considers the change to be temporary. For more
information about temporary vs. permanent state changes for triggers, see
webMethods Integration Server Administrator’s Guide.)

You can handle the exception that causes the fatal error by configuring Integration
Server to generate JMS retrieval failure events for fatal errors and by creating an event
handler that subscribes to JMS retrieval failure events. Integration Server passes the
contents of the JMS message and exception information to the event handler.

Configuring Fatal Error Handling for Transacted JMS Triggers

To configure fatal error handling for a transacted JMS trigger

1. Inthe Package Navigator view of Designer, open the JIM S trigger for which you want to
specify document processing.

2. Inthe Properties view, under Fatal error handling, set the Suspend on error property to True if
you want Integration Server to suspend the trigger when atrigger service ends with an error.
Otherwise, select False. The default is False.

3. Configure exactly-once processing for the IMS trigger. For more information about
configuring exactly-once processing, see "Configuring Exactly-Once Processing for a
JMS Trigger" on page 56.

4. Click File > Save.

Transient Error Handling for Transacted JMS Triggers

When building a transacted JMS trigger, you can specify what action Integration Server
takes when a transient error causes a trigger service or a web service operation to fail
and the entire transaction is rolled back.

A transient error is an error that arises from a temporary condition that might be resolved
or corrected quickly, such as the unavailability of a resource due to network issues or
failure to connect to a database. A transient error is caused by a run-time exception.

A run-time exception (specifically, an ISRuntimeException) occurs in the following
situations.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 64

Working with JMS Triggers

®m The trigger service catches and wraps a transient error and then re-throws it as an
ISRuntimeException.

® The web service operation that processes the message received by a SOAP-
JMS trigger catches and wraps a transient error and then re-throws it as an
ISRuntimeException.

Note: For a service handler invoked by a SOAP-JMS trigger, Integration Server treats
all errors as fatal. Service handlers invoked by SOAP-JMS triggers cannot be retried.

m The pub.jms:send, pub.jms:sendAndWait, or pub.jms:reply service fails because a resource
(such as the JNDI provider or JMS provider) is not available.

If the JMS provider is not available, and the settings for the pub.jms* service indicate
that Integration Server should write messages to the client side queue, Integration
Server does not throw an ISRuntimeException.

B A transient error occurs on the back-end resource for an adapter service. Adapter
services built on Integration Server 6.0 or later, and based on the ART framework,
detect and propagate exceptions that signal a retry automatically if a transient error
is detected on their back-end resource.

Note: A web service connector that sends a JMS message can throw an
ISRUntimeException, such as when the JMS provider is not available. However,
Integration Server automatically places the ISRuntimeException in the fault document
returned by the web service connector. If you want the parent flow service to catch the
transient error and re-throw it as an ISRuntimeException, you must code the parent
flow service to check the fault document for an ISRuntimeException and then throw an
ISRuntimeException explicitly.

You can specify one of the following transient error handling options for a transacted
JMS trigger:

= Recover only. After a transaction is rolled back, Integration Server receives the
message from the JMS provider almost immediately. This is the default.

®m Suspend and recover. After a transaction is rolled back, Integration Server suspends the
JMS trigger and receives the message from the JMS provider at a later time.

Overview of Recover Only

The following table provides an overview of how Integration Server handles transaction
rollback when the Recover Only option is selected for a transacted JMS trigger.

Step Description

1 The trigger service web service operation fails because of an
ISRuntimeException.
2 Integration Server rolls back the entire transaction.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 65

Working with JMS Triggers

Step Description

When the transaction is rolled back, Integration Server recovers the
message back to the JMS provider automatically. The JMS provider
marks the message as redelivered and increments the delivery count
(JMSXDeliveryCount field in the JMS message).

At this point, a JMS provider typically makes the message available for
immediate redelivery.

3 Integration Server receives the same message from the JMS provider and
processes the message.

Because Integration Server receives the message almost immediately after
transaction roll back, it is likely that the temporary condition that caused the
ISRuntimeException has not resolved and the trigger service will end with a
transient error again. Consequently, setting On transaction rollback to Recover
only could result in wasted processing.

Note: Integration Server enforces a maximum delivery count, which
determines the maximum number of time the JMS provider can deliver the
message to the JMS trigger. If the maximum delivery count has been met, the
JMS provider will not deliver the message to the JMS trigger. Instead, the JMS
provider will acknowledge and remove the message. The maximum delivery
count is controlled by the watt.server.jms.trigger.maxDeliveryCount property.

Overview of Suspend and Recover

The following table provides an overview of how Integration Server handles transaction
rollback when the Suspend and recover option is selected for a transacted JMS trigger.

Step Description

1 The trigger service or web service operation fails because of an
ISRuntimeException.
2 Integration Server rolls back the entire transaction.

When the transaction is rolled back, Integration Server recovers the
message back to the JMS provider automatically. The JMS provider
marks the message as redelivered and increments the delivery count
(JMSXDeliveryCount field in the JMS message).

3 Integration Server suspends the JMS trigger temporarily.

The JMS trigger is suspended on this Integration Server only. If the
Integration Server is part of a cluster, other servers in the cluster can retrieve
and process messages for the trigger.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 66

Working with JMS Triggers

Step Description

Important: If you disable or suspend a SOAP-JMS trigger that acts as a listener
for one or more provider web service descriptors, Integration Server will not
retrieve any messages for those web service descriptors until the SOAP-JMS
trigger is enabled.

Note: The change to the trigger state is temporary. Message processing will
resume for the trigger if Integration Server restarts, the trigger is enabled or
disabled, or the package containing the trigger reloads. You can also enable
triggers manually using Integration Server Administrator or by invoking the
pub.trigger:enableJMSTriggers service.

4 Optionally, Integration Server schedules and executes a resource
monitoring service. A resource monitoring service is a service that you create
to determine whether the resources associated with a trigger service are
available. A resource monitoring service returns a single output parameter
named isAvailable .

5 If the resource monitoring service indicates that the resources are available
(that is, the value of isAvailable is true), Integration Server enables the
trigger. Message processing and message retrieval resume for the JMS
trigger.

If the resource monitoring service indicates that the resources are not
available (that is, the value of isAvailable is false), Integration Server waits
a short time interval (by default, 60 seconds) and then re-executes the
resource monitoring service. Integration Server continues executing the
resource monitoring service periodically until the service indicates the
resources are available.

Tip: You can change the frequency at which the resource
monitoring service executes by modifying the value of the
watt.server.jms.trigger.monitoringInterval property.

6 After Integration Server resumes the JMS trigger, Integration Server receives
the message from the JMS provider and processes the message.

Note: If the maximum delivery count has been met, the JMS provider
will not deliver the message to the JMS trigger. The maximum delivery
count determines the maximum number of time the JMS provider

can deliver the message to the JMS trigger. It is controlled by the
watt.server.jms.trigger.maxDeliveryCount property.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 67

Working with JMS Triggers

Configuring Transient Error Handling for Transacted JMS Triggers

Use the following procedure to configure how Integration Server responds when a
transaction is rolled back due to a transient error that occurs during processing of a
transacted JMS trigger.

To configure transient error handling for a transacted JMS trigger

1. Inthe Package Navigator view of Designer, open the trigger for which you want to configure
transient error handling.

2. Inthe Properties view, under Transient error handling, in the On transaction rollback property,
select one of the following:

Select... To...
Recover only Specify that Integration Server recovers the message after a
transaction is rolled back due to a transient error.
This is the default.
Suspend and Specity that Integration Server does the following after a
recover transaction is rolled back due to a transient error:

® Suspends the JMS trigger

® Recovers the message after a resource monitoring service
indicates that the resources needed by the trigger service are
available.

3. If you selected Suspend and recover, in the Resource monitoring service property, specify
the service that Integration Server should execute to determine the availability of resources
associated with the trigger service or web service operation. Multiple triggers can use the
same resource monitoring service.

4. Click File > Save.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 68

Sending and Receiving JMS Messages

3

Sending and Receiving JMS Messages

THE JMS SEIVICESvuiveieieciitieis et 70
SENAING @ JMS MESSAUEvvviicrciciececece ettt 70
Sending a JMS Message and Waiting for @ REpIYccovieerieiriienienesescece s 75
ReplyiNg 10 @ JMS MESSAGFEvvieiieicieieeeecie s 80
Receiving a JMS Message Using Built-In SErVICES ..o 82
Sending a JMS Message as Part of @ Transaction ... 86
Setting Properties in @ JMS MESSAJEccvvvvirireiiiiecce e 88

Using webMethods Integration Server to Build a Client for JMS Version 9.7 69

Sending and Receiving JMS Messages

The JMS Services

Using the following JMS services, you can create services that send and/or receive JMS
messages. The JMS services are located in the WmPublic package.

Service Description

pub.jms:acknowledge Sends an acknowledgement for a message to the JMS
provider.

pub.jms:createConsumer Creates a message consumer to receive messages from

destinations on the JMS provider.

pub.jms:receive Synchronously receives a message from a queue or topic
on the JMS provider.

pub.jms:reply Sends a reply message to a requesting client.

pub.jms:send Sends a JMS message to the JMS provider.

pub.jms:sendAnd Wait Sends a request in the form of a JMS message to the JMS

provider and, optionally, waits for a reply.

pub.jms:sendBatch Sends multiple JMS messages to the same destination on
the JMS provider.

pub.jms.waitForReply Retrieves the reply message for an asynchronous
request.

Sending a JMS Message

When you build a service that sends a JMS message, you specify how Integration Server
connects to the JMS provider, the message destination, and whether or not a client side

queue should be used.

How to Send a JMS Message

The following describes the general steps you take to send a JMS message to a JMS

provider.

1. Create an empty flow service.

Using webMethods Integration Server to Build a Client for JMS Version 9.7

70

Sending and Receiving JMS Messages

2. Create the message body.

How you build the message body depends on the format that you want to use for
the message. For example, if you want to use a String as the message body, create

a field of type String and then add content to the String field. If you want to use a
Document (IData) as the message body, create a document and then add content to
the document. Note that a Document (IData) should only be used when sending a
JMS message from one Integration Server to another.

If you want more control over the actual javax.jms.Message that Integration

Server sends to the JMS provider, you can create a Java service that calls the
com.wm.app.b2b.server.jms.producer.ProducerFacade class, and then invoke one of
the following methods to create the desired javax.jms.Message:

createBytesMessage(String)
createMapMessage(String)
createObjectMessage(String)
createStreamMessage(String)
createTextMessage(String)

The Java service calling this API must return an Object of type javax.jms.Message,
which can then be mapped to the JMSMessage/body/message input parameter of the
pub.jms:send service.

Important: If you want to send a StreamMessage or a MapMessage, you need to use
the appropriate com.wm.app.b2b.server.jms.producer.ProducerFacade API to create
the javax.jms.Message object.

When you create the javax.jms.Message with the
com.wm.app.b2b.server.jms.producer.ProducerFacade, you can use the
javax.jms.Message setter methods to set the values of the message headers and
properties directly. You can also set the value of message headers and properties
using the input parameters of the pub.jms* service that you use to send the message.
If you set the message headers and properties both ways, the values provided to the
pub.jms* service take precedence.

Software AG recommends that you use a pub.jms* service to create and send the JMS
message. This may provide better performance on average.

3. Invoke pub.jms:send.

This service creates a J]MS message (javax.jms.Message) based on input provided to
the service or takes an existing JMS message and sends it to the J]MS provider.

Note: If you want to send multiple JMS messages to the same destination, use
pub.jms:sendBatch. For more information about the pub.jms:sendBatch services, see the
webMethods Integration Server Built-In Services Reference.

4. Specify the JMS connection alias.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 71

Sending and Receiving JMS Messages

The JMS connection alias indicates how Integration Server connects to the JMS
provider. The alias also specifies whether the alias uses a client side queue and if
Integration Server will retry the pub.jms:send service automatically if the service fails
because of a transient error.

Name Description

connectionAliasName Name of the JMS connection alias that you want to use
to send the message.

5. Specity the destination to which you want to send the message.

If the JMS connection alias you specified in step 4 uses the native webMethods API
to create the connection directly on the webMethods Broker, you need to specify the
destinationName as well as the destinationType .

Name Description

destinationName Name or lookup name of the Destination to which you
want to send the message.

m Specify the lookup name of the Destination object
when the JMS connection alias uses JNDI to retrieve
administered objects.

m Specify the provider-specific name of the Destination
when the JMS connection alias uses the native
webMethods API to connect directly to the webMethods
Broker.

destinationType Specifies whether the Destination is a queue or a topic. The
default is queue.

6. Set values for the header fields in the JMS message.
All of the header fields are optional.

Name Description

deliveryMode Specifies the message delivery mode for the message.
Specify one of the following:

B PERSISTENT provides once-and-only-once delivery
for the message. The message will not be lost if a J]MS
provider failure occurs.

Using webMethods Integration Server to Build a Client for JMS Version 9.7

72

Sending and Receiving JMS Messages

Name Description

B NON_PERSISTENT provides at-most-once delivery for the
message. The message has no guarantee of being saved
if a JMS provider failure occurs.

The default is PERSISTENT.

priority Specifies the message priority. The JMS standard defines
priority levels from 0 to 9, with 0 as the lowest priority
and 9 as the highest.

The default is 4.

Message priority is not supported by Universal
Messaging. Any priority assigned to a JMS message sent
to Universal Messaging will be ignored.

timeToLive Specifies the length of time, in milliseconds, that the JMS
provider retains the message.

The default is 0, meaning that the message does not
expire.

JMSType Message type identifier for the message.

If you created a javax.jms.Message and you set the message header fields using the
javax.jms.Message setter methods, you do not need to provide inputs to the fields
in JMSMessage/header . If you do set message header fields using both approaches,
Integration Server uses the values provided as input to the pub.jms:send service.

7. Set values for the Integration Server-specific properties.

The properties fields are optional fields added to the message header and are
often used to hold message selector values. Integration Server adds the following
properties to JMS messages it sends. You can set these values as follows.

Name Description

activation Specifies the activation ID for the message. A
JMS trigger uses the activation ID to join together
messages it receives. For more information about
setting the activation, see "Assigning an Activation to
a JMS Message" on page 89.

uuid Specifies a universally unique identifier for a message.
For more information about setting a UUID, see
"Setting the UUID" on page 89.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 73

Sending and Receiving JMS Messages

10.

If you created a javax.jms.Message and you set the message property fields using the
javax.jms.Message setter methods, you do not need to provide inputs to the fields in

JMSMessagel/properties . If you do set message property fields using both approaches,

Integration Server uses the values provided as input to the pub.jms:send service.

For information about setting the JMS_WMClusterNodes property, see "Overriding
the Cluster Policy when Sending JMS Messages" on page 115.

Add any custom properties to the JMS message.

To add a new property to JMSMessage/properties, click ¢ = on the Pipeline view.
Select a data type for the property and assign it a name. Make sure to place the new
property in the JMSMessage/properties field.

Assign a value to any custom properties that you add.
Map data to the body of the JMSMessage document.

Specifically, map the field that contains the data you want to included in the message
body to the field in JMSMessage/body with the appropriate data type.

Map to this field... If you...

string Used a field of type String for the message body content.

bytes Used a one-dimensional byte array for the message body
content.

object Used a Serializable Java object for the message body
content.

data Used a Document (IData) for the JMS message body

content. Keep in mind that the IData message format
can only be used when sending a JMS message from one
Integration Server to another.

message Used a Java service to create an object of type
javax.jms.Message.

Note: If you created a Java service that used one of the
com.wm.app.b2b.server.jms.producer.ProducerFacade
methods to create a javax.jms.Message object, map the
javax.jms.Message object produced by the Java service to
message .

Specify whether the client side queue should be used.

When the client side queue is in use, Integration Server places messages in the client
side queue if the JMS provider is not available at the time the pub.jms:send service

Using webMethods Integration Server to Build a Client for JMS Version 9.7 74

Sending and Receiving JMS Messages

executes. If you want to use the client side queue with this implementation of the
pub.jms:send service, the JMS connection alias specified for connectionAliassName must
be configured to have a client side queue. A JMS connection alias has a client side
queue if the Maximum CSQ Size property for the alias is set to a value other than 0
(zero).

Name Description

useCSQ Indicates whether Integration Server places the sent
message in the client side queue if the JMS provider is
not available at the time the message is sent.

B True specifies that Integration Server writes messages
to the client side queue if the JMS provider is not
available at the time this service executes. When the
JMS provider becomes available, Integration Server
sends messages from the client side queue to the JMS
provider.

B ralse indicates that Integration Server throws
an ISRuntimeException if the JMS provider is not
available at the time this service executes.

The default is False.

Note: If the specified connectionAliasName uses a cluster
connection factory to which the multisend guaranteed
policy is applied, set useCSQ to False. For more
information about the multisend guaranteed policy, see
"Working with the Multisend Guaranteed Policy" on page
112.

Sending a JMS Message and Waiting for a Reply

Integration Server provides the pub.jms:sendAndWait service, which you can use to send a
message and wait for a reply.

You can use the pub.jms:sendAndWait service to issue a request/reply in a synchronous or
asynchronous manner.

In a synchronous request/reply, the service that sends the request stops executing
while it waits for a reply. When the service receives a reply message, the service
resumes execution. If the timeout elapses before the service receives a reply,
Integration Server ends the request, and the service returns a null message that
indicates that the request timed out. Integration Server then executes the next step in
the flow service.

In an asynchronous request/reply, the service that sends the request continues
executing the steps in the service after sending the message. To retrieve the reply,

Using webMethods Integration Server to Build a Client for JMS Version 9.7 75

Sending and Receiving JMS Messages

the requesting flow service must invoke the pub.jms:waitForReply service. If the timeout
elapses before the pub.jms:waitForReply service receives a reply, the pub.jms:waitForReply
service returns a null document indicating that the request timed out.

A service that contains multiple asynchronous send and wait invocations allows the
service to send all the requests before collecting the replies. This approach can be more
efficient than sending a request, waiting for a reply, and then sending the next request.

How to Send a Request Message and Wait for a Reply

The following describes the general steps you take to build a service that sends a request
message and then waits for a reply.

1. Create an empty flow service.
2. Create the message body.

For more information about creating content for the body of a J]MS message, see step
2 in the section "How to Send a JMS Message" on page 70.

3. Invoke pub.jms:sendAndWait.

This service creates a J]MS message (javax.jms.Message) based on input provided to
the service or takes an existing JMS message and sends it to the JMS provider.

4. Specify the JMS connection alias.

The JMS connection alias indicates how Integration Server connects to the JMS
provider.

Name Description

connectionAliasName ~ Name of the JMS connection alias that you want to use to
send the message.

5. Specity the destination to which you want to send the message.

If the JMS connection alias you specified in step 4 uses the native webMethods API
to create the connection directly on the webMethods Broker, you need to specify the
destinationName as well as the destinationType .

Name Description

destinationName Name or lookup name of the Destination to which you
want to send the message.

®m Specifty the lookup name of the Destination object
when the JMS connection alias uses JNDI to retrieve
administered objects.

®m Specify the provider-specific name of the Destination
when the JMS connection alias uses the native

Using webMethods Integration Server to Build a Client for JMS Version 9.7 76

Sending and Receiving JMS Messages

Name Description
webMethods API to connect directly to the
webMethods Broker.

destinationType Specifies whether the Destination is a queue or a topic.

The default is queue.

6. Specify the destination to which message recipients should send the reply message.
(Optional)

If you do not specify a destination for reply messages, Integration Server uses a
temporaryQueue to receive the reply. A temporaryQueue is a queue object created for
the duration of a particular connection.

When using pub.jms:sendAndWait to issue a request/reply, you must specify a queue

as the value of the destinationNameReplyTo parameter. In a request/reply scenario,

it is possible that the message consumer created to receive the reply might be
created after the reply message is sent. (In a synchronous request/reply, the
pub.jms:sendAndWait service creates the message consumer. In an asynchronous
request/reply, the pub.jms:waitForReply service or a custom solution, such as a JMS
trigger, creates the message consumer.) If the reply destination is a queue, a message
consumer can receive messages published to the queue regardless of whether

the message consumer was active at the time the message was published. If the
destination is a topic, a message consumer can receive only messages published
when the message consumer was active. If the reply is sent to a topic before the
message consumer is created, the message consumer will not receive the reply.
Consequently, when creating a request/reply, the destinationNameReplyTo parameter
should specify the name or lookup name of a queue.

Name Description

destinationNameReplyTo ~ Name or lookup name of the Destination to which
you want the reply message sent.

m Specify the lookup name of the Destination object
when the JMS connection alias uses JNDI to retrieve
administered objects.

®m Specify the provider-specific name of the Destination
when the JMS connection alias uses the native
webMethods API to connect directly to the
webMethods Broker.

destinationTypeReplyTo Specifies whether the Destination is a queue or a
topic. The default is queue.

7. Set the request timeout.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 77

Sending and Receiving JMS Messages

10.

The timeout indicates how long Integration Server waits for a reply message. The
timeout parameter only applies to synchronous send and wait requests.

Name Description

timeout Time to wait (in milliseconds) for the response to arrive.
If no value is specified, the service does not wait at all.

Populate the JMS message.

To populate the JMS message header, properties, and body, follow steps 5-9 in the
section "How to Send a JMS Message" on page 70.

Determine whether the request is synchronous or asynchronous.

The pub.jms:sendAndWait provides a parameter that you can set to indicate whether the
request is synchronous or asynchronous. By default, the request is synchronous.

Name Description

async Flag specifying whether this is an asynchronous or
synchronous request/reply.

B True indicates that this is an asynchronous request/reply.
After sending the message, Integration Server executes
the next step in the flow service immediately. Integration
Server does not wait for a reply before continuing service
execution.

B False indicates that this is a synchronous request/reply.
After sending the message, Integration Server waits for a
reply before executing the next step in the flow service.

The default is False.

Specify whether the client side queue should be used.

When the client side queuing is in use, Integration Server places messages

in the client side queue if the JMS provider is not available at the time the
pub.jms:sendAndWait service executes. If you want to use the client side queue with this
implementation of the pub.jms:sendAndWait service, the JMS connection alias specified
for connectionAliasName must be configured to have a client side queue. A JMS
connection alias has a client side queue if the Maximum CSQ Size property for the alias
is set to a value other than 0 (zero).

The client side queue can be used with asynchronous requests only.

If the client side queue is in use, the reply destination must be a queue that is not
temporary. Consequently, if useCSQ is set to true, values must be specified for the
destinationNameReplyTo and destinationTypeReplyTo input parameters.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 78

Sending and Receiving JMS Messages

Name

Description

useCSQ

Indicates whether Integration Server places the sent
message in the client side queue if the JMS provider is not
available at the time the message is sent.

True specifies that Integration Server writes messages to
the client side queue if the JMS provider is not available
at the time this service executes. When the JMS provider
becomes available, Integration Server sends messages
from the client side queue to the JMS provider.

False indicates that Integration Server throws an
ISRuntimeException if the JMS provider is not available
at the time this service executes.

The default is False.

Note: If the specified connectionAliasName uses a cluster
connection factory to which the multisend guaranteed policy
is applied, set useCSQ to False. For more information about
the multisend guaranteed policy, see "Working with the
Multisend Guaranteed Policy" on page 112.

11. Invoke pub.jms:waitForReply.

If you configured pub.jms:sendAndWait as an asynchronous request/reply, you need to
invoke the pub.jms:waitForReply service to retrieve the reply message.

Specity the following input values for the pub.jms:waitForReply service.

Name

Description

correlationID

A unique identifier used to associate the reply message
with the initial request. Integration Server uses the
value of the uuid or [MSMessagelD fields in the
requesting JMS message to correlate the response to the
request.

®m If you set the uuid in the JMS message request,
you can link the value of the uuid field from the
JMSMessage produced by pub.jms:sendAndWait to the
correlationID .

®m If you did not specify a uuid, you can link the
JMSMessagelD field from the [MSMessage produced
by pub.jms:sendAndWait to the correlationID .

Using webMethods Integration Server to Build a Client for JMS Version 9.7

79

Sending and Receiving JMS Messages

Name Description

timeout Optional. Time to wait (in milliseconds) for the reply to
arrive. If no value is specified, the service does not wait
for a reply.

Note: The pub.jms:waitForReply service cannot be used to retrieve a response to requests
that were routed through the client side queue. To retrieve the response, create a
JMS trigger that subscribes to the reply to queue.

Note: If the pub.jms:sendAndWait service executes and the message is sent directly to
the JMS provider (i.e., it is not sent to the client side queue), the [MSMessage \ header
\JMSMessagelD contains a unique identifier assigned by the JMS provider. If the
JMSMessagelD field is null, after the service executes, the JMS provider was not
available at the time the service executed. Integration Server wrote the message to
the client side queue.

12. Process the reply message.

The pub.jms:sendAndWait (or pub.jms:waitForReply) service produces the output parameter
JMSReplyMessage , which contains the J]MS message received as a reply.

If Integration Server does not receive a reply before the specified timeout value
elapses, the JMSReplyMessage is null. Be sure to code your service to handle this
situation.

Replying to a JMS Message

You can create a service that sends a reply message in response to a received request
message. The reply message might be a simple acknowledgement or might contain
information requested by the sender.

When you send a reply message, Integration Server uses information in the request
message to determine the reply destination. The [MSReplyTo field in the request
message is set by the sending client and indicates the destination to which the reply will
be sent. The replying Integration Server automatically sets this value when it executes
the pub.jms:reply service.

When replying to a message, Integration Server also automatically sets the
JMSCorrelationID in the reply message. Integration Server, and many JMS clients,
use the [MSCorrelationID to correlate the reply message with the request message.
Integration Server uses the value of either the uuid or [MSMessageID fields in the
requesting JMS message to correlate the request and the response.

m If the sender of the request message specified the uuid, the replying Integration
Server uses the uuid as the JMSCorrelationID of the reply message.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 80

Sending and Receiving JMS Messages

m If the sender of the request message did not specify a uuid, the replying Integration

Server uses the [MSMessageID from the request message as the JMSCorrelationID of

the reply message.

How to Send a Reply Message

The following describes the general steps you take to build a service that sends a reply
message.

1. Open or create the service that will send the reply.

If a JMS trigger received the message, this might be the trigger service or a service
invoked by the trigger service. If you used the pub.jms:receive service to retrieve the
message from the JMS provider, you might reply to the message within the same
service or in another service invoked by the same top-level service.

2. Invoke pub.jms:reply.

This service takes the reply message you created and delivers it to the destination
specified in the JMSReplyTo field in the header of the request message.

3. Populate the J]MS message.

If a JMS trigger received the message, populate the JMS message header, properties,

and body, follow steps 5-9 in the section "How to Send a JMS Message" on page
70.

4. Specify the consumer and message.

If you received the message using the pub.jms:receive service, you must specify the

message consumer used to receive the message and the request message. You do not

need to specify this information if a JMS trigger received the message.

Name Description

consumer The message consumer object used to receive the
request message from the JMS provider. Integration
Server uses information from the consumer to create
a message producer that will send the reply message.

message A javax.jms.Message object that contains the request
message. You can map the [MSMessage/body/message
field in the request message to the pub.jms:replymessage
input parameter. The pub.jms:reply service uses
the request message to determine the replyTo
destination.

Using webMethods Integration Server to Build a Client for JMS Version 9.7

81

Sending and Receiving JMS Messages

Receiving a JMS Message Using Built-In Services

At times, you might not want to wait for a JMS trigger to execute to receive a message.

Instead, you might want to receive a message from the JMS provider on demand.

Receiving a message on demand provides more control over when and how Integration
Server receives a message; however, it may not be as efficient or practical as using a JMS
trigger to listen for and then receive the message. You can use the pub.jms:receive service to

retrieve messages on demand from the JMS provider.

To listen for messages and receive them when they are available, create a JMS trigger
that listens to the destination. For more information about creating a JMS trigger, see

webMethods Service Development Help.

How to Actively Receive a JMS Message

The following describes the general steps you take to build a service that receives a

message from the JMS provider.
1. Create a new service.

2. Invoke a pub.jms:createConsumer.

This service creates a message consumer that receives messages sent to a particular

destination.
Use the following steps to create the message consumer.

a. Specify the JMS connection alias.

The JMS connection alias indicates how Integration Server connects to the JMS

provider.
Name Description
connectionAliasName Name of the JMS connection alias that you want to

use to receive the message.

b. Specify the destination from which you want to receive the message.

Specity the messages that you want the consumer to receive by selecting a

destination and by creating a message selector. A message selector is a filter that
the JMS provider evaluates. If a message does not meet the criteria specified in
the filter, the consumer does not receive the message. Use a message selector to

receive a subset of messages from a destination.

Using webMethods Integration Server to Build a Client for JMS Version 9.7

82

Sending and Receiving JMS Messages

Name Description

destinationName Name or lookup name of the Destination from
which you want to receive the message.

®m Specify the lookup name of the Destination
object when the JMS connection alias uses JNDI
to retrieve administered objects.

®m Specity the provider-specific name of the
Destination when the JMS connection alias uses
the native webMethods API to connect directly
to the webMethods Broker.

destinationType Specifies whether the Destination is a queue or a
topic. The default is queue.

If the JMS connection alias you specified in step
2a uses the native webMethods API to create the
connection directly on the webMethods Broker,
you need to specify the destinationName as well as
the destinationType .

messageSelector Optional. Specifies a filter used to receive a subset
of messages from the specified destination.

The message selector must use the message
selector syntax specified in the Java Message
Service standard.

For more information about message selectors,
see webMethods Service Development Help.

durableSubscriberName Optional. Name of the durable subscriber
that you want this service to use on the JMS
provider. A durable subscriber creates a durable
subscription on the JMS provider. If a durable
subscriber of this name already exists on the J]MS
provider, this service resumes the previously
established subscription.

Note: This parameter only applies when the
destinationType is set to TOPIC. If you select TOPIC,
but do not specify a durableSubscriberName,

this service creates a nondurable subscriber. If
destinationType is set to QUEUE, this parameter is
ignored.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 83

Sending and Receiving JMS Messages

c. Determine the acknowledgment mode.

Acknowledgment mode indicates how Integration Server acknowledges messages
received by a message consumer.

Use the following parameter to specify the acknowledgment mode.

Name Description

acknowledgmentMode B AUTO_ACKNOWLEDGE Automatically acknowledge
the message when it is received by the message
consumer. The message consumer will
acknowledge the message before the message
processing completes. The JMS provider cannot
redeliver the message if Integration Server
becomes unavailable before message processing
completes.

B CLIENT ACKNOWLEDGE Acknowledge the receipt
of a message when the JMS client explicitly
acknowledges it. In this case, acknowledge the
message when Integration Server invokes the
pub.jms:acknowledge service.

B DUPS OK ACKNOWLEDGE Automatically, lazily
acknowledge the receipt of messages, which
reduces system overhead but may result in
duplicate messages being sent.

The default is AUTO ACKNOWLEDGE.

d. Indicate whether locally published messages are ignored.

If you specified TOPIC as the destinationType, you can configure a consumer to
ignore messages published using the same JMS connection alias used by the
consumer.

Integration Server considers a message to be local if it is:
m Sent by the same Integration Server, and

®m Sent using the same JMS connection alias.

Name Description

noLocal Indicates whether the consumer ignores locally
published messages:

B True indicates the consumer will not receive
locally published messages.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 84

Sending and Receiving JMS Messages

3.

Name Description

B False indicates the consumer can receive locally
published messages.

The default is False.

Invoke pub.jms:receive.

This service uses the consumer created by the pub.jms:createConsumer service to receive
messages from the specified destination.

In the Pipeline view, make sure the consumer created by the pub.jms:createConsumer
service is linked to the pub.jms:receive service input parameter consumer . Designer
should link these automatically.

Specify how long the consumer should wait to receive a message from the JMS
provider.

Name Description

timeout Specifies the time to wait, in milliseconds, for a message
to be received from the JMS provider.

If you specify 0 (zero), the consumer will not wait.

The default is O (zero).

Process the received JMS message.

Invoke a service or a sequence of services to process the message received from the
JMS provider. In the Pipeline view, link the [JMSMessage returned by pub.jms:receive to
the input for the service that processes the message.

If the timeout period elapses before a message is received, the value of JMSMessage is
null. Make sure to code your service to handle this situation.

Invoke pub.jms:acknowledge.

If the acknowledgment mode of the consumer that received the message is set to
CLIENT ACKNOWLEDGE use the pub.jms:acknowledge service to acknowledge the message
to the JMS provider. A message is not considered to be successfully consumed until
it is acknowledged.

Provide the following input parameter.

Name Description

message A javax.jms.Message object that identifies the
message for which you want Integration Server to
send an acknowledgement to the JMS provider.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 85

Sending and Receiving JMS Messages

Name Description

You can map the value of the [MSMessage/body/
message field in the JMS message retrieved by the
pub.jms:receive service to this field.

If you use the consumer created by the pub.jms:createConsumer service to receive
multiple messages, keep in mind that acknowledging a message automatically
acknowledges the receipt of all messages received in the same session. That is, all
messages received by the same consumer will be acknowledged when just one of the
received messages is acknowledged. Therefore, if the consumer receives multiple
messages, invoke the pub.jms:acknowledge service after processing all of the received
messages.

Any message consumers created during the execution of a service will be
closed automatically when the service completes. If the consumer closes without
acknowledging messages, messages are implicitly recovered back to the JMS
provider.

Sending a JMS Message as Part of a Transaction

A transaction is a logical unit of work, composed of many different processes and
involving one or more resources, that either entirely succeeds or has no effect at all.
Transactions can either be implicit or explicit.

In an implicit transaction, the transaction manager in Integration Server automatically
manages the transactions without requiring any additional services or input. In an
explicit transaction, you control the transactional units of work by defining the start and
completion boundaries of the transaction. The WmART package on Integration Server
provides built-in services that you can use to start and complete transactions.

In some situations, you might use the built-in service pub.art.transaction:startTransaction to
start a transaction explicitly, but then allow Integration Server to commit or roll back the
transaction implicitly based on the success or failure of the service.

For more information about transactions see "Transaction Management" on page 123.

You can create a service that sends or receives JMS messages within an explicit
transaction. The service must do the following:

m Use pub.art.transaction:startTransaction to start the transaction.

®m Create a connection to the JMS provider using a JMS connection alias with a
transaction type of LOCAL_TRANSACTION or XA_TRANSACTION, depending on
the kind of transaction.

m Use pub.art.transaction.commitTransaction to commit the transaction.

m Use pub.art.transaction:rollbackTransaction to roll back the transaction.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 86

Sending and Receiving JMS Messages

Keep the following points in mind when building services that send or receive JMS
messages within a transaction:

To send or receive JMS messages within a transaction, you must install and enable
the WmART package. (This is true even if you intend to use Integration Server to
manage all transactions implicitly.)

To use pub.jms:send or pub.jms:sendAndWait within a transaction, the client side queue
cannot be used (the useCSQ parameter must be set to false).

To use pub.jms:sendAndWait within a transaction, the request/reply must be
asynchronous (the async parameter must be set to true). If async is set to false,
Integration Server throws a JMSSubsystemException when the service executes.

If you do not specifically invoke pub.art.transaction:commitTransaction or
pub.art.transaction:rollbackTransaction, Integration Server implicitly commits the
transaction when the services within the transaction are successful. Integration
Server implicitly rolls back the transaction when one of the services within the
transaction fails with any type of exception.

How to Send a JMS Message within a Transaction

The following describes the general steps you take to send a JMS message to a JMS
provider as part of a transaction (XA or Local).

1.
2.

4.

Create an empty flow service.
Create the message body.

For more information about creating content for the body of a J]MS message, see step
2 in the section "How to Send a JMS Message" on page 70.

Invoke pub.art.transaction:startTransaction.

This service starts an explicit transaction. This service is located in the WmART
package.

In the startTransactionInput document list, you can provide the following optional
parameter.

Name Description

transactionName A String that specifies the name of the transaction to
be started. If this field is blank, Integration Server will
generate a name for you.

If you do not use pub.art.transaction:startTransaction to start an explicit transaction,
Integration Server starts an implicit transaction when it executes a pub.jms:send service
that specifies a transacted JMS connection alias.

Invoke pub.jms:send.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 87

Sending and Receiving JMS Messages

This service takes the JMS message you created and sends it to the JMS provider.
5. Specify the JMS connection alias.

The JMS connection alias indicates how Integration Server connects to the JMS
provider.

Name Description

connectionAliasName ~ Name of the JMS connection alias that you want to use to
send the message.

The specified JMS connection alias must have a
transaction type of LOCAL_TRANSACTION or
XA_TRANSACTION, depending on the kind of
transaction.

6. Finish supplying inputs to the pub.jms:send service.
Follow steps 5-9 under "How to Send a JMS Message" on page 70.
7. Add any additional services to the transaction.

For example, you might want to invoke another built-in JMS service or an adapter
service.

8. Insert logic to commit and/or rollback the transaction explicitly.

You may build your service to commit the transaction if all services execute
successfully and to rollback the transaction if all services do not execute successfully.

m Invoke pub.art.transaction:commitTransaction to commit the transaction and send the
JMS message. In the Pipeline view, map the contents of startTransactionOutput/
transactionName to commitTransactionInput/transactionName .

m Invoke pub.art.transaction:rollbackTransaction to roll back the transaction. The
message will not be sent to the JMS provider. In the Pipeline view, map the
contents of startTransactionOutput/transactionName to rollbackTransactionInput/
transactionName .

If you do not specifically invoke pub.art.transaction:commitTransaction or
pub.art.transaction:rollbackTransaction, Integration Server implicitly commits the
transaction when the services within the transaction are successful. Integration
Server implicitly rolls back the transaction when one of the services within the
transaction fails with any type of exception.

Setting Properties in a JMS Message

Properties are an optional part of a JMS message that enable you to add fields to the
message header. Properties usually hold message selector values and are application-
specific, standard, or provider-specific.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 88

Sending and Receiving JMS Messages

When building a service that sends a JMS message, you can:

® Add your own custom properties to the [MSMessage/properties document using the
pipeline in Designer.

B Assign values to the application-specific properties activation and uuid included by
Integration Server.

The following sections provide information about setting the activation and uuid . For
information about adding fields to the pipeline in Designer, see webMethods Service
Development Help.

Assigning an Activation to a JMS Message

An activation is a unique identifier assigned to a message that will be processed by a JMS
trigger that contains a join. A join specifies that a JMS trigger handles messages received
from two or more destinations as a single unit and with a single routing rule. The J]MS
trigger needs to receive messages from all, only one, or any of the destinations before it
executes the associated routing rule.

Because a JMS trigger can receive multiple messages from the destinations, Integration
Server uses the activation value to identify the set of messages processed by an instance
of ajoin.

® For an All (AND) join, Integration Server waits until it receives messages with the
same activation from each destination before executing the routing rule.

® For an Only one (XOR) join, Integration Server executes the routing rule after
it receives a message from any destination in the join; however, the JMS trigger
discards messages with the same activation received from the other destinations for
the duration of the join time-out.

® For an Any (OR) join, Integration Server executes the routing rule when it receives
messages from any destination in the join. Integration Server does not use the
activation value when processing JMS triggers with an Any (OR) join.

When the JMS trigger receives messages with a different activation from one the
destinations, Integration Server treats it as another instance of the join.

Integration Server stores the activation in the activation field of a JMS message,
specifically, JMSMessage/properties/activation . The activation field is of type String.You
assign an activation to a message manually. Integration Server does not assign an
activation automatically.

Setting the UUID

The UUID is a universally unique identifier for a message. Integration Server uses the
UUID to provide duplicate detection for exactly-once processing. Integration Server
stores the UUID in the JMSMessage/properties/uuid field.

You might want to assign a UUID in the following situation:

Using webMethods Integration Server to Build a Client for JMS Version 9.7 89

Sending and Receiving JMS Messages

B The JMS message originated in a back-end system that assigned a unique identifier
to the message data. You can map the value assigned by the system to the
JMSMessage/properties/uuid field. A JMS trigger that receives the message can use the
assigned UUID to filter out duplicate messages from a back-end system.

B A JMS message is part of a request/reply. If you specify the uuid when sending the
request, the replying Integration Server will use the uuid as the JMSCorrelationID
of the reply message. If you do not specify a uuid, the replying Integration Server
uses the JMSMessagelD of the request message as the JMSCorrelationID of the reply
message.

The maximum length of a UUID is 96 characters. Integration Server does not assign a
UUID automatically.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 90

Exactly-Once Processing for JMS Triggers

4

Exactly-Once Processing for JMS Triggers

Overview of Exactly-Once Processing for JMS THQQErSccovririnnininiereseeseeiseeis 92
Duplicate Detection Methods for JMS THGGETS ...c.ccvevierceeiiccieieee s 92
Summary of Duplicate Detection Process for JMS TrHGerscccovverrnennieseenceseeeens 93
Delivery Count for JMS MESSAQESovvuiuririririeicieerec ettt 95
Document History Database for Use With JMS THGQErSovvivinnierereeesseeeeeeens 97
Document Resolver Service for @ JMS THGQEr ... 100
Extenuating Circumstances for Exactly-Once Processingcccooveveveniiccesiiceceeeesene, 102
Exactly-Once Processing and Performance ... 103

Using webMethods Integration Server to Build a Client for JMS Version 9.7 91

Exactly-Once Processing for JMS Triggers

Overview of Exactly-Once Processing for JMS Triggers

Within Integration Server, exactly-once processing is a facility that ensures one-time
processing of a persistent message by a JMS trigger. The trigger does not process
duplicates of the message. Integration Server provides exactly-once processing when all
of the following are true:

® The message is persistent.

® The JMS trigger has an acknowledgement mode set to CLIENT ACKNOWLEDGE.

®m Exactly-once properties are configured for the JMS trigger.

Note: Exactly-once processing typically only provides value for JMS triggers that receive

messages from queues or JMS triggers that receive messages from topics using durable
subscribers.

Duplicate Detection Methods for JMS Triggers

Integration Server ensures exactly-once processing by performing duplicate detection
and by providing the ability to retry trigger services. Duplicate detection determines
whether the current message is a copy of one previously processed by the trigger.

Duplicate messages can be introduced into the webMethods system in the following
situations:

B The sending client sends the same message more than once.

® When receiving persistent messages from the JMS provider, Integration Server
and the JMS provider lose connectivity before the JMS trigger processes and
acknowledges the message. The JMS trigger will receive the message again when the
connection is restored.

Integration Server uses duplicate detection to determine the message’s status. The
message status can be one of the following:

® New. The message is new and has not been processed by the trigger.
® Duplicate. The message is a copy of one already processed the trigger.

® InDoubt.Integration Server cannot determine the status of the message. The trigger
may or may not have processed the message before.

To resolve the message status, Integration Server evaluates, in order, one or more of the
following:

m Delivery count indicates how many times the JMS provider has delivered the message
to the JMS trigger.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 92

Exactly-Once Processing for JMS Triggers

® Document history database maintains a record of all persistent message IDs processed
by JMS triggers that have an acknowledgment mode of CLIENT ACKNOWLEDGE and

for which exactly-once processing is configured.

® Document resolver service is a service created by a user to determine the message
status. The document resolver service can be used instead of or in addition to the

document history database.

The steps that Integration Server takes to determine a message’s status depend on the

exactly-once properties configured for the JMS trigger. For more information about
configuring exactly-once properties, see webMethods Service Development Help.

Summary of Duplicate Detection Process for JMS Triggers

The following table summarizes the process Integration Server follows to determine a

message’s status and the action the server takes for each duplicate detection method.

Step 1

Check Delivery Count

When a JMS trigger is configured to detect duplicates, Integration Server
checks the message’s delivery count to determine if the JMS trigger
processed the message previously. Specifically, Integration Server checks
the value of the JMSXDeliveryCount property in the message.

Delivery Count

Action

>1

If using document history, Integration Server
proceeds to Step 2 to check the document history
database.

If document history is not used, Integration Server
considers the message to be New. Integration
Server executes the trigger service.

If using document history, Integration Server
proceeds to Step 2 to check the document history
database.

If document history is not used, Integration Server
proceeds to Step 3 to execute the document resolver
service.

If neither document history nor a document
resolver service are used, Integration Server
considers the message to be In Doubt.

Using webMethods Integration Server to Build a Client for JMS Version 9.7

93

Exactly-Once Processing for JMS Triggers

Step 2

Step 3

-1 (Undefined)

If using document history, Integration Server
proceeds to Step 2 to check the document history
database.

If document history is not used, Integration Server
proceeds to Step 3 to execute the document resolver
service.

Otherwise, Integration Server considers the
message to be New. Integration Server executes the
trigger service.

Check Document History

If a document history database is configured and the trigger uses it to
maintain a record of processed messages, Integration Server checks

for the message’s UUID in the document history database. If the
message does not have a UUID, Integration Server uses the value of the
JMSMessagelD field from the message header.

UUID or
JMSMessagelD
Exists?

No

Yes

Action

Message is New. Integration Server executes the
trigger service.

Integration Server checks the processing status of
the entry.

m If the processing status indicates that message
processing completed, then Integration Server
considers the message to be a Duplicate.
Integration Server acknowledges the message but
does not execute the trigger service.

m If the processing status indicates that processing
started but did not complete, Integration Server
considers the message to be In Doubt.

If provided, Integration Server proceeds to

Step 3 to invoke the document resolver service.
Otherwise, Integration Server considers the
message to be In Doubt. Integration Server
acknowledges the message but does not execute
the trigger service.

Execute Document Resolver Service

Using webMethods Integration Server to Build a Client for JMS Version 9.7

94

Exactly-Once Processing for JMS Triggers

If a document resolver service is specified, Integration Server executes the
document resolver service assigned to the trigger.

Returned Status Action

NEW Integration Server executes the trigger service and
acknowledges the message.

DUPLICATE Integration Server acknowledges the message but
does not execute the trigger service.

IN_DOUBT Integration Server acknowledges the message but
does not execute the trigger service.

Notes:

® When a transacted JMS trigger fails because of a transient error and the document
history database is configured and enabled, Integration Server considers the message
to be NEW the next time it is received.

® When a transacted JMS trigger fails because of a fatal error and the document history
database is configured and enabled, Integration Server rejects the message the next
time it is received and generates a JMS retrieval failure event.

® When a transacted JMS trigger fails because of a fatal or transient error and the
document history database is neither configured nor enabled, Integration Server
does not send a JMS retrieval failure event the next time the message is received.
Integration Server sends a JMS retrieval failure event if the maximum delivery count
is eventually reached.

Delivery Count for JMS Messages

The delivery count indicates the number of times the JMS provider has delivered or
attempted to deliver a message to the JMS trigger. Most JMS providers track the message
delivery count in the JMS-defined property JMSXDeliveryCount . The initial delivery is

1, the second delivery is 2, and so on. A delivery count other than 1 indicates that the
trigger might have received and processed (or partially processed) the message before.

For example, when Integration Server first retrieves a message for a JMS trigger, the
JMSXDeliveryCount count is 1 (one). If a resource (JMS provider or Integration Server)
shuts down before the trigger processes and acknowledges the message, Integration
Server retrieves the message again when the connection is re-established. The second
time Integration Server retrieves the message, the JMSXDeliveryCount is 2. A delivery
count greater than 1 indicates that the JMS provider may have delivered the message to
the trigger before.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 95

Exactly-Once Processing for JMS Triggers

The following table identifies the possible delivery count values and the message status

associated with each value.

A delivery count of...

Indicates...

-1

>1

The JMS provider that delivered the message does not
maintain a JMSXDeliveryCount or an error occurred when
retrieving the JMSXDeliveryCount . As a result, the delivery
count is undefined. Integration Server uses a value of -1 to
indicate that the delivery count is absent.

If other methods of duplicate detection are configured

for this trigger (document history database or document
resolver service), Integration Server uses these methods

to determine the message status. If no other methods of
duplicate detection are configured, Integration Server assigns
the message a status of New and executes the trigger service.

This is the first time the JMS trigger received the message.

If the JMS trigger uses a document history to perform
duplicate detection, Integration Server checks the document
history database to determine the message status. If no other
methods of duplicate detection are configured, Integration
Server assigns the message a status of New and executes the
trigger service.

The JMS provider has delivered the message more than
once. The trigger might or might not have processed the
message before. The delivery count does not provide enough
information to determine whether the trigger processed the
message before.

If other methods of duplicate detection are configured

for this trigger (document history database or document
resolver service), Integration Server uses these methods

to determine the message status. If no other methods of
duplicate detection are configured, Integration Server assigns
the message a status of In Doubt and acknowledges the
message.

Integration Server uses delivery count to determine message status whenever you enable
exactly-once processing for a JMS trigger. That is, setting the Detect duplicates property to
true indicates delivery count will be used as part of duplicate detection.

Note: webMethods messaging triggers use a redelivery count instead of a delivery count
for exactly-once processing.

Using webMethods Integration Server to Build a Client for JMS Version 9.7

96

Exactly-Once Processing for JMS Triggers

Document History Database for Use with JMS Triggers

The document history database maintains a history of the persistent messages processed

by JMS triggers. Integration Server adds an entry to the document history database

when a trigger service begins executing and when it executes to completion (whether it

ends in success or failure). The document history database contains message processing

information only for triggers for which the Use history property is set to true.

The database saves the following information about each message:

m Trigger ID. Universally unique identifier for the JMS trigger processing the message.

m UUID or JMSMessagelD. Universally unique identifier for the message. If the sending
client assigned a value to the uuid field in the message, Integration Server uses the

uuid value to identify the message. If the uuid field is empty, Integration Server uses

the value of the [MSMessagelD field in the message header to identify the message.

®m Processing Status. Indicates whether the trigger service executed to completion or is

still processing the message. An entry in the document history database has either a

status of “processing” or a status of “completed.” Integration Server adds an entry

with a “processing” status immediately before executing the trigger service. When

the trigger service executes to completion, Integration Server adds an entry with a
status of “completed” to the document history database.

®m Time. The time the trigger service began executing. The document history database
uses the same time stamp for both entries it makes for a message. This allows
Integration Server to remove both entries for a specific message at the same time.

To determine whether a message is a duplicate of one already processed by the
JMS trigger, Integration Server checks for the message’s UUID (or JMSMessagelD))
in the document history database. The existence or absence of the message’s UUID
(JMSMessagelD) can indicate whether the message is new or a duplicate.

If the UUID or JMSMessagelD... Then Integration Server...

Does not exist Assigns the message a status of New and executes
the trigger service. The absence of the UUID
(JMSMessagelD) indicates that the trigger has not
processed the message before.

Exists in a “processing” Assigns the message a status of Duplicate. The
entry and a “completed” existence of the “processing” and “completed”
entry entries for the message’s UUID (JMSMessagelD)

indicate the trigger processed the message
successfully already. Integration Server
acknowledges the message, discards it, and writes a
journal log entry indicating that a duplicate message
was received.

Using webMethods Integration Server to Build a Client for JMS Version 9.7

97

Exactly-Once Processing for JMS Triggers

If the UUID or JMSMessagelD... ~ Then Integration Server...

Existing in a “processing” Cannot determine the status of the message

entry only conclusively. The absence of an entry with a
“completed” status for the UUID (JMSMessagelD)
indicates that the trigger service started to process
the message but did not finish. The trigger service
might still be executing or the server might have
unexpectedly shut down during service execution.

If a document resolver service is specified for

the JMS trigger, Integration Server invokes it.

If a document resolver service is not specified,
Integration Server assigns the message a status of
In Doubt, acknowledges the message, and writes a
journal log entry stating that an In Doubt message
was received.

Exists in a “completed” Determines the message is a Duplicate. The existence

entry only of the “completed” entry indicates the JMS trigger
processed the message successfully already.
Integration Server acknowledges the message,
discards it, and writes a journal log entry indicating
that a Duplicate message was received.

Note: Integration Server also considers a message to be In Doubt when the value of the
message’s UUID (or JMSMessagelD) exceeds 96 characters. If specified, Integration
Server executes the document resolver service to determine the message’s status.
Otherwise, the Integration Server logs the message as In Doubt.

If you want to use document history to ensure exactly-once processing for some or all
of your JMS triggers, you or the server administrator must create the Document History
database component and connect it to a JDBC connection pool. For information about
configuring the document history database, refer to Installing webMethods and Intelligent
Business Operations Products.

What Happens when the Document History Database Is Not Available
for a JMS Trigger?

If the connection to the document history database is unavailable when Integration
Server attempts to query the database, Integration Server takes one of the following
actions depending on the transactionality of the JMS trigger and the configured transient
error handling.

For a non-transacted JMS trigger...

Using webMethods Integration Server to Build a Client for JMS Version 9.7 98

Exactly-Once Processing for JMS Triggers

If On retry failure is set
to...

Suspend and retry later

Throw exception

For a transacted JMS trigger...

If On transaction rollback
is set to...

Suspend and recover

Recover only

Integration Server does the following...

If the document history database is properly configured,
Integration Server suspends the JMS trigger and
schedules a system task that executes a service that
checks for the availability of the document history
database. Integration Server enables the trigger and re-
executes it when the service indicates that the document
history database is available.

If the document history database is not properly
configured, Integration Server suspends the trigger,

but it does not schedule a system task to check for the
database’s availability and it does not resume the trigger
automatically. You must manually enable the JMS
trigger after configuring the document history database

properly.

Generates a JMS retrieval failure event and acknowledges
the message.

Integration Server does the following...

If the document history database is properly configured,
Integration Server suspends the JMS trigger and
schedules a system task that executes a service that
checks for the availability of the document history
database. Integration Server enables the trigger and re-
executes it when the service indicates that the document
history database is available.

If the document history database is not properly
configured, Integration Server suspends the trigger,

but it does not schedule a system task to check for the
database’s availability and it does not resume the trigger
automatically. You must manually enable the J]MS
trigger after configuring the document history database

properly.

Generates a JMS retrieval failure event and acknowledges
the message.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 99

Exactly-Once Processing for JMS Triggers

Managing the Size of the Document History Database

To keep the size of the document history database manageable, Integration Server
periodically removes expired rows from the database. The length of time the document
history database maintains information about a UUID varies for each trigger (JMS
trigger or webMethods messaging trigger) and depends on the value of the History time to
live property for the trigger.

Integration Server provides a scheduled service, namely the Message History Sweeper,
that removes expired entries from the database. By default, the Message History
Sweeper task executes every 10 minutes. You can change the frequency with which

the task executes. For information about editing scheduled services, see webMethods
Integration Server Administrator’s Guide.

Note: The watt.server.idr.reaperInterval property determines the initial execution
frequency for the Message History Sweeper task. After you define a JDBC connection
pool for Integration Server to use to communicate with the document history database,
change the execution interval by editing the scheduled service.

You can also use Integration Server Administrator to clear expired document history
entries from the database immediately.

Clearing Expired Entries from the Document History Database

To clear expired entries from the document history database

1. Open Integration Server Administrator.

2. From the Settings menu in the Navigation panel, click Resources.
3. Click Exactly Once Statistics.
4

Click Remove Expired Document History Entries.

Document Resolver Service for a JMS Trigger

The document resolver service is a service that you build to determine whether a
message’s status is New, Duplicate, or In Doubt. Integration Server passes the document
resolver service some basic information that the service will use to determine message
status, such as the trigger name and the JMS message. The document resolver service
must return one of the following for the message status: NEW, DUPLICATE, or
IN_DOUBT.

By using the delivery count and the document history database, Integration Server can
assign most messages a status of New or Duplicate. However, a small window of time
exists where checking the delivery count and the message history database might not
conclusively determine whether a trigger processed a message before. For example:

Using webMethods Integration Server to Build a Client for JMS Version 9.7 100

Exactly-Once Processing for JMS Triggers

®m If a duplicate message arrives before the trigger finishes processing the original
message, the document history database does not yet contain an entry that indicates
processing completed. Integration Server assigns the second message a status of In
Doubt. Typically, this is only an issue for long-running trigger services.

m If Integration Server fails before completing message processing, the JMS provider
redelivers the message. However, the document history database contains only
an entry that indicates message processing started. Integration Server assigns the
redelivered message a status of In Doubt.

You can write a document resolver service to determine the status of messages received
during these windows. How the document resolver service determines the message
status is up to the developer of the service. Ideally, the writer of the document resolver
service understands the semantics of all the applications involved and can use the
message to determine the message status conclusively. If processing an earlier copy of
the message left some application resources in an indeterminate state, the document
resolver service can also issue compensating transactions.

If provided, the document resolver service is the final method of duplicate detection.

Document Resolver Service and Exceptions for a JMS Trigger

At run time, a document resolver service might end because of an exception. How
Integration Server proceeds depends on the type of exception and how the JMS trigger is
configured to handle transient errors.

®m If the document resolver service ends with an ISRuntimeException, and transient
error handling for the JMS trigger is configured to Suspend and retry later (non-
transacted JMS trigger) or Suspend and recover (transacted JMS trigger), Integration
Server suspends the trigger and schedules a system task to execute the trigger’s
resource monitoring service (if one is specified). Integration Server enables the
trigger and retries trigger execution when the resource monitoring service indicates
that the resources used by the trigger are available.

If a resource monitoring service is not specified, you will need to resume the trigger
manually (via the Integration Server Administrator or the pub.trigger:enableJMSTriggers
service). For more information about configuring a resource monitoring service, see
"Building a Resource Monitoring Service" on page 119.

®m If the document resolver service ends with an ISRuntimeException, and transient
error handling for the JMS trigger is configured to Throw exception (non-transacted
JMS trigger) or Recover only (transacted JMS trigger), Integration Server assigns the
document a status of In Doubt, acknowledges the document, and generates a J]MS
retrieval failure event.

®m If the document resolver service ends with an exception other than an
ISRuntimeException, Integration Server assigns the message a status of In Doubt,
acknowledges the message, and generates a JMS retrieval failure event.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 101

Exactly-Once Processing for JMS Triggers

Note: The watt.server.jms.trigger.raiseEventOnRetryFailure property must be set to

true (the default) for Integration Server to generate JMS retrieval failure events.

Extenuating Circumstances for Exactly-Once Processing

Although Integration Server provides robust duplicate detection capabilities, activity
outside of the scope or control of the Integration Server retrieving the message might

cause a trigger to process a message (document) more than once. Alternatively,
situations can occur where Integration Server might determine a message is a duplicate
when it is actually a new message.

Circumstances in which Duplicate Messages Can Be Processed

In the following situations, a trigger with exactly-once processing configured might
process a duplicate message (document).

If the client sends a message twice and assigns a different UUID each time,
Integration Server does not detect the second message as a duplicate. Because the
messages have different UUIDs, Integration Server processes both messages.

If the document resolver service incorrectly determines the status of a message to
be new (when it is, in fact, a duplicate), Integration Server processes the message a
second time.

If a client sends a message twice, and the second message is sent after Integration
Server removes the expired message UUID entries from the document history table,
Integration Server determines the second message is new and processes it. Because
the second message arrives after the first message’s entries have been removed
from the document history database, Integration Server does not detect the second
message as a duplicate.

If the time drift between the computers hosting a cluster of Integration Servers is
greater than the duplicate detection window for the trigger, one of the Integration
Servers in the cluster might process a duplicate message. (The size of the duplicate
detection window is determined by the History time to live property under Exactly
Once.)

For example, suppose the duplicate detection window is 15 minutes and that the
clock on the computer hosting one Integration Server in the cluster is 20 minutes
ahead of the clocks on the computers hosting the other Integration Servers. A
trigger on one of the Integration Servers with a slower clock processes a message
successfully at 10:00 GMT.

The Integration Server adds two entries to the document history database. Both
entries use the same time stamp and both entries expire at 10:15 GMT. However,
the Integration Server with the faster clock is 20 minutes ahead of the others and
might reap the entries from the document history database before one of the other
Integration Servers in the cluster does.

Using webMethods Integration Server to Build a Client for JMS Version 9.7

102

Exactly-Once Processing for JMS Triggers

If the Integration Server with the faster clock removes the entries before 15 minutes
have elapsed and a duplicate of the message arrives, the Integration Servers in the
cluster will treat the message as a new message.

Note: Time drift occurs when the computers that host the clustered servers gradually
develop different date/time values. Even if the administrator synchronizes the
computer date/time when configuring the cluster, the time maintained by each
computer can gradually differ as time passes. To alleviate time drift, synchronize the
cluster node times regularly.

Circumstances in which New Messages Are Treated as Duplicates

In some circumstances Integration Server might not process a new, unique message
(document) because duplicate detection determines the message is duplicate. For
example:

m If the sending client assigns two different messages the same UUID, the Integration
Server detects the second message as a duplicate and does not process it.

m If the document resolver service incorrectly determines the status of a message to be
duplicate (when it is, in fact, new), Integration Server discards the message without
processing it.

Important: In the previous examples, Integration Server functions correctly when
determining the message status. However, factors outside of the control of
Integration Server create situations in which duplicate messages are processed

or new messages are marked as duplicates. The designers and developers of

the solution must make sure that clients properly send messages, exactly-once
properties are optimally configured, and that document resolver services correctly
determine a message’s status.

Exactly-Once Processing and Performance

Exactly-once processing for a trigger consumes server resources and can introduce
latency into message processing by triggers. For example, when Integration Server
maintains a history of persistent messages processed by a JMS trigger (or guaranteed
documents for a webMethods messaging trigger), each trigger service execution causes
two inserts into the document history database. This requires Integration Server to
obtain a connection from the JDBC pool, traverse the network to access the database, and
then insert entries into the database.

Additionally, when the delivery count cannot conclusively determine the status of a
message or document, Integration Server must obtain a database connection from the
JDBC pool, traverse the network, and query the database to determine whether the
trigger processed the message.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 103

Exactly-Once Processing for JMS Triggers

If querying the document history database is inconclusive or if the server does not
maintain a document history for the trigger, invocation of the document resolver service
will also consume resources, including a server thread and memory.

The more duplicate detection methods that are configured for a trigger, the higher the
quality of service. However, each duplicate detection method can lead to a decrease in
performance.

If a trigger does not need exactly-once processing (for example, the trigger service
simply requests or retrieves data), consider leaving exactly-once processing disabled

for the trigger. However, if you want to ensure exactly-once processing, you must use a
document history database or implement a custom solution using the document resolver
service.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 104

Consuming JMS Messages Concurrently in a Load-Balanced Fashion

5 Consuming JMS Messages Concurrently in a Load-
Balanced Fashion

B INETOAUCHION ..ottt 106
m Consuming JMS Messages Concurrently from the webMethods Brokercccocevvviincnnnn, 107
m Configuring JMS Triggers, Integration Server, and webMethods Broker for Load-Balancing ... 107
m Consuming JMS Messages in Order with Multiple CONSUMETScceeveiviiirivireiiiercvee e 109

Using webMethods Integration Server to Build a Client for JMS Version 9.7 105

Consuming JMS Messages Concurrently in a Load-Balanced Fashion

Introduction

You may want to your JMS triggers to consume messages from a destination in a
load-balanced fashion. To load balance message consumption, you can use multiple
consumers on one or more Integration Servers to retrieve and process messages
concurrently.

Within Integration Server, the ability to receive messages from a destination in a load-
balanced fashion is important in two situations:

Concurrent JMS triggers

When a concurrent JMS trigger receives messages from the JMS provider, it creates
multiple consumers. Each consumer receives a message from the JMS provider,
processes the message, and acknowledges the message to the JMS provider. Each
consumer needs to consume a message from the same destination but not process
any duplicate messages.

A cluster of Integration Servers

The same JMS trigger, running on multiple Integration Servers, needs to consume
messages from the same destination without processing any duplicate messages.

Note: Load balancing is necessary for concurrent JMS triggers regardless of whether
or not they are running in a cluster of Integration Servers.

The Java Message Service standard does not supply semantics for consuming messages
from a destination in a load-balanced fashion. However, it does state that a client can
have multiple sessions in which each session is an independent consumer and producer
of messages. Regarding the type of destination used by each messaging style, the Java
Message Service standard makes the following provisions:

Queues (point-to-point messaging). While the Java Message Service standard does not
supply the semantics for multiple consumers receiving messages concurrently, it
does not prohibit a JMS provider from supporting it. Most JMS providers support
load balancing of messages from a queue across multiple consumers. However,
review your JMS provider’s documentation to determine how to consume messages
from a queue concurrently. For information about using the webMethods Broker

to consume messages from a queue concurrently, see "Consuming JMS Messages
Concurrently from the webMethods Broker " on page 107.

Topics (publish-subscribe messaging). The Java Message Service standard specifies that
each subscriber to the same topic receives each message. The standard does not
provide semantics regarding how to concurrently consume messages published to
a topic in a load-balanced fashion. Some JMS providers work around this limitation
by offering a proprietary extension to the JMS API. Review your JMS provider’s
documentation to determine how to consume messages from a topic concurrently.
For information about how to configure JMS triggers and the webMethods Broker

Using webMethods Integration Server to Build a Client for JMS Version 9.7 106

Consuming JMS Messages Concurrently in a Load-Balanced Fashion

to consume messages from a topic in a load-balanced fashion, see "Consuming JMS
Messages Concurrently from the webMethods Broker " on page 107.

Consuming JMS Messages Concurrently from the
webMethods Broker

The webMethods Broker supports the following load-balancing behavior for JMS
destinations.

Queues. Multiple clients can connect to and receive messages from the same queue if
the queue is configured to share state and all the clients use the same client ID.

Topics. Multiple clients can consume messages in a load-balanced fashion if the
clients are connecting to a durable subscriber, state sharing is enabled for the durable
subscriber, and all the clients use the same client ID.

Note: Non-durable subscribers (i.e., JMS triggers that subscribe to topics but do not
specify a durable subscriber) cannot receive messages in a load-balanced fashion. A
JMS trigger using a non-durable subscriber will process duplicates. Therefore, make
sure to set Max execution threads to 1 when setting message processing properties for
a JMS trigger that specifies a non-durable subscriber. This behavior may vary with
other JMS providers. For more information about configuring message processing,
see webMethods Service Development Help.

Configuring JMS Triggers, Integration Server, and
webMethods Broker for Load-Balancing

To perform load-balancing while consuming messages concurrently from destinations
on the webMethods Broker, the following must be true:

The JMS trigger must receive messages from a topic using a durable subscriber or
from a queue.

The JMS trigger must specify a JMS connection alias that configures a connection to
the webMethods Broker.

The JMS trigger must process messages concurrently.

The JMS trigger must be configured identically on all of the Integration Servers
across which you are load-balancing message consumption.

The queue or durable subscriber must be configured to share state. Sharing client
state allows multiple clients, each using its own session, to process messages from

a single destination in parallel, on a first-come, first-serve basis. To configure state
sharing for a queue or durable subscriber, use the Broker user interface in My
webMethods. You can also configure state sharing as part of creating the destination

Using webMethods Integration Server to Build a Client for JMS Version 9.7 107

Consuming JMS Messages Concurrently in a Load-Balanced Fashion

or durable subscriber in Designer. For more information about configuring queues
and durable subscribers, see Administering webMethods Broker.

If the JMS trigger specifies a JMS connection alias that is configured to manage
destinations on the webMethods Broker, Integration Server and Designer can
configure state sharing for the durable subscriber automatically.

® The JMS connection alias must be configured identically on all of the Integration
Servers across which you are load-balancing message consumption.

Automatic Load Balancing Configuration for Durable Subscribers
when Using the webMethods Broker

When the JMS connection alias specified by a JMS trigger connects to the webMethods
Broker and is configured to manage destinations, Integration Server can automatically
configure load balancing for a JMS trigger that specifies a durable subscriber.

If the durable subscriber specified by the JMS trigger does not exist, when you save a
JMS trigger, Integration Server creates the durable subscriber at the Broker. By default,
Integration Server enables state sharing for the durable subscriber. Integration Server
uses the message processing mode specified for the JMS trigger to set the shared state
order mode for the durable subscriber. (A message processing mode of serial maps to a
shared state order mode of publisher; a message processing mode of concurrent maps to
a shared state order mode of none.)

If the durable subscriber specified by the JMS trigger exists already, Integration Server
can update the shared state order mode of the durable subscriber when you save the
JMS trigger. To change the shared state order mode for a durable subscriber, change the
message processing mode for the JMS trigger and confirm making the change on Broker
when prompted by Designer.

If a JMS trigger specifies a durable subscriber that already exists and you want to
change the state sharing property of the durable subscriber to true, you need to use the
Broker interface in My webMethods to delete the durable subscription. Then, you can
either allow Integration Server to re-create the durable subscription by saving the J]MS
trigger or you can use the Broker interface in My webMethods to re-create the durable
subscription with the correct shared state and shared state order values.

Note: When Integration Server creates a destination or durable subscriber on the Broker,
Integration Server sets the shared state to true.

Important: If the JMS connection alias is not configured to manage destinations, you must
use the Broker interface in My webMethods to manage the destinations and durable
subscribers used with JMS triggers.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 108

Consuming JMS Messages Concurrently in a Load-Balanced Fashion

Consuming JMS Messages in Order with Multiple Consumers

The Java Message Service standard states that messages sent by a session to a destination
must be received by consumers in the same order in which the messages were sent.
However, the Java Message Service standard does not specify how the JMS provider
should distribute messages when multiple consumers receive messages from the

same destination. Because each JMS provider is different, it is advisable to review

the documentation from your JMS provider to determine how to use load-balanced
consumers to receive messages in the same order in which the messages were sent to the
destination.

Consuming JMS Messages in Order Using the webMethods Broker

You can configure the webMethods Broker to distribute messages to multiple consumers
in the same order in which the webMethods Broker received the messages. To do this,
when creating destinations in Designer, set the Order By property to Publisher. When
using the Broker interface in My webMethods to create destinations (queue or durable
subscriber), set the Shared State property to “publisher”.

When a destination has a shared state order of publisher, the webMethods Broker
distributes messages to consumers in a serial fashion. This occurs even if multiple load-
balanced consumers share the same destination. For example, suppose that Serverl and
Server2 request messages from QueueA on behalf of JMS triggers. The webMethods
Broker gives Serverl the first message in the queue. The request from Server2 for a
message is blocked until Serverl acknowledges the message. Server2 then receives the
next message.

Note: By default, Integration Server retrieves and caches up to 10 messages per request
for a JMS trigger. The watt.server.jms.trigger.maxPreFetchSize server parameter
determines the number of messages retrieved for each request. For more information
about this parameter, see webMethods Integration Server Administrator’s Guide.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 109

Using webMethods Integration Server to Build a Client for JMS Version 9.7 110

Working with Cluster Policies

6 Working with Cluster Policies

B INETOAUCHION ..ottt 112
m Working with the Multisend Guaranteed POICY ..o 112
m Working with the Multisend Best Effort POlCY ..o 115
m Overriding the Cluster Policy when Sending JMS MESSagesccvvviierrenininiereieninnenceeeeenens 115

Using webMethods Integration Server to Build a Client for JMS Version 9.7 111

Working with Cluster Policies

Introduction

When using the webMethods Broker as a JMS provider, Integration Server can send and
receive JMS messages in accordance with a cluster policy. The cluster policy, which is
applied to the cluster connection factory used by a JMS connection alias, determines

the Broker to which the message is sent. Integration Server automatically handles
sending and receiving JMS messages using the cluster connection factory. However,

the multisend guaranteed and multisend best effort cluster policies have specific
requirements for the JMS client sending the message. The following sections provide
more information about how Integration Server acts as the JMS client for these policies
and explain how to override a cluster policy when sending a JMS message.

Working with the Multisend Guaranteed Policy

The multisend guaranteed policy specifies that the JMS client should send the same JMS
message to exactly n out of mBrokers in the Broker cluster. The publishing operation

is successful only if the J]MS message is sent to precisely nBrokers. The policy specifies
that if the JMS client cannot send the JMS message to the precise number of Brokers
successfully, the JMS client should not send the JMS message to any Brokers.

To ensure that Integration Server sends the JMS message to the exact number of Brokers,
Integration Server uses an XA transaction to perform a two-phase commit. Integration
Server manages the entire transaction as part of executing the pub.jms:* sending service.
Consequently, regardless of the connection type of the JMS connection alias, the
multisend guaranteed policy does not require special configuration or set up in the
sending service or the JMS connection alias.

When sending a multisend guaranteed JMS message using a connection with a
transaction type of NO_TRANSACTION, Integration Server starts the transaction
when it begins executing the pub.jms* service. Integration Server dynamically adds the n
participating Brokers to the transaction. (Integration Server treats each Broker enlisted
in the transaction as an XA resource.) After nBrokers receive the message, Integration
Server commits the transaction and the pub.jms* service completes execution.

However, if you want more control over the transaction or if you want to enlist other
resources in the transaction, use a JMS connection alias with a transaction type set to

XA_TRANSACTION or LOCAL_TRANSACTION. Integration Server can then use an
implicit or explicit transaction to send the message.

When sending a mulitsend guaranteed JMS message in an implicit transaction,
Integration Server starts the transaction when executing the pub.jms*

service that specifies a JMS connection alias of type XA_TRANSACTION or
LOCAL_TRANSACTION. Integration Server commits or rolls back the transaction
when the top-level service executes to completion. When the transaction type is
XA_TRANSACTION, Integration Server logs the state of each transaction. This XA

Using webMethods Integration Server to Build a Client for JMS Version 9.7 112

Working with Cluster Policies

transaction logging allows Integration Server to recover any transactions that did not
complete due to Integration Server failure.

When sending a multisend guaranteed JMS message in an explicit transaction, you
control the transactional units of work by defining the start and completion boundaries
of the transaction. The parent service that sends the JMS message must use the
pub.art.transaction* services to start, commit, and roll back the transaction. Integration
Server enlists the Brokers as XA resources when it executes the pub.jms:* service.

In some situations, you might use the built-in service pub.art.transaction:startTransaction to
start a transaction explicitly, but then allow Integration Server to commit or roll back the
transaction implicitly based on the success or failure of the top-level service.

By default, Integration Server performs transaction logging only when the JMS
connection alias has a transaction type of XA_TRANSACTION. However, you can
configure Integration Server to perform transaction logging whenever it sends a

JMS message as part of a multisend guaranteed policy. For more information about
transaction logging, see "Transaction Logging with the Multisend Guaranteed Policy” on
page 114.

For more information about sending a JMS message within a transaction, see "Sending a
JMS Message as Part of a Transaction" on page 86.

Note: When sending a JMS message as part of a transaction, client side queuing cannot
be used. The useCSQ input parameter for the pub.jms:send and pub.jms:sendAndWait services
must be set to false when sending JMS messages in a transaction. If the useCSQ input
parameter is set to true and the sending service executes within an explicit or implicit
transaction, Integration Server throws a ServiceException.

Error Handling with the Multisend Guaranteed Policy

When sending JMS messages using a connection with a multisend guaranteed policy,
how Integration Server handles errors depends on the transaction type of the connection
used to send the JMS message.

Error Handling for Transaction Type of NO_TRANSACTION

When sending JMS messages using a multisend guaranteed policy with a connection of
type of NO_TRANSACTION, the following error handling may occur:

®m If the minimum number of Brokers required by the multisend guaranteed policy
are not available, Integration Server will try various combinations of Brokers in
the Broker cluster to ensure that the JMS message is sent to the minimum number
of Brokers. For example, if the multisend guaranteed policy specifies that the JMS
message must be sent to 2 of 4 Brokers in a Broker cluster that consists of BrokerA,
BrokerB, BrokerC, and BrokerD. Integration Server might first try to send the JMS
message to BrokerA and BrokerB. If BrokerA is not available, Integration Server
retries with a different combination of Brokers, such as BrokerB and BrokerC.
Integration Server will retry up to two times to send the message using different

Using webMethods Integration Server to Build a Client for JMS Version 9.7 113

Working with Cluster Policies

combinations of Brokers. If the minimum number of Brokers is not available after the
final retry attempt, Integration Server throws an ISRuntimeException.

m If a fatal error occurs while Integration Server is sending messages to multiple
Brokers, Integration Server throws a ServiceException and the sending service fails.
For example, an invalid destination lookup name or invalid connection factory name
results in a ServiceException and thus a fatal error.

Note: When overriding a multisend guaranteed policy and using a connection
transaction type of NO_TRANSACTION, if one of the Brokers is not available while
Integration Server is sending the message, Integration Server does not retry sending
the message with a different combination of Brokers. Instead, Integration Server
throws an ISRuntimeException.

Error Handling for Transaction Type of XA_TRANSACTION or
LOCAL_TRANSACTION

When sending JMS messages using a multisend guaranteed policy with a connection of
type of XA_TRANSACTION or LOCAL_TRANSACTION, the following error handling
may occur:

®m If the minimum number of Brokers required by the multisend guaranteed
policy are not available and the transaction type is XA_TRANSACTION or
LOCAL_TRANSACTION, Integration Server throws an ISRuntimeException and the
service fails. Integration Server considers this a transient error. Consequently, you
can configure service retry to instruct Integration Server to retry the top-level service
automatically.

m If a fatal error occurs while Integration Server is sending messages to multiple
Brokers, Integration Server throws a ServiceException and the sending service fails.
For example, an invalid destination lookup name or invalid connection factory name
results in a ServiceException and thus a fatal error. Integration Server rolls back the
transaction after a fatal error.

m If a transient error occurs while Integration Server is sending messages to
multiple Brokers and the connection transaction type is XA_TRANSACTION or
LOCAL_TRANSACTION, Integration Server throws an ISRuntimeException and
rolls back the transaction.

You can configure a service to re-execute automatically after an ISRuntimeException
occurs. For more information about configuring service retry, see webMethods Service
Development Help.

Transaction Logging with the Multisend Guaranteed Policy

When executing an XA transaction, Integration Server logs the state of each transaction.
This transaction logging allows Integration Server to recover any transactions that did
not complete due to Integration Server failure. While this is the most reliable way to

Using webMethods Integration Server to Build a Client for JMS Version 9.7 114

Working with Cluster Policies

ensure the integrity of a transaction, it may be expensive in terms of performance and it
may not always be necessary.

When sending a message using a connection from a cluster connection factory that
specifies a multisend guaranteed policy, Integration Server performs transaction logging
only if the connection transaction type is XA_TRANSACTION.

However, you might want Integration Server to perform XA transaction logging

and XA transaction recovery for all transactions that involve the multisend

guaranteed policy, regardless of the connection transaction type. To do this, set the
watt.server.jms.guaranteedMultisend.alwaysUseTXLogging parameter to true. For more
information about this parameter, see webMethods Integration Server Administrator’s Guide.

Working with the Multisend Best Effort Policy

The multisend best effort policy specifies that a JMS client send the same JMS message
to all, or as many Brokers in the Broker cluster as possible. The publish operation

is considered to be successful if even one of the Brokers receives the message. The
multisend best effort policy requires the connection to be non-transacted. When sending
JMS messages in conjunction with the multisend best effort policy, the connection
transaction type must be NO_TRANSACTION. If the connection transaction type

is XA_TRANSACTION or LOCAL_TRANSACTION, Integration Server throws a
JMSSubsystemException when attempting to enable the connection and the sending
service fails.

For information about specifying a transaction type for a JMS connection alias, see
webMethods Integration Server Administrator’s Guide.

Overriding the Cluster Policy when Sending JMS Messages

When Integration Server sends a JMS message using a connection from a cluster
connection factory, the policy applied to the cluster connection factory determines the
Broker (or Brokers in the case of a multisend best effort or multisend guaranteed policy)
to which the message is sent. When a series of J]MS messages are sent using the same
connection factory, different Brokers might receive the messages. In some situations, you
might want the same Broker to receive all of the messages in the series.

For example, suppose that Integration Server sends a group of three JMS messages using
a cluster connection factory to which the “random” policy is applied. It might not matter
which Broker in the Broker cluster receives the first JMS message, but you might want
the same Broker to receive the two remaining messages. For example, you might want
the JMS messages to be processed in the same order in which the messages were sent.
Or, if the Brokers in the cluster have different receivers that can process the message,
you might want the same receiver to process all of the messages.

You can instruct the Broker Server to route the messages to the same Broker (or Brokers
in the case of a multisend best effort or multisend guaranteed policy) by overriding the
cluster policy.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 115

Working with Cluster Policies

Overriding the policy consists of two basic tasks:

B Determining the Broker (or Brokers) to which Integration Server sent the initial
message.

®m Specifying the Broker (or Brokers) to which Integration Server sends a subsequent
message.

To accomplish both tasks, most built-in services that send and receive JMS messages
(pub.jms*) include a parameter named JMS_WMClusterNodes . This parameter is a child
of the [MSMessage/properties document and JMSReplyMessage/properties documents. The
JMS_WMClusterNodes parameter can be in the input and/or output signatures of the
services.

B In the service output, the JMS_WMClusterNodes parameter contains the names of
the Broker that received the JMS message. For a cluster connection factory with a
multisend guaranteed or multisend best effort policy, the JMS_WMClusterNodes
parameter lists multiple Brokers. The sending Integration Server supplies the service
with this information.

B In the service input, the JMS_WMClusterNodes parameter specifies the Broker (or
Brokers in the case of a multisend guaranteed or multisend best effort policy) to
which you want the message sent.

How to Override the Cluster Policy when Sending a JMS Message

You can instruct Broker Server to override the policy applied to a cluster connection
factory only when the following conditions are met:

B JMS messages are sent using a JMS connection alias that uses a cluster connection
factory.

B JMS messages are sent using the same cluster connection factory. Note that multiple
JMS connection aliases can use the same cluster connection factory.

® The cluster connection factory configuration allows the policy to be overridden. (In
My webMethods Server, the Cluster Policy Override option is selected for the cluster
connection factory.)

The following steps describe how to build a service that overrides a cluster policy to
specify that the same Broker (or Brokers in the case of a multisend policy) processes a
series of JMS messages.

Note: When overriding the policy for a series of JMS messages, the messages do not need
to be sent within the same flow service. Information about the Broker that received the
initial message needs to be captured after the initial message is sent and then used when
sending subsequent messages. This can be done across multiple services as long as each
sending service uses the same cluster connection factory. For the sake of simplicity, the
following steps explain how to send the messages in a single flow service.

1. Create the flow service that will send the J]MS messages.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 116

Working with Cluster Policies

2.

Insert a service to send the first JMS message.

Send the JMS message by invoking the pub.jms:send or pub.jms:sendAndWait service. For
more information about sending JMS messages, see "Sending and Receiving JMS
Messages" on page 69.

If you use the pub.jms:sendAndWait service to perform an asynchronous request-reply,
you also need to invoke pub.jms:waitForReply to retrieve the reply message.

In the pipeline, add a new String variable to Pipeline Out.

Map the value of the JMS_WMClusterNodes output parameter to a new String
variable in the pipeline.

If you sent the message using... Then map this to the new String...

pub.jms:sen e value of the service output parameter

b.j d The value of th i put p
JMSMessagel/properties/|MS_WMClusterNodes
produced by the pub.jms:send service

pub.jms:sendAndWait The value of the J]MSMessageReply/properties/
(synchronous) JMS_WMClusterNodes output parameter
produced by the pub.jms:sendAndWait service

pub.jms:sendAndWait The value of the [MSMessageReply/properties/
(asynchronous) JMS_WMClusterNodes output parameter
produced by the pub.jms:waitForReply service

Do not edit the contents of the JMS_WMClusterNodes output parameter.
Insert a service to send the next JMS message.
Send the JMS message by invoking the pub.jms:send or pub.jms:sendAndWait service.

Map the value of the String field added in step 3 to the JMSMessage/properties/
JMS_WMClusterNodes input parameter for the service invoked in step 5.

7. Repeat steps 4-6 for each J]MS message that you want to be received by the same
Broker (or Brokers).

Notes:

B Make sure to code the service to handle any ISRuntimeExceptions thrown as a result
of a Broker Server exception for invalid data or as the result of unavailable Brokers.
For more information, see "Exceptions when Overriding Cluster Policies" on page
118.

® When overriding a multisend guaranteed policy and using a connection transaction

type of NO_TRANSACTION, if one of the Brokers is not available while Integration
Server is sending the message, Integration Server does not retry sending the message

Using webMethods Integration Server to Build a Client for JMS Version 9.7 117

Working with Cluster Policies

with a different combination of Brokers. Instead, Integration Server throws an
ISRuntimeException.

Exceptions when Overriding Cluster Policies

In addition to handling the exceptions that may occur when sending a JMS message,
a service that overrides a cluster policy must handle ISRuntimeExceptions that result
when policy requirements are not or cannot be met. Integration Server throws an
ISRuntimeException after attempting to override a policy for the following general
reasons:

The service sending the JMS message provided invalid data and the Broker Server
throws an exception. Integration Server wraps the Broker Server exception and
rethrows it as an ISRuntimeException.

The Brokers specified in the JMS_WMClusterNodes input parameter are not
available.

Following is a list of situations in which Integration Server throws an
ISRuntimeException while attempting to override the connection factory policy when
sending a JMS message.

The JMS_WMClusterNodes specifies a single Broker and that Broker is not available.
This applies to policies such as round robin, round robin weighted, random, and
sticky.

The JMS_WMClusterNodes specifies multiple Brokers and the policy requires that
the JMS message be sent to one Broker. This applies to the round robin, round robin
weighted, random, and sticky policies.

The cluster policy is multisend best effort and none of the Brokers specified in
JMS_WMClusterNodes are available.

The cluster policy is multisend guaranteed and one or more of the Brokers specified
in JMS_WMClusterNodes are not available.

The JMS_WMClusterNodes specifies a Broker that is no longer part of the Broker
cluster for the cluster connection factory.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 118

Building a Resource Monitoring Service

A Building a Resource Monitoring Service

m About a Resource MONItOriNG SEIVICE ..o 120

B SErvice REQUINTEMENEScvcviicicicicciccccece et 120

Using webMethods Integration Server to Build a Client for JMS Version 9.7 119

Building a Resource Monitoring Service

About a Resource Monitoring Service

A resource monitoring service is a service that you create to check the availability of
resources that a trigger uses. Integration Server schedules a system task to execute a
resource monitoring service after it suspends a trigger. Specifically, Integration Server
suspends a trigger and invokes the associated resource monitoring service when one of
the following occurs:

® During exactly-once processing, the document resolver
service ends because of an ISRuntimeException and the
watt.server.trigger.preprocess.suspend AndRetryOnError property is set to true (the
default).

®m Aretry failure occurs for a non-transacted trigger and the configured retry behavior
is “suspend and retry later.”

B A transient error occurs for a transacted JMS trigger and the configured behavior
when transaction roll back occurs is to suspend the JMS trigger and recover the
message.

The same resource monitoring service can be used for multiple triggers. When the
service indicates that resources are available, Integration Server resumes all the triggers
that use the resource monitoring service.

Service Requirements

A resource monitoring service must do the following:
®m Use the pub.trigger:resourceMonitoringSpec as the service signature.

®m Check the availability of the resources used by the document resolver service and
all the trigger services associated with a trigger. Keep in mind that each condition in
a trigger can be associated with a different trigger service. However, you can only
specify one resource monitoring service per trigger.

B Return a value of “true” or “false” for the isAvailable output parameter. The author
of the resource monitoring service determines what criteria makes a resource
available.

m Catch and handle any exceptions that might occur. If the resource monitoring service
ends because of an exception, Integration Server logs the exception and continues
as if the resource monitoring service returned a value of “false” for the isAvailable
output parameter.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 120

Building a Document Resolver Service

B Building a Document Resolver Service

B About 8 DOCUMENT RESOIVEN SEIVICEveieeeeeee ettt ettt ettt 122

B SErvice REQUINTEMENEScvcviicicicicciccccece et 122

Using webMethods Integration Server to Build a Client for JMS Version 9.7 121

Building a Document Resolver Service

About a Document Resolver Service

A document resolver service is a service that you create to perform duplicate detection
for messages received by a JMS trigger or documents received by a webMethods
messaging trigger. Integration Server uses the document resolver service as the final
method of duplicate detection.

Service Requirements

The document resolver service must do the following:

® Use pub.jms:documentResolverSpec as the service signature if the service is for a J]MS
trigger. Use pub.publish:documentResolverSpec as the service signature if the service is for
a webMethods messaging trigger. Integration Server passes the document resolver
service values for each of the variables declared in the input signature. Integration
Server passes the document resolver service values for each of the variables declared
in the input signature.

B Return a status of NEW, DUPLICATE, or IN_DOUBT. Integration Server uses the
status to determine whether or not to process the message.

®m Catch and handle any exceptions that might occur, including an
ISRuntimeException. For information about how Integration Server proceeds with
duplicate detection when an exception occurs, see "Document Resolver Service for a
JMS Trigger" on page 100 and "Document Resolver Service and Exceptions for a JMS
Trigger" on page 101.

B Determine how far message processing progressed. If necessary, the document
resolver service can issue compensating transactions to reverse the effects of a
partially completed transaction.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 122

Transaction Management

C Transaction Management

m Transaction Management OVEIVIEW ..ot 124

m Built-In Transaction Management SEIVICES ... 127

Using webMethods Integration Server to Build a Client for JMS Version 9.7 123

Transaction Management

Transaction Management Overview

This appendix provides an overview of transaction management, including transaction
types and implicit vs. explicit transactions. It also describes how Integration Server
supports the built-in services used to manage explicit transactions. For descriptions of
each of the specific built-in transaction management services, see "Built-In Transaction
Management Services" on page 127.

Transactions

Integration Server considers a transaction to be one or more interactions with one or
more resources that are treated as a single logical unit of work. The interactions within
a transaction are either all committed or all rolled back. For example, if a transaction
includes multiple database inserts, and one or more inserts fail, all inserts are rolled
back.

Transaction Types

Integration Server supports the following kinds of transactions:

® A local transaction (LOCAL_TRANSACTION), which is a transaction to a resource’s
local transaction mechanism

B An XAResource transaction (XA_TRANSACTION), which is a transaction to a
resource’s XAResource transaction mechanism

Integration Server can automatically manage both kinds of transactions without
requiring the user to do anything. For more information about implicit transactions, see
"Implicit and Explicit Transactions" on page 125.

However, in some cases, users need to explicitly control the transactional units of work.
Examples of these cases are provided in "Implicit and Explicit Transactions" on page
125.

To support transactions, Integration Server relies on a built-in Java EE transaction
manager. The transaction manager is responsible for beginning and ending transactions,
maintaining a transaction context, enlisting newly connected resources into existing
transactions, and ensuring that local and XAResource transactions are not combined in
illegal ways.

The transaction manager only manages operations performed by adapter services, a
transacted JMS trigger, or a built-in JMS service that uses a transacted JMS connection
alias.

Important: You cannot step or trace a flow that contains a transacted adapter service or a
transacted JMS service.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 124

Transaction Management

XA Transactions

If an XA transactional connection throws an exception during a service transaction and
the exception results in an inconsistent state, you may need to resolve the transaction
using the tools provided with the database.

For information about using Integration Server to manage XA transactions, see
webMethods Integration Server Administrator’s Guide.

Implicit and Explicit Transactions

Implicit transactions are automatically handled by the Integration Server transaction
manager. When you define an explicit transaction, you define the start-on-completion
boundaries of the transaction. As such, implicit and explicit transactions need to be
created and managed differently.

The following sections describe implicit and explicit transactions and how to manage
them.

Implicit Transactions

With implicit transactions, Integration Server automatically manages both local and
XAResource transactions without requiring you to explicitly do anything. That is, the
Integration Server starts and completes an implicit transaction with no additional service
calls required by the user.

A transaction context, which the transaction manager uses to define a unit of work,
starts when one of the following occurs:

B An adapter service is encountered during flow service execution. The connection
required by the adapter service is registered with the newly created context and used
by the adapter service. If another adapter service is encountered, the transaction
context is searched to see if the connection is already registered. If the connection
is already registered, the adapter service uses this connection. If the connection
is not registered, a new connection instance is retrieved and registered with the
transaction.

B Integration Server uses a transacted JMS connection alias to receive messages
from the JMS provider for a JMS trigger. A JMS connection alias is considered to
be transacted when it has a transaction type of XA TRANSACTION or LOCAL
TRANSACTION.

B A built-in JMS service that uses a transacted JMS connection alias to connect to the
JMS provider is encountered during flow service execution.

Note that if the top-level flow service invokes another flow, services in the child flow use
the same transaction context.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 125

Transaction Management

When the top-level flow service completes, the transaction is completed and is either
committed or rolled back, depending on the status (success or failure) of the top-level
flow service or the JMS trigger service.

A single transaction context can contain any number of XA_TRANSACTION
connections but no more than one LOCAL_TRANSACTION connection.

For more information about designing and using flows, see webMethods Service
Development Help.

Explicit Transactions

You use explicit transactions when you need to explicitly control the transactional units
of work. To do this, you use additional services, known as built-in services, in your flow.

A transaction context starts when the pub.art.transaction:startTransaction service is executed.
The transaction context is completed when either the pub.art.transaction:commitTransaction
or pub.art.transaction:rollbackTransaction service is executed. As with implicit transactions, a
single transaction context can contain any number of XA_TRANSACTION connections
but no more than one LOCAL_TRANSACTION connection.

Note: With explicit transactions, you must be sure to call either
pub.art.transaction:commitTransaction or pub.art.transaction:rollbackTransaction for each
pub.art.transaction:startTransaction; otherwise, you will have dangling transactions that will
require you to reboot Integration Server. You must also ensure that the startTransaction
is outside the SEQUENCE.

A new explicit transaction context can be started within a transaction context, provided
that you ensure that the transactions within the context are completed in the reverse
order they were started. That is, the last transaction to start should be the first
transaction to complete, and so on.

The following example shows a valid construct:

pub.art.transaction:startTransaction
pub.art.transaction:startTransaction
pub.art.transaction:startTransaction
pub.art.transaction:commitTransaction
pub.art.transaction:commitTransaction
pub.art.transaction:commitTransaction

The following example shows an invalid construct:

pub.art.transaction:startTransaction
pub.art.transaction:startTransaction

pub.art.transaction:commitTransaction
pub.art.transaction:commitTransaction

Note: You can use the pub.flow:getLastError service in the SEQUENCE to retrieve the
error information when a sequence fails. For more information about using the
pub.flow:getLastError service, see webMethods Integration Server Built-In Services Reference.

For more information about designing and using flows, see webMethods Service
Development Help.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 126

Transaction Management

Built-In Transaction Management Services

The following table identifies each of the built-in services you can use for transaction

management.

Service

Description

pub.art.transaction:commitTransaction

Commits an explicit transaction. It

must be used in conjunction with the
pub.art.transaction:startTransaction service. If it does
not have this corresponding service, your flow
service will receive a run time error.

pub.art.transaction:rollbackTransaction

Rolls back an explicit transaction. It

must be used in conjunction with the
pub.art.transaction:startTransaction service. If it does
not have this corresponding service, your flow
service will receive a run time error.

pub.art.transaction:setTransactionTimeout

Manually sets a transaction timeout interval
for implicit and explicit transactions. When
you use this service, you are temporarily
overriding the Integration Server transaction
timeout interval.

pub.art.transaction:startTransaction

Starts an explicit transaction. It must

be used in conjunction with either a
pub.art.transaction.commitTransaction service or
pub.art.transaction:rollbackTransaction service. If

it does not have one of these corresponding
services, your flow service will receive an run
time error.

For more information about the transaction management services, including detailed
descriptions of the service signatures, see webMethods Integration Server Built-In Services

Reference.

Using webMethods Integration Server to Build a Client for JMS Version 9.7 127

	Table of Contents
	About this Guide
	Document Conventions
	Documentation Installation
	Online Information

	Introduction to JMS
	JMS Messaging
	Messaging Styles
	Point-to-point (PTP) Messaging
	Publish-Subscribe Messaging
	Durable Subscriptions
	Non-durable Subscriptions

	JMS API Programming Model
	Administered Objects
	Types of Administered Objects
	Connection Factories
	Destinations

	Connections
	Sessions
	Message Producer
	Message Consumer
	Message Selector

	Messages
	Message Structure
	Message Acknowledgment

	Working with JMS Triggers
	About SOAP-JMS Triggers
	Overview of Building a Non-Transacted JMS Trigger
	Standard JMS Trigger Service Requirements
	Creating a JMS Trigger
	Adding JMS Destinations and Message Selectors to a JMS Trigger
	Creating a Destination on the JMS Provider
	About Durable and Non-Durable Subscribers
	Creating a Message Selector

	Adding Routing Rules to a Standard JMS Trigger
	Creating a Local Filter

	Managing Destinations and Durable Subscribers on the JMS Provider through Designer
	Modifying Destinations or Durable Subscribers via a JMS Trigger in Designer

	Building Standard JMS Triggers with Multiple Routing Rules
	Guidelines for Building a JMS Trigger that Performs Ordered Service Execution

	Enabling or Disabling a JMS Trigger
	JMS Trigger States

	Setting an Acknowledgement Mode
	About Join Time-Outs
	Join Time-Outs for All (AND) Joins
	Join Time-Outs for Only One (XOR) Joins
	Setting a Join Time-Out

	About Execution Users for JMS Triggers
	Assigning an Execution User to a JMS Trigger

	About Message Processing
	Serial Processing
	Concurrent Processing
	Message Processing and Message Consumers
	Message Processing and Load Balancing

	About Batch Processing for Standard JMS Triggers
	Guidelines for Configuring Batch Processing

	Using Multiple Connections to Retrieve Messages for a Concurrent JMS Trigger
	Retrieving Multiple Messages for a JMS Trigger with Each Request
	Configuring Message Processing

	Fatal Error Handling for Non-Transacted JMS Triggers
	Configuring Fatal Error Handling for Non-Transacted JMS Triggers

	Transient Error Handling for Non-Transacted JMS Triggers
	About Retry Behavior for Trigger Services
	Service Requirements for Retrying a Trigger Service
	Handling Retry Failure
	Overview of Throw an Exception
	Overview of Suspend and Retry Later

	Configuring Transient Error Handling for a Non-Transacted JMS Trigger

	Exactly-Once Processing for JMS Triggers
	Duplicate Detection Methods for JMS Triggers
	Configuring Exactly-Once Processing for a JMS Trigger
	Disabling Exactly-Once Processing for a JMS Trigger

	Debugging a JMS Trigger
	Enabling Trace Logging for All JMS Triggers
	Enabling Trace Logging for a Specific JMS Trigger

	Building a Transacted JMS Trigger
	Prerequisites for a Transacted JMS Trigger
	Properties for Transacted JMS Triggers
	Steps for Building a Transacted JMS Trigger
	Fatal Error Handling for Transacted JMS Triggers
	Configuring Fatal Error Handling for Transacted JMS Triggers

	Transient Error Handling for Transacted JMS Triggers
	Overview of Recover Only
	Overview of Suspend and Recover
	Configuring Transient Error Handling for Transacted JMS Triggers

	Sending and Receiving JMS Messages
	The JMS Services
	Sending a JMS Message
	How to Send a JMS Message

	Sending a JMS Message and Waiting for a Reply
	How to Send a Request Message and Wait for a Reply

	Replying to a JMS Message
	How to Send a Reply Message

	Receiving a JMS Message Using Built-In Services
	How to Actively Receive a JMS Message

	Sending a JMS Message as Part of a Transaction
	How to Send a JMS Message within a Transaction

	Setting Properties in a JMS Message
	Assigning an Activation to a JMS Message
	Setting the UUID

	Exactly-Once Processing for JMS Triggers
	Overview of Exactly-Once Processing for JMS Triggers
	Duplicate Detection Methods for JMS Triggers
	Summary of Duplicate Detection Process for JMS Triggers
	Delivery Count for JMS Messages
	Document History Database for Use with JMS Triggers
	What Happens when the Document History Database Is Not Available for a JMS Trigger?
	Managing the Size of the Document History Database
	Clearing Expired Entries from the Document History Database

	Document Resolver Service for a JMS Trigger
	Document Resolver Service and Exceptions for a JMS Trigger

	Extenuating Circumstances for Exactly-Once Processing
	Circumstances in which Duplicate Messages Can Be Processed
	Circumstances in which New Messages Are Treated as Duplicates

	Exactly-Once Processing and Performance

	Consuming JMS Messages Concurrently in a Load-Balanced Fashion
	Introduction
	Consuming JMS Messages Concurrently from the webMethods Broker
	Configuring JMS Triggers, Integration Server, and webMethods Broker for Load-Balancing
	Automatic Load Balancing Configuration for Durable Subscribers when Using the webMethods Broker

	Consuming JMS Messages in Order with Multiple Consumers
	Consuming JMS Messages in Order Using the webMethods Broker

	Working with Cluster Policies
	Introduction
	Working with the Multisend Guaranteed Policy
	Error Handling with the Multisend Guaranteed Policy
	Error Handling for Transaction Type of NO_TRANSACTION
	Error Handling for Transaction Type of XA_TRANSACTION or LOCAL_TRANSACTION

	Transaction Logging with the Multisend Guaranteed Policy

	Working with the Multisend Best Effort Policy
	Overriding the Cluster Policy when Sending JMS Messages
	How to Override the Cluster Policy when Sending a JMS Message
	Exceptions when Overriding Cluster Policies

	Building a Resource Monitoring Service
	About a Resource Monitoring Service
	Service Requirements

	Building a Document Resolver Service
	About a Document Resolver Service
	Service Requirements

	Transaction Management
	Transaction Management Overview
	Transactions
	Transaction Types
	XA Transactions

	Implicit and Explicit Transactions
	Implicit Transactions
	Explicit Transactions

	Built-In Transaction Management Services

