
Guaranteed Delivery Developer’s Guide

Version 9.7

October 2014

This document applies to webMethods Integration Server Version 9.7 and Software AG Designer Version 9.7 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2007-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third Party Products”. This document is part of the product documentation, located at
hp://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: IS-GD-DG-97-20141015

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

M
Table of Contents

Guaranteed Delivery Developer’s Guide Version 9.7 3

Table of Contents

About this Guide..5
Document Conventions.. 5
Documentation Installation... 6
Online Information.. 6

Overview of Guaranteed Delivery.. 7
Overview... 8
What Is Guaranteed Delivery?... 8
Indicating You Want to Use Guaranteed Delivery..8
How Transactions Are Managed.. 9

Customizing the Job Manager.. 9
Identifying Transactions.. 10
Specifying How Long Transactions Are Active.. 10
Handling Failures..11

Creating a Java Client that Uses Guaranteed Delivery... 13
Overview... 14
Sample Code (Synchronous Request)...15
Sample Code (Asynchronous Request)... 18

Creating a Flow Service that Uses Guaranteed Delivery.. 21
Overview... 22
Sample Flow (Synchronous Request)..22
Sample Flow (Asynchronous Request).. 23

Index.. 25

M
Even Header

Guaranteed Delivery Developer’s Guide Version 9.7 4

M
Odd Header

Guaranteed Delivery Developer’s Guide Version 9.7 5

About this Guide

Guaranteed delivery is a facility of webMethods Integration Server that ensures
guaranteed, one-time execution of services and protects transactional requests from
certain failures that might occur on the network, in the client, or on the server. This
guide is for users who want to invoke services using guaranteed delivery from either a
client application or another service.

Note: This guide describes features and functionality that may or may not be available
with your licensed version of webMethods Integration Server. For information about the
licensed components for your installation, see the Settings > License page in webMethods
Integration Server Administrator.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods
Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace
font

Identifies text you must type or messages displayed by the
system.

{ } Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

| Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

M
Even Header

Guaranteed Delivery Developer’s Guide Version 9.7 6

Convention Description

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

... Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

Documentation Installation
You can download the product documentation using the Software AG Installer. The
documentation is downloaded to a central directory named _documentation in the main
installation directory (SoftwareAG by default).

Online Information
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at hp://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at hps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products and certified samples, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at hp://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

M
Odd Header

Overview of Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 7

1 Overview of Guaranteed Delivery

■ Overview ... 8

■ What Is Guaranteed Delivery? ... 8

■ Indicating You Want to Use Guaranteed Delivery ... 8

■ How Transactions Are Managed .. 9

■ Identifying Transactions ... 10

■ Specifying How Long Transactions Are Active .. 10

■ Handling Failures ... 11

M
Even Header

Overview of Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 8

Overview
This chapter explains what guaranteed delivery is, how to indicate that you want to
use guaranteed delivery services from a client application (an Integration Server or
standalone Java program) or from another service, how to customize Job Managers
to manage guaranteed delivery transactions, what determines how long transactions
remain active, and how errors are handled.

Note: This guide describes how to invoke services using guaranteed delivery from either
a client application or another service. For more information about guaranteed delivery,
including how to configure the webMethods Integration Server for guaranteed delivery
and how to shut down and initialize guaranteed delivery transactions, see webMethods
Integration Server Administrator’s Guide.

What Is Guaranteed Delivery?
Guaranteed delivery is a facility of webMethods Integration Server that ensures
guaranteed, one-time execution of services. It protects transactional requests from
transient failures that might occur on the network, in the client, or on the server.

A transient failure is a failure that can correct itself within a specified period of time.
If a request cannot be delivered to the server due to a transient failure, the request is
resubmied. If the problem corrected itself, the request is successfully delivered on a
subsequent aempt. You can determine what constitutes a transient error by specifying
a time-to-live (TTL) period for a guaranteed delivery transaction and, optionally, the
number of times a transaction should be retried. If you do not specify the TTL or retry
value, the configured defaults are used.

You can use guaranteed delivery when you invoke a service from a client or from within
another service.

Important: You can only use the guaranteed delivery capabilities with stateless (that is,
atomic) transactions. As a result, guaranteed delivery capabilities cannot be used with
multi-request conversational services.

Indicating You Want to Use Guaranteed Delivery
To invoke services using guaranteed delivery from either a client application or another
service use the class wa.client.TContext (TContext) that is part of the Client API.
Similar to the standard class wa.client.Context (Context), you use TContext to request
that webMethods Integration Server execute a service. However, the server performs
guaranteed delivery functions when a client application or service requests services
through TContext.

M
Odd Header

Overview of Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 9

How Transactions Are Managed
Guaranteed delivery transactions are managed by Job Managers. For client applications,
the Job Manager runs on the client. For services, the Job Manager runs on the server.

The Job Managers manage all guaranteed delivery transactions that a process creates
using TContext. The Job Managers maintain a job store of the guaranteed delivery
transactions. The job store contains a record for each transaction. In addition, the Job
Managers maintain a log that tracks the progress of all transaction operations.

The Job Manager handles the invocation of the service using background threads,
which the Job Manager allocates from a configurable pool of threads. The Job Manager
sends the service requests to a webMethods Integration Server and accepts the results
on behalf of the client applications or services that use TContext. If the Job Manager
does not receive a result for a transaction in its job store, it resubmits that request to
execute the service. It continues to resubmit requests until it either receives a result or
the transaction expires.

Note: For client applications, a single Job Manager runs in the client process and is
shared by multiple TContext instances. For services, a single Job Manager runs in the
server process and is shared by all TContext instances.

Customizing the Job Manager
You can customize how the Job Manager manages guaranteed delivery transactions
programmatically or through system properties. To specify programmatically, your
client application must specify the seing with the parameters of TContext methods. To
specify through system parameters, specify the seing on the Java command line.

If a seing is specified both with a parameter of TContext and through a system
property, the Job Manager uses the seing specified through the system property.

Location of the client transaction log. Specify the file in which the Job Manager maintains
its log of all the guaranteed delivery transaction operations for clients that are
standalone Java programs.

Tcontext Method: Specify using a parameter with the init method.

System Property: Use the –Dwatt.tx.logfile =filename option. If a
parameter is supplied to the TContext.init method and
wa.tx.logfile is set, the value in wa.tx.logfile is used.
If neither is set, the default is .\tx.log.

Submission interval for the Job Store. Specify the number of seconds between sweeps
of the job store. The Job Manager sweeps the job store to submit transactions to a
webMethods Integration Server.

M
Even Header

Overview of Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 10

TContext Method: Cannot specify using a TContext method.

System Property: Use the -Dwatt.tx.sweepTime=seconds option.

The default is: 60 seconds

Time to Retry Interval. Specify the number of seconds to wait after a service request
failure before the Job Manager resubmits the request to webMethods Integration
Server.

TContext Method: Cannot specify using a TContext method.

System Property: Use the -Dwatt.tx.retryBackoffTime=seconds
option.

The default is: 60 seconds

Number of Client Threads in Thread Pool. Specify the number of threads you want to
make available in a thread pool to service pending requests.

TContext Method: Cannot specify using a TContext method.

System Property: Use the -Dwatt.tx.jobThreads.

The default is: 5 threads

Identifying Transactions
It is the responsibility of the client application or service to obtain a transaction ID
(tid) for each guaranteed delivery request and to specify the transaction ID with each
subsequent request for the transaction.

The client application or service obtains the transaction ID from webMethods
Integration Server using the startTx() method, which is used to start a guaranteed
delivery transaction. See "Creating a Java Client that Uses Guaranteed Delivery" on page
13 and "Creating a Flow Service that Uses Guaranteed Delivery" on page 21 for
additional instructions and sample code.

Specifying How Long Transactions Are Active
A guaranteed delivery transaction has two aributes that determine how long it stays
active: the time-to-live (TTL) and the retry limit. The TTL specifies the number of
minutes that a transaction is to remain active. The retry limit specifies the maximum

M
Odd Header

Overview of Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 11

number of times that the Job Manager is to resubmit a request. A transaction becomes
inactive when the TTL or the retry limit (if specified) is reached, whichever comes first.
When a transaction becomes inactive, it remains in the job store, but the Job Manager no
longer aempts to submit the request.

The client application or service sets the TTL (and optionally, the retry limit) with the
startTx () method, which it uses to start a guaranteed delivery transaction. See "Creating
a Java Client that Uses Guaranteed Delivery" on page 13 and "Creating a Flow
Service that Uses Guaranteed Delivery" on page 21 for additional instructions and
sample code.

These values determine the degree of tolerance the client application or service has
towards transient network and server errors that occur at run time. Specifically, they
determine the length of the outage that the client application or service considers
transient. An outage that exceeds these limits will be deemed unrecoverable by the Job
Manager and will cause the Job Manager to return an error for the request.

Handling Failures
If a non-transient error prevents your client application or service from receiving the
results from a service request, your application will receive an error message.

Records remain in the job store for a transaction until the client application or service
explicitly ends the transaction. To avoid exhausting the job store, a client application or
service must make sure to complete all the transactions it starts, or a site must establish
administrative procedures to address failed jobs.

TContext can return the following types of errors:

AccessException. The client application or service either supplied invalid credentials
or is denied access to the requested service.

ServiceException. The service encountered an execution error.

DeliveryException. The Job Manager failed and became disabled. An administrator
should be notified to correct this problem. For client applications, code your client
application to notify an administrator when this type of error occurs. After the
problem is corrected, re-enable the Job Manager using the TContext.resetJobMgr()
method.

For services, guaranteed delivery notifies the administrator identified by the
wa.server.txMail configuration seing. After the problem is corrected, re-enable the
Job Manager by executing the pub.tx:resetOutbound service.

IllegalRequestException. The client application or service made an invalid request; for
example, supplied an invalid transaction ID (tid) or other invalid parameter.

TXException. A failure occurred with the transaction. The transaction timed out, hit
the retry limit, or encountered a heuristic error. Typically, this type of error indicates
that the transaction became inactive either because the time-to-live (TTL) value

M
Even Header

Overview of Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 12

elapsed or the retry limit was met. To distinguish between these two errors, use the
isExceededRetries() method.

Heuristic errors will only occur if you altered the default configuration of
webMethods Integration Server to fail PENDING requests when webMethods
Integration Server is restarted after a failure. Use the isHeuristicFailure() method to
determine if a heuristic error occurred.

Note: A heuristic error does not guarantee that your transaction was not executed,
only that its results could not be returned. Keep this in mind if you are processing
transactions that must be executed once and only once (for example, an application
that enters purchase orders or pays invoices). You might also need to implement
additional mechanisms in your client application or service to ensure that a
transaction does not get posted twice.

M
Odd Header

Creating a Java Client that Uses Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 13

2 Creating a Java Client that Uses Guaranteed Delivery

■ Overview ... 14

■ Sample Code (Synchronous Request) .. 15

■ Sample Code (Asynchronous Request) ... 18

M
Even Header

Creating a Java Client that Uses Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 14

Overview
Using the TContext function, you can submit requests from a Java client application that
uses guaranteed delivery.

Creating a Java client that uses guaranteed delivery involves the following general steps:

1. Make sure the following are in your classpath:
Integration Server_directory\lib\wm-isserver.jar
(or Integration Server_directory\instances\instance_name \lib\wm-isserver.jar)
Software AG_directory\common\lib\wm-isclient.jar
Software AG_directory\common\lib\ext\mail.jar

Note: These jar files must be the same version as those present on the Integration
Server to which your client program connects. If you are creating a stand-alone
client application, you can obtain a copy of the jar files from the Integration Server.
If you are creating a Java service for an Integration Server, verify that the Integration
Server on which you deploy the service and the Integration Server to which the
service submits guaranteed-delivery requests are both running the same version of
Integration Server software.

2. Initialize TContext when a process starts. The server handles this function when a
service uses guaranteed delivery.

3. Create TContext instances for different connection aributes. If you are only
connecting to one host with a single set of credentials, you need only one TContext
regardless of how many threads share the TContext.

The main difference between Context (the standard class) and TContext is that your
client application or service is responsible for obtaining a transaction ID (tid) and
associating it with each request you make for the same transaction. You receive a
transaction ID (tid) when you start a guaranteed delivery transaction.

4. After a transaction is started and a transaction ID is received, invoke a service using
guaranteed delivery. You must supply the transaction ID when you invoke the
service.

5. When the transaction completes, end the transaction to clear the record for the
transaction from the Job Manager’s job store.

You can chain transactions in a sequence so that each transaction in a sequence
waits until the preceding transaction executes. To chain transactions, supply the
transaction ID (tid) from the previous transaction when starting a new transaction.

6. When you are finished executing guaranteed delivery transactions for a specific
instance, disconnect to end the instance of TContext. When you disconnect, TContext
unregisters the instance with the Job Manager.

After a client application disconnects all TContext instances, it should shut down
guaranteed delivery for the process. The server handles this function automatically

M
Odd Header

Creating a Java Client that Uses Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 15

when a service uses guaranteed delivery. If your client application or service has
active TContext instances when the shutdown occurs, the server throws an exception
(unless the shutdown was performed with the force option).

The following examples show how you would submit both synchronous and
asynchronous requests from a Java client to the Job Manager.

Sample Code (Synchronous Request)
The following code fragment illustrates the basic steps required to submit a synchronous
request to the Job Manager. Synchronous requests are submied using the invokeTx
method. You can also submit asynchronous requests to the Job Manager as shown in the
next section.

Important: To compile the following sample code (or any Java client that uses guaranteed
delivery), you must include the following import statements in your Java program.

import com.wm.data.*;
import com.wm.app.b2b.client.*;
import com.wm.util.*;
import com.wm.app.b2b.client.lic.*;

M
Even Header

Creating a Java Client that Uses Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 16

M
Odd Header

Creating a Java Client that Uses Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 17

Step Description

1 Declare TContext. Declare TContext as a variable.

2 Initialize TContext. Initialize TContext and specify the job store directory
and audit-trail log. The Job Manager starts.

Important: Do not include this step if your client will run
as a service on a webMethods Integration Server. This
function is automatically performed by the server and
must not be included in your code.

3 Instantiate TContext. Create a new TContext object.

4 Establish connection
aributes for the
TContext instance.

Execute connect() to specify the webMethods
Integration Server on which you want to invoke
services using this context.

You must connect as a user who is a member of the
Administrators group on the Integration Server.

Note: Multiple threads can share an instance of
TContext as long as they use the same connection
aributes—i.e., they use the same webMethods
Integration Server and user ID/password (i.e.,
Administrator/manage) established by that instance of
TContext.

To set other connection aributes, use methods in the
class Context such as the protocol to use (HTTP or
HTTPS) and the proxy to use.

5 Start the transaction. Execute startTx() to obtain a transaction ID (tid) and
specify the transaction time-to-live (TTL).

6 Invoke the service. Execute invokeTX() to invoke a service.

Note that you pass the transaction ID (tid) as the first
parameter to this method.

7 End the transaction. Execute endTx() to end the transaction. This method
clears the record for this transaction from the Job
Manager's job store.

8 Check for errors. Check for the different types of errors. Always check
for Service Exceptions last.

M
Even Header

Creating a Java Client that Uses Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 18

Step Description

9 Close the session
on webMethods
Integration Server.

Execute disconnect to end the use of this instance of
TContext. The application should not perform this
step until it is done because disconnect unregisters
TContext with the Job Manager.

10 Shutdown. The Job Manager ends.

Important: Do not include this step if your client will run
as a service on a webMethods Integration Server. This
function is automatically performed by the server and
must not be included in your code.

For additional information about TContext and its methods, see the TContext class in the
webMethods Integration Server Java API Reference.

Sample Code (Asynchronous Request)
The following example illustrates the steps you take to submit an asynchronous request
to the Job Manager. To submit an asynchronous request, you establish a connection and
start a transaction just like you do for a synchronous request. However, you submit the
request using the submitTX method instead of the invokeTx method. Then, you must
retrieve the results of the request using the retrieveIDTx method (to get results as an
IData object).

For additional information about TContext and its methods, see the TContext class in the
webMethods Integration Server Java API Reference.
/**
 * Sample of a Java TContext client that uses SSL to perform a GD transaction */
import com.wm.data.IDataFactory;
import com.wm.data.IData;

import com.wm.app.b2b.client.*;
import com.wm.util.*;
import com.wm.app.b2b.client.lic.*;
public class TCSample {

 public static void main (String[] args)
 {
 TContext tc = null;
 ClientKeyInfo.setGuaranteedDeliveryLicensed(true);
 String privkey = "./config/privKey1.der";
 String[] certFiles = {"./config/cert1.der","./config/cacert1.der"};
 // initialize TContext and establish connection attributes
 try {
 TContext.init("./jobs", "./tx.log");
 tc = new TContext();
 tc.connect("localhost:5555", "Administrator", "manage");
 tc.setSecure(true);
 tc.setSSLCertificates(privKey,certFiles);
 } catch (ServiceException e) {

M
Odd Header

Creating a Java Client that Uses Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 19

 System.err.println("Error: "+e.getMessage());
 System.exit(-1); }
 // do work with TContext - get tid, call service, end tid
 try {
 String tid = tc.startTx(3);

 // Make an asynch call to invoke the specified transaction.
 tc.submitTx(tid, "wm.server", "ping", IDataFactory.create());

 // Retrieve the results of an asynch call in blocking mode.
 IData result = tc.retrieveTx(tid);

 System.out.println("Result="+result.toString());
 tc.endTx(tid);
 } catch (TXException e) {
 System.err.println("Job Failed: "+e.getMessage());
 System.exit(-1);
 } catch (DeliveryException e) {
 System.err.println("JobMgr Disabled: "+e.getMessage());
 System.exit(-1);
 } catch (AccessException e) {
 System.err.println("Access Denied: "+e.getMessage());
 System.exit(-1);
 } catch (ServiceException e) {
 System.err.println("Error: "+e.getMessage());
 System.exit(-1);
 }
 // release connection and shutdown
 tc.disconnect();
 TContext.shutdown();
 }
}

M
Even Header

Guaranteed Delivery Developer’s Guide Version 9.7 20

M
Odd Header

Creating a Flow Service that Uses Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 21

3 Creating a Flow Service that Uses Guaranteed
Delivery

■ Overview ... 22

■ Sample Flow (Synchronous Request) ... 22

■ Sample Flow (Asynchronous Request) .. 23

M
Even Header

Creating a Flow Service that Uses Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 22

Overview
Using the services in the pub.remote.gd folder, you can build flow services that submit
requests to other webMethods Integration Servers through guaranteed delivery.

Note: The Integration Servers that participate in a guaranteed-delivery transaction must
both be running the same version of Integration Server software.

The following examples show how you would submit both synchronous and
asynchronous requests using the built-in services. For a description of these services, see
webMethods Integration Server Built-In Services Reference.

Sample Flow (Synchronous Request)
The following flow illustrates the basic steps you use to execute a synchronous
transaction from a flow service.

Flow service that executes a synchronous transaction

Step Invoke this Service... To...

1 pub.remote.gd:start Start the transaction. When you invoke
this service, you specify the alias for the
webMethods Integration Servers to which you
want to submit a request as well as transaction-
related parameters such as time-to-live and
followid.

This service returns a tid as output.

Note: Internally, this service opens a session on
the server and performs startTx, so there is no
need for you to explicitly open a session on the
server like you must do in a Java guaranteed-
delivery client.

2 pub.remote.gd:invoke Invoke the service. You must provide the tid
(produced by start, above), the name of the

M
Odd Header

Creating a Flow Service that Uses Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 23

Step Invoke this Service... To...
requested service, and the input values for that
service as input.

This service returns the results from the remote
service as output.

3 pub.remote.gd:end End the transaction. You must call this service to
clear the transaction from the job store. It takes
the tid as input.

Sample Flow (Asynchronous Request)
The following flow illustrates the basic steps you use to execute an asynchronous
transaction from a flow service.

Flow service that executes an asynchronous transaction

Step Invoke this Service... To...

1 pub.remote.gd:start Start the transaction. When you invoke
this service, you specify the alias for the
webMethods Integration Server to which
you want to submit a request as well as
transaction-related parameters such as time-
to-live and followid.

This service returns a tid as output.

Note: Internally, this service opens a session on
the server and performs startTx, so there is no
need for you to explicitly open a session on the

M
Even Header

Creating a Flow Service that Uses Guaranteed Delivery

Guaranteed Delivery Developer’s Guide Version 9.7 24

Step Invoke this Service... To...
server like you must do in a Java guaranteed-
delivery client.

2 pub.remote.gd:submit Submit the service request. You must provide
the tid (produced by start, above), the name
of the requested service, and the input
values for that service as input.

3 pub.remote.gd:getStatus Check for results. You can optionally use a
REPEAT step to poll the job store and check
whether the results from the transaction
have been received. This service returns
“DONE” when results are available.

4 pub.remote.gd:retrieve Retrieve the results. This service returns
the results from the service request you
submied earlier. It takes the tid as input.

5 pub.remote.gd:end End the transaction. You must call this service
to clear the transaction from the job store. It
takes the tid as input.

M
Index

Guaranteed Delivery Developer’s Guide Version 9.7 25

Index

A
asynchronous transaction

example of (in flow) 23
example of (in Java) 18

D
documentation

using effectively 5

E
error handling in guaranteed delivery 11

G
guaranteed delivery

creating client applications for 14
definition of 8
error handling 11
heuristic errors 12
in a flow service

checking for results 24, 24
ending a transaction 23, 24
invoking a service 22
retrieving results 24
sample flow, asynchronous 23
sample flow, synchronous 22
starting a transaction 22, 23
submitting a request 24

in a Jav a client
checking for results 18

in a Java client
ending a transaction 17
invoking a service 17
making a connection 17
sample code, asynchronous 15
starting a transaction 17
submitting a request 18

making a connection 22
server properties 9
starting Job Manager 17
stopping Job Manager 18

H
heuristic errors 11

J

Job Manager 9

S
synchronous transaction

example of (in flow) 22
example of (in Java) 15

T
TContext 8
transaction IDs 10
TTL

definition of 8
specifying 10

	Table of Contents
	About this Guide
	Document Conventions
	Documentation Installation
	Online Information

	Overview of Guaranteed Delivery
	Overview
	What Is Guaranteed Delivery?
	Indicating You Want to Use Guaranteed Delivery
	How Transactions Are Managed
	Customizing the Job Manager

	Identifying Transactions
	Specifying How Long Transactions Are Active
	Handling Failures

	Creating a Java Client that Uses Guaranteed Delivery
	Overview
	Sample Code (Synchronous Request)
	Sample Code (Asynchronous Request)

	Creating a Flow Service that Uses Guaranteed Delivery
	Overview
	Sample Flow (Synchronous Request)
	Sample Flow (Asynchronous Request)

	Index

