§ software

webMethods EntireX

EntireX COBOL Wrapper

Version 9.7

October 2014

WEBMETHODS

This document applies to webMethods EntireX Version 9.7.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-EEXXCOBWRAPPER-97-20160805

Table of Contents

EntireX COBOL WIaPPeTccueiiiiiiiiiiiiiiiiiiiiccc e vii
1 Introduction to the COBOL WIapperccooiiiuiiiiiiiiiiiicccicccee e 1
DeSCIIPHION ..ot 2
Generic RPC Services Modulecccoooiiiiiiiiiiiiiiiii 3
COBOL Client AppliCationscocuiiiiiiiiiiiiiiiiiiiiccie e 3
COBOL Server Applicationcccevuiiiiiiiiiciiiieicceececec e 4
COBOL Server INnterface TYPEScoovivuiiiiiiiiiiiiciiesie e 5
2 Using the COBOL Wrapper for the Client Sidecccccoovviviiiiiiiiiiiiiiiiiiiie 11
Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention
(Z/OS ANA Z/VSE) .ttt et 13
Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE) 16
Using the COBOL Wrapper for Batch (z/OS, BS2000/0OSD, z/VSE and IBM i) 18
Using the COBOL Wrapper for IMS (z/OS)ccccooviiviiiiiiiiiiiiiiiiiiiiiiccece 21
Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS) 22
Using the COBOL Wrapper for Micro Focus (UNIX and Windows) 24
3 Using the COBOL Wrapper for the Server Sidecccooiiiiiiiii 27
Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention
(Z/OS and Z/VSE)cccccuiiiiiiiiiiiiiiiciici s 29
Using the COBOL Wrapper for CICS with Channel Container Calling Convention
(ZIOS) . 32
Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer
Interface (z/OS and Z/VSE)ccooviiiiiiiiiiieeei ettt 38
Using the COBOL Wrapper for Batch (z/OS, BS2000/OSD, z/VSE and IBM i) 41
Using the COBOL Wrapper for IMS BMP (z/OS)ccccocuiiiiiiiiiiiiiiiiiiiiiiceen, 44
Using the COBOL Wrapper for Micro Focus (UNIX and Windows) 48
4 Generating COBOL Source Files from Software AG IDL Filesccccceeviiciiiniinnnen. 51
Select an IDL File and Generate RPC Client or RPC Servercccoccooviviiinnnenns 52
Generation Settings - Propertiescccocevieiiiiiiiiiiiiicccc 55
Generation Settings - Preferencescccocivviiiiiiiiiiiiiiiiiiiiiiciccc 66
5 Using the COBOL Wrapper in Command-line Modec.ccccoooiiiiiiiiiinii 69
Command-line OPtioNScccieiiiiiiiiiiiiiiiiii e 70
Example Generating an RPC Clientccoccovviiiiiiiiiiiiiiiiiiicccc, 73
Example Generating an RPC Serverccccoccoviiiiiiiiiiiiiiiicccs 74
Further EXxamplescccooiiiiiiiiiiiiiiiiiicc 74
6 Software AG IDL to COBOL Mappingc.cccoevuieimiiiiniiiiiiicicciccecc e 77
Mapping IDL Data Types to COBOL Data Typescccccccevvviiiiiiiiiiiiiiiiiiienneen, 78
Mapping Library Name and Aliascccocooviiiiiiiiiiiiccc 83
Mapping Program Name and Aliascccceevviiiiiiiiiiiiniiicicceccccec e 83
Mapping Parameter Namesccccooviiiiiiiiiiiiiiiiiicc 84
Mapping Fixed and Unbounded Arrayscccocooviiiiiiiiiiiiiiicccc 84
Mapping Groups and Periodic GIroupscccccceeviiiiiiiiiiiiiiiiiiiiiiiiicicciccecen 85
Mapping SrUCTUTESccoiiiiiiiiiiieecce e 86
Mapping the Direction Attributes In, Out, InOutcccoooiiiiiiiiiiiiie 86

EntireX COBOL Wrapper

Mapping the ALIGNED Attributecccccovviiiiiiiiiiiiii, 87
Calling Servers as Procedures or FUNCHONScccoooiiiiiiiii 87
7 Writing Standard Call Interface Clientsccccovvviiiiiiiiiiiiiiiiiicc, 89
Step 1: Declare and Initialize the RPC Communication Areac.cccooceeviiiienncnns 90
Step 2: Declare the Data Structures for RPC Stubscccccoceeiiiiiiiiiiiiiiiiinne 90
Step 3: Required Settings in the RPC Communication Areaccccooeuviiviennnnne. 91
Step 4: Optional Settings in the RPC Communication Areaccceceeevvirniennnnne. 91
Step 5: Issue the RPC Requestccccociiiiiiiiiiiiiiiiiiiiiii 92
Step 6: Examine the Error Code ... 92
8 Using the RPC Communication AT€acccceiviiiiiiiiiiiiiiiiiiiiciicccccec e 93
Purpose of the RPC Communication Areaccooceeviiiiiiiiiiiiciieccece 94
Using the RPC Communication Area with a Standard Call Interface 95
Using the RPC Communication Area with EXEC CICSLINKccccoiiininnn 97
9 Using the Generated COPYbOOKScccoovuiiiiiiiiiiiiiiiiiiiiiiiiic 99
IDL Interface COPYbOOKScocviiiiiiiiiiiiiiiiiiiiiii 100
COBINIT COpybOOK ..ot 100
COBEXIT COPYDOOK ...uvviiiiiiiiiiiiiiiiiiiiiiiicicce e 101
10 Using Broker Logon and Logoffccooiiiiiiiiiiicc 103
11 Using Conversational RPCc.ccociiiiiiiiiiiiiiiiiii e 107
12 Using the COBOL Wrapper with Natural Security and Impersonation 111
13 Reliable RPC for COBOL WIapPPerccccoiiuiiiiiiiiiiieieiccicciccceicceee e 115
Introduction to Reliable RPCccociiiiiiiiiiiiii 116
Writing @ CHeNtc.ooiiiiiii 117
WIIHNE @ SETVETooiiiiiiiiiiiiii i 122
Broker Configurationc.cocuoviiiiiiiiiiicc 122
14 Using the COBOL Wrapper with EntireX Securityc.ccccccevviiiiiiiiiniiniiennnnnn. 123
15 Client and Server Examples for Micro Focus (UNIX and Windows)c.c........ 125
Basic RPC Client Examples - CALC, SQUAREccoooiiiiiiiiic 126
Basic RPC Server Examples - CALC, SQUAREc.cccciiiiiiiiiiiiiiiiiiiiiiccieee, 126
Reliable RPC Client Example - SENDMAILccccoooiviiiiiiiiiiiiccc, 127
Reliable RPC Server Example - SENDMAILccccociiiiiiiiiniiiiiiiiiiiciiceeee, 127
16 Client and Server Examples for z/OS Batchc.ccoccoiiiiiii 129
Basic RPC Client Examples - CALC, SQUAREcccccoiiiiiiiiiiiiiiiiiiiiee, 130
Basic RPC Server Examples - CALC, SQUAREc.ccccoiiiiiiiiiiiiiiiiiiiiceee, 131
Reliable RPC Client Example - SENDMAILcccooooiviiiiiiiiiiiccci, 133
Reliable RPC Server Example - SENDMAILcccccccoviiiiiiiniiiiiiiiiiiiieiccieee, 133
17 Client and Server Examples for z/OS CICSccociiiiiiiiiiiiiccc 135
Basic RPC Client Examples - CALC, SQUAREcccccooiiiiiiiiniiiiiiiiiciccieee, 136
Basic RPC Server Examples - CALC, SQUAREcccccooviiiiiniiiiiiiiiiiciee, 140
Reliable RPC Client Examples - SENDMAILcccocooviiiiiiii 141
Reliable RPC Server Example - SENDMAILcccccccoviiiiiiiiiiiiiiiiiiiiiicceee, 143
Advanced CICS Channel Container RPC Server Example - DFHCON 144
Advanced CICS Large Buffer RPC Server Example - DFHLBUF 144
18 Client and Server Examples for z/OS IMS BMPccccociiiiiiiiiiiiiiiiiiiiii, 147
19 Server Examples for z/OS IMS MPPcccooiiiiiiiiiiiiiiiiiccece e 149

EntireX COBOL Wrapper

EntireX COBOL Wrapper

CALC SEIVET ..ottt 150
SQUARE SEIVETuuuuuuiiiiiieieeee e snssnnsnsnnnsnnnsnsnsnsnsnsnnnnn 150
20 Client and Server Examples for BS2000/OSDcccccoviiiiiiiiiiiiiniiiiiiiciiccee 153
Overview of Client and Server Examples for BS2000/OSDc.cccccoviiiinninnne. 154
Creating the Sample COBOL Client Programsccccoeveeveviiviiiiiininiiieneeenen. 157
Creating the Sample COBOL Server Programsccccoccoeviivinviiiiinninniciicnene. 158
Running the Sample COBOL Client Programscccceeeieviiiiiinieniieienneeee. 158
21 Client and Server Examples for IBM iccccooiiiiiiiiiiiiiiiiiiiiiiiicec 161
Overview of Client and Server Examples for IBM iccccocoeiiiiiiiiiiiiiinne, 162
Installing and Running the Client Examples for IBM icccooiiiiiiiiiiiiiinnn. 163
Installing and Running the Server Examples for IBM icccocoooiiiiinn. 163
22 Client and Server Examples for z/VSE Batchcccccccoiiiiiiiiiiiii, 165
Basic RPC Client Examples - CALC, SQUAREccccooiiiiiiiiiiiiiiiiiicics 166
Basic RPC Server Examples - CALC, SQUAREccccoiiiiiiiiiiniiiiis 168
Reliable RPC Client Example - SENDMAILccccccoiiiiiiiiiiiiiiiiiiiiiiiceee, 169
Reliable RPC Server Example - SENDMAILccoooiiiiiiiiii 170
23 Client and Server Examples for z/VSE CICSc.cccciviiiiiiiiiiiiiiiiiiiicicecce 171
Basic RPC CALC Exampleccccoooiiiiiiiiiiiiiiccc 172
Basic RPC SQUARE EXamplecccccoeiiiiiiiiiiiiiiiiiiiiicicccccec e 174
Reliable RPC SENDMAIL Exampleccccccovviiiiiiiiiiiiiiiiiiiiicece, 177
24 COBOL Wrapper Referencec.cccoiviiiiiiiiiiiiiicciccccceccceeecc 181
The RPC Communication Area (Reference)ccceeevvveeeieniiieeiiniieeeenniieeeeneee. 182
Generic RPC Services Modules ..o, 186

EntireX COBOL Wrapper v

vi

EntireX COBOL Wrapper

EntireX COBOL Wrapper provides access to RPC-based components from COBOL applications.
It enables you to develop both client and server applications.

Introduction

Using

Command-line Mode

Mapping

Reliable RPC

Reference

Introduction to the COBOL Wrapper.

Step-by-step guide on how to generate interactively and build (write, compile and
link) clients and server applications with the COBOL Wrapper. Programming models
for Micro Focus, batch, CICS and IMS COBOL RPC applications are introduced.
This section contains the following subsections:

® Using the COBOL Wrapper for the Client Side

® Using the COBOL Wrapper for the Server Side
® Generating COBOL Source Files from Software AG IDL Files

Using the COBOL Wrapper in command-line mode.

Mapping Software AG IDL data types, groups, arrays and structures to the COBOL
programming language.

Introduction to reliable RPC; writing a client and a server for Reliable RPC; Broker
configuration.

Provides reference material for the COBOL Wrapper.

Vii

viii

1 Introduction to the COBOL Wrapper

LB =Yoo USRS PPPPPPRR
B GeneriC RPC SErviCes MOTUIEoiiiiiieiiiiii ettt e e et e e et e e e s nnaee e e
B COBOL Client APPlICAtIONSeeuvtiiee ettt et e et e e e e e e e nneee e
B COBOL Server APPlICAtIONcoiiiieiie ettt e e e e e e e ea e
B COBOL Server INtBrfate TYPESvvvvvriieeieeeeee ettt e e e e e e et e e e e e e e e r e e e e e e e

Introduction to the COBOL Wrapper

EntireX COBOL Wrapper provides access to RPC-based components from COBOL applications.
It enables you to develop both client and server applications.

Description

The COBOL Wrapper provides access to RPC servers for COBOL client applications and access
to COBOL servers for any RPC client. The COBOL Wrapper generation tools of the Workbench
take as input a Software AG IDL file, which describes the interface of the RPC, and generate COBOL
sources that implement the functions and data types of the interface.

Wrapper < p COBOL-based
Generic RPC Cliznts I
RPC Servers ! Services F
- <+ P podule
EntireX Broker
: e > -4 b COBOL-based
RPC Clients RPC Server -4 > Servers |
-

The generated functions can be compiled with the COBOL compiler of your target platform.

The COBOL Wrapper works as follows:

COBOL code is generated from the Software AG IDL file.

Additionally for the client side, and depending on your target operating system and environment
(e.g. Micro Focus, batch, CICS or IMS), a generic RPC services module is generated (see below).

If required for the server side, a so-called server mapping file is created. A server mapping file
is an EntireX Workbench file with extension .svm or .cvm. See Server Mapping Files for COBOL.

The Software AG IDL Compiler and an appropriate template are used for the COBOL code
generation.

2 EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

Generic RPC Services Module

In order to minimize the amount of code generated for a specific IDL file, all service-type function-
ality that is not specific to a given IDL file required by the client interface object is generated in a
generic RPC services module.

The generic RPC services module is used by RPC clients and contains the call to the broker stub,
as well as other functions needed for RPC communication where an interface object is not needed,
such as

® broker logon and logoff

" conversational support

® connecting RPC clients to RPC servers via the broker

" etc.

For more information, see Generic RPC Services Modules.

COBOL Client Applications

For a given IDL file, the Software AG IDL Compiler and a COBOL code generation template for
clients are used to generate client interface objects and copybooks. The source code generated by
the COBOL Wrapper can be compiled with your target COBOL compiler. Application developers
use the generated generic RPC service module, the client interface object(s) and the copybooks to
write COBOL applications that access RPC servers.

COBOL Client DL

Programmer

I: > EntireX - > RPC
- Broker - Server
Client Wrapper
(client interface object)
—y

Generic RPC
Services Module

—

EntireX COBOL Wrapper 3

Introduction to the COBOL Wrapper

For more information, see Using the COBOL Wrapper.

COBOL Server Application

The Software AG IDL Compiler and a COBOL code generation template for servers are used to
generate a server (skeleton) for a specific IDL. Additionally, depending on the IDL data types and
whether IDL program names are customized, a so-called server mapping file is created. A server
mapping file is an EntireX Workbench file with extension .svm or .cvm. See When is a Server Mapping
File Required?.

Application developers use the generated server (skeleton) to write their own server code for each
program in the IDL. The source code is compiled and linked with your target COBOL compiler.
Client-side and server-side mapping files are handled differently. See Server Mapping Files for
COBOL and Using the COBOL Wrapper for the Server Side.

COBOL RPC
Server

Programmer
RPC ' > EntireX >
Client > Broker >~ =i

Implementation
"
LT

4 EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

COBOL Server Interface Types

Depending on your requirements and generation settings, the COBOL Wrapper generates a
server skeleton with one of the following interface types:

= CICS with DFHCOMMAREA Calling Convention

= CICS with Channel Container Calling Convention

= CICS with DFHCOMMAREA Large Buffer Interface

= Micro Focus with Standard Linkage Calling Convention

= Batch with Standard Linkage Calling Convention

= |MS BMP with Standard Linkage Calling Convention

= Compatibility between COBOL Interface Types and RPC Server

CICS with DFHCOMMAREA Calling Convention

CICS programs using the standard DFHCOMMAREA for parameter passing.

DFHCOMMAREA

. . - INOUT COBOL
a0 14 | atooooo | s | 14 < > Server

Technically, the generated COBOL server skeleton contains
* in the DFHCOMMAREA, the parameter structure

See Server Interface Types for more information on how to create COBOL servers with this interface

type.

EntireX COBOL Wrapper 5

Introduction to the COBOL Wrapper

CICS with Channel Container Calling Convention

Channels and containers are IBM's approach to access more than 31 KB of data in CICS. There is
no need for coding any channel container statements because all this is generated. Thus the pro-
grammer focus can be on the application logic.

Input container

14 | A28 215 |4 >
COBOL

Output container Server

. ouT
A1U|I4|A25 |F‘5 ||4 «

Technically, the generated COBOL server skeleton contains

" container layouts in the linkage section

" EXEC CICS CONTAINER statements for accessing the container on input and output

See Server Interface Types for more information on how to create COBOL servers with this interface
type.

CICS with DFHCOMMAREA Large Buffer Interface

This type of program has a defined DFHCOMMAREA interface to access more than 31 KB of data
in CICS. The interface is the same as the webMethods WMTLSRVR interface. This enables customers
to use an easy and simple interface type to access more than 31 KB of data in CICS.

6 EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

DFHCOMMAREA
POINTER
:1::1' 4] At00000 | P5 [l m
Large buffer
Technically,

® the generated server skeleton contains in the DFHCOMMAREA layout a pointer to a large buffer
" the parameter structure in the linkage section is accessed using COBOL's SET ADDRESS statement

using the large buffer pointer

See Server Interface Types for more information on how to create COBOL servers with this interface

type.

Micro Focus with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter ad-
dresses a fixed COBOL structure.

Farameter 1

Parameter2 | A10| 14 |A100000 |12 |P5
: i i S) INOUT COBOL
' 12| a15]14] 14| Aa100 |14 < > Server
Parameter n . ’

14 | A100000 | P2

EntireX COBOL Wrapper 7

Introduction to the COBOL Wrapper

Technically, the generated COBOL server skeleton contains

® a parameter list PROCEDURE DIVISION USING PARM1 PARM2 ... PARMn

" the parameters in the linkage section as COBOL data items on level 1

See Server Interface Types for more information on how to create COBOL servers with this interface

type.

Batch with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter ad-
dresses a fixed COBOL structure.

Farameter 1

Parameter2 | | A10| 14 [A100000 |12 |P5

: I : INQUT CoBOL
' 12| A15] 14| 14| A100 |14 < > Faii
Farameter n \
14 | a100000 | P2
Technically, the generated COBOL server skeleton contains
® a parameter list PROCEDURE DIVISION USING PARM1 PARM2 ... PARMn

" the parameters in the linkage section as COBOL data items on level 1

See Server Interface Types for more information on how to create COBOL servers with this interface

type.

8 EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

IMS BMP with Standard Linkage Calling Convention

IMS batch message processing programs (BMP) with PCB parameters are directly supported.

Farameter 1
Al10) 14 | A100000 |12 (PS5
Farameter 2
| PCB POINTER
: ! INOUT COBOL
) 2] A15] 14 14 A100 | 14 - - Server

Farameter n

|4 | A100000 | P2

Technically, the generated COBOL server skeleton contains
= IMS-specific PCB pointers within a parameter list.

See Server Interface Types for more information on how to create COBOL servers with this interface
type.

Compatibility between COBOL Interface Types and RPC Server

To call a server successfully, the RPC server used must support the interface type of the COBOL
server. The table below gives an overview of possible combinations of an interface type and a
supporting RPC server:

Supported by RPC Server
Supported :
by zI0S UNIX/Windows BS2000/0SD| z/VSE
EntireX CICS | Micro | IMS
Interface Type Adapter |CICS |Batch|IMS| ECI |Focus|Connect| Batch |CICS |Batch
CICS with DFHCOMMAREA Calling X X X X
Convention (Extractor | Wrapper)
CICS with DFHCOMMAREA Large X X
Buffer Interface (Extractor |
Wrapper)

EntireX COBOL Wrapper 9

Introduction to the COBOL Wrapper

Supported by RPC Server
Supported i
by zI0S UNIX/Windows BS2000/0SD| z/VSE

EntireX CICS | Micro | IMS
Interface Type Adapter |CICS |Batch|IMS| ECI |Focus|Connect| Batch |CICS |Batch

CICS with Channel Container X
Calling Convention (Extractor |
Wrapper)

Batch with Standard Linkage X | x X X
Calling Convention (Extractor |
Wrapper)

Micro Focus with Standard X
Linkage Calling Convention
(Extractor | Wrapper)

IMS BMP with Standard Linkage X
Calling Convention (Extractor |
Wrapper)

IMS MPP Message Interface (IMS X X
Connect) (Extractor)

10 EntireX COBOL Wrapper

2 Using the COBOL Wrapper for the Client Side

= Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
= Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE)ccoovviiieiiiiiieiiceee
= Using the COBOL Wrapper for Batch (z/OS, BS2000/0SD, z/VSE and IBM i)coovvuviiiieeeiiiiiiiiiiieece,

= Using the COBOL Wrapper for IMS (z/OS)cccccviieiiiiine

= Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS)cccvvvvveiiiiiiiiiicee e

= Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

11

Using the COBOL Wrapper for the Client Side

The COBOL Wrapper provides access to RPC-based components from COBOL applications and
enables users to develop both clients and servers. This section introduces the various possibilities
for RPC-based client applications written in COBOL.

A step-by-step guide is provided in the section Writing Applications with the COBOL Wrapper.
Read this section first before writing your first RPC client program.

12 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention
(z/OS and z/VSE)

This mode applies to z/OS and z/VSE.

Client Application
COBOL }‘0 client | @ | Generic | @)
>

Client RPC Broker
Program IS:;:;C,T ol TR Service > Stub
Module
Object 2
Object n
| supplied by EntireX
generated witten by customer

) EXECCICS LINK
€ call interface

In this scenario, the generic RPC services module and the broker stub are linked together to a CICS
program. The COBOL client program, every generated client interface object and the generic RPC
services module together with the broker stub are installed each as separate individual CICS
programs.

Use the COBOL Wrapper for CICS with DFHCOMMAREA calling convention in the following
situations:

® You want to have an EXEC CICS LINK DFHCOMMAREA interface to your client interface ob-
ject(s).

® The restriction of the COMMAREA length suits your purposes. Because the RPC communication
area is also transferred in the COMMAREA, the effective length that can be used for IDL data
is shorter than the CICS COMMAREA length. Nearly 31 KB can be used for IDL data.

" You wish to separate the generic RPC service module and the broker stub from the client interface
object(s).

" You require a program link to the client interface object(s).

EntireX COBOL Wrapper 13

Using the COBOL Wrapper for the Client Side

> To use the COBOL Wrapper for CICS with DFHCOMMAREA calling convention

1

Generate the client interface object for the target operating system, for example "z/OS", and

use interface type "CICS with DFHCOMMAREA calling convention". See Generating COBOL
Source Files from Software AG IDL Files. You do not need to generate the generic RPC service
module COBSRVI because this is already installed on the mainframe, so clear the check box.

If necessary, use FTP to transfer the client interface object(s) and, if required, also the generic
RPC service module COBSRV], to the target platform where you write your client application.

If you have generated the generic RPC service module and you plan to (re)install it within
CICS, you may need to adapt the broker stub that supports the required transport (TCP, SSL,
NET). See Adapting the Used Broker Stub.

Write your COBOL client program. See Writing Applications with the COBOL Wrapper, in
particular the section Using the RPC Communication Area with a Standard Call Interface,
and take into consideration the information given in Software AG IDL to COBOL Mapping.

Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOL Wrapper, translate and compile:

" the generated client interface object(s)

= if required, the generic RPC service module COBSRVI

® your COBOL client program.

Take care the generated copybooks (see Using the Generated Copybooks) are accessed correctly

by the compiler and not confused with the client interface objects, because the copybooks and
client interface objects have identical file names. See your compiler documentation.

Using the standard linker (binder) of the target platform, link (bind) the following programs
to separate CICS programs:

" every generated client interface object

* if required, the generic RPC service module COBSRVI together with a broker stub

* your COBOL client program.

Install every client interface object, if required the CICS RPC service module COBSRVI and
your COBOL client program as separate CICS programs.

Make sure the correct broker stub is used and can be called dynamically by the CICS generic
RPC service module COBSRVIC.
Under z/OS:

" See the broker installation documentation and use a broker stub for CICS (for example
CICSETB) from the common load library EXX970.LOAD. See also Administering Broker Stubs
in the z/OS administration documentation.

14

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

Under z/VSE:

= See the broker installation documentation and use a broker stub for CICS (for example
BKIMC), see sublibrary EXX970.

EntireX COBOL Wrapper 15

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE)

This mode applies to z/OS and z/VSE.

Client Application

cf.:.I':I'IB:tL 0 P | ﬂ RPC ‘ Broker
€ > Interface WP o T > Swb
Program Object 1 Module
Object 2
Object n

| supplied by EntireX
generated written by customer

) call interface

The COBOL Wrapper can be used with a call interface, even in CICS. This means you can build
a client application where the COBOL client program, every generated client interface object, the
generic RPC services module and the broker stub are linked together, similar to the batch scenario.
See Using the COBOL Wrapper for Batch (z/OS, BS2000/0OSD, z/VSE and IBM 1i).

Using a call interface within CICS may be useful if

" the restriction of the COMMAREA length (about 31 KB) prevents you from using the Using the
COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE) scenario
(see above)

® you do not require a distributed program link (CICS DPL) to your client interface object(s)

" you prefer a call interface instead of EXEC CICS LINK to your client interface objects.

> To use the COBOL Wrapper with a call interface within CICS

1 Generate the client interface object(s) for the target operating system, for example "z/OS", and
use the interface type "CICS with standard calling convention". See Generating COBOL Source
Files from Software AG IDL Files. You do not need to generate the generic RPC service
module COBSRVI, so clear the check box.

2 Ifnecessary, use FTP to transfer the client interface object(s) and, if required, also the generic
RPC service module COBSRV], to the target platform where you write your client application.

16 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

3 If you have generated the generic RPC service module and you plan to (re)install it within
CICS, you may need to adapt the broker stub that supports the required transport (TCP, SSL,
NET). See Adapting the Used Broker Stub.

4 Write your COBOL client program. See Writing Applications with the COBOL Wrapper, in
particular the section Using the RPC Communication Area with a Standard Call Interface,
and take into consideration the information given in Software AG IDL to COBOL Mapping.

5 Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOL Wrapper, translate and compile:
* the generated client interface object(s)
* if required, the generic RPC service module COBSRVI
® your COBOL client program
Take care the generated copybooks (see Using the Generated Copybooks) are accessed correctly

by the compiler and not confused with the client interface objects, because the copybooks and
client interface objects have identical file names. See your compiler documentation.

6 Using the standard linker (binder) of the target platform, link (bind) all translated and compiled
modules, and, if required, the broker stub, together to the client application (that is, a CICS
program), using the standard linker (binder) of the target platform.

7 Install the client application within CICS.

8 Make sure the correct broker stub is used and can be called dynamically by the generic RPC
service module COBSRVI.
Under z/OS:

" See the broker installation documentation and use a broker stub for CICS (for example
CICSETB) from the common load library EXX970.LOAD. See also Administering Broker Stubs
in the z/OS administration documentation.

Under z/VSE:

" See the broker installation documentation and use a broker stub for CICS (for example
BKIMC), see sublibrary EXX970.

EntireX COBOL Wrapper 17

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for Batch (z/0OS, BS2000/0SD, z/VSE and IBM i)

This mode applies to z/OS, BS2000/OSD, z/VSE and IBM i.

Client Application

COBOL }40 cient | @ | Generic
>

Client RPC Broker
Interface =i T - [3
Program Object 1 E;TI:: Stub
Object 2
Object n

| supplied by EntireX
generated written by customer

) call interface

In this scenario, the COBOL client program, every generated client interface object, generic RPC
services module and the broker stub are linked together to the client application.

Use the COBOL Wrapper for batch if you need to embed the client interface object into your ap-
plication with a standard linkage calling convention.

> To use the COBOL Wrapper for batch

1 Generate the client interface object(s) for the target operating system, for example "z/OS", and
use interface type "Batch with standard linkage calling convention". See Generating COBOL
Source Files from Software AG IDL Files. You do not need to generate the generic RPC service
module COBSRVI because it is already installed on the mainframe, so clear the check box.

2 Ifnecessary, use FTP to transfer the client interface object(s) and, if required, also the generic
RPC service module COBSRV], to the target platform where you write your client application.

3 If you have generated the generic RPC service module and you plan to (re)install it, you may
need to adapt the broker stub that supports the required transport (TCP, SSL, NET). See Ad-
apting the Used Broker Stub.

4 Write your COBOL client program. See Writing Applications with the COBOL Wrapper, in
particular the section Using the RPC Communication Area with a Standard Call Interface,
and take into consideration the information given in Software AG IDL to COBOL Mapping.

5 Using a COBOL compiler supported by COBOL Wrapper, compile:

18 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

" the generated client interface object(s)
= if required, the generic RPC service module COBSRVI
® your COBOL client program

Take care the generated copybooks (see Using the Generated Copybooks) are accessed correctly
by the compiler and not confused with the client interface objects, because the copybooks and
client interface objects have identical file names. See your compiler documentation.

Under BS2000/0SD:

® The IDL types U or UV require a compiler that supports COBOL data type NATIONAL.
See BS2000/OSD Prerequisites in the EntireX Release Notes for more information on supported
compilers.

Under IBM i:

= Use the command CRTCBLMOD (create COBOL module) and compile all modules above
to ILE modules.

= Use the IBM i compiler command with the options shown below:

CRTCBLMOD
OPTION(*NOMONOPRC) EXTDSOPT(*NODFRWRT) LINKLIT(*PRC)

On all other platforms:

= Use the standard COBOL compiler of the target platform.

6 Using the standard linker (binder) of the target platform, link (bind) the following programs:

* the generated client interface object(s)
" if required, the generic RPC service module COBSRVI
= if required, the broker stub

® your COBOL client program
Under IBM i:

® Use the IBMicommand CRTPGM to bind all compiled modules to an executable ILE program
of type *PGM.
To link the main program, use the following create program command with the options
shown:

EntireX COBOL Wrapper 19

Using the COBOL Wrapper for the Client Side

CRTPGM
MODULE(*LIB/myapplication mystubl mystub2 ..)
BNDSRVPGM(EXX/EXA) ...
where EXX is the EntireX product library and EXA the broker stub.
On all other platforms:

" Refer to your standard linker (binder) documentation.

Make sure that the correct broker stub module is used and, if linked (bound) dynamically,
that it can be called dynamically.

Under BS2000/0OSD:

® The broker stub module BKIMBTIA is located in the broker LMS load library.
Under IBM i:

* The broker stub EXA is located by default in the EntireX product library EXX.
Under z/OS:

= See the broker installation documentation and use a broker stub for batch (for example
BROKER) from the common load library EXX970.LOAD.See also Administering Broker Stubs
in the z/OS administration documentation.

Under z/VSE:

= See the broker installation documentation and use a broker stub for batch (for example
BKIMB), see sublibrary EXX970.

20

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for IMS (z/0S)

This mode applies to z/OS IMS modes BMP and MPP.

Client Application

cf.:.I':I'IB:tL 0 ZIEL | ﬂ RPC ‘ 0 Broker
€ > Interface WP o T > Swb
Program Object 1 Module

" Object 2
Object n

| supplied by EntireX
generated written by customer

) call interface

In this scenario, the COBOL client program, every generated client interface object, the generic
RPC services module and the broker stub are linked together to the client application.

Use the COBOL Wrapper for IMS if you need to embed the client interface object into your IMS
BMP or IMS MPP application with a standard linkage calling convention.

> To use the COBOL Wrapper for IMS

1

Generate the client interface object(s) for the target operating system "z/OS" and use the inter-
face type "IMS BMP with standard linkage calling convention" or "IMS MMP with standard
linkage calling convention". See Generating COBOL Source Files from Software AG IDL Files.
Check the option "Generate the generic RPC service module COBSRVI". .

If necessary, use FTP to transfer the client interface object(s) and, if required, also the generic
RPC service module COBSRV], to the target platform where you write your client application.

If you have generated the generic RPC service module and you plan to (re)install it, you may
need to adapt the broker stub that supports the required transport (TCP, SSL, NET). See Ad-
apting the Used Broker Stub.

Write your COBOL client program. See Writing Applications with the COBOL Wrapper, in
particular the section Using the RPC Communication Area with a Standard Call Interface,
and take into consideration the information given in Software AG IDL to COBOL Mapping.

Using a COBOL compiler supported by the COBOL Wrapper, compile:

EntireX COBOL Wrapper 21

Using the COBOL Wrapper for the Client Side

" the generated client interface object(s)

= if required, the generic RPC service module COBSRVI

® your COBOL client program.

Take care the generated copybooks (see Using the Generated Copybooks) are accessed correctly
by the compiler and not confused with the client interface objects, because the copybooks and

client interface objects have identical file names. Do not assign the data set with the client in-
terface objects prior in sequence to the copybooks to SYSLIB. See your compiler documentation.

Link (bind) all compiled modules and, if required, the broker stub, together to an executable
program, using the standard linker (binder) of the target platform.

Make sure the correct broker stub is used and can be called dynamically. In the common load
library EXX970.LOAD you can find broker stubs that can be used for

® IMS BMP (for example BROKER)
= IMS MPP (for example MPPETB)

See Administering Broker Stubs in the z/OS administration documentation.

Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS)

This mode applies to z/OS.

Client Application
COBOL }40 cient | @ [GEnSHe ©)
>

Client RPC Broker
Interface =i - [3
Program Object 1 E;TI:: Stub
Object 2
Object n

| Supplied by EntireX
generated written by customer

) call interface

The COBOL Wrapper can be used with a call interface in IDMS/DC. This means you can build an
application where the COBOL client program, every generated client interface object, the generic

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

RPC services module and the broker stub are linked together, similar to the batch scenario. See
Using the COBOL Wrapper for Batch (z/OS, BS2000/OSD, z/VSE and IBM 1i).

> To use the COBOL Wrapper with a call interface within IDMS/DC

1

Generate the client interface object(s) for the target operating system "z/OS", and use the in-
terface type "IDMS/DC with standard calling convention". See Generating COBOL Source
Files from Software AG IDL Files. Check the option "Generate the generic RPC service module
COBSRVI".

If necessary, use FTP to transfer the client interface object(s) and, if required, also the generic
RPC service module COBSRV], to the target platform where you write your client application.

If you have generated the generic RPC service module and you plan to (re)install it, you may
need to adapt the broker stub that supports the required transport (TCP, SSL, NET). See Ad-
apting the Used Broker Stub.

Write your COBOL client program. See Writing Applications with the COBOL Wrapper, in
particular the section Using the RPC Communication Area with a Standard Call Interface,
and take into consideration the information given in Software AG IDL to COBOL Mapping.

Using the IDMS/DC translator for COBOL provided with your IDMS/DC installation and a
COBOL compiler supported by the COBOL Wrapper, translate and compile:

" the generated client interface object(s)
= if required, the generic RPC service module COBSRVI
® your COBOL client program

Take care the generated copybooks (see Using the Generated Copybooks) are accessed correctly
by the compiler and not confused with the client interface objects, because the copybooks and
client interface objects have identical file names. See your compiler documentation.

Using the standard linker (binder) of the target platform, link (bind) all translated and compiled
modules, and, if required, the broker stub, together to a IDMS/DC program, using the standard
linker (binder) of the target platform.

Install the IDMS/DC program within IDMS/DC.

Make sure the correct broker stub is used and can be called dynamically by the generic RPC
service module COBSRVIL

See the broker installation documentation and use a broker stub for IDMS/DC (for example
IDMSETB) from the common load library EXX970.LOAD. See also Administering Broker Stubs
in the z/OS administration documentation.

EntireX COBOL Wrapper 23

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

This mode applies to UNIX and Windows.

Client Application

COBOL (1] client | © ' Generic (1]

Client RPC Broker
Program > IS:;:;C,T "l > Service n > Stub
Module
Object 2
Object n

| Supplied by EntireX
generated written by customer

) call interface

In this scenario, the COBOL client program, every generated client interface object, generic RPC
services module and the broker stub are linked together to the client application.

Use the COBOL Wrapper for Micro Focus if you need to embed the client interface object into
your client application with a standard linkage calling convention.

> To use the COBOL Wrapper for Micro Focus

1

Generate the client interface object(s) for the target operating system, for example "Windows",
and use interface type "Micro Focus with standard linkage calling convention". See Generating
COBOL Source Files from Software AG IDL Files. Check the option "Generic the RPC service
module COBSRVI".

If necessary, use FTP to transfer the client interface object(s) and, if required, also the generic
RPC service module COBSRV], to the target platform where you write your client application.

Import the modules into your Micro Focus IDE. The file names of the generated copybooks
(see Using the Generated Copybooks) are derived from the IDL program name or its alias if
present. The file names are the same as the file names of the client interface objects. They are
distinguished by their extension, ".cbl" for the client interface objects and ".cpy" for the copy-
books. If you import the generated copybooks and client interface objects into your Micro
Focus development environment, take care the copybooks are accessed correctly by the
compiler and not confused with the client interface objects. This may happen if you copy the

24

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

generated copybooks and the client interface objects into one directory. See your Micro Focus
documentation for more information.

4 Write your COBOL client program. See Writing Applications with the COBOL Wrapper, in
particular the section Using the RPC Communication Area with a Standard Call Interface,
and take into consideration the information given in Software AG IDL to COBOL Mapping.

5 Compile and link (bind) all modules together to an executable program:

" the generated client interface object(s)
* if required, the generic RPC service module COBSRVI
® your COBOL client program

For target operating system UNIX (i.e. the modules are generated for UNIX):

® The broker library from the EntireX UNIX installation must be linked to your client applic-
ation, e.g. by defining the symbol "broker" as a linker option and linking the module broker.o
from the EntireX UNIX installation.

" See your Micro Focus documentation for more information.
For target operating system Windows (i.e. the modules are generated for Windows):

" no additional compiler directives and linker options are required

6 Make sure the broker stub module can be called dynamically.
Under UNIX:

* The broker stub shared library or object libbroker.so|sl is accessible according to the rules
of the UNIX system used, e.g. the directory of the library is defined in the LD_LIBRARY_PATH
environment variable.

Under Windows:

*® The broker stub DLL broker.dll is accessible, for example with the PATH environment variable.

EntireX COBOL Wrapper 25

26

3 Using the COBOL Wrapper for the Server Side

= Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
= Using the COBOL Wrapper for CICS with Channel Container Calling Convention (z/OS)cccoovveeiinne..
= Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE)
= Using the COBOL Wrapper for Batch (z/OS, BS2000/0SD, z/VSE and IBM i)ooiiiiiiiiiiiiiiiiiiieeee

= Using the COBOL Wrapper for IMS BMP (z/OS)cue.....

= Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

27

Using the COBOL Wrapper for the Server Side

The COBOL Wrapper provides access to RPC-based components from COBOL applications and
enables users to develop both clients and server. This section introduces the various possibilities
for RPC-based server applications written in COBOL and covers the following sections:

28 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention
(z/OS and z/VSE)

This mode applies to z/OS and z/VSE. See also COBOL Scenarios under in the CICS RPC Server
documentation.

RPC Server

A
EXEC CICS LINK Interface

‘ cics

Target operating system
and interface type (*)

A J
COBOL
Server " M
Fragr;__ry 1 < COBOL Wrapper
“Program 2 Generate RPC Server
lm L generated :
. generated if required
- hJ
_ Server
supplied by EntireX Mapping
File

written/generated by customer

O See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

In CICS, the RPC server sets up all of your server's parameters dynamically in the format required.
Your server is called using EXEC CICS LINK.

Use the COBOL Wrapper for CICS with DFHCOMMAREA calling convention if
" you want to have a standard EXEC CICS LINK DFHCOMMAREA interface to your server

" you require a distributed program link (CICS DPL) to your server

* the DFHCOMMAREA length restriction (31 KB) suits your needs, otherwise consider the fol-
lowing interface types:

® Using the COBOL Wrapper for CICS with Channel Container Calling Convention (z/OS)

® Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and
z/VSE)

EntireX COBOL Wrapper 29

Using the COBOL Wrapper for the Server Side

> To use the COBOL Wrapper for CICS with DFHCOMMAREA calling convention

1

Generate the server (skeleton) for the target operating system, for example "z/OS", and use
interface type "CICS with DFHCOMMAREA calling convention". See Generating COBOL
Source Files from Software AG IDL Files.

If a server mapping file is required, it has to be provided. A server mapping file is an EntireX
Workbench file with extension .svm or .cvm. See Server Mapping Files for COBOL.

= Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files to the RPC Server in the CICS RPC Server (z/OS, z/VSE, CICS ECI) sections of
the documentation, except for CICS ECI connections with the webMethods EntireX Adapter,
where you need to update your Adapter connection. See Step 3: Select the Connection Type
in the Integration Server Wrapper documentation.

" Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the EntireX Workbench
documentation) and re-generate the client interface objects. For connections with the web-
Methods EntireX Adapter you need to update your Adapter connection. See Step 3: Select
the Connection Type in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

If necessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write
your server.

Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping and Aborting RPC
Server Customer Code and Returning Error to RPC Client in the CICS RPC Server documentation.

Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOL Wrapper, translate and compile your server.

Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform. Give your server a CICS program name that is the same as the program-name
in the IDL file. See program-definition under Software AG IDL Grammar in the IDL Editor
documentation.

Provide your server(s) to the CICS RPC server, EntireX Adapter, or CICS ECI RPC server:

* Install your server(s) as separate CICS program(s).

= If you are using a server-side mapping file, a concatenation of the program-name and the
Tibrary-name given in the IDL is used to locate the server mapping file. See
program-definitionunder Software AG IDL Grammar in the IDL Editor documentation and
Tibrary-definitionunder Software AG IDL Grammar in the IDL Editor documentation.
Example: If a client performs an RPC request that is based on the IDL program name CALC
and the IDL library EXAMPLE, the RPC server will dynamically try to locate logically the

30

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

server mapping file EXAMPLECALC and execute the program with the COBOL name defined
in the server mapping. See Customize Automatically Generated Server Names. If no corres-
ponding program can be found, the access will fail.

= If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, see Customize
Automatically Generated Server Names) is executed. If no corresponding program can be
found, the access will fail.

® If neither a server-side nor client-side mapping file is used - for example it is not required
or the server is generated with a previous version of EntireX without support for server
mapping - the library name (see 1ibrary-definition under Software AG IDL Grammar in
the IDL Editor documentation) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name CALC,
the RPC server will dynamically try to execute a program CALC. If no corresponding pro-
gram can be found, the access will fail.

EntireX COBOL Wrapper 31

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for CICS with Channel Container Calling Conven-
tion (z/0S)

This section covers the following topics:

= |ntroduction

= CICS Channel Container IDL Rules

= Restrictions

= Example 1: Same Container for Direction In and Out

= Example 2: Different Container for Direction In and Out

= Example 3: Multiple Containers

= Example 4: Variable Number of Containers (Direction Out Only)
= Steps

Introduction

This mode applies to z/OS. See also COBOL Scenarios under Scenarios and Programmer Information
in the CICS RPC Server documentation.

Target operating system
and interface type (*)

EXEC CICS LINK Interface

-
generated
generated if required
) ' Server
. supplied by EntireX N
| written/generated by customer -=..__|_'1_h_!__._f

O See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

32 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

In CICS, the RPC server sets up all of your server's parameters dynamically in the format required.
Your server is called using EXEC CICS LINK passing the container(s) in the defined channel to your
server. See Channel Name.

Use the COBOL Wrapper for CICS with channel container calling convention if

" you require more than 31 KB of data to transfer to your server

= your IDL complies with CICS channel container IDL rules (see below). If your IDL does not
match these rules, consider the interface type Using the COBOL Wrapper for CICS with
DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE) to implement your server.

" you want to have a standard CICS channel container interface to your server

" you require a distributed program link (CICS DPL) to your server.
CICS Channel Container IDL Rules

The following rules apply to CICS channel container IDL:
" A container is described with an IDL structure. See structure-definition under Software AG
IDL Grammar in the IDL Editor documentation.

® The container name is the name of the IDL structure. A maximum of 16 characters are allowed
by CICS for container names.

® IDL programs reference IDL structures only. No other parameters may be referenced.

" Multiple containers can be defined, see Example 3: Multiple Containers.

" A variable number of containers can be defined using one-dimensional IDL unbounded arrays
with maximum (see array-definitionunder Software AG IDL Grammar in the IDL Editor doc-
umentation). See also Example 4: Variable Number of Containers (Direction Out Only).

Restrictions

® IDL unbounded arrays (i.e. variable containers) for direction In and INOUT are not supported.

® Two and three-dimensional IDL unbounded arrays are not supported.
Example 1: Same Container for Direction In and Out

This example uses the same container for input and output. The container name is "CALC".

EntireX COBOL Wrapper 33

Using the COBOL Wrapper for the Server Side

Library 'EXAMPLE' Is
Program 'CONCALC" Is
Define Data Parameter
1 Container ('CALC") InOut
End-Define

Struct 'CALC' Is
Define Data Parameter

1 Operation (A1)
1 Operand_1 (I4)
1 Operand_2 (I4)
1 Function_Result (I4)
End-Define

Example 2: Different Container for Direction In and Out
This example uses separate containers for input and output.

Library 'DFHCON" Is
Program 'TWOC"' Is /* Two Container - Separate for Input and Output
Define Data Parameter
1 ContainerlIn ("CONTAINERLI') In
1 ContainerOut ('CONTAINERZ2') Out
End-Define
Struct "CONTAINER1' Is
Define Data Parameter
1 Just-0Occupied-Space (A39000) /* 39K
1 Request (A1000/5) /* 5K
End-Define
Struct '"CONTAINERZ2' Is
Define Data Parameter
1 Just-0Occupied-Space (A49000) /* 49K
1 Reply (A250)
End-Define

See IDL program TWOC under Advanced CICS Channel Container RPC Server Example - DFHCON.
Example 3: Multiple Containers

This example shows how more than one container is used per direction. Each container has its
own structure layout.

34 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Library 'DFHCON" Is
Program 'MULTIC' Is
Define Data Parameter

1 InContainerl ("INCONTAINERI'") 1In
1 InContainer?2 ("INCONTAINER2') In
1 InContainer3 ("INCONTAINER3'") 1In

1 OQutContainerl ('"OUTCONTAINERL1") OQut
1 OutContainer? ('"OUTCONTAINER2'") Qut
1 OutContainer3 ('"OUTCONTAINER3") OQut

End-Define

Struct "INCONTAINERL' Is
Struct "INCONTAINERZ2' Is
Struct "INCONTAINER3' Is

Struct "OUTCONTAINERI" Is
Struct 'OUTCONTAINERI' TIs
Struct "OUTCONTAINERI' Is

Example 4: Variable Number of Containers (Direction Out Only)

This example shows how to specify a range of containers. At runtime, the called RPC server creates
a variable number of containers from this range. Each container created has the same structure
layout and a container name that is formed from the structure name as prefix and the structure
index as suffix. In this example:

® MULTIPLE container names are MULTIPLEOQOL thru MULTIPLE9999.

® OPTIONAL container name is OPTIONALI.

Note: Make sure IDL observes the 16-character length restriction for container names given
by CICS.

Library 'DFHCON" Is
Program 'VARC' Is
Define Data Parameter

1 Input ("INPUT") In

1 Multiple ('MULTIPLE'/V9999) Qut /* 0 thru 9999 times
1 Optional ('OPTIONAL'/V1) Qut /* 0 or 1 times
End-Define

Struct "INPUT' Is
Struct '"MULTIPLE" Is
Struct "OPTIONAL' Is

EntireX COBOL Wrapper 35

Using the COBOL Wrapper for the Server Side

Steps

> To use the COBOL Wrapper for CICS with channel container calling convention

1

Generate the server (skeleton(s)) for the target operating system, for example "z/OS", and use
interface type "CICS with channel container calling convention". See Generating COBOL
Source Files from Software AG IDL Files.

The generated server mapping file has to be provided. A server mapping file is an EntireX
Workbench file with extension .svm or .cvm. See Server Mapping Files for COBOL.

= Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files to the RPC Server in the CICS RPC Server (z/OS, z/VSE) sections of the docu-
mentation.

= (Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the EntireX Workbench
documentation) and re-generate the client interface objects. For connections with the web-
Methods EntireX Adapter you need to update your Adapter connection. See Step 3: Select
the Connection Type in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

If necessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write
your server.

Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping and Aborting RPC
Server Customer Code and Returning Error to RPC Client under Scenarios and Programmer Inform-
ation in the CICS RPC Server documentation.

Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOL Wrapper, translate and compile your server.

Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform. Give your server a CICS program name that is the same as the program-name
in the IDL file (see program-definition under Software AG IDL Grammar in the IDL Editor
documentation).

Provide your server(s) to the CICS RPC server.

* Install your server(s) as separate CICS program(s).

= If you are using a server-side mapping file, a concatenation of the program-name and the
Tibrary-name given in the IDL is used to locate the server mapping file. See
program-definitionunder Software AG IDL Grammar in the IDL Editor documentation and
Tibrary-definition under Software AG IDL Grammar in the IDL Editor documentation.
Example: If a client performs an RPC request that is based on the IDL program name CALC

36

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

and the IDL library EXAMPLE, the RPC server will dynamically try to locate logically the
server mapping file EXAMPLECALC and execute the program with the COBOL name defined
in the server mapping. See Customize Automatically Generated Server Names. If no corres-
ponding program can be found, the access will fail.

= If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, see Customize
Automatically Generated Server Names) is executed. If no corresponding program can be
found, the access will fail.

EntireX COBOL Wrapper 37

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Inter-
face (z/OS and z/VSE)

This mode applies to z/OS and z/VSE. See also COBOL Scenarios under in the CICS RPC Server
documentation.

CICS
RPC Server
A DFHCOMMAREA Interface with Target operating system
Pointer to Large Buffer (WMTLSRVR) and interface type (*)
¥
COBOL
Server [; 4
Program 1 < COBOL WI‘IPIIIH'
| Program 2 Generate RPC Server
- generated :
Program n
generated if required
h
supplied by EntireX Msa‘::':ﬁ':-g
File

writlen/generated by customer

O See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

In CICS, the RPC server sets up all your server's parameters dynamically in the format required.
Your server is called by EXEC CICS LINK. Within the DFHCOMMAREA, pointers are passed to a
large input/output buffer.

Use the COBOL Wrapper for CICS with DFHCOMMAREA large buffer interface in the following
situations:

" You need to migrate COBOL programs implemented with webMethods WMTLSRVR interface
to the CICS RPC server.

® You require more than 31 KB of data to transfer to your server.

® You cannot use the channel container calling convention because your IDL does not match the
applicable rules; see CICS Channel Container IDL Rules under Using the COBOL Wrapper for
CICS with Channel Container Calling Convention (z/OS). There are no IDL restrictions for this
interface type - every IDL can be used.

38 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

" You prefer this interface type rather than the channel container interface type.

" You do not require a distributed program link (CICS DPL) to your server.

> To use the COBOL Wrapper for CICS with large buffer interface

1

Generate the server (skeleton(s)) for the target operating system, for example "z/OS", and use
interface type "CICS with DFHCOMMAREA large buffer interface". See Generating COBOL
Source Files from Software AG IDL Files.

The generated server mapping file has to be provided. A server mapping file is an EntireX
Workbench file with extension .svm or .cvm. See Server Mapping Files for COBOL.

= Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files to the RPC Server in the CICS RPC Server (z/OS, z/VSE) sections of the docu-
mentation.

= (Client-side mapping files (.cvim): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the EntireX Workbench
documentation) and re-generate the client interface objects. For connections with the web-
Methods EntireX Adapter you need to update your Adapter connection. See Step 3: Select
the Connection Type in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

If necessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write
your server.

Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping and Aborting RPC
Server Customer Code and Returning Error to RPC Client under Scenarios and Programmer Inform-
ation in the CICS RPC Server documentation.

Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOL Wrapper, translate and compile your server.

Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform. Give your server a CICS program name that is the same as the program-name
in the IDL file (see program-definition under Software AG IDL Grammar in the IDL Editor
documentation).

Provide your server(s) to the CICS RPC server.

* Install your server(s) as separate CICS program(s).

= If you are using a server-side mapping file, a concatenation of the program-name and the
Tibrary-name given in the IDL is used to locate the server mapping file. See
program-definitionunder Software AG IDL Grammar in the IDL Editor documentation and
Tibrary-definition under Software AG IDL Grammar in the IDL Editor documentation.

EntireX COBOL Wrapper 39

Using the COBOL Wrapper for the Server Side

Example: If a client performs an RPC request that is based on the IDL program name CALC
and the IDL library EXAMPLE, the RPC server will dynamically try to locate logically the
server mapping file EXAMPLECALC and execute the program with the COBOL name defined
in the server mapping. See Customize Automatically Generated Server Names. If no corres-
ponding program can be found, the access will fail.

If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, see Customize
Automatically Generated Server Names) is executed. If no corresponding program can be
found, the access will fail.

40

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for Batch (z/0OS, BS2000/0SD, z/VSE and IBM i)

This mode applies to z/OS, BS2000/OSD, z/VSE and IBM i. See also COBOL Scenarios in the Batch
RPC Server documentation.

Batch
RPC Server

A

Call Interface Target operating system

and interface type (*)

¥
COBOL
Server [| M
Program 1 < COBOL Wrapper
*Program 2 Generate RPC Server
- » generated :
Progra generated if required
v
- Server
supplied by EntireX Mapping
File

written/generated by customer

O See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

In batch mode, the RPC server sets up all of your server's parameters dynamically in the format
required. Your server is called dynamically using standard call interfaces.

Use the COBOL Wrapper for batch to build servers for the Batch RPC server.

> To use the COBOL Wrapper for batch

1 Generate a server (skeleton(s)) for the target operating system, for example "z/OS", and use
interface type "Batch with standard linkage calling convention". See Generating COBOL
Source Files from Software AG IDL Files for details.

2 Ifaserver mapping file is required, it has to be provided. A server mapping file is an EntireX
Workbench file with extension .svm or .cvm. See Server Mapping Files for COBOL.

= Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files to the RPC Server in the respective sections of the documentation.

EntireX COBOL Wrapper 41

Using the COBOL Wrapper for the Server Side

= Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the EntireX Workbench
documentation) and re-generate the client interface objects. For connections with the web-
Methods EntireX Adapter you need to update your Adapter connection. See Step 3: Select
the Connection Type in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

3 Ifnecessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write
your server.
4 Use the generated server (skeleton(s)) and complete it by applying your application logic.

Note the information given in Software AG IDL to COBOL Mapping.

Under z/OS

® See Aborting RPC Server Customer Code and Returning Error to RPC Client under Scenarios
and Programmer Information in the Batch RPC Server documentation.

Under IBM i, consider multithreading issues:

" Your server has to be implemented as an ILE COBOL program of type *PGM.

® The RPC server is running in a multithreaded environment. Therefore your server must be
thread-safe. This implies that all commands and subprograms accessed in your servers
must allow multithreads.

" Please note that some COBOL statements do not support multithreads. Using statements
that are not thread-safe (e.g. STOP RUN) can result in the RPC server ending abnormally.
Therefore the server programs have to be terminated with a thread-safe statement, for ex-
ample EXIT PROGRAM. For details, see the IBM documentation Language Restrictions under
THREAD and Preparing ILE COBOL Programs for Multithreading.

5 Use a COBOL compiler supported by the COBOL Wrapper to compile your server.

Under BS2000/0SD,

* the IDL types U or UV require a compiler that supports COBOL data type NATIONAL.
See BS2000/0OSD Prerequisites in the EntireX Release Notes for more information on supported
compilers.

® compile them as OM or LLM modules.

Under IBM i,

® use the IBM i command CRTCBLMOD (create bound COBOL module).

" as an alternative, you can compile and bind in one step, see the next step below.

42 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

On all other platforms,

= use the standard COBOL compiler of the target platform.

6 Link (bind) your server to an executable program. Give the resulting server program the same
name as the program-name in the IDL file. See program-definition under Software AG IDL
Grammayr in the IDL Editor documentation.

Under BS2000/0SD:

® There is no need to link the server modules with the BS2000/OSD Common Runtime Envir-
onment (CRTE). The CRTE is included in the server's BLSLIB chain and loaded dynamically.
If this is needed for any reason, the CRTE must be linked as a subsystem. All entries must
be hidden to prevent duplicates. Linking the CRTE statically will consume resources and
slow down the load time of the server modules.

Under IBM i:

" Bind it as a dynamically callable program of type *PGM using the command CRTPGM.

" As an alternative to compiling with CRTCBLMOD (see step above) and binding with CRTPGM
separately, you can compile and bind in one step with the command CRTBNDCBL.

® When linking/binding servers, the CRTPGM parameter ACTGRP (*CALLER) must be specified.
This guarantees that the server application runs in the same activation group as the calling
RPC server.

On all other platforms

® Use the standard linker (binder) of the target platform.

7 Provide your server to the Batch RPC Server.
Under IBM i

® Put the server into a library whose name corresponds to the library name in the IDL file
(see 1ibrary-definitionunder Software AG IDL Grammar in the IDL Editor documentation).

= If you put the server program into a library other than the library name given in the IDL
(e.g. MyLib), you must tell this to the RPC server, using the server parameter
Library=Fix(MyLib).In this case, the library name sent with the client request is ignored.

Example: If a client performs an RPC request that is based on the IDL program name CALC
in the IDL library EXAMPLE, the remote RPC server will dynamically try to execute the
ILE program CALC in the IBM i library EXAMPLE. If no corresponding program can be
found, the access will fail.

On all other platforms

EntireX COBOL Wrapper 43

Using the COBOL Wrapper for the Server Side

= Add the server to the Batch RPC Server STEPLIB chain.

= If you are using a server-side mapping file, a concatenation of the program-name and the

Tibrary-name given in the IDL is used to locate the server mapping file. See
program-definitionunder Software AG IDL Grammar in the IDL Editor documentation and
Tibrary-definition under Software AG IDL Grammar in the IDL Editor documentation.
Example: If a client performs an RPC request that is based on the IDL program name CALC
and the IDL library EXAMPLE, the RPC server will dynamically try to locate logically the
server mapping file EXAMPLECALC and execute the program with the COBOL name defined
in the server mapping. See Customize Automatically Generated Server Names. If no corres-
ponding program can be found, the access will fail.

If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, see Customize
Automatically Generated Server Names) is executed. If no corresponding program can be
found, the access will fail.

If neither a server-side nor client-side mapping file is used - for example it is not required
or the server is generated with a previous version of EntireX without support for server
mapping - the library name (see 1ibrary-definition under Software AG IDL Grammar in
the IDL Editor documentation) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name CALC,
the RPC server will dynamically try to execute a program CALC. If no corresponding pro-
gram can be found, the access will fail.

Using the COBOL Wrapper for IMS BMP (z/0S)

This mode applies to z/OS IMS mode BMP. See also COBOL Scenarios under Scenarios and Program-
mer Information in the IMS RPC Server documentation.

44

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

s < PCB
RPC Server Pointers
A Call Interface Target operating system
with PCB pointer and interface type (*)
v
COBOL
Server [; v use
Program 1 < COBOL Wrapper PSB
[Program 2 Generate RPC Server List
- generated :
Program n
generated if required
v
4 pce 4 pce
Pointer Pointer Server
Mapping
File
IS IMS
DB OB ‘ supplied by Entirex

written/genarated by customer

OSee Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

In IMS BMP, the IMS RPC server sets up all of your server's parameters dynamically in the format
required. Your server is called dynamically using standard call interfaces. IMS-specific PCB
pointers can be provided as parameters in the linkage section.

Use the COBOL Wrapper for IMS BMP if you need to

" access IMS BMP programs with standard linkage calling convention

" access IMS databases through IMS PCB pointers and to pass them via parameters in the linkage
section

= access the IMS PCB pointer IOPCB, for example to print data or to start an asynchronous
transaction

® use the COBOL/DLI interface module “CBLTDLI” which requires PCB pointers in its interface.
If PCB pointers have to be provided as parameters in the COBOL linkage section of your server,

your IDL must comply with the IMS PCB Pointer IDL rules listed below. If no PCB pointers are
required, the rules can be skipped.

IMS PCB Pointer IDL Rules

® An IMS PSB list contains the PCB pointers of your environment:
® The IMS PSB list is a text file and can be created with any text editor.
® Only one PCB pointer is listed per line.
® The PCB pointer I10PCB is always the first pointer in the IMS PSB list.

EntireX COBOL Wrapper 45

Using the COBOL Wrapper for the Server Side

® The PCB pointers (except 10PCB) match the related PSB generation for your server.

® The PCB pointers listed match the PCB pointers provided at runtime to the IMS RPC server
(including 10PCB) in number and sequence.

® The IMS PSB list is assigned in the IDL properties, see Generating COBOL Source Files from
Software AG IDL Files or IDL Generation Settings - Preferences. Example:

I0PCB
DBPCB

® PCB pointers are described in the IDL as parameters. Thus they can be accessed in your server
as any other parameter. Additionally, the following is required:

1

® IDL parameters that are PCB pointers are marked with the attribute IMS (see attribute-1ist
under Software AG IDL Grammar in the IDL Editor documentation).

® IDL parameters that are PCB pointers must match a PCB pointer listed in the IMS PSB list,
otherwise the IMS RPC server does not pass them as PCB pointers at runtime. This results in

unexpected behavior. Example:

Library 'IMSDB' Is
Program ' IMSDB' Is
Define Data Parameter

1 IN-COMMAND (A3)
1 I0-DATA
2 10-LAST-NAME (A10)
2 10-FIRST-NAME (A10)
2 TO-EXTENSION (A10)
2 10-ZIP-CODE (AQ7)
1 DBPCB
2 DBNAME (A8)
2 SEG-LEVEL-NO (A2)
2 DBSTATUS (A2)
2 FILLERI (A20)
1 OUT-MESSAGE (A40)
End-Define

To use the COBOL Wrapper for IMS BMP

IN /* ADD, DEL, DIS
IN QUT

IN IMS /* this is a PCB pointer

ouT

Generate the server (skeleton(s)) for the target operating system “z/OS”, use interface type
“IMS BMP with standard linkage calling convention”. If PCB pointers should be provided as
COBOL linkage section parameters for your server, set the IMS PSB list; otherwise omit the
IMS PSB list. See Generating COBOL Source Files from Software AG IDL Files.

If a server mapping file is required, it has to be provided. A server mapping file is an EntireX
Workbench file with extension .svm or .cvm. See Server Mapping Files for COBOL.

46

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

= Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files to the RPC Server.

= Client-side mapping files (.cvim): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the EntireX Workbench
documentation) and re-generate the client interface objects. For connections with the web-
Methods EntireX Adapter you need to update your Adapter connection. See Step 3: Select
the Connection Type in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

3 Ifnecessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write
your server.

4 Use the generated server (skeleton(s)) and complete it by applying your application logic.
You can use the IMS-specific PCB pointers in your server as usual. Note the information given
in Software AG IDL to COBOL Mapping and Aborting RPC Server Customer Code and Returning
Error to RPC Client under Scenarios and Programmer Information in the IMS RPC Server docu-
mentation.

5 Using a COBOL compiler supported by the COBOL Wrapper, compile your server.

6 Link (bind) the server to an executable program, using the standard linker (binder) of the
target program.

® Give the resulting server program the same name as the program in the IDL file (see
program-definition under Software AG IDL Grammar in the IDL Editor documentation).

7 Provide the server to the IMS RPC server.

= Add the server to the IMS RPC server STEPLIB chain.

= If you are using a server-side mapping file, a concatenation of the program-name and the
Tibrary-name given in the IDL is used to locate the server mapping file. See
program-definitionunder Software AG IDL Grammar in the IDL Editor documentation and
Tibrary-definition under Software AG IDL Grammar in the IDL Editor documentation.
Example: If a client performs an RPC request that is based on the IDL program name CALC
and the IDL library EXAMPLE, the RPC server will dynamically try to locate logically the
server mapping file EXAMPLECALC and execute the program with the COBOL name defined
in the server mapping. See Customize Automatically Generated Server Names. If no corres-
ponding program can be found, the access will fail.

* If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, see Customize
Automatically Generated Server Names) is executed. If no corresponding program can be
found, the access will fail.

EntireX COBOL Wrapper 47

Using the COBOL Wrapper for the Server Side

= If neither a server-side nor client-side mapping file is used - for example it is not required
or the server is generated with a previous version of EntireX without support for server
mapping - the library name (see 1ibrary-definition under Software AG IDL Grammar in
the IDL Editor documentation) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name CALC,
the RPC server will dynamically try to execute a program CALC. If no corresponding pro-
gram can be found, the access will fail.

Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

This mode applies to UNIX and Windows. See also Aborting RPC Server Customer Code and Returning
Error to RPC Client under Scenarios and Programmer Information in the Micro Focus RPC Server
documentation.

Micro Focus
RPC Server

A Target operating system

Call Interface and interface type (*)

A
COBOL
Server [[M
Program 1 < COBOL Wrapper
*Program 2 Generate RPC Server
- » generated :
Progra generated if required
hd
- Server
supplied by EntireX Mapping
File

written/generated by customer

O See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

The Micro Focus RPC server sets up all of your server's parameters dynamically in the format re-
quired. Your server is called dynamically using standard call interfaces.

Use the COBOL Wrapperfor Micro Focus to build servers for the Micro Focus RPC server.

48 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

> To use the COBOL Wrapper for Micro Focus

1

Generate a server (skeleton(s)) for the target operating system, for example "Windows", and
use interface type "Micro Focus with standard linkage calling convention". See Generating
COBOL Source Files from Software AG IDL Files for details.

If a server mapping file is required, it has to be provided. A server mapping file is an EntireX
Workbench file with extension .svm or .cvm. See Server Mapping Files for COBOL.

= Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files to the RPC Server.

= (lient-side mapping files (.cvim): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the EntireX Workbench
documentation) and re-generate the client interface objects. For connections with the web-
Methods EntireX Adapter you need to update your Adapter connection. See Step 3: Select
the Connection Type in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

If necessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write
your server.

Import the modules into your Micro Focus IDE.

Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping.

Compile and - if the format requires it - link (bind) and package your server(s) to one of the
following formats:

® Micro Focus intermediate code (int) or generated code (gnt). These formats can also be
packaged into a Micro Focus library file (Ibr). In this case the program-name (see
program-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file must match the library file name. The 1ibrary-name
(Tibrary-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file is ignored and not used.

® Under Windows to a DLL, and under UNIX to a shared library (so/sl). The 1ibrary-name
(Tibrary-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file must match the executables file name, and the program-name (see
program-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file must match an entry point.

Provide your server to the Micro Focus RPC server.

" Make sure your server(s) are accessible by the Micro Focus RPC server:

EntireX COBOL Wrapper 49

Using the COBOL Wrapper for the Server Side

* under UNIX, for example with the LD_LIBRARY_PATH environment variable
® under Windows, for example with the PATH environment variable.

If you are using a server-side mapping file, a concatenation of the program-name and the
Tibrary-name given in the IDL is used to locate the server mapping file. See
program-definitionunder Software AG IDL Grammar in the IDL Editor documentation and
Tibrary-definition under Software AG IDL Grammar in the IDL Editor documentation.
Example: If a client performs an RPC request that is based on the IDL program name CALC
and the IDL library EXAMPLE, the RPC server will dynamically try to locate logically the
server mapping file EXAMPLECALC and execute the program with the COBOL name defined
in the server mapping. See Customize Automatically Generated Server Names. If no corres-
ponding program can be found, the access will fail.

If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, see Customize
Automatically Generated Server Names) is executed. If no corresponding program can be
found, the access will fail.

If neither a server-side nor client-side mapping file is used - for example it is not required
or the server is generated with a previous version of EntireX without support for server
mapping - the library name (see 1ibrary-definition under Software AG IDL Grammar in
the IDL Editor documentation) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name CALC,
the RPC server will dynamically try to execute a program CALC. If no corresponding pro-
gram can be found, the access will fail.

50

EntireX COBOL Wrapper

4 Generating COBOL Source Files from Software AG IDL Files

= Select an IDL File and Generate RPC Client or RPC Server

= Generation Settings - Propertiesccccveeiiiiieennne
= Generation Settings - Preferencescccoccvviviiieinnn

51

Generating COBOL Source Files from Software AG IDL Files

This chapter describes how to generate COBOL source files from Software AG IDL files. It covers

the following topics:

Select an IDL File and Generate RPC Client or RPC Server

From the context menu, choose COBOL > Generate RPC Client and Generate RPC Server to

generate the COBOL source files.

4 1= Demo

|X| .project

[example.idl

Mew
Open
Open With

Copy
Paste

¥ Delete

Move...

ﬂlll"

Rename...

g2y Import...
gy Export..

& Refresh

Validate

Show in Rernote Systems view
Profile As

Debug As

Run As

Replace With

COBOL
Integration Server
Matural

Web Service
Other

Refactor Software AG IDL...
Software AG IDL Tester...

LI

Generate RPC Client

Generate RPC Server

Modify Interface

Extract further Interface
Deploy/Synchronize Server Mapping...

J Note: In command-line mode, use command -cobol:client or -cobol:server. See Using

the COBOL Wrapper in Command-line Mode. Note that existing files will always be over-

written.

52

EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

Results for RPC client:
® The folders client and include are created as subfolders to the IDL-Specific Output Folder defined
in the Generation Settings - Properties.

® The client folder contains the client interface objects, and optionally the generic RPC service
module. See Generic RPC Services Modules.

* The folder include contains the associated copybooks, the RPC communication area copybook
ERXCOMM and optionally the copybooks COBINIT and COBEXIT.

J Notes:

1. The generic RPC service module COBSRVI is only generated if the option Generate Generic RPC
Service Module COBSRVI is set, see Generate Generic RPC Service for Module COBSRVI.

2. For further information on the purpose and usage of associated copybooks, see Using the
Generated Copybooks.

3. For further information on the purpose and usage of the RPC communication area copybook
ERXCOMM, see Using the RPC Communication Area.

4. The copybooks COBINIT and COBEXIT are only generated if Copybook has been selected as RPC
Communication Area.

Results for RPC server:

® If you are using client-side mapping files, the following dialog is displayed.

COBOL Wrapper Iﬁ

Generating the COBOL server caused changes that require you to re-generate existing
RPC clients manually from your IDL file,

oK

L

You need to rebuild all RPC clients communicating with this RPC server program. Select the
appropriate wrapper (see EntireX Wrappers in the EntireX Workbench documentation) and re-
generate the client interface objects. For connections with the webMethods EntireX Adapter you
need to update your Adapter connection. See Step 3: Select the Connection Type in the Integration
Server Wrapper documentation.

= If you are using server-side mapping files, the dialog below is displayed:

EntireX COBOL Wrapper 53

Generating COBOL Source Files from Software AG IDL Files

8 ' COBOL Wrapper I. Gl iz_]

At least one generated COBOL server program requires a server mapping.

Server-side mapping file successfully saved in the same directory as the IDL file,
Using server-side mapping file
= Forthe webMethods EntireX Adapter, it must be contained in the same directory as the IDL file. You need te update your adapter connection,
Forthe EntireX CICS ECI RPC server, it must be contained in the folder specified by 'cics.mapping folder',
Forthe EntireX CICS RPC server, it has to be deployed.

¥|iSynchronize with server-side mapping container now:

The generated server-side mapping file need to be synchronized with the server-side mapping
container of the target RPC server, except for IMS Connect and CICS ECI connections with the
EntireX Adapter, where they are wrapped into the Integration Server connection - the same as
client-side mapping files, see Integration Server Wrapper.

® Check the option Synchronize with server-side mapping container now for the following
RPC servers:

= z/OS (CICS, Batch, IMS) | Micro Focus | BS2000/OSD | z/VSE (CICS, Batch)
® Uncheck the option Synchronize with server-side mapping container now for

* EntireX Adapter and IMS Connect and CICS ECI connections

* the following RPC servers: CICS ECI | IMS Connect

* later synchronization of other RPC servers

The folder server is created as a subfolder to the IDL-Specific Output Folder defined in the
Generation Settings - Properties. It contains the RPC server skeletons.

@ Caution: Take care not to overwrite an existing RPC server implementation with an RPC

server skeleton. We recommend moving your RPC server implementation to a different
folder.

If required, a server mapping file is generated, too. See When is a Server Mapping File Required?
in the EntireX Workbench documentation. The server mapping file is of type client-side (extension
.cvm) or server-side (.svm). See How to Set the Type of Server Mapping Files.

> To quit the COBOL Wrapper and deploy the server-side mapping file

Check the option Synchronize with server-side mapping container now and choose OK.
This calls the Deployment Wizard. See Server Mapping Deployment Wizard in the EntireX
Workbench documentation.

* If you are using the Server Mapping Deployment Wizard for first time with no predefined
deployment environment preferences, continue with Step 2a: Create a New Deployment En-
vironment in the EntireX Workbench documentation.

54

EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

= If deployment environments are already defined, you may also continue with Step 3: Select
and Existing Deployment Environment and Deploy.

2 Continue with Using the COBOL Wrapper for the Server Side.

> To quit the COBOL Wrapper without deploying the server-side mapping file

1 Clear the option Synchronize with server-side mapping container now and choose OK.

® Synchronize the server-side mapping container of the target RPC server later. See Deploying
Server-side Mapping Files to the RPC Server in the respective sections of the documentation.

* For the webMethods EntireX Adapter and IMS Connect or CICS ECI connections, update
your Adapter connection. See Step 3: Select the Connection Type in the Integration Server
Wrapper documentation.

2 Continue with Using the COBOL Wrapper for the Server Side.

Generation Settings - Properties

= |ntroduction

= Target Operating System

= Characters Used for String Literals

= |DL-Specific Output Folder

= Client Interface Types

= Customize Automatically Generated Client Names

= Starting COBOL Level for Data Items in Generated Copybooks
= RPC Communication Area

= Generate Generic RPC Service for Module COBSRVI
= Customize Automatically Generated Server Names

= Server Interface Types

= |[MS PSB List

EntireX COBOL Wrapper 95

Generating COBOL Source Files from Software AG IDL Files

= Channel Name

Introduction

Whenever a new IDL file is created, defaults for the properties are copied from the preferences.
See Generation Settings - Preferences. To set individual properties per IDL file for COBOL
Wrapper generation, use the Properties wizard of the IDL file. The Target Operating System)
and the Interface Type are essential. They determine if other parameters such as RPC Communic-
ation Area provided by can be set or have to remain fixed. The parameter IDL-Specific Output
defines the location to store the source file subfolders. Target Operating System determines
whether file extensions are generated or not.

B ° Properties for example.id|

TS

Resource

EntireX

EntireX .MET Wrapper
EntireX C Wrapper
EntireX COBOL Wrapper
EntireX Custom Wrapper
EntireX DCOM Wrapper
EntireX EJB Wrapper
EntireX Java Wrapper
EntireX PL/TWrapper
EntireX Web Service Wrapper
Run/Debug Settings

EntireX COBOL Wrapper

The COBOL properties are used to generate COBOL client or server code from the selected IDL file,
The default settings are taken from the COBOL preferences.

Target Operating Systern: [L”OS

)

Client

Interface Type: | CICS with DFHCOMMAREA calling convention ~|

RPC Communication Area provided by
(@ Linkage Section External Clause Copybook

Customize automatically generated Client Names...

Starting COBOL Level for Data Iterns in Generated Copybooks: 3

[7] Generate Generic RPC Service Module COBSRVI

Server

Interface Type: | CICS with DFHCOMMAREA calling convention -

Customize automatically generated Server Mames...

Character used for string literals
@ Quote () Apostrophe

IDL-5pecific Output Folder
/COBOL-Wrapper

Browse...

Browse...

[Restore Defaultsl ’ Apply l

ok || Cancel |

In the following, we give a detailed description of the properties that need to be set for each type

of generation:

56

EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

® For client and server generation:
® Target Operating System
® Characters Used for String Literals
® IDL-Specific Output Folder
* For client generation only:
® Client Interface Types
® Customize Automatically Generated Client Names

® Starting COBOL Level for Data Items in Generated Copybooks

RPC Communication Area

® Generate Generic RPC Service for Module COBSRVI
* For server generation only:

= Server Interface Types

® Customize Automatically Generated Server Names

= IMS PSB List

® Channel Name
Target Operating System

Select the target operating system for which COBOL code is to be generated. See Platform Coverage
in the EntireX Release Notes for a full list of supported operating system versions.

Value Description

z/OS IBM z/OS operating system.
z/VSE IBM z/VSE operating system.
BS2000 |Fujitsu Siemens B52000/OSD operating system.

IBM i IBM i operating system.

Windows |Microsoft Windows operating system.

UNIX UNIX operating system.

EntireX COBOL Wrapper 57

Generating COBOL Source Files from Software AG IDL Files

Characters Used for String Literals

With this option you can specify how string literals are specified in the generated COBOL code.
See your COBOL compiler documentation for information on how string literals are enclosed.

Value

Description

Quote

String literals will be enclosed in double quotes in the generated COBOL code.

Apostrophe

String literals will be enclosed in apostrophes (single quotes) in the generated COBOL code.

IDL-Specific Output Folder

This field specifies the folder where the COBOL files will be stored, by default in the same folder
as the IDL file. For a non-default location, enter another folder name or choose Browse....

Client Interface Types

BMP mode. Follow the steps under Using the
COBOL Wrapper for IMS (z/0S).

Target RPC
Operating Communication
Interface Type System Description Area Usage
CICS with z/OS, z/VSE |Use this option if you want to build a CICS RPC |The RPC
DFHCOMMAREA client application that calls the client interface communication
calling convention object(s) with the DFHCOMMAREA interface. |area is passed as
Follow the steps under Using the COBOL Wrapper |described in
for CICS with DFHCOMMAREA Calling Convention |Using the RPC
(z/OS and z/VSE). Communication
Area with EXEC
CICS LINK.See
also RPC
Communication
Area.
CICS with standard |z/OS, z/VSE |Use this option if you want to build a CICS RPC |The RPC
linkage calling client application that calls the client interface communication
convention object(s) with a standard linkage interface. Follow |area is passed
the steps under Using the COBOL Wrapper for |with one of the
CICS with Call Interfaces (z/OS and z/VSE). options as
Batch with standard |z/OS, z/VSE, |Use this option if you want to build a batch RPC des.crlbed m
linkage calling BS2000/OSD, |client application that calls the client interface Using the. RP C
convention IBM i object(s) with a standard linkage interface. Follow Commu.mcatlon
the steps under Using the COBOL Wrapper for Area with a
Batch (z/0S, BS2000/0SD, z/VSE and IBM i). | Standard Call
- - — - Interface. See
IMS BMP with z/OS Use this option if you want to build an IMSRPC | ;. b p-
standard linkage client application that calls the client interface Communication
calling convention object(s) with a standard linkage interface for IMS| , .,

58

EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

Target RPC

Operating Communication
Interface Type System Description Area Usage
IMS MPP with z/OS Use this option if you want to build an IMS RPC
standard linkage client application that calls the client interface
calling convention object(s) with a standard linkage interface for IMS

MPP mode. Follow the steps under Using the
COBOL Wrapper for IMS (z/0S).

IDMS/DC with z/OS Use this option if you want to build an IDMS/DC
standard linkage client application that calls the client interface
calling convention object(s) with a standard linkage interface for

IDMS/DC. Follow the steps under Using the
COBOL Wrapper for IDMS/DC with Call
Interfaces (z/0S).

Micro Focus with UNIX, Use this option if you want to build a Micro Focus
standard linkage Windows |client application that calls the client interface
calling convention object(s) with a standard linkage interface. Follow

the steps under Using the COBOL Wrapper for
Micro Focus (UNIX and Windows).

Customize Automatically Generated Client Names

If you open the link Customize automatically generated Client Names on the Properties page
you can adapt the names for the COBOL client interface objects (subprograms). When you call the
page the first time, COBOL names are suggested based on the IDL program (program-definition
under Software AG IDL Grammar in the IDL Editor documentation) or IDL program alias names.
The page varies, depending on whether the target COBOL environment supports long COBOL
names or not:

= 7/OS and z/VSE

= [BMi

= UNIX and Windows with Micro Focus
= BS2000/0SD

z/0S and z/VSE

Max. 8 characters (short names) are supported as COBOL names:

EntireX COBOL Wrapper 59

Generating COBOL Source Files from Software AG IDL Files

F - ——
= COBOL Client Names___ L —— e
Customize COBOL Client Names Used for IDL Library EXAMFLE
On this page you can adapt the names to be used for COBOL Client sources, =

Adapt Marmes used for COBOL Clients:

IDL Program Client name
47 SquareWithLengMName SQUARE
4P CalcWithLongName CALC

Total: 2

@ [ok |[cance |

D Note: If your IDL file contains more than one IDL library, the additional column IDL Library
is displayed.

IBM i
Customization of client names for IBM i is the same as for z/OS and z/VSE. See z/OS and z/VSE.
UNIX and Windows with Micro Focus

Max. 31 characters are supported as COBOL names. By default, names are generated with a
maximum of 8 characters (short names).

,
= COROL Client Names [

Customize COBOL Client Names Used for IDL Library EXAMPLE
On this page you can adapt the names to be used for COBOL Client sources. =

Adapt Mames used for COBOL Clients:

IDL Program Client name

@P SquareWithLongMame SquareWithLongMame

@PCachithLDngName CalcWithLongMName

Total: 2
Micro Focus COBOL supports names with a maximum length of 31 characters,

[] Restrict the length of names to & upper case characters

@ [ok [cancel

60 EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

J Notes:

If your IDL file contains more than one IDL library, the additional column IDL Library is dis-
played.

With the check box Restrict the length of names to 8 characters you can flip between short
names and long names. Both sorts of names (short and long) are stored in the property file. For
generation you have to decide if short or long names are to be used.

BS2000/0SD

Max. 30 characters are supported as COBOL names. By default, names are generated with a
maximum of 8 characters (short names).

-

2 COBOL Client Names =%
Customize COBOL Client Names Used for IDL Library EXAMFLE

On this page you can adapt the narmes to be used for COBOL Client sources. S
Adapt Marmes used for COBOL Clients:

IDL Program Client name

47 SquareWithLengMName SquareWithLongMame

@PCachithLDngName CalcWithLongMame

Total: 2

B52000 COBOL supports names with a maximum length of 30 characters.
[Restrict the length of names to & upper case characters

@:l oK] [Cancel

J Notes:

1. If your IDL file contains more than one IDL library, the additional column IDL Library is dis-

played.

2. With the check box Restrict the length of names to 8 characters you can flip between short

names and long names. Both sorts of names (short and long) are stored in the property file. For
generation you have to decide if short or long names are to be used.

EntireX COBOL Wrapper 61

Generating COBOL Source Files from Software AG IDL Files

Starting COBOL Level for Data Items in Generated Copybooks

With this option you can specify the starting COBOL level used in the generated copybooks for
COBOL data items.

See Using the Generated Copybooks for syntax examples.

Specify a valid COBOL level in the range 1-49. The COBOL programming language maximum of
49 subtracted by the specified level must provide enough levels to hold all IDL levels. Note that
IDL types may consume more than one COBOL level, for example:

® IDL unbounded groups require a COBOL level for every dimension. If they are defined on IDL
level 1, an extra COBOL level is required
® IDL unbounded arrays require a COBOL level for every dimension plus one extra COBOL level

" some basic (scalar) IDL data types need extra COBOL levels

] Notes:

1. Do not specify a level too deep because you may exceed the COBOL programming language
maximum of 49 and the generated copybook cannot be compiled.

2. For compatibility with Client and Server Examples for z/OS CICS, the level must be 3 or above.

3. For compatibility with all other delivered examples, the level must be 2 or above.
RPC Communication Area

The RPC communication area is used to specify parameters that are needed to communicate with
the broker and are not specific to client interface objects. These are for example the broker ID, client
parameters such as userIDand password and the server address suchas class/servername/service
etc.

Value Description
External The RPC communication area is provided as a global area to the RPC client application
Clause and the generated client interface object(s). For more information, see option External

Clause under Using the RPC Communication Area with a Standard Call Interface.
The COBOL external clause is an extension to COBOL 85 standards and might not be
supported by every COBOL compiler. Check your COBOL compiler documentation.

Linkage The RPC communication area is provided via an additional parameter between your
Section RPC client application and the generated client interface object(s). For more information,
see option Linkage Section under Using the RPC Communication Area with a
Standard Call Interface and Using the RPC Communication Area with EXEC CICS
LINK.

Copybook The RPC communication area is provided inside the generated client interface object(s).
It is not visible in the RPC client application. Default values are retrieved from EntireX
workbench preferences or IDL-specific properties and can be overwritten in the copybook

62 EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

Value Description

COBINIT (see folder include). For more information, see option Copybook under Using
the RPC Communication Area with a Standard Call Interface.

Generate Generic RPC Service for Module COBSRVI

The generic RPC service module COBSRVIis generated in the folder client. See Generic RPC Services
Modules. Use this option to control the generation of this module.

If you are using the COBOL Wrapper for the first time:
z/OS and z/VSE

® Clear this option for the interface type "CICS with DFHCOMMAREA calling convention". The
generic RPC server module is not needed because it is already installed with your z/OS and
z/VSE mainframe installation, see Delivered Modules for z/OS | z/VSE.

® Check this option for all other interface types to generate the generic RPC server module.
BS2000/0SD

" Clear this option for the interface type "BATCH with standard linkage calling convention". The
generic RPC server module is already installed with your BS2000/OSD mainframe installation,
see Delivered Modules for BS2000/OSD.

All Other Operating Systems
" Check this option for all other interface types to generate the generic RPC server module.
If you are an experienced user of the COBOL Wrapper:

® Clear this option if you can reuse the generic RPC server module from a previous COBOL
Wrapper project. This will speed up generation time. It is important that Target Operating
System, Client Interface Types and Characters Used for String Literals are the same.

® Check this option if you need an update of the generic RPC server module because of a newer
COBOL Wrapper version (Eclipse update without mainframe installation) to generate the gen-
eric RPC server module.

EntireX COBOL Wrapper 63

Generating COBOL Source Files from Software AG IDL Files

Customize Automatically Generated Server Names

If you open the link Customize automatically generated Server Names on the properties page
you can, adapt the names for the COBOL server (subprograms). When you call the page the first
time, COBOL names are suggested based on the IDL program (program-definitionunder Software
AG IDL Grammar in the IDL Editor documentation) or IDL program alias names. For further details
on customizing names for the server side, see the platform-specific section under Customize Auto-
matically Generated Client Names; the information here also applies to server names:

® 2/0OS and z/VSE

® UNIX and Windows with Micro Focus
= BS2000/0SD

] Notes:

1. Customization of server names is not supported under IBM i.

2. If the server names (automatically generated or customized) differ from the IDL program names,
a server mapping file is required. A server mapping file is an EntireX Workbench file with ex-
tension .svm or .cvm. It is generated during generation of RPC server and has to be used in
subsequent steps. See Server Mapping Files for COBOL and Using the COBOL Wrapper for the
Server Side.

Server Interface Types

Target Operating

Interface Type System Description

CICS with z/OS, z/VSE Use this option if you want to build a CICS RPC server
DFHCOMMAREA calling application with a DFHCOMMAREA interface. Follow the
convention steps under Using the COBOL Wrapper for CICS with

DFHCOMMAREA Calling Convention (z/OS and z/VSE).

CICS with Channel z/OS Use this option if you want to build a CICS RPC server
Container calling convention application with a channel container interface. To specify a

channel name, see Channel Name. Follow the steps under
Using the COBOL Wrapper for CICS with Channel Container
Calling Convention (z/0OS).

CICS with z/OS, z/VSE Use this option if you want to build a CICS RPC server
DFHCOMMAREA large application with a large buffer interface. Follow the steps
buffer interface under Using the COBOL Wrapper for CICS with

DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE).
Batch with standard linkage|z/OS, z/VSE, |Use this option if you want to build a batch RPC server

calling convention BS2000/0SD, |application. Follow the steps under Using the COBOL

IBM i Wrapper for Batch (z/OS, BS2000/0SD, z/VSE and IBM i).
IMS BMP with standard z/OS Use this option if you want to build an IMS RPC server
linkage calling convention application for IMS BMP mode (no MPP) with standard call

64 EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

Target Operating
Interface Type System Description
interfaces. If your server uses PCB pointers, see IMS PSB
List below. Follow the steps under Using the COBOL
Wrapper for IMS BMP (z/OS).
Micro Focus with standard |UNIX, Use this option if you want to build a Micro Focus RPC server
linkage calling convention |Windows application with standard linkage interface(s). Follow the
steps under Using the COBOL Wrapper for Micro Focus
(UNIX and Windows).

IMS PSB List

IMS PSB List applies to the server interface type “IMS BMP with standard linkage calling conven-
tion” only. If your server uses PCB pointers and requires that they are passed through the linkage
section, an IMS PSB list is required. Your IDL must comply with the rules under IMS PCB Pointer
IDL Rules. If no PCB pointers are required, omit the IMS PSB list. See Server Interface Types for
more information.

Channel Name

Channel Name applies to the server interface type "CICS with Channel Container calling conven-
tion" only.

If a channel name is specified, the server is

® called with the given channel name

= generated with COBOL code to check for channel name validity.
If no channel name is specified, the server is

= called with the "EntireXChannel" channel name

® generated without COBOL code to check for channel name validity.

Your IDL must comply with the rules described under CICS Channel Container IDL Rules. See
Server Interface Types for more information.

EntireX COBOL Wrapper 65

Generating COBOL Source Files from Software AG IDL Files

Generation Settings - Preferences

Use the Preferences page of the COBOL Wrapper to set the workspace defaults for the target op-
erating system, interface types etc. The settings (except Type of COBOL mapping) are used as
the defaults for the IDL properties when a new IDL file is created; see Generation Settings -
Properties.

F ~§
i Preferences 5 el l_‘ﬂ‘éj

type filter text COBOL Wrapper =1 -

: Business Services -~

The COBOL preferences are default values for COBOL properties of the IDL file, Preferences can be

» Code Generation overwritten by IDL-specific properties; subsequent changes to preferences have no effect on COBOL

> Construct code generation,
4 Entirex -
NET Wrapper Target Operating System: [2[05 vl
C Wrapper Client
COBOL Wrapper Interface Type: | CICS with DFHCOMMAREA calling convention v
Custom Wrapper Starting COBOL Level for Data lkems in Generated Copybooks: 3
DCOM Wrapper
Deployment Environments RPC Communication Area provided by
EJB Wrapper (@) Linkage Section External Clause Copybook
IDL Extractor for COBOL [7] Generate Generic RPC Service Module COBSRYI
IDL Extractor for Natural
IDL Extractor for PL/I Server
Installation Interface Type: | CICS with DFHCOMMAREA calling convention -
Integration Servers L
Java Wrapper 1
MNatural Wrapper Browse...
PLA Wrapper Type of COBOL mapping

RPC Environments
Web Service Wrapper
AML Mapping Editor Character used for string literals

> Matural @ Quote () Apostrophe
Predict Description and Generat

() Server-side Mapping @ Client-side Mapping

Request Document
Testing

UDDI Registries &7
] 111 p l Restore Defaults] [Apply]

@ [oK] ’ Cancel l

* Type of COBOL mapping

® Every EntireX Workbench (Eclipse) workspace is either in client-side mapping mode (gener-
ating EntireX Workbench server mapping files with extension .cvm) or server-side mapping
mode (generating EntireX Workbench server mapping files with extension .svm). See Server
Mapping Files for COBOL for an introduction. You can adjust the mode here, which will also
set the mode of the IDL Extractor for COBOL to the same value. See IDL Extractor for COBOL
Preferences in the IDL Extractor for COBOL documentation.

" Server mapping files are generated automatically for RPC servers if required. See When is a
Server Mapping File Required? - COBOL Wrapper in the EntireX Workbench documentation.

66 EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

® Server mapping files are not generated for RPC clients.

For a description of all other preferences, see Generation Settings - Properties.

EntireX COBOL Wrapper 67

68

5 Using the COBOL Wrapper in Command-line Mode

= Command-line Options
= Example Generating an RPC Client
= Example Generating an RPC Server
= Further Examplesccccceeeeeenns

69

Using the COBOL Wrapper in Command-line Mode

Commands are available to generate a COBOL RPC client or COBOL RPC server from a specified

IDL file.

See also Command-line Mode.

Command-line Options

= Generate a COBOL RPC Client from IDL File
= Generate a COBOL RPC Server from IDL File

See Using the EntireX Workbench in Command-line Mode for the general command-line syntax.

Generate a COBOL RPC Client from IDL File

To generate a COBOL RPC client from the specified IDL file, use the following command with
options in table below:

-cobol:client

Option Description

-comm The RPC communication area. Valid values: EXTERNAL, LINKAGE, COPYBOOK. See
RPC Communication Area for more information.
EXTERNAL External Clause
LINKAGE Linkage Section
COPYBOOK Copybook
For possible combinations with -target and -interface option, see below.

-folder Folder where the COBOL files will be stored.

-help Display this usage message.

-interface Interface type, either DFHCOMMAREA or LINKAGE.
For possible combinations with -target and -comm option, see below.

-literal Enclose string literals in quotes or apostrophes. Valid values: QUOTE, APOST. See
Characters Used for String Literals for more information.

-target Target operating system and environment, one of BATCH_ZOS, BATCH_VSE,
BATCH_BS2000, BATCH_I50S, CICS_ZOS, CICS_VSE, IMS_MPP, IMS_BMP,
IDMS_ZOS, MICROFOCUS_WINDOWS or MICROFOCUS_UNIX. See Client Interface
Types for more information. For possible combinations with the - interface and -comm
option.

70 EntireX COBOL Wrapper

Using the COBOL Wrapper in Command-line Mode

Option Description
-target -interface -comm Usage for
CICS_7Z0OS DFHCOMMAREA LINKAGE CICS with
DFHCOMMAREA
calling convention for
z/OS.
LINKAGE LINKAGE CICS with standard
EXTERNAL linkage calling
COPYBOOK convention for z/OS.
CICS_VSE DFHCOMMAREA LINKAGE CICS with
DFHCOMMAREA
calling convention for
z/VSE.
LINKAGE LINKAGE CICS with standard
EXTERNAL linkage calling
convention for z/VSE.
BATCH_VSE LINKAGE LINKAGE Batch with standard
EXTERNAL linkage calling
convention for z/VSE.
BATCH_BS2000 LINKAGE LINKAGE Batch with standard
EXTERNAL linkage calling
convention for
BS2000/0SD.
BATCH_I50S LINKAGE LINKAGE Batch with standard

EXTERNAL linkage calling
convention for IBM i.

BATCH_ZOS LINKAGE LINKAGE Batch with standard
EXTERNAL linkage calling
convention for z/OS.

IMS_BMP LINKAGE LINKAGE IMS BMP with

EXTERNAL standard linkage

COPYBOOK calling convention for
z/OS.

IMS_MPP LINKAGE LINKAGE IMS MPP with

EXTERNAL standard linkage

COPYBOOK calling convention for
z/OS.

IDMS_ZOS LINKAGE LINKAGE IDMS_ZOS with
EXTERNAL standard linkage
COPYBOOK calling convention for

z/OS.
MICROFOCUS_WINDOWS|LINKAGE LINKAGE Micro Focus with
EXTERNAL standard calling

COPYBOOK

EntireX COBOL Wrapper 71

Using the COBOL Wrapper in Command-line Mode

Option Description
-target -interface -comm Usage for
convention for
Windows.
MICROFOCUS_UNIX LINKAGE LINKAGE Micro Focus with

EXTERNAL standard calling

COPYBOOK convention for
various UNIX
operating systems.

-copybooklevel |Define the beginning level for COBOL data items in generated copybooks, see Starting

COBOL Lewvel for Data Items in Generated Copybooks. Valid values: 1-49.

-rpcservice Option to generate the generic RPC service module COBSRVI. See Generate Generic

RPC Service for Module COBSRVI. Valid values:
TRUE - Generate generic RPC service module.
FALSE - Do not generate the generic RPC service module.

Generate a COBOL RPC Server from IDL File

To generate a COBOL RPC server from the specified IDL file, use the following command with
options in table below:

-cobol:server

Option Description
-channel |A CICS channel name can be provided for the interface type 'CICS with Channel Container
calling convention'. See Using the COBOL Wrapper for CICS with Channel Container Calling
Convention (z/0S). See also Channel Name.
-folder Folder where the COBOL files will be stored.
-help Display this usage message.
-interface|Interface type, one of DFHCOMMAREA, DFHLBUFFER, DFHCHANNEL or LINKAGE. See
table below for possible combinations.
-1iteral |Enclose string literals in quotes or apostrophes. See Characters Used for String Literals.
-target Target operating system and environment. For possible combinations with option
-interface, see below and also Server Interface Types.
-target -interface Usage for
CICS_zZOS DFHCOMMAREA CICS with DFHCOMMAREA calling
convention for z/OS.
DFHLBUFFER CICS with DFHCOMMAREA large buffer
interface for z/OS.
DFHCHANNEL CICS with Channel Container calling
convention for z/OS.
72

EntireX COBOL Wrapper

Using the COBOL Wrapper in Command-line Mode

Option Description

-target -interface Usage for

CICS_VSE DFHCOMMAREA CICS with DFHCOMMAREA calling
convention for z/VSE.

DFHLBUFFER CICS with DFHCOMMAREA large buffer
interface for z/VSE.

BATCH_VSE LINKAGE Batch with standard linkage calling
convention for z/VSE.

BATCH_BS2000 LINKAGE Batch with standard linkage calling
convention for BS2000/OSD.

BATCH_I50S LINKAGE Batch with standard linkage calling
convention for IBM i.

BATCH_ZOS LINKAGE Batch with standard linkage calling
convention for z/OS.

IMS_BMP LINKAGE IMS BMP with standard linkage calling
convention for z/OS. This target may
require a PSBLIST. See below.

MICROFOCUS_WINDOWS|LINKAGE Micro Focus with standard linkage calling
convention for Windows.

MICROFOCUS_UNIX LINKAGE Micro Focus with standard linkage calling
convention for various UNIX operating
systems.

-psblist |AnIMS PSB list containing IMS PCB pointers can be provided for the server interface type

IMS BMP with standard linkage calling convention. See Using the COBOL Wrapper for IMS

BMP (z/0OS) for scenarios on PCB pointer usage. See also IMS PSB List.

Example Generating an RPC Client

<workbench> -cobol:client /Demo/example.idl -target CICS_Z0S

where <workbench> is a placeholder for the actual Workbench starter as described under Using
the EntireX Workbench in Command-line Mode.

The name of the IDL file includes the project name. In the example, the project Demo is used. If
the IDL file name describes a file inside the Eclipse workspace, the name is case-sensitive.

If the first part of the IDL file name is not a project name in the current workspace, the IDL file
name is used as a relative (based on the IDL file) or absolute file name in the file system. Thus, the
IDL files do not need to be part of an Eclipse project.

EntireX COBOL Wrapper 73

Using the COBOL Wrapper in Command-line Mode

If you do not specify a folder (option - folder), the generated COBOL source files (client interface
objects and the client declarations) will be stored in parallel to the IDL file, in the generated sub-
folders client and include, e.g. Demo/client and Demol/include.

Example Generating an RPC Server

<workbench> -cobol:server /Demo/example.idl -target CICS_Z0S

where <workbench> is a placeholder for the actual Workbench starter as described under Using
the EntireX Workbench in Command-line Mode.

The generated COBOL source files (server (skeletons))

= will be stored in parallel to the IDL file, in the generated subfolder server, e.g. Demol/server.

* will overwrite existing files from a previous command-line mode generation.

@ Caution: Take care not to overwrite an existing server implementation with a server

skeleton. We recommend you to move your server implementation to a different folder.

Further Examples

Windows
Example 1

<workbench> -cobol:client C:\Temp\example.idl -folder src -target CICS_Z0S

Uses the IDL file C:\ Temp \example.idl and generates the COBOL source files to the subfolder src
of the IDL file. Slashes and backslashes are permitted in the file name. Output to standard output:

Using workspace file:\C:\myWorkspace\.

Run COBOL client wrapper with C:/Temp/example.idl and target CICS_ZOS.
Processing IDL file C:/Temp/example.idl

Store COBOL Source (1/2): C:\Temp\src/include/CALC

Store COBOL Source (2/2): C:\Temp\src/client/CALC

Exit value: O

74 EntireX COBOL Wrapper

Using the COBOL Wrapper in Command-line Mode

Example 2

{workbench> -cobol:client C:\Temp*idl -folder C:\Temp\src -target CICS_ZOS
Generates COBOL source files for all IDL files in C:\ Temnp.

Example 3

<workbench> -cobol:client /Demo/example.idl -target CICS_Z0S

Uses the IDL file /Demo/example.idl and generates the COBOL source files in parallel to the IDL
file, here to the project /Demo.

Example 4
<workbench> -cobol:client -help
or

<workbench> -help -cobol:client

Both calls result in displaying a short help for the COBOL client wrapper.

Linux
Example 1

<workbench> -cobol:client /Demo/example.idl -folder src -target CICS_Z0S

If the project Demo exists in the workspace and example.idl exists in this project, this file is used.
Otherwise, /Demol/example.idl is used from file system. The generated output will be stored in
/Demolsrc, the subfolder of /Demo.

Example 2

<workbench> -cobol:client /Demo/*.idl -folder src -target CICS_Z0S

Generates COBOL client interface objects for all IDL files in project Demo (or in folder /Demo if the
project does not exist). The generated files are in /Demol/src.

EntireX COBOL Wrapper 75

Using the COBOL Wrapper in Command-line Mode

Example 3

<workbench> -cobol:client -help

or

<workbench> -help -cobol:client

Both calls result in displaying a short help for the COBOL client wrapper.

76 EntireX COBOL Wrapper

6 Software AG IDL to COBOL Mapping

Mapping IDL Data Types t0 COBOL Data TYPESccceiiviiiiiiiieeeees ettt
Mapping Library Name and Alias
Mapping Program Name and Alias
Mapping Parameter Names
Mapping Fixed and Unbounded Arrays
Mapping Groups and Periodic Groups
Mapping Structurescccceevvvvvveeen.n.

= Mapping the Direction Attributes In, Out, INOULooiiiii e

= Mapping the ALIGNED Attribute

= Calling Servers as Procedures or Functions

77

Software AG IDL to COBOL Mapping

This chapter describes the specific mapping of Software AG IDL data types, groups, arrays and
structures to the COBOL programming language. Please note also the remarks and hints on the
IDL data types valid for all language bindings found under Software AG IDL File in the IDL Editor

documentation.

Mapping IDL Data Types to COBOL Data Types

In the table below, the following metasymbols and informal terms are used for the IDL.

® The metasymbols "[" and "]" surround optional lexical entities.

® The informal term number (or in some cases numberl. number?2)is a sequence of numeric characters,

for example 123.

Software AG IDL Description COBOL Data Type Note
Anumber Alphanumeric [PIC X(number)
AV Alphanumeric |not supported
variable length
AVLnumber] Alphanumeric [PIC X(number) 14
variable length
with maximum
length
Bnumber Binary PIC XCnumber) 12
BV Binary variable |not supported
length
BV[number] Binary variable |PIC X(number) 12,14
length with
maximum length
D Date PIC 9(8)
F4 Floating point [USAGE COMP-1 4
(small)
F8 Floating point [USAGE COMP-2 4
(large)
I1 Integer (small) |PIC S9(2) COMP-5 10
PIC X 9,13
12 Integer PIC S9(4) COMP-5 10
(medium) PIC S9(4) BINARY 11,13
14 Integer (large) |PIC S9(9) COMP-5 10
PIC S9(9) BINARY 11,13
Knumber Kanji PIC G(number/2) DISPLAY-1 5
78 EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

Software AG IDL Description COBOL Data Type Note
KV Kanji variable |not supported
length
KVLnumber] Kanji variable |PIC G(number/2 DISPLAY-1) 5,14
length with
maximum length
L Logical PIC X 6,7
Nnumberll .number2] |Unpacked PIC S9(numberl) [V(number?)] 2
decimal
NUnumberlI[.numberZ2]|Unpacked PIC 9Cnumberl) [V(numberZ)] 2
decimal
unsigned
PnumberIl.number?2] |Packed decimal |PIC S9(numberl) [V(numberZ2)] PACKED-DECIMAL|2

PUnumberll .numberZ]

Packed decimal

PIC 9(Cnumberl) [V(numberZ2)] PACKED-DECIMAL |2

unsigned
T Time PIC 9(15) 3
Unumber Unicode PIC N(Cnumber) NATIONAL
uv Unicode variable |not supported
length
UVnumber Unicode variable |[PIC N(number) NATIONAL 8,14
length with
maximum length

See also the hints and restrictions under Software AG IDL File in the IDL Editor documentation
valid for all language bindings.

Notes:

1. The date corresponds to the format PIC 9(8). The value contained has the form YYYYMMDD. This
form corresponds to COBOL DATE functions. This is an IBM extension of COBOLS5 standard.

2. For COBOL, the total number of digits (numberI+number?) is lower than the maximum of 99
that EntireX supports. See IDL Data Types under Software AG IDL File in the IDL Editor docu-
mentation. It varies by operating system and COBOL compiler. To enable more total number
of digits than 18, a compiler directive (option) may be required.

Under z/OS:

® The total number of digits (numberI+number?) is restricted to 31 digits.

® The compiler option AR(E) is generated into the client interface objects and server skeletons
if more than 18 digits are defined in the IDL.

Under Micro Focus:

® The total number of digits (numberI+number?) is restricted to 38 digits.

EntireX COBOL Wrapper

79

Software AG IDL to COBOL Mapping

® The compiler option INTLEVEL"4" is generated into the client interface objects and server
skeletons if more than 18 digits are defined in the IDL.
Under BS2000/0OSD:

® The total number of digits (numberI+number?) is restricted to 31 digits.

Under z/VSE:

® The total number of digits (numberI+number?) is restricted to 18 digits.

Under all other operating systems or compilers:

® Refer to your COBOL compiler documentation to see whether compiler directives or options
exist.

If you connect two endpoints, the total number of digits used must be lower or equal than the
maxima of both endpoints. For the supported total number of digits for endpoints, see the notes
under data types N, NU, P and PU in section Mapping Software AG IDL Data Types in the respect-
ive Wrapper or language-specific documentation.

3. The time corresponds to the format PIC 9(15). The value contained has the form
YYYYMMDDHHIISST. This form corresponds to COBOL DATE/TIME functions.

4. When floating-point data types are used, rounding errors can occur, so that the values of senders
and receivers might differ slightly.

5. The length for IDL data type is given in bytes. For COBOL the length is in DBCS characters (2
bytes). IDL data type K is not supported under BS2000/OSD because Fujitsu Siemens compilers
do not support DBCS.

6. To inspect the Boolean value of a data item of IDL type Logical, you can specify PIC X followed
by condition names (similar code is generated for scalar logical IDL types):

level-number data-name PIC X.

88 data-name-false value X'00"'.
88 data-name-true value X'01' thru X'FF'.
Under IBM i,

The SYMBOLIC CHARACTERS clause in the SPECIAL-NAMES paragraph is not supported. The follow-
ing COBOL statements demonstrate how you can define alternatively a character, named HEX - 00,
with a value of hexadecimal zero to be used for comparison:

80 EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

WORKING-STORAGE SECTION.

01 HEX-00-B PIC 9(4) BINARY VALUE O.
01 HEX-00-H REDEFINES HEX-00-B.

02 FILLER PIC X.

02 HEX-00 PIC X.

7. To set the Boolean value of a Logical data item, specify the following hexadecimal values in a
one-byte data field (e.g. defined as PIC X.):

= Case False: Move X'00' to data-name.
" Case True: Move X'01' to data-name.

8. The length is given in Unicode code units following the Unicode standard UTF-16.

Under z/OS and IBM Compiler:
* Unicode requires the IBM Enterprise compiler.

® Unicode is represented in UTF-16 big-endian format (CCSID 1200).

Under BS2000/0SD:

® Unicode requires a compiler that supports COBOL data type NATIONAL. See BS2000/0SD
Prerequisites in the EntireX Release Notes.

® Unicode is represented in UTF-16 big-endian format.

Under Micro Focus (UNIX and Windows):
" Set the compiler directive NSYMBOL"NATIONAL".

* For clients
Unicode can be represented in UTF-16 big-endian format (compiler directive
UNICODE(PORTABLE)) or machine-dependent endianness UTF-16 big or little endian (compiler
directive UNTCODE (NATIVE)).

® For servers
Unicode can be represented in UTF-16 machine-dependent endianness (big or little endian)
format only. UNICODE (PORTABLE) is not supported.

Under all other operating systems or compilers:
" Refer to your COBOL compiler documentation.

9. COBOL for operating systems z/OS, z/VSE, BS2000/OSD and IBM i does not have a corresponding
data type for a compatible I1 mapping. The mapping to COBOL PIC X data type should be seen
asa FILLER variable. If including an I1 data type into the interface is required, it is your respons-
ibility as application developer to process the content of this parameter provided (during receive)
and expected (during send) correctly. Negative values are given as the two's complement binary
number.

10. Supported for Micro Focus COBOL for operating systems UNIX and Windows only.

EntireX COBOL Wrapper 81

Software AG IDL to COBOL Mapping

11. The value range for COBOL data type BINARY on z/OS, z/VSE, BS2000/OSD and IBM i depends
on the COBOL compiler settings:

® With COBOL 85 standard, the mapped COBOL data type BINARY is more restrictive than the
IDL data types 12 and 14. See IDL Data Types under Software AG IDL File in the IDL Editor
documentation. This means that COBOL RPC clients cannot send (and COBOL RPC servers
cannot return) the full value range defined by the IDL types I2 and 14. On the other hand,
COBOL RPC clients and COBOL RPC servers may receive a value range (from a non-COBOL
RPC partner) outside of the value range of your COBOL data type.

= Without COBOL 85 standard, the value range of the COBOL data type BINARY depends on
the binary field size, thus matches the IDL data type exactly. In this case, there are no restriction
regarding value ranges.

® To match the value range of IDL type I2 and 14 exactly, depending on the operating system,
the following compiler directive (option) is generated into the client interface objects and
server skeletons:

Under z/OS and z/VSE:
* the IBM compiler option TRUNC(BIN)

Under all other operating systems or compilers:

* refer to your COBOL compiler documentation to see whether compiler directives or options
exist.

12 COBOL does not have a corresponding data type for a compatible B/BV mapping. Thus the
mapping is to COBOL PIC X data type. EntireX RPC transports the (binary) data as it is: no
character translation or conversion will be performed.

13. Supported for operating systems z/OS, z/VSE, BS2000/OSD and IBM i only.

14 With variable length fields with maximum (AVn, BVn, KVn and UVn), mapping to endpoints
with a concept of real string types - such as Java, .NET, C, XML, Web services etc. - is straight-
forward. The transfer of data in the RPC data stream depends on the actual length of the string
and not the field size, as seen in COBOL. For the COBOL side, the actual content length of such
fields is determined using a trim mechanism. For AV, all trailing SPACEs are ignored before
send. After receive, the content is padded with trailing SPACEs up to the COBOL field size. For
BVn, HEX ZERO is used instead of SPACE; for UV n, Unicode code point U+0020. See also the notes
under IDL Data Types under Software AG IDL File in the IDL Editor documentation.

82 EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

Mapping Library Name and Alias

Client Side

The IDL library name as specified in the IDL file (there is no 8-character limitation) is sent from a
client to the server. Special characters are not replaced. The library alias is neither sent to the
server nor used for other purposes on the COBOL client side.

Server Side

If you are using a so-called server mapping file, the target COBOL server program is located with
the help of this file. A server mapping file is an EntireX Workbench file with extension .svm or
.cvim. See Server Mapping Files for COBOL. See also Locating and Calling the Target Server in the
platform-specific administration or RPC server documentation.

If you are not using a server mapping file, the IDL library name as specified in the IDL file is ignored.

Mapping Program Name and Alias

Client Side

The IDL program name as specified in the IDL file (there is no 8-character limitation) is sent from
a client to the server. Special characters are not replaced. The program alias is not sent to the
server, but during wrapping it is used to derive the suggestion for the source file names of the
client interface objects (COBOL subprograms, copybooks) instead of using the IDL program names,
see Customize Automatically Generated Client Names.

Server Side

If you are using a so-called server mapping file, the target COBOL server program is located with
the help of this file. A server mapping file is an EntireX Workbench file with extension .svm or
.cvim. See Server Mapping Files for COBOL. This provides the following advantages:

® IDL program names are not limited to 8 characters and do not have to match the target COBOL
server program names.
® Target COBOL server program names (COBOL subprograms) can be customized during

wrapping. See Customize Automatically Generated Server Names.

If you are not using a server mapping file, the target COBOL server program must match the IDL
program name. In this case:

EntireX COBOL Wrapper 83

Software AG IDL to COBOL Mapping

® The length of the IDL program names is limited by your COBOL system (often 8 characters).
® The set of allowed characters for IDL program names is restricted by your COBOL system and

the underlying file system.

It is your responsibility as application developer to ensure that these requirements are met. See
Locating and Calling the Target Server in the platform-specific administration or RPC server docu-
mentation.

Mapping Parameter Names

The parameter names, as given in the parameter-data-definition under Software AG IDL
Grammar in the IDL Editor documentation of the IDL file, are mapped to fields within the LINKAGE
section of the generated COBOL client interface objects and COBOL server skeletons.

When building fields within the LINKAGE section, the special characters '#', '$', '&', '+, -, ", /', '@
and '_', allowed within names of parameters, are mapped to the character hyphen '-' valid for
COBOL names. Example:

HU$GO results in HU-GO

Trailing and preceding special characters are also removed. Example:

#fHUGO$ results in HUGO

Subsequent special characters are replaced by one hyphen. Example:

HU$#$GO0 results in HU-GO

If the parameter name starts with a digit, e.g. '1', it is prefixed with the character 'P'. Example:

1HUGO results in P1IHUGO

Mapping Fixed and Unbounded Arrays

Client and Server Side

* Fixed arrays within the IDL file are mapped to fixed COBOL tables. See the array-definition
under Software AG IDL Grammar in the IDL Editor documentation for the syntax on how to de-
scribe fixed arrays within the IDL file and refer to fixed-bound-array-index.

® For clients on all operating systems, and for servers on the operating systems z/OS, BS2000/0OSD,
z/VSE, UNIX and Windows for Micro Focus COBOL, IDL unbounded arrays with a maximum
are mapped to COBOL tables with the DEPENDING ON clause. See Tables with Variable Size -

84 EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

DEPENDING ON Clause under COBOL to IDL Mapping in the IDL Extractor for COBOL document-
ation. Note the following:

® The from-value of the DEPENDING ON clause is always 1.

® ODO objects for justification of the number of occurrences are generated into the client interface
objects and server skeletons.

® When a 2/3 dimensional unbounded array is received from a partner, all vectors of the second
dimension must have the same length, i.e. the array forms a rectangle. The same applies to
the third dimension (all vectors must have the same length), the array forms a cuboid. If these
rules are violated, unexpected behavior occurs. For illustration, see picture under
array-definitionunder Software AG IDL Grammar in the IDL Editor documentation.

® Sending a 2/3 dimensional unbounded array to a partner violating the rule above is not pos-
sible: COBOL does not allow you to set vector lengths differently.

" For servers on the operating system IBM i, IDL unbounded arrays with a maximum are mapped
to fixed COBOL tables. On the reply, the number of occurrences is determined by NULL value
contents. Occurrences with null values are not sent back to the calling RPC client.

® Unbounded arrays without a maximum are not supported.

Mapping Groups and Periodic Groups

Client and Server Side

® Groups within the IDL file are mapped to COBOL structures using level numbers. See the
group-parameter-definitionunder Software AG IDL Grammar in the IDL Editor documentation
for the syntax on how to describe groups within the IDL file.

* For clients on all operating systems and for servers on the operating systems z/OS, BS2000/OSD,
z/VSE, UNIX and Windows for Micro Focus COBOL, IDL with unbounded groups with a
maximum:

* the same applies as for unbounded arrays, see Mapping Fixed and Unbounded Arrays
* if unbounded groups are nested, and depending on your target COBOL compiler,
® they may not be supported (e.g. BS2000/OSD).
* there is a restriction on the number of indices. Most COBOL compiler support 7 indices as

a maximum.

The EntireX Workbench generates the COBOL interface objects and server (skeletons)
without considering restrictions of the target COBOL compiler. See your COBOL compiler
documentation for possibilities to work round the restrictions, for example using compiler
switches or compiler options.

EntireX COBOL Wrapper 85

Software AG IDL to COBOL Mapping

® For server on the operating system IBM i, Software AG IDL unbounded groups with a maximum
are mapped to fixed COBOL tables. On the reply the number of occurrences is determined by
NULL value contents. Occurrences with null values are not sent back to the calling RPC client.

* Unbounded groups without a maximum are not supported.

Mapping Structures

Client and Server Side

Structures within the IDL file are dissolved at the location where they are used. They are mapped
to COBOL structures like groups. See the structure-definitionunder Software AG IDL Grammar
in the IDL Editor documentation for the syntax on how to describe structures within the IDL file.

Mapping the Direction Attributes In, Out, InOut

The IDL syntax allows you to define parameters as In parameters, Out parameters, or InOut
parameters (which is the default if nothing is specified). See the attribute-11st under Software
AG IDL Grammar in the IDL Editor documentation for the syntax on how to describe attributes
within the IDL file and refer to direction-attribute.

Client Side
This direction specification is reflected in the generated COBOL interface object as follows:
® Direction attributes do not change the COBOL call interface because parameters are always

treated as “called by reference”.

" Usage of direction attributes may be useful to reduce data traffic between RPC client and RPC
server.

= Parameters with the In attribute are sent from the RPC client to the RPC server.
= Parameters with the Out attribute are sent from the RPC server to the RPC client.
= Parameters with the In and Out attribute are sent from the RPC client to the RPC server and

then back to the RPC client.

Note that only the direction information of the top-level fields (level 1) is relevant. Group fields
always inherit the specification from their parent. A different specification is ignored.

See the attribute-11st under Software AG IDL Grammar in the IDL Editor documentation for the
syntax on how to describe attributes within the IDL file and refer to direction-attribute.

86 EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

Server Side

If you are using a server mapping file, the RPC server considers the direction attribute found in
the server mapping file. A server mapping file is an EntireX Workbench file with extension .svm
or .cvm. See Server Mapping Files for COBOL.

If your RPC server is generated with a previous version of EntireX without a server mapping file,

the RPC server considers the direction attribute sent from any RPC client, for example Java, DCOM,
C, COBOL, .NET, XML and PL/L

Mapping the ALIGNED Attribute

See the attribute-1ist under Software AG IDL Grammar in the IDL Editor documentation for the
syntax on how to describe attributes within the IDL file and refer to direction-attribute.

Client and Server Side

This attribute corresponds to the SYNCHRONIZED clause. If it is specified, data will be mapped ac-
cording to the following rules:

Software AG IDL|COBOL Data Type Alignment|Notes
F4 USAGE COMP-1 SYNC +4 1

F8 USAGE COMP-2 SYNC +8 1

12 PIC S9(4) BINARY SYNC|+2 1

14 PIC S9(8) BINARY SYNC|+4 1

] Notes:

1. On IBM i, specify the compiler option *SYNC in the commands CRTCBLMOD or CRTBNDCBL for the
usage of the SYNCHRONIZED clause.

Calling Servers as Procedures or Functions

Client and Server Side

The COBOL 85 standard does not support a concept of functions like the programming languages
Cor PL/I. Any Software AG IDL program definition is mapped to a COBOL program. See Mapping
Program Name and Alias.

EntireX COBOL Wrapper 87

88

7 Writing Standard Call Interface Clients

= Step 1: Declare and Initialize the RPC CommuNICAtion ArBavuvuviriiriiiiiiiiiiiiiiiiiiiiiiiieiiieiisaaeaeaeiaaaennns
= Step 2: Declare the Data Structures for RPC StUDSccoviiiiiiiiiiiiiii e

= Step 3: Required Settings in the

RPC CommuUNICatION AFBaoveeeee e

= Step 4: Optional Settings in the RPC Communication Areaoooiiiiiiiiiiiiiiii e

= Step 5: Issue the RPC Request
= Step 6: Examine the Error Code

89

Writing Standard Call Interface Clients

This chapter describes in six steps how to write your first COBOL RPC client program.

The following steps describe how to write a COBOL client program for the client scenarios: Micro
Focus | Batch | CICS | IMS. We recommend reading them first before writing your first RPC client
program and following them if appropriate.

The example given here does not use function calls as described under Using Broker Logon and
Logoff. It demonstrates an implicit broker logon (because no broker logon/logoff calls are imple-
mented), where it is required to switch on the AUTOLOGON feature in the broker attribute file.

Step 1: Declare and Initialize the RPC Communication Area

The RPC communication area (see Using the RPC Communication Area) is your interface (API)
to the Generic RPC Services Modules. Declare and initialize the communication area in your RPC
client program as follows:

* Declare RPC communication area
01 ERX-COMMUNICATION-AREA EXTERNAL.
COPY ERXCOMM.

* Initialize RPC communication area
INITIALIZE ERX-COMMUNICATION-AREA.
MOVE "2000" to COMM-VERSION.

The example given here uses option External Clause to access the RPC communication area. See
Using the RPC Communication Area with a Standard Call Interface. For further options to access
the RPC communication area, see RPC Communication Area.

Step 2: Declare the Data Structures for RPC Stubs

For every program definition of the IDL file, the COBOL Wrapper generates a copybook with the
description of the customer's interface data as a COBOL structure. For ease of use you can include
these structures into your RPC client program. See Using the Generated Copybooks.

However, as an alternative, you can use your own customer data structures. In this case the COBOL
data types and structures must match the interfaces of the generated client interface objects, oth-
erwise unpredictable results may occur.

90 EntireX COBOL Wrapper

Writing Standard Call Interface Clients

* Declare customer data to generated RPC Stubs
01 CALC-AREA.
10 PARAMETER.

15 OPERATOR PIC X.

15 OPERAND1 PIC S9(9) BINARY.
15 OPERAND?2 PIC S9(9) BINARY.
15 RESULT PIC S9(9) BINARY.

Step 3: Required Settings in the RPC Communication Area

The following settings to the RPC communication area are required as a minimum to use the
COBOL Wrapper. These settings have to be applied in your RPC client program. It is not possible
to generate any defaults into the client interface objects.

* assign the broker to talk with ...

MOVE "Tocalhost:1971" to COMM-ETB-BROKER-ID.

* assign the server to talk with ...

MOVE "RPC" to COMM-ETB-SERVER-CLASS.

MOVE "SRV1" to COMM-ETB-SERVER-NAME.
MOVE "CALLNAT" to COMM-ETB-SERVICE-NAME.
* assign the user id to the broker ...

MOVE "ERXUSER" to COMM-USERID.

MOVE "PASSWORD" to COMM-PASSWORD.

Step 4: Optional Settings in the RPC Communication Area

Here you specify optional settings to the RPC communication area used by the COBOL Wrapper,
for example:

MOVE "EXAMPLE" to COMM-LIBRARY.
MOVE "00000300" to COMM-ETB-WAIT.

For implicit broker logon, if required in your environment, the client password can be given here.
It is provided then through the client interface objects, see also Using Broker Logon and Logoff.

EntireX COBOL Wrapper 91

Writing Standard Call Interface Clients

Step 5: Issue the RPC Request

Issue the RPC request with a standard COBOL program call:

CALL "CALC" USING OPERATOR OPERAND1 OPERANDZ RESULT.

Step 6: Examine the Error Code

When the RPC reply is received, check that the call was successful:

IF COMM-RETURN-CODE IS = ZERO
Perform success-handling
ELSE
Perform error-handling
END-IF.

The field COMM-RETURN-CODE in the RPC communication area contains the error provided by the
COBOL Wrapper. For the error messages returned, see Error Messages and Codes.

92 EntireX COBOL Wrapper

8 Using the RPC Communication Area

= Purpose of the RPC ComMMUNICALION ATBAuuuuuiiiiiiiiitiiiiiit et aaaennannenennnes
= Using the RPC Communication Area with a Standard Call Interfacecccoviiiiiiici
= Using the RPC Communication Area with EXEC CICS LINKoooiiiiiiiiiiii e

93

Using the RPC Communication Area

The RPC communication area is not relevant for servers.

Purpose of the RPC Communication Area

The RPC communication area is mainly used to specify parameters that are needed to communicate
with the broker and are not specific to client interface objects. In this way it defines a context for
PRC clients. Its purpose, among others, is

to assign the COMM-ETB-BROKER-ID and server name, see COMM-ETB-SERVER-CLASS, COMM-ETB-
SERVER-NAME and COMM-ETB-SERVICE-NAME

to assign the broker's COMM-ETB-USER-ID and COMM-ETB-TOKEN

for use with conversational RPC (see Using Conversational RPC) to hold, for example, the
conversation ID, see COMM-ETB-CONV-1ID

for use with EntireX Security to hold the broker's COMM-ETB-PASSWORD, COMM-ETB-SECURITY -
TOKEN and others

to keep the results of the last RPC request, for example the error code

The RPC communication area is also the API to the generic RPC services, for example:

Log on to broker and log off from broker. See Using Broker Logon and Logoff.

Open conversation, close conversation and close conversation with commit. See Using Conver-
sational RPC.

When using reliable RPC function calls, do reliable RPC commit, do reliable RPC rollback, get
reliable status. See Reliable RPC for COBOL Wrapper.

Create a Natural Security token. See Using the COBOL Wrapper with Natural Security and
Impersonation.

From a COBOL point of view, the RPC communication area is the copybook ERXCOMM. It is generated
in the folder include for RPC client generation, see Generating COBOL Source Files from Software
AG IDL Files.

The layout of the RPC communication area is described in section The RPC Communication Area
(Reference).

94

EntireX COBOL Wrapper

Using the RPC Communication Area

Using the RPC Communication Area with a Standard Call Interface

The COBOL Wrapper allows the RPC communication to be used in the following ways:

= QOption External Clause
= (QOption Linkage Section
= Option Copybook

Option External Clause

With the RPC communication area option External Clause under RPC Communication Area,
the RPC communication area is passed using the COBOL External clause to the client interface
objects. Note that this is an extension to COBOL 85 standards, which might not be supported by
every compiler.

The RPC communication area is allocated (declared) in the COBOL client application. The client
interface objects are statically linked (it is not possible to call them dynamically) to the COBOL
client application.

This kind of RPC communication area usage applies to the scenarios Micro Focus | Batch | CICS
| IMS.

Examples

For examples on how the option External Clause is used, see Step 1: Declare and Initialize the
RPC Communication Area and Step 5: Issue the RPC Request in Writing Standard Call Interface
Clients.

Option Linkage Section

With the RPC communication area option Linkage Section under RPC Communication Area,
the client interface objects are generated to pass the RPC communication area with an additional
parameter to the client interface objects.

The RPC communication area is allocated (declared) in the COBOL client application in the
working storage section. The client interface objects can be statically linked or called dynamically.
For IBM compilers, refer to documentation on the DYNAM compiler option; for other compilers,
to your compiler documentation.

This kind of RPC communication area usage applies to the scenarios Micro Focus | Batch | CICS |
IMS.

EntireX COBOL Wrapper 95

Using the RPC Communication Area

Example

The example given below will pass the RPC communication area via the COBOL Linkage section
to the client interface objects. It differs in two steps from the example in Writing Standard Call
Interface Clients (which uses option External Clause):

Step 1 has no EXTERNAL attribute.

01 ERX-COMMUNICATION-AREA.

COPY ERXCOMM.
* Initialize RPC communication area
INITIALIZE ERX-COMMUNICATION-AREA.
MOVE "2000" TO COMM-VERSION.

Step 5 will include the RPC communication area as an extra parameter.

CALL "CALC" USING OPERATOR
OPERAND1
OPERAND?2
FUNCTION-RESULT
ERX-COMMUNICATION-AREA
ON EXCEPTION
& Perform error-handling
NOT ON EXCEPTION
IF RETURN-CODE = ZERO

& Perform success-handling
ELSE
& Perform error-handling
END-IF
END-CALL.

With this example the client interface objects are generated, for example for target platform "z/OS",
client interface type "Batch with standard linkage calling convention" and RPC communication
area "Linkage Section". See Generating COBOL Source Files from Software AG IDL Files.

Option Copybook

With the RPC communication area option Copybook under RPC Communication Area, the client
interface objects are generated with an RPC communication area in their working storage section.

The RPC communication area is not visible in the client application — it is local to the client interface
objects. The client interface objects can be statically linked or called dynamically. For IBM compilers,
refer to documentation on the DYNAM compiler option and for other compilers to your compiler
documentation.

This kind of RPC communication area usage is available in z/OS operating system and Micro Focus
environments. Refer to the scenarios Micro Focus | Batch | CICS | IMS.

96 EntireX COBOL Wrapper

Using the RPC Communication Area

Example

The example given below defines the RPC communication area inside of the client interface objects.
Two steps are different from the example in Writing Standard Call Interface Clients (which uses
option External Clause):

Step 1: Declare and Initialize the RPC Communication Area: Declare and initialize the RPC com-
munication area

This step is obsolete in the client application and is omitted there. Default values for the RPC
communication area are retrieved from EntireX workbench preferences or IDL-specific properties.
If required, those default values can be overwritten in the COBINIT Copybook.

Step 6: Examine the Error Code: Examine the error code

Because the RPC communication area is not used for data exchange between the client application
and the client interface objects, the COMM-RETURN - CODE field in the RPC communication area cannot
be checked directly upon return from RPC calls. Therefore, the COBOL mechanism RETURN-CODE
special register is used to provide errors from client interface objects to the client application. For
IBM compilers, errors can be adapted in the copybook COBEXIT (see folder include).

After the RPC reply has been received, you can check if the call was successful using the
RETURN-CODE special register:

IF RETURN-CODE IS = ZERO

& Perform success-handling
ELSE

& Perform error-handling
END-TIF.

Using the RPC Communication Area with EXEC CICS LINK

The RPC communication area is allocated (declared) in the COBOL client application and passed
via a parameter in the DFHCOMMAREA to the client interface objects.

This kind of RPC communication area usage applies to the scenario Using the COBOL Wrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

EntireX COBOL Wrapper 97

Using the RPC Communication Area

Example

Two steps are different from the example in Writing a COBOL RPC Client Application See Writing
Standard Call Interface Clients.

Step 1 contains the application interface as well as the RPC communication area within one area:

01 CALC-AREA.

05 OPERATOR PIC X.

05 OPERANDI PIC S9(8) COMP.
05 OPERANDZ PIC S9(8) COMP.
05 RESULT PIC S9(8) COMP.

05 ERX-COMMUNICATION-AREA.
COPY ERXCOMM.
* Initialize RPC communication area
INITIALIZE ERX-COMMUNICATION-AREA.
MOVE "2000" TO COMM-VERSION.

Step 5 uses EXEC CICS LINK interface:

MOVE LENGTH OF CALC-AREA TO COMLEN.
EXEC CICS LINK PROGRAM("CALC") COMMAREA(CALC-AREA)
LENGTHCCOMLEN) RESP(WORKRESP)
END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)
IF (COMM-RETURN-CODE = 0) THEN
s Perform success-handling
ELSE
& Perform error-handling
END-TF
ELSE
& Perform error-handling
END-IF.

With this example, the client interface objects are generated e.g. for target platform "z/OS", client
interface type "CICS with DFHCOMMAREA Calling Convention", and RPC communication area
"Linkage Section". See Generating COBOL Source Files from Software AG IDL Files.

98 EntireX COBOL Wrapper

9 Using the Generated Copybooks

= DL Interface COPYDOOKSevieiiiiie et

= COBINIT Copybook
= COBEXIT Copybook

99

Using the Generated Copybooks

IDL Interface Copybooks

The IDL interface copybooks (see folder include) are the API of the COBOL client application using
client interface objects. We recommend you generate the IDL interface copybooks with a starting
level greater than one. See Starting COBOL Level for Data Items in Generated Copybooks. This
allows you to

® embed (include) the generated copybook into other existing COBOL structures:

1 MYGROUP.
10 .
10 . . .
10 MYIDL.
COPY MYIDL.

" specify usage clauses such as EXTERNAL, GLOBAL etc. to the IDL:

1 MYIDL1I GLOBAL.
COPY MYIDLI.

® use multiple generated copybooks with duplicate parameter names on IDL level 1 in the same
COBOL program:

1 MYIDLI.

COPY MYIDLI.
1 MYIDLZ.

COPY MYIDLZ.

If the IDL contains IDL unbounded arrays, the copybook starting level is ignored; the level used
is always "1".

COBINIT Copybook

The COBINIT copybook (see folder include) is generated if option Copybook for RPC Communication
Area is selected. Its purpose is to set communication parameters such as COMM-ETB-BROKER-ID,
COMM-ETB-SERVER-NAME etc. into the RPC Communication Area. See The RPC Communication
Area (Reference). If the counterpart of your RPC client application is a Natural RPC server running
with Natural Security, or an RPC server running with impersonation (see Impersonation in the re-
spective RPC Server documentation), the security token can be generated. See Using the COBOL
Wrapper with Natural Security and Impersonation.

100 EntireX COBOL Wrapper

Using the Generated Copybooks

COBEXIT Copybook

The COBEXIT copybook (see folder include) is generated if option Copybook for RPC Communication
Area is selected. Its purpose is to check and map error codes. COBOL statements that have been

commented out are generated into the copybook as an example.

EntireX COBOL Wrapper 101

102

10 Using Broker Logon and Logoff

This chapter explains how clients built with the COBOL Wrapper use explicit broker logon and
logoff functions.

It is assumed that you are familiar with the concepts of explicit and implicit broker logon. To use
explicit broker logon and logoff you need the following components:

® the Generic RPC Services Modules are provided to log on to and log off from the broker

® the The RPC Communication Area (Reference)

> To log on to the Broker

1 Logon to the broker with the function Logon L0 provided by the generic RPC services module.

In the scenarios Micro Focus, Batch, CICS and IMS with the Call Interface:

* Broker Logon

MOVE "2000" TO COMM-VERSION.

MOVE "LO" TO COMM-FUNCTION.

* Set broker user ID in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USER-ID.
* Call the broker

CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION

NOT ON EXCEPTION
END-CALL.

* begin of application logic

Or:

103

Using Broker Logon and Logoff

In the scenario Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention
(z/OS and z/VSE) with the EXEC CICS LINK Interface:

* Broker Logon
MOVE "2000" TO COMM-VERSION.
MOVE "LO" TO COMM-FUNCTION.
* Set broker user ID in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USER-ID.
* Call the broker
EXEC CICS LINK PROGRAM ("COBSRVI")
RESP (CICS-RESPI1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)
IF (COMM-RETURN-CODE = 0) THEN
2 Perform success-handling
ELSE
B Perform error-handling
END-IF
ELSE
Perform error-handling
END-IF.
* begin of application logic

2 Issue your RPC requests as without using explicit logon and logoff.

] Notes:

1. The logon call is the first call to the broker, before any RPC call.

2. The COMM-ETB-USER-ID field (and the COMM-ETB-TOKEN field, where provided) must not change
from logon, through all calls of client interface objects, until final logoff.

3. If EntireX Security is to be used, see Using the COBOL Wrapper with EntireX Security.

> To log off from the Broker

s Log off from the broker with the function Logoff LF provided by the generic RPC services
module with the Call Interface

104 EntireX COBOL Wrapper

Using Broker Logon and Logoff

* end of application Togic including calls to generated interface objects

* Broker Logoff

MOVE "2000" TO COMM-VERSION.

MOVE "LF" TO COMM-FUNCTION.

* Call the broker

CALL "COBSRVI"™ USING ERX-COMMUNICATION-AREA
ON EXCEPTION

NOT ON EXCEPTION

END-CALL.

Or:

with the EXEC CICS LINK Interface (see Logon above).

The logoff call should be issued as soon as RPC communication is no longer needed.

EntireX COBOL Wrapper

105

106

11 Using Conversational RPC

This chapter explains how clients built with the COBOL Wrapper use conversational RPC.

RPC conversations are supported when communicating with an RPC server. It is further assumed
that you are familiar with the concepts of conversational RPC and non-conversational RPC. To
use conversational RPC, you need the following components:

® the Generic RPC Services Modules are provided to open, close or abort conversations;

® the The RPC Communication Area (Reference)

> To use conversational RPC

1 Open a conversation with the function Open Conversation 0C provided by the generic RPC
services module.

In the scenarios Micro Focus, Batch CICS and IMS with the Call Interface:

MOVE "2000" TO COMM-VERSION.
MOVE "OC" TO COMM-FUNCTION.
CALL "COBSRVI™ USING ERX-COMMUNICATION-AREA
ON EXCEPTION
NOT ON EXCEPTION
END-CALL.
Or:

In the scenario Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention
(z/OS and z/VSE) with the EXEC CICS LINK Interface:

107

Using Conversational RPC

MOVE "2000" TO COMM-VERSION.
MOVE "0C" TO COMM-FUNCTION.
EXEC CICS LINK PROGRAM ("COBSRVI")
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)
IF (COMM-RETURN-CODE = Q) THEN
& Perform success-handling
ELSE
= Perform error-handling
END-IF
ELSE
w Perform error-handling
END-IF.

2 Issueyour RPC requests as within non-conversational mode using the generated client interface
objects. Different client interface objects can participate in the same RPC conversation.

> To abort conversational RPC communication

= Abort an unsuccessful RPC conversation with the function Close Conversation CB provided
by the generic RPC services module

In the scenarios Micro Focus, Batch, CICS and IMS with the Call Interface:

MOVE "2000" TO COMM-VERSION.
MOVE "CB" TO COMM-FUNCTION.
CALL "COBSRVI"™ USING ERX-COMMUNICATION-AREA
ON EXCEPTION
NOT ON EXCEPTION
END-CALL.
Or:

In the scenario Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention
(z/OS and z/VSE) with the EXEC CICS LINK Interface:

108 EntireX COBOL Wrapper

Using Conversational RPC

MOVE "2000" TO COMM-VERSION.
MOVE "CB" TO COMM-FUNCTION.
EXEC CICS LINK PROGRAM ("COBSRVI")
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)
IF (COMM-RETURN-CODE = Q) THEN
& Perform success-handling
ELSE
= Perform error-handling
END-IF
ELSE
w Perform error-handling
END-IF.

> To close and commit a conversational RPC communication

» Close the RPC conversation successfully with the function Close Conversation and Commit
CE provided by the generic RPC services module

In the scenarios Micro Focus, Batch, CICS and IMS with the Call Interface:

MOVE "2000" TO COMM-VERSION.

MOVE "CE" TO COMM-FUNCTION.

CALL "COBSRVI"™ USING ERX-COMMUNICATION-AREA
ON EXCEPTION

NOT ON EXCEPTION
END-CALL.
Or:

In the scenario Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention
(z/OS and z/VSE) with the EXEC CICS LINK Interface:

MOVE "2000" TO COMM-VERSION.
MOVE "CE" TO COMM-FUNCTION.
EXEC CICS LINK PROGRAM ("COBSRVI")
RESP (CICS-RESPI)
RESPZ (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)
IF (COMM-RETURN-CODE = 0) THEN

EntireX COBOL Wrapper 109

Using Conversational RPC

w8 Perform success-handling
ELSE
u Perform error-handling
END-IF
ELSE
E Perform error-handling
END-IF.

110

EntireX COBOL Wrapper

12 Using the COBOL Wrapper with Natural Security and

Impersonation

This chapter explains how clients built with the COBOL Wrapper can communicate with Natural
RPC Servers running under Natural Security and RPC servers running with impersonation. See
Impersonation in the respective RPC Server documentation.

This chapter assumes that you are familiar with the concepts of Natural Security and impersonation.
To communicate with such a server you will need the following components:

® the Generic RPC Services Modules, which are provided to create and get a security token,

® the RPC Communication Area

> To authenticate against Natural Security or impersonated RPC server

1 Specify a user ID, password and optional Natural library in the RPC communication area:

* Client information : bytes 101-300
10 COMM-USERID.
15 COMM-USERID1 PIC X(8).
15 COMM-USERID?2 PIC X(8).
10 COMM-PASSWORD PIC X(8).
10 COMM-LIBRARY PIC X(8).
10 COMM-SECURITY-TOKEN-LENGTH PIC 9(4) BINARY.
10 COMM-SECURITY-TOKEN PIC X(100).
10 FILLER PIC X(66).

2 Create a security token with the function Create Security Token CT provided by the generic
RPC services module.

In the scenarios Micro Focus, Batch, CICS and IMS with the Call Interface:

® For RPC Communication Area setting Linkage and External:

M

Using the COBOL Wrapper with Natural Security and Impersonation

MOVE "2000" TO COMM-VERSION.
MOVE "CT" TO COMM-FUNCTION.
* Set user ID and password in RPC Communication Area
MOVE "NAT-USER"™ TO COMM-USERID.
MOVE "NAT-PWD" TO COMM-PASSWORD.
* Additional for Natural Security set Tibrary in RPC Communication Area
MOVE "NAT-LIB" TO COMM-LIBRARY.
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION

NOT ON EXCEPTION
END-CALL.

® For RPC Communication Area setting Copybook. Add the following COBOL Statements to
the COBINIT copybook:

MOVE "CT" TO COMM-FUNCTION.

* Set user ID and password in RPC Communication Area

MOVE "NAT-USER" TO COMM-USERID.

MOVE "NAT-PWD" TO COMM-PASSWORD.

* Additional for Natural Security set Tibrary in RPC Communication Area
MOVE "NAT-LIB" TO COMM-LIBRARY.

CALL "COBSRVI" USING ERX-COMMUNICATION-AREA

See also Using the Generated Copybooks.
Or:

In the scenario Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention
(z/OS and z/VSE) with the EXEC CICS LINK Interface:

MOVE "2000" TO COMM-VERSION.
MOVE "CT" TO COMM-FUNCTION.
* Set user ID and password in RPC Communication Area
MOVE "NAT-USER"™ TO COMM-USERID.
MOVE "NAT-PWD" TO COMM-PASSWORD.
* Additional for Natural Security set library in RPC Communication Area
MOVE "NAT-LIB" TO COMM-LIBRARY.
EXEC CICS LINK PROGRAM ("COBSRVI")
RESP (CICS-RESP1)
RESP?2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)
IF (COMM-RETURN-CODE = 0) THEN
B Perform success-handling
ELSE
u Perform error-handling

12

EntireX COBOL Wrapper

Using the COBOL Wrapper with Natural Security and Impersonation

END-TF
ELSE
u Perform error-handling
END-IF.

After successful return from the generic RPC services module, the security fields in the RPC
communication area are properly set, so they can be used in subsequent RPC requests to a secure
RPC server, such as:

® Natural RPC server running with Natural Security

® RPC server running with impersonation. See Impersonation in the respective RPC Server docu-
mentation.

EntireX COBOL Wrapper 13

14

13 Reliable RPC for COBOL Wrapper

= |ntroduction to Reliable RPCooiiii e 116
B OWHLING @ CHENE ...t 117
B WHIING @ SEIVET ..ottt e et et e e 122
® Broker CONfIGUIALIONoiiiiiiie e 122

15

Reliable RPC for COBOL Wrapper

Introduction to Reliable RPC

In the architecture of modern e-business applications (such as SOA), loosely coupled systems are
becoming more and more important. Reliable messaging is one important technology for this type
of system.

Reliable RPC is the EntireX implementation of a reliable messaging system. It combines EntireX
RPC technology and persistence, which is implemented with units of work (UOWs).

Reliable RPC allows asynchronous calls (“fire and forget”)

Reliable RPC is supported by most EntireX wrappers

Reliable RPC messages are stored in the Broker's persistent store until a server is available

Reliable RPC clients are able to request the status of the messages they have sent

Persistent
Store

.‘ [

RPC
with UOW : v

RPC | EntireX
Client < Broker

Error Status
RFC
with UOW

b

RPC
Server

Reliable RPC is used to send messages to a persisted Broker service. The messages are described
by an IDL program that contains only IN parameters. The client interface object and the server
interface object are generated from this IDL file, using the EntireX COBOL Wrapper.

Reliable RPC is enabled at runtime. The client has to set one of two different modes before issuing
a reliable RPC request:

= AUTO_COMMIT
" CLIENT_COMMIT

116 EntireX COBOL Wrapper

Reliable RPC for COBOL Wrapper

While AUTO_COMMIT commits each RPC message implicitly after sending it, a series of RPC messages
sent in a unit of work (UOW) can be committed or rolled back explicitly using CLIENT_COMMIT
mode.

The server is implemented and configured in the same way as for normal RPC.

Writing a Client

The following steps describe how to write a COBOL reliable RPC client program with the scenario
Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
and Linkage access to RPC communication.

Reliable RPC requires an explicit broker logon. See Using Broker Logon and Logoff.
Step 1: Declare the Data Structures for RPC Client Interface Objects

For every program definition in the Software AG IDL file, the templates will generate a copybook
file that describes the customer data of the interface as a COBOL structure. For ease of use, the
copybook can be embedded into the RPC client program.

However, if more appropriate, customer data structures can be used. In this case the COBOL data
types and structures must match the interfaces of the generated client interface objects, otherwise
unpredictable results will occur.

* Declare the customer data of the generated RPC interface
01 SENDMATL.

02 SM-COMA.
03 SM-TOADDRESS PIC X(60).
03 SM-SUBJECT PIC X(20).
03 SM-TEXT PIC X(100).

Step 2: Declare and Initialize the RPC Communication Area

The RPC communication area must be declared and initialized in your RPC client program as
follows:

* Declare RPC communication area
02 ERX-COMMUNICATION-AREA.
COPY ERXCOMM.

* Initialize RPC communication area
INITIALIZE ERX-COMMUNICATION-AREA.
MOVE "2000" to COMM-VERSION.

EntireX COBOL Wrapper 17

Reliable RPC for COBOL Wrapper

Step 3: Required Settings in the RPC Communication Area

The following settings to the RPC communication area are required as a minimum to use the
COBOL Wrapper. These settings have to be applied in your RPC client program. It is not possible

to generate any defaults into your client interface objects:

* assign the broker to talk with
MOVE "Tocalhost:1971" to COMM-ETB-BROKER-ID.

* assign the server to talk with

MOVE "RPC" to COMM-ETB-SERVER-CLASS.
MOVE "SRV1" to COMM-ETB-SERVER-NAME.
MOVE "CALLNAT" to COMM-ETB-SERVICE-NAME.
* assign the user ID for Broker logon

MOVE "ERXUSER" to COMM-USERID.

MOVE "PASSWORD" to COMM-PASSWORD.

Step 4a: Perform a Broker Logon

MOVE "LO" TO COMM-FUNCTION.
EXEC CICS LINK
PROGRAM ("COBSRVI™")
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

RESP (CICS-RESPI)
RESP?2 (CICS-RESP2)
END-EXEC.

Step 4b: Examine the Error Code

Check whether the logon call was successful or not.

Step 5: Enable Reliable RPC with CLIENT_COMMIT

Before reliable RPC can be used, the reliable state must be set to either ERX_RELIABLE_CLIENT_COMMIT

or ERX_RELIABLE_AUTO_COMMIT.

= "C"-CLIENT_COMMIT
= "A"-AUTO_COMMIT

118

EntireX COBOL Wrapper

Reliable RPC for COBOL Wrapper

* Set the reliable RPC mode
MOVE "C" TO COMM-RELIABLE-STATE.

Step 6a: Send the RPC Message

The RPC message is sent using the EXEC CICS LINK interface.

* Send the RPC message
MOVE DFHRESP(NORMAL) TO CICS-RESPI.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK
PROGRAM ("SENDMAIL")
RESP (CICS-RESP1)
RESP?2 (CICS-RESP2)
COMMAREA (SENDMATL)
LENGTH (LENGTH OF SENDMATIL)
END-EXEC.

Step 6b: Examine the Error Code
When the RPC message is returned, it needs to be checked whether it was successful or not:

IF COMM-RETURN-CODE IS = ZERO
Perform success-handling
ELSE
Perform error-handling
END-IF.

The field COMM-RETURN-CODE in the RPC communication area contains the error provided
by the COBOL Wrapper. For the error messages returned, see Error Messages and Codes.

Note: After successful call (Step 6a) the UOWID is available in the RPC communication area
field COMM-ETB-UOW-ID. See The RPC Communication Area (Reference).

Step 7a: Check the Reliable RPC Message Status
To determine that reliable RPC messages are delivered, the reliable RPC message status can be

queried. See Understanding UOW Status and Broker UOW Status Transition under Concepts of Per-
sistent Messaging for more information.

EntireX COBOL Wrapper 119

Reliable RPC for COBOL Wrapper

MOVE
MOVE
MOVE
MOVE
EXEC

DFHRESP(NORMAL) TO CICS-RESPI.
DFHRESP(NORMAL) TO CICS-RESPZ.

"RS" TO COMM-FUNCTION.
ZEROES TO COMM-RETURN-CODE.
CICS LINK

PROGRAM ~ ("COBSRVI™)
RESP (CICS-RESPI)
RESP?Z (CICS-RESP2)

COMMAREA (ERX-COMMUNICATION-AREA)

LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.

Step 7b: Examine the Error Code

Check whether the check status call was successful or not.

Step 8: Send a Second RPC Message

Send a second reliable RPC message. See Step 6a and Step 6b.

Step 9: Check the Reliable RPC Message Status

Note: After successful call the UOW status is available in the RPC communication area field
COMM-RELIABLE-STATUS. See The RPC Communication Area (Reference).

Check the reliable RPC message before the commit call. See Step 7a and Step 7b.

Step 10a: Commit both Reliable RPC Messages

Now both reliable RPC messages are committed. This will deliver all reliable RPC messages to
the server if it is available.

MOVE
MOVE
MOVE
MOVE
EXEC

DFHRESP(NORMAL) TO CICS-RESPI.
DFHRESP(NORMAL) TO CICS-RESP2.

"RC" TO COMM-FUNCTION.
LEROES TO COMM-RETURN-CODE.
CICS LINK

PROGRAM ("COBSRVI")
RESP (CICS-RESPI)
RESP2 (CICS-RESP2)

COMMAREA (ERX-COMMUNICATION-AREA)

LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.

120

EntireX COBOL Wrapper

Reliable RPC for COBOL Wrapper

Step 10b: Examine the Error Code

Check whether the commit call was successful or not.

Step 11: Send a Third RPC Message

Send a third reliable RPC message. See Step 5a and Step 5b.

Step 12: Check the Reliable RPC Message Status

Check the reliable RPC message before the rollback call. See Step 6.
Step 13a: Roll Back the Third RPC Message

Roll back the current reliable RPC message.

MOVE DFHRESP(NORMAL) TO CICS-RESPI.
MOVE DFHRESP(NORMAL) TO CICS-RESPZ.
MOVE "RR" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ("COBSRVI")

RESP (CICS-RESPI)

RESP2 (CICS-RESP2)

COMMAREA (ERX-COMMUNICATION-AREA)

LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.

Step 13b: Examine the Error Code

When the rollback call is returned, check whether it was successful or not. If the rollback call failed,
an explicit EOC needs to be sent:

MOVE DFHRESP(NORMAL) TO CICS-RESPI.
MOVE DFHRESP(NORMAL) TO CICS-RESPZ.
MOVE "RS" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ("COBSRVI")

RESP (CICS-RESPI)

RESP2 (CICS-RESP2)

COMMAREA (ERX-COMMUNICATION-AREA)

LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.

EntireX COBOL Wrapper 121

Reliable RPC for COBOL Wrapper

Step 14a: Perform a Broker Logoff

MOVE "LF" TO COMM-FUNCTION.
EXEC CICS LINK
PROGRAM ("COBSRVI")
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

RESP (CICS-RESPI)
RESP2 (CICS-RESP2)
END-EXEC.

Step 14b: Examine the Error Code

Check whether the logoff call was successful or not.

Writing a Server

There are no server-side methods for reliable RPC. The server does not send back a message to
the client. The server can run deferred, thus client and server do not necessarily run at the same
time. If the server fails, it returns an error code greater than zero. This causes the transaction (unit
of work inside the Broker) to be cancelled, and the error code is written to the user status field of
the unit of work. For writing reliable RPC servers, see Using the COBOL Wrapper for the Server
Side.

To execute a reliable RPC service with an RPC server, the parameter 1ogon (LOGN under CICS)
must be set to YES. See 1ogon in the relevant sections of the documentation.

Broker Configuration

A Broker configuration with PSTORE is recommended. This enables the Broker to store the messages
for more than one Broker session. These messages are still available after Broker restart. The attrib-
utes STORE, PSTORE, and PSTORE-TYPE in the Broker attribute file can be used to configure this
feature. The lifetime of the messages and the status information can be configured with the attributes
UWTIME and UWSTAT - LIFETIME. Other attributes such as MAX-MESSAGES - IN-UQW, MAX -UOWS and MAX -
UOW-MESSAGE - LENGTH may be used in addition to configure the units of work. See Broker Attributes
in the platform-independent administration documentation.

The result of the generic RPC function call "RS" - get reliable status depends on the configuration
of the unit of work status lifetime in the EntireX Broker configuration. See COMM-FUNCTION. If the
status is not stored longer than the message, the function call returns the error code 00780305 (no
matching UOW found).

122 EntireX COBOL Wrapper

14

Using the COBOL Wrapper with EntireX Security

This chapter explains how clients built with the COBOL Wrapper use EntireX Security.

To use EntireX Security you need the following components:

® Generic RPC Services Modules

® The RPC Communication Area (Reference)

> To use EntireX Security

1

Set the COMM-ETB-PASSWORD and set COMM-KERNEL-SECURITY to"Y". See The RPC Communication
Area (Reference).

Log on to the broker with the function Logon L0 provided by the generic RPC services module
as described under Using Broker Logon and Logoff.

* In the scenarios Micro Focus (UNIX and Windows), Batch, CICS with Call Interfaces and IMS
in the COBOL Wrapper documentation with the Call Interface:

* Broker Logon

MOVE
MOVE

* Set
MOVE

* Set
MOVE
MOVE

"2000" TO COMM-VERSION.
"LO" TO COMM-FUNCTION.

Broker userid in RPC Communication Area
"COB-USER" TO COMM-ETB-USERID.

Broker password/kernelsecurity to use EntireX Security
"COB-PASS" TO COMM-ETB-PASSWORD.
"y TO COMM-KERNEL-SECURITY.

* Call the broker

CALL

"COBSRVI" USING ERX-COMMUNICATION-AREA

ON EXCEPTION

123

Using the COBOL Wrapper with EntireX Security

NOT ON EXCEPTION

END-CALL.
* begin of application logic

® Inthe scenario Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention
(z/OS and z/VSE) with the EXEC CICS LINK interface:

* Broker Logon
MOVE "2000" TO COMM-VERSION.
MOVE "LO" TO COMM-FUNCTION.

* Set Broker userid in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USERID.

* Set Broker password/kernelsecurity to use EntireX Security
MOVE "COB-PASS" TO COMM-ETB-PASSWORD.
MOVE "Y" TO COMM-KERNEL-SECURITY.

* Call the broker
EXEC CICS LINK PROGRAM ("COBSRVI")
RESP (CICS-RESPI1)
RESP?2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)
IF (COMM-RETURN-CODE = 0) THEN
% Perform success-handling
ELSE
B Perform error-handling
END-IF
ELSE
% Perform error-handling
END-IF.

* begin of application logic

3 Issue your RPC requests as without using an explicit logon and logoff.

4 For logoff, see Using Broker Logon and Logoff.

124 EntireX COBOL Wrapper

15 Client and Server Examples for Micro Focus (UNIX and

Windows)

= Basic RPC Client Examples - CALC, SQUARE oo 126
= Basic RPC Server Examples - CALC, SQUAREcooiiiiiiiiii e 126
= Reliable RPC Client Example - SENDMAILoooiiiiiiiiie i 127
= Reliable RPC Server Example - SENDMAILooiiiiiii et 127

125

Client and Server Examples for Micro Focus (UNIX and Windows)

This chapter describes the examples provided for the COBOL Wrapper for Micro Focus. All ex-
amples here can be found in the EntireX directory examples/RPC under UNIX and Windows.

Basic RPC Client Examples - CALC, SQUARE

For Micro Focus environments, the CALC and SQUARE clients are built with COBOL Wrapper
"Micro Focus with standard linkage calling convention" interface type. See Client Interface Types
for more information.

Name Type Description Notes

CALCCLT.cbl |COBOL source code | A client application calling the remote procedure (RPC service)|1
CALC, with associated example.idl.

SQRECLT.cbl |COBOL source code|A client application calling the remote procedure (RPC service)|1
SQUARE, with associated example.idl.

] Notes:

1. Application built according to the client-side build instructions under Using the COBOL
Wrapper for Micro Focus (UNIX and Windows).

For more information, see the readme file in EntireX directory examples/RPC/basic/example/CobolCli-
ent/MicroFocus under UNIX or Windows.

Basic RPC Server Examples - CALC, SQUARE

For Micro Focus environments, the CALC and SQUARE servers are built with COBOL Wrapper
"Micro Focus with standard linkage calling convention" interface type. See Server Interface Types
for more information.

Name Type Description Notes

CALC.cbl |COBOL source code|A server application providing the remote procedure CALC (RPC|1
service), with associated example.idl.

SQUARE.cbl|COBOL source code|A server application providing the remote procedure SQUARE |1
(RPC service), with associated example.idl.

] Notes:

1. Application built according to the server-side build instructions under Using the COBOL
Wrapper for Micro Focus (UNIX and Windows).

126 EntireX COBOL Wrapper

Client and Server Examples for Micro Focus (UNIX and Windows)

For more information, see the readme file in EntireX directory examples/RPC/basic/example/ CobolServ-
er/MicroFocus under UNIX or Windows.

Reliable RPC Client Example - SENDMAIL

For Micro Focus environments, the SENDMAIL client is built with COBOL Wrapper "Micro Focus
with standard linkage calling convention" interface type. See Client Interface Types for more in-

formation.

Name type Description Notes

SENDCLT.cbl |COBOL source code|A client application calling the reliable remote procedure (RPC|1
service), SENDMAIL, with associated mail.idl.

] Notes:

1. Application built according to the client-side build instructions under Using the COBOL
Wrapper for Micro Focus (UNIX and Windows) See also Reliable RPC for COBOL Wrapper.

For more information see the readme file in EntireX directory examples/RPC/reliable/ Cobol Client/Mi-
croFocus under UNIX or Windows.

Reliable RPC Server Example - SENDMAIL

For Micro Focus environments, the SENDMAIL server is built with COBOL Wrapper "Micro Focus
with standard linkage calling convention" interface type. See Server Interface Types for more in-
formation.

Name Type Description Notes

SENDCLT.cbl |COBOL source code|a server application providing the reliable remote procedure |1
(RPC service) SENDMAIL, with associated mail.idl.

] Notes:

1. Application built according to the client-side build instructions under Using the COBOL
Wrapper for the Client Side. See also Reliable RPC for COBOL Wrapper.

For more information see the readme file in EntireX directory examples/RPC/reliable/ CobolServer/Mi-
croFocus under UNIX or Windows.

EntireX COBOL Wrapper 127

128

16 Client and Server Examples for z/OS Batch

= Basic RPC Client Examples - CALC, SQUAREoouiiiiiii e 130
= Basic RPC Server Examples - CALC, SQUAREoooiiiiiiiii e 131
= Reliable RPC Client Example - SENDMAILoviiiiiiiiiei e 133
= Reliable RPC Server Example - SENDMAILooiiiiii et 133

129

Client and Server Examples for z/OS Batch

This chapter describes the examples provided for the COBOL Wrapper for z/OS Batch. All examples
here can be found in the EntireX directory examples/RPC under UNIX and Windows. They are also
available for z/OS, if this is installed. See Extract the EntireX RPC Examples from their Container Data
Set in the z/OS installation documentation.

Basic RPC Client Examples - CALC, SQUARE

This section covers the following examples:

= CALC Client
= SQUARE Client

CALC Client

For z/OS Batch, the CALC client is built with COBOL Wrapper "Batch with standard linkage calling
convention" interface type. See Client Interface Types for more information.

Name Type Data Set Description Notes

CALC COBOL source code|EXP970.CCCO |Client interface object for IDL program CALC. |1

CALCCLT |COBOL source code |[EXP970.CCCO |A client application calling the remote procedure |2
(RPC service) CALC, with associated example.idl.

CALCIGY |JCL EXP970.CCCO|Job (JCL) to build the RPC client CALCCLT. 3
CALCRUN|JCL EXP970.CCCO|Job (JCL) to execute the RPC client CALCCLT. 3
CALC COBOL copybook |EXP970.CICO |Client interface object copybook for IDL program |1
CALC.
| Notes:

1. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,
generate these objects with the EntireX Workbench.

2. Application built according to the client-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000/0OSD, z/VSE and IBM 1i).

3. Adapt the JCL to your needs.

For more information refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolClient/zosBatch under UNIX or Windows.

130 EntireX COBOL Wrapper

Client and Server Examples for z/OS Batch

SQUARE Client

For batch under operating system z/OS, the SQUARE client is built with COBOL Wrapper "Batch
with standard linkage calling convention" interface type. See Client Interface Types for more in-
formation.

Name Type Data Set Description Notes

SQRECLT |COBOL source code | EXP970.CCCO | A client application calling the remote procedure |1
(RPC service) SQUARE, with associated
example.idl.

SQREIGY |JCL EXP970.CCCO|Job (JCL) to build the RPC client SQRECLT. 2
SQRERUN |JCL EXP970.CCCO|Job (JCL) to execute the RPC client SQRECLT. 2
SQUARE |COBOL source code |[EXP970.CCCO|Client interface object for IDL program SQUARE. (3

3

SQUARE |COBOL copybook |EXP970.CICO |Client interface object copybook for IDL program
SQUARE.

] Notes:

1. Application built according to the client-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000/0OSD, z/VSE and IBM 1i).

2. Adapt the JCL to your needs.

3. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,
generate these objects with the EntireX Workbench.

For more information, see the readme file in EntireX directory examples/RPC/basic/example/CobolCli-
ent/zosBatch under UNIX or Windows.

Basic RPC Server Examples - CALC, SQUARE

This section covers the following examples:

= CALC Server

EntireX COBOL Wrapper 131

Client and Server Examples for z/OS Batch

= SQUARE Server
CALC Server
For batch under operating system z/OS, the CALC server is built with COBOL Wrapper "Batch

with standard linkage calling convention" interface type. See Server Interface Types for more in-
formation.

Name Type Data Set Description Notes

CALC COBOL source code |[EXP970.CVCO | A server application providing the remote 1
procedure CALC (RPC service), with associated
example.idl.

CALCIGY|JCL EXP970.CVCO |Job (JCL) to build the remote procedure CALC (RPC|2
service).

] Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000/0OSD, z/VSE and IBM 1i).

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolServer/zosBatch under UNIX or Windows.

SQUARE Server
For batch on operating system z/OS, the SQUARE server is built with COBOL Wrapper "Batch

with standard linkage calling convention" interface type. See Client Interface Types for more in-
formation.

Name Type Data Set Description Notes
SQREIGY |JCL EXP970.CVCO|Job (JCL) to build the remote procedure SQUARE |2
(RPC service)

SQUARE |COBOL source code|EXP970.CVCO |a server application providing the remote procedure |1
SQUARE (RPC service), with associated example.idl

] Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000/0OSD, z/VSE and IBM 1i).

2. Adapt the JCL to your needs.

132 EntireX COBOL Wrapper

Client and Server Examples for z/OS Batch

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolServer/zosBatch under UNIX or Windows.

Reliable RPC Client Example - SENDMAIL

For batch on operating system z/OS, the SENDMAIL client is built with COBOL Wrapper "Batch
with standard linkage calling convention" interface type. See Client Interface Types for more in-
formation.

Name Type Data Set Description Notes

SENDCLT |COBOL source code|EXP970.CCCO |A client application calling the reliable remote |1
procedure (RPC service), SENDMAIL, with
associated mail.idl.

SENDIGY |JCL EXP970.CCCO |Job (JCL) to build the RPC client SENDCLT. 2
SENDMAIL|COBOL source code| EXP970.CCCO |Client interface object for IDL program 3
SENDMAIL.
SENDRUN |JCL EXP970.CCCO |Job (JCL) to execute the RPC client SENDCLT. |2
SENDMAIL|COBOL copybook |EXP970.CICO |Client interface object copybook for IDL program (3
SENDMAIL.
| Notes:

1. Application built according to the client-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000/0SD, z/VSE and IBM 1i). See also Reliable RPC for COBOL Wrapper.

2. Adapt the JCL to your needs.

3. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,
generate these objects with the EntireX Workbench.

For more information, refer to the readme file in EntireX directory examples/RPC/reliable/ CobolCli-
ent/zosBatch under UNIX or Windows.

Reliable RPC Server Example - SENDMAIL

For batch on operating system z/OS, the SENDMAIL server is built with COBOL Wrapper "Batch
with standard linkage calling convention" interface type. See Client Interface Types for more in-
formation.

EntireX COBOL Wrapper 133

Client and Server Examples for z/OS Batch

Name Type Data Set Description Notes
SENDIGY |JCL EXP970.CVCO|]Job (JCL) to build the remote procedure 1
SENDMAIL(RPC service).
SENDMAIL|COBOL source EXP970.CVCO|A server application providing the reliable remote |2
code procedure (RPC service) SENDMAIL, with
associated mail.idl.
| Notes:

1. Adapt the JCL to your needs.

2. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000/0SD, z/VSE and IBM 1i). See also Reliable RPC for COBOL Wrapper.

For more information, refer to the readme file in EntireX directory examples/RPC/reliable/CobolServ-
er/zosBatch under UNIX or Windows.

134

EntireX COBOL Wrapper

17 Client and Server Examples for z/OS CICS

= Basic RPC Client Examples - CALC, SQUAREoouiiiiiii e 136
= Basic RPC Server Examples - CALC, SQUAREoooiiiiiiiii e 140
= Reliable RPC Client Examples - SENDMAILoooiiiiiiiiie e 141
= Reliable RPC Server Example - SENDMAILooiiiiii et 143
= Advanced CICS Channel Container RPC Server Example - DFHCONccccooiiiiiiiiiiiiiceeiiiee e, 144
= Advanced CICS Large Buffer RPC Server Example - DFHLBUFccooviiiiiiiiceee 144

135

Client and Server Examples for z/OS CICS

This chapter describes the examples provided for the COBOL Wrapper for z/OS CICS. All examples
here can be found in the EntireX directory examples/RPC under UNIX and Windows. They are also
available for z/OS, if this is installed. See Extract the EntireX RPC Examples from their Container Data
Set in the z/OS installation documentation.

Basic RPC Client Examples - CALC, SQUARE

This section covers the following examples:

= CALC Client using DFHCOMMAREA

= CALC Client using Call Interface

= SQUARE Client using DFHCOMMAREA
= SQUARE Client using Call Interface

CALC Client using DFHCOMMAREA

For CICS under operating system z/OS, the following CALC client is implemented with interface
type "CICS with DFHCOMMAREA calling convention". See Client Interface Types for more in-
formation.

Name Type Data Set Description Notes
CALCI1DFH |CICS CSD EXP970.DCCO |CSD Definition for RPC client CALCICLT.
CALCIIGY |JCL EXP970.DCCO |Job (JCL) to build the RPC client CALCICLT. |2
CALCIMAP |CICS Map EXP970.DCCO|CICS Map definition for RPC client and
CALCICLT.
CALC1 COBOL source code |[EXP970.DCCO|Client interface object for IDL program CALC1, |1
alias of CALC.

CALCICLT |COBOL source code| EXP970.DCCO|An RPC client application calling the remote 3
procedure (RPC service) CALC.

CALCIMAP |COBOL copybook |EXP970.DICO |Description of input and output fields of map
CALCIMAP.

CALC1 COBOL copybook |EXP970.DICO |Client interface object copybook for IDL program
CALC1, alias of CALC.

—_

Notes:

1. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,
generate these objects with the EntireX Workbench.
2. Adapt the JCL to your needs.

3. Application

136 EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

a. built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

b. associated with IDL file exampleWithPgmAlias.idl, delivered under UNIX and Windows in
EntireX directory examples/RPC/basic/example/CobolClient/zosCICS/DFHCOMMAREA.

c. client interface object name CALC1 different from remote procedure name CALC (RPC ser-
vice).

d. CALCICLT and client interface objects CALC1 installed as separate CICS programs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolClient/zosCICS/ DFHCOMMAREA under UNIX or Windows.

CALC Client using Call Interface

For CICS under operating system z/OS, the following CALC client is implemented with interface
type "CICS with standard linkage calling convention". See Client Interface Types for more inform-
ation.

Name Type Data Set Description Notes

CALC COBOL source code |EXP970.DCCO|Client interface object for IDL program CALC. |1

CALCCLT |COBOL source code | EXP970.DCCO|An RPC client application calling the remote 2
procedure (RPC service) CALC.

CALCDEFH |CICS CSD EXP970.DCCO|CSD Definition for RPC client CALCCLT.

CALCIGY |JCL EXP970.DCCO |{Job (JCL) to build the RPC client CALCCLT. 3

CALCMAP|CICS Map EXP970.DCCO |CICS Map definition for RPC client CALCCLT.

CALC COBOL copybook |EXP970.DICO |Client interface object copybook for IDL program |1
CALC.

CALCMAP |COBOL copybook |EXP970.DICO |Description of input and output fields of map
CALCMAP.

Notes:

1. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,
generate these objects with the EntireX Workbench.

2. Application

a. built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with Call Interfaces (z/OS and z/VSE)

b. associated with IDL file example.idl

c. CALCCLT uses CICS Map definition CALCMAP

d. CALCCLT and client interface object CALC are linked together
e. CALCCLT installed as single CICS program

EntireX COBOL Wrapper 137

Client and Server Examples for z/OS CICS

3. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolClient/zosCICS/Callinterface under UNIX or Windows.

SQUARE Client using DFHCOMMAREA

For CICS on operating system z/OS, the following SQUARE client is implemented with interface
type "CICS with DFHCOMMAREA calling convention". See Client Interface Types for more in-
formation.

Name Type Data Set Description Notes

SQRE1DFH [CICS CSD EXP970.DCCO|CSD Definition for RPC client SQRE1CLT.

SQREIIGY [JCL EXP970.DCCO|Job (JCL) to build the RPC client SQRE1CLT. 2

SQREIMAP|CICS Map EXP970.DCCO|CICS Map definition for RPC clients SQRE1CLT.

SQRE1 COBOL source code|EXP970.DCCO|Client interface object for IDL program SQRE1, |1
alias of SQUARE.

SQRE1CLT |COBOL source code|EXP970.DCCO|An RPC client application calling the remote 3
procedure (RPC service) SQUARE.

SQOREIMAP|COBOL copybook |EXP970.DICO |Description of input and output fields of map
SQREIMAP.

SQRE1 COBOL copybook |EXP970.DICO |Client interface object copybook for IDL program
SQRE], alias of SQUARE.

—_

Notes:

1. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,
generate these objects with the EntireX Workbench.

2. Adapt the JCL to your needs.

3. Application

a. built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

b. associated with IDL exampleWithPgmAlias.idl.

c. client interface object name SQREI1 different from remote procedure name SQUARE (RPC
service).

d. SQRE1CLT and client interface object SQRE1 installed as separate CICS programs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolClient/zosCICS/ DFHCOMMAREA under UNIX or Windows.

138 EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

SQUARE Client using Call Interface

For CICS on operating system z/OS, the following SQUARE client is implemented with interface
type "CICS with standard linkage calling convention". See Client Interface Types for more inform-

ation.

Name Type Data Set Description Notes

SQRECLT |COBOL source code|EXP970.DCCO|An RPC client application calling the remote 2
procedure (RPC service) SQUARE.

SQREDEFH |CICS CSD EXP970.DCCO|CSD Definition for RPC client SQRECLT.

SQREIGY |JCL EXP970.DCCO|Job (JCL) to build the RPC client SQRECLT. 3

SQOREMAP |CICS Map EXP970.DCCO|CICS Map definition for RPC client SQRECLT.

SQUARE |COBOL source code|EXP970.DCCO |Client interface object for IDL program SQUARE. |1

SQREMAP |COBOL copybook |EXP970.DICO |Description of input and output fields of map
SQREMAP.

SQUARE |COBOL copybook |EXP970.DICO |Client interface object copybook for IDL program |1
SQUARE.

Notes:

1. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,
generate these objects with the EntireX Workbench.

2. Application

a. built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with Call Interfaces (z/OS and z/VSE).

b. associated with IDL file example.idl.
c. SQRECLT uses CICS Map definition SQREMAP.
d. SQRECLT and client interface object SQUARE are linked together.
e. SQRECLT installed as single CICS program.

3. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolClient/zosCICS/Calllnterface under UNIX or Windows.

EntireX COBOL Wrapper

139

Client and Server Examples for z/OS CICS

Basic RPC Server Examples - CALC, SQUARE

This section covers the following examples:

= CALC Server
= SQUARE Server

CALC Server
For CICS under operating system z/OS, the CALC server is built with COBOL Wrapper "CICS

with DFHCOMMAREA calling convention" interface type. See Server Interface Types for more
information.

Name Type Data Set Description Notes

CALC COBOL source code |[EXP970.DVCO| A server application providing the remote 1
procedure CALC (RPC service), with associated
example.idl.

CALCDFH |CICS CSD EXP970.DVCO|CSD Definition for remote procedure CALC (RPC
service).

CALCIGY |JCL EXP970.DVCO |Job (JCL) to build the remote procedure CALC (RPC |2
service).

| Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolServer/zosCICS under UNIX or Windows.

SQUARE Server
For CICS under operating system z/OS, the SQUARE server is built with COBOL Wrapper "CICS

with DFHCOMMAREA calling convention" interface type. See Client Interface Types for more
information.

140 EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

Name Type Data Set Description Notes

SQREDEFH |CICS CSD EXP970.DVCO | CSD Definition for remote procedure SQUARE (RPC
service).

SQREIGY |[JCL EXP970.DVCO|Job (JCL) to build the remote procedure SQUARE |2
(RPC service).

SQUARE [COBOL source code |[EXP970.DVCO| A server application providing the remote procedure|1
SQUARE (RPC service), with associated example.idl.

] Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolServer/zosCICS under UNIX or Windows.

Reliable RPC Client Examples - SENDMAIL

= SENDMAIL Client using DFHCOMMAREA
= SENDMAIL Client using Call Interface

SENDMAIL Client using DFHCOMMAREA

For CICS under operating system z/OS, the following CALC client is implemented with interface
type "CICS with DFHCOMMAREA calling convention". See Client Interface Types for more in-
formation.

Name Type Data Set Description Notes

SEND1DFH |CICS CSD EXP970.DCCO|CSD Definition for RPC client SEND1CLT.

SEND1IGY (JCL EXP970.DCCO|Job (JCL) to build the RPC client SEND1CLT. |1

SEND1IMAP |CICS Map EXP970.DCCO|CICS Map definition for RPC client SEND1CLT.

SEND1 COBOL source code|EXP970.DCCO|Client interface object for IDL program SEND1, |2
alias of SENDMAIL.

SEND1CLT |COBOL source code | EXP970.DCCO|An RPC client application calling the reliable (3
remote procedure (RPC service) SEND], alias of
SENDMAIL.

SENDIMAP |[COBOL copybook |EXP970.DICO |Description of input and output fields of map
SENDIMAP.

SEND1 COBOL copybook |EXP970.DICO |Client interface object copybook for IDL program |2
SEND1, alias of SENDMAIL.

EntireX COBOL Wrapper

141

Client and Server Examples for z/OS CICS

Notes:

1. Adapt the JCL to your needs.

2. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,
generate these objects with the EntireX Workbench.

3. Application

a. built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE). See also Reliable RPC for COBOL
Wrapper

b. associated with IDL file mailWithPgmAlias.idl
c. uses CICS Map definition SENDIMAP

d. client interface object name SEND1 different from remote procedure name SENDMAIL (RPC
service)

e. SENDICLT and client interface objects SENDI1 installed as separate CICS programs.

For more information, refer to the readme file in EntireX directory examples/RPC/reliable/ CobolCli-
ent/zosCICS/ DFHCOMMAREA under UNIX or Windows.

SENDMAIL Client using Call Interface

For CICS under operating system z/OS, the following CALC client is implemented with interface
type "CICS with standard linkage calling convention". See Server Interface Types for more inform-
ation.

Name Type Data Set Description Notes

SENDCLT |COBOL source code|EXP970.DCCO|An RPC client application calling the reliable 1
remote procedure (RPC service) SENDMAIL.

SENDDFH |CICS CSD EXP970.DCCO|CSD Definition for RPC client SENDCLT.

SENDIGY |JCL EXP970.DCCO|Job (JCL) to build the RPC client SENDCLT. 2

SENDMAIL|COBOL source code| EXP970.DCCO|Client interface object for IDL program 3
SENDMAIL.

SENDMAP |CICS Map EXP970.DCCO|CICS Map definition for RPC client SENDCLT.

SENDMAIL|COBOL copybook |EXP970.DICO |Client interface object copybook for IDL program (3
SENDMAIL.

SENDMAP |COBOL copybook |EXP970.DICO |Description of input and output fields of map
SENDMAP.

Notes:

1. Application

142 EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

a. built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with Call Interfaces (z/OS and z/VSE). See also Reliable RPC for COBOL Wrapper

b. associated with IDL file mail.idl
c. uses CICS map definition SENDMAP
d. SENDCLT and client interface object SENDMAIL are linked together
e. installed as single CICS program.
2. Adapt the JCL to your needs.
3. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,

generate these objects with the EntireX Workbench.

For more information, refer to the readme file in EntireX directory examples/RPC/reliable/ CobolCli-
ent/zosCICS/Calllnterface under UNIX or Windows.

Reliable RPC Server Example - SENDMAIL

For CICS on operating system z/OS, the SENDMAIL server is built with COBOL Wrapper "CICS
with DFHCOMMAREA calling convention" interface type. See Server Interface Types for more
information.

Name Type Data Set Description Notes
SENDDFH |CICS CSD EXP970.DVCO|CSD Definition for remote procedure SENDMAIL
(RPC service).
SENDIGY |JCL EXP970.DVCO|Job (JCL) to build remote procedure SENDMAIL |1
(RPC service).
SENDMAIL|COBOL source EXP970.DVCO|a server application providing the reliable remote |2
code procedure SENDMAIL (RPC service), with
associated mail.idl.

) Notes:

1. Application built according to the server-side build instructions. See Using the COBOL Wrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE). See also Reliable RPC for
COBOL Wrapper.

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPCl/reliable/CobolServ-
er/zosCICS under UNIX or Windows.

EntireX COBOL Wrapper 143

Client and Server Examples for z/OS CICS

Advanced CICS Channel Container RPC Server Example - DFHCON

For CICS on operating system z/OS, the TWOC server is built with COBOL Wrapper "CICS with
Channel Container calling convention" interface type. See Server Interface Types for more inform-
ation.

Name Type Data Set Description Notes
TWOC COBOL source EXP970.DVCO| A server application providing the remote 1
code procedure TWOC (RPC service), with associated

CICSChannelContainer.idl.

TWOCDFH|CICS CSD EXP970.DVCO|CSD Definition for remote procedure TWOC (RPC
service).

TWOCIGY |JCL EXP970.DVCO|Job (JCL) to build remote procedure TWOC (RPC |2
service).

1. Application built according to the server-side build instructions. See Using the COBOL Wrapper
for CICS with Channel Container Calling Convention (z/0OS).

2. Adapt the JCL to your needs.

For more information, see the readme file in EntireX directory examples/RPC/advanced/CICSgreat-
er32K/Channel Container/CobolServer/zosCICS under UNIX or Windows.

Advanced CICS Large Buffer RPC Server Example - DFHLBUF

For CICS on operating system z/OS, the LBUF server is built with COBOL Wrapper "CICS with
DFHCOMMAREA large buffer interface" interface type. See Server Interface Types for more in-
formation.

Name Type Data Set Description Notes

LBUF COBOL source code| EXP970.DVCO| A server application providing the remote 1
procedure LBUF (RPC service), with associated
CICSLargeBuffer.idl.

LBUFDFH |CICS CSD EXP970.DVCO|CSD Definition for remote procedure LBUF (RPC
service).
LBUFIGY [JCL EXP970.DVCO|Job (JCL) to build remote procedure LBUF (RPC |2
service).
| Notes:

144 EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

1. Application built according to the server-side build instructions. See Using the COBOL Wrapper
for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE).

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/advanced/CIC-
Sgreater32K/LargeBuffer/CobolServer/zosCICS under UNIX or Windows.

EntireX COBOL Wrapper 145

146

18 Client and Server Examples for z/OS IMS BMP

No special IMS BMP examples are delivered.

The delivered client examples for z/OS batch can be used as a basis for use in BMP mode, but they
have to be adapted.

The delivered server examples for z/OS batch can also be used in BMP mode. See Client and
Server Examples for z/OS Batch. Using IMS PCB pointers to access IMS databases in this context
is described in IMS PCB Pointer IDL Rules under Using the COBOL Wrapper for IMS BMP
(z/0S).

147

148

19 Server Examples for z/0OS IMS MPP

B G AL S VT et 150
B S QUARE SO VT ..o e e e 150

149

Server Examples for z/OS IMS MPP

This chapter describes examples provided for COBOL on operating system z/OS with the TP system
IMS for an MP region. All examples here can be found in the EntireX directory examples/RPC under
UNIX and Windows. They are also available for z/OS if installed. See Extract the EntireX RPC Ex-
amples from their Container Data Set in the z/OS installation documentation. This document covers
the following topics:

CALC Server

The CALC server is an IMS message processing program (MPP) for the TP system IMS under
operating system z/OS. It is accessible with IMS Connect using IMS Connect RPC Server or the
EntireX Adapter.

Name Type Data Set Description Notes

CALC COBOL source code| EXP970.MVCO | A server application providing the remote
procedure CALC (RPC service) with associated

example.idl.

CALCIGY |JCL EXP970.MVCO|Job (JCL) to build the remote procedure CALC |1
(RPC service).

CALCSTG|IMS definition EXP970.MVCO (IMS first stage generation definition for TNCALCP |1
transaction.

] Notes:

1. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolServer/zosIMSMPP under UNIX or Windows.

SQUARE Server

The SQUARE server is an IMS message processing program (MPP) for the TP system IMS under
operating system z/OS. It is accessible with IMS Connect using the IMS Connect RPC Server or the
EntireX Adapter.

150 EntireX COBOL Wrapper

Server Examples for z/OS IMS MPP

Name Type Data Set Description Notes

SQUARE |COBOL source code |[EXP970.MVCO|A server application providing the remote
procedure SQUARE (RPC service), with associated
example.idl.

SQREIGY |JCL EXP970.MVCO|]Job (JCL) to build the remote procedure SQUARE |1
(RPC service).

SQRESTG|IMS definition EXP970.MVCO |IMS first stage generation definition for TNSQREP |1
transaction.

) Notes:

1. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/basic/example/Co-
bolServer/zosIMSMPP under UNIX or Windows.

EntireX COBOL Wrapper

151

152

20 Client and Server Examples for BS2000/0SD

= QOverview of Client and Server Examples for BS2000/0SDcoviiiiiiiiiiiiiieieee e 154
= Creating the Sample COBOL Client Programscuuviiiiiiiiieiiiiie et 157
= Creating the Sample COBOL Server PrOGramsouuurieiiiiiieeeiiiee ettt 158
= Running the Sample COBOL ClIent Programsuviiiiiiiiiiiiiie et 158

153

Client and Server Examples for BS2000/0SD

This chapter describes the examples provided for the COBOL Wrapper for BS2000/OSD.

Overview of Client and Server Examples for BS2000/0SD

The following examples are delivered for BS2000/OSD:

= CALC Example

= SQUARE Example

= SENDMAIL Reliable RPC Example

= Notes

All examples here can be found in the EntireX directory examples/RPC under UNIX and Windows.
If EntireX is installed under BS2000/OSD, the examples are also available on this platform.

CALC Example

Client

Element Type |LMS Library Comment Notes

CREATE-CALC-CLIENT |] EXP811.COBC|S-procedure to generate the CALC COBOL sample|2
client application. It makes use of
RUN-COBOL-COMPILER and BIND-CALC-CLIENT.

BIND-CALC-CLIENT J EXP811.COBC|S-procedure to bind the CALC COBOL sample client

application.

RUN-COBOL-COMPILER

EXP811.COBC

S-procedure to run the COBOL2000 / COBOLS5
compiler.

RUN-CALC-CLIENT J EXP811.COBC|S-procedure to run the CALC COBOL sample client
application.

CALCCLT.COB S |EXP811.COBC|Main program source of the CALC COBOL example. |1

CALC.COB S |EXP811.COBC|COBOL RPC client interface object. 1

CALC S |EXP811.COBC|COBOL RPC interface copybook. 1

COBSRVI.COB S |EXP811.COBC|Generic RPC service. 1

ERXCOMM S |EXP811.COBC|Layout of the RPC communication area. See The |1
RPC Communication Area (Reference).

CLIENT-ADAPARM S |EXP811.COBC|Adabas ADALNK IDTNAME parameter required
when using the NET transport method. It is shared
by all clients.

CLIENT-INPARM-CALC |S |EXP811.COBC|CALC client input parameters.

154

EntireX COBOL Wrapper

Client and Server Examples for BS2000/0SD

Server

Element Type |LMS Library Comment Notes

CREATE-CALC-SERVER |] EXP811.COBS |S-procedure to generate the CALC COBOL example |2

server. It makes use of RUN-COBOL-COMPILER.
RUN-COBOL-COMPILER (] EXP811.COBS |S-procedure to run the COBOL2000 / COBOL85 |2
compiler.

CALC.COB S |EXP811.COBS|Server program source of CALC COBOL example. |1

SQUARE Example

Client

Element Type |LMS Library Comment Notes

CREATE-SQUARE-CLIENT (] EXP811.COBC |S-procedure to generate the SQUARE COBOL 2
sample client application. It uses
RUN-COBOL-COMPILER and
BIND-SQUARE-CLIENT.

BIND-SQUARE-CLIENT |] EXP811.COBC|S-procedure to bind the SQUARE COBOL sample
client application.

RUN-COBOL-COMPILER |] EXP811.COBC |S-procedure to run the COBOL2000 / COBOLS5 |2
compiler.

RUN-SQUARE-CLIENT J EXP811.COBC |S-procedure to run the SQUARE COBOL sample
client application.

SQRECLT.COB S |EXP811.COBC|Main program source of SQUARE COBOL example. |1

SQUARE.COB S |EXP811.COBC|COBOL RPC client interface object. 1

SQUARE S |EXP811.COBC|COBOL RPC interface copybook. 1

COBSRVI.COB S |EXP811.COBC|Generic RPC service. 1

ERXCOMM S |EXP811.COBC|Layout of the RPC communication area. See The |1
RPC Communication Area (Reference).

CLIENT-ADAPARM S |EXP811.COBC|Adabas ADALNK IDTNAME parameter required
when using the NET transport method. It is
shared by all clients

CLIENT-INPARM-SQUARE |S |EXP811.COBC|SQUARE client input parameters.

EntireX COBOL Wrapper 155

Client and Server Examples for BS2000/0SD

Server
Element Type [LMS Library ~ |Comment Notes
CREATE-SQUARE-SERVER EXP811.COBS |S-procedure to generate the SQUARE COBOL 2
sample server. It uses RUN-COBOL-COMPILER.
RUN-COBOL-COMPILER EXP811.COBS |S-procedure to run the COBOL2000 / COBOLS85 |2
compiler.
SQUARE.COB EXP811.COBS |Server program source of the SQUARE COBOL |1
example.
SENDMAIL Reliable RPC Example
Client
Element Type [LMS Library Comment Notes
CREATE-MAIL-CLIENT |] EXP811.COBC|S-procedure to generate the SENDMAI L reliable RPC |2
COBOL sample client application. It uses
RUN-COBOL-COMPILER and BIND-MATL-CLIENT.
BIND-MAIL-CLIENT J EXP811.COBC |S-procedure to bind the SENDMAIL reliable RPC
COBOL sample client application.
RUN-COBOL-COMPILER (] EXP811.COBC |S-procedure to run the COBOL2000 / COBOL85 |2
compiler.
RUN-MAIL-CLIENT J EXP811.COBC |S-procedure to run the SENDMAIL reliable RPC
COBOL sample client application.
MAILCLT.COB S |EXP811.COBC|Main program source of the SENDMAI L reliable RPC|1
COBOL example.
SENDMAIL.COB S |EXP811.COBC|COBOL RPC client interface object. 1
SENDMAIL S |EXP811.COBC|COBOL RPC interface copybook. 1
COBSRVI.COB S |EXP811.COBC|Generic RPC service. 1
ERXCOMM S |EXP811.COBC|Layout of the RPC communication area. See The |1

RPC Communication Area (Reference).

CLIENT-ADAPARM S

EXP811.COBC

Adabas ADALNK IDTNAME parameter required
when using the NET transport method. It is shared
by all clients.

CLIENT-INPARM-MAIL |S

EXP811.COBC

SENDMAIL reliable RPC client input parameters.

156

EntireX COBOL Wrapper

Client and Server Examples for BS2000/0SD

Server

Element Type |LMS Library Comment Notes

CREATE-MAIL-SERVER] |EXP811.COBS|S-procedure to generate the SENDMAIL reliable RPC|2
COBOL sample server. It makes use of
RUN-COBOL-COMPILER.

RUN-COBOL-COMPILER|] |EXP811.COBS|S-procedure to run the COBOL2000 / COBOL85 |2
compiler.

SENDMAIL.COB S EXP811.COBS |Server program source of the SENDMAI L reliable RPC|1
COBOL example.

Notes

1. When compiling the COBOL client and server sample source programs, the compiler may issue
warnings depending on the compiler used. These warnings can be ignored.

2. The default configuration expects a COBOL2000 environment. Depending on your installation
it might be necessary to change the COMPILER parameter within the parameter declaration section
of the procedures. The delivered procedures support both COBOL2000 and COBOLS5 syntax.

Creating the Sample COBOL Client Programs

To create the CALC, SQUARE and SENDMAIL clients, parametrize S-procedures CREATE-CALC-CLIENT,
CREATE-SQUARE-CLIENT and CREATE-MAIL-CLIENTin EXP811.COBC and choose the compiler installed
on your system.

For more details, see also see the procedure headers in the delivered job control.

Enter the following commands:

Procedure Parameter|Description Default
EXP-COB-CLT COBOL client examples library EXP811.COBC
COMPILER The COBOL compiler to be used: COBOL2000 or COBOLS85|COBOL2000

For more details, see also see the procedure headers in the delivered job control.

Enter the following commands:

EntireX COBOL Wrapper 157

Client and Server Examples for BS2000/0SD

/CALL-PROCEDURE *LIB(LIB=EXP811.COBC,ELE=CREATE-CALC-CLIENT)
/CALL-PROCEDURE *LIB(LIB=EXP811.COBC,ELE=CREATE-SQUARE-CLIENT)
/CALL-PROCEDURE *LIB(LIB=EXP811.COBC,ELE=CREATE-MAIL-CLIENT)

These procedures call the COBOL compiler and binder to generate corresponding L-elements
stored in the EXP-COB-CLT library (the default is EXP811.COBC).

Creating the Sample COBOL Server Programs

To create the CALC, SQUARE and SENDMAIL server programs, parametrize S-procedures
CREATE-CALC-SERVER, CREATE-SQUARE-SERVER and CREATE-MATL-SERVERIn EXP811.COBS and choose
the compiler installed on your system.

Procedure Parameter|Description Default
EXP-SRV-LIB COBOL server examples library EXP811.COBS
COMPILER The COBOL compiler to be used: COBOL2000 or COBOLS85|COBOL2000

For more details, see also see the procedure headers in the delivered job control.

Enter the following commands:

/CALL-PROCEDURE *LIB(LIB=EXP811.COBS,ELE=CREATE-CALC-SERVER)
/CALL-PROCEDURE *LIB(LIB=EXP811.COBS,ELE=CREATE-SQUARE-SERVER)
/CALL-PROCEDURE *LIB(LIB=EXP811.COBS,ELE=CREATE-MAIL-SERVER)

These procedures call the COBOL Compiler to generate three corresponding object modules stored
as R-elements in EXP-SRV-LIB (the default is EXP811.COBS).

There is no need to link the object modules with the BS2000/OSD Common Runtime Environment
(CRTE) library. The CRTE is loaded once dynamically in the corresponding worker task of the
RPC server where the server program is executed.

Running the Sample COBOL Client Programs

Running the CALC client is described below. Running the SQUARE and the SENDMAIL clients is similar.
- Torunthe CALC client

1 Adapt S-element CLIENT-INPARM-CALC in EXP811.COBC.

158 EntireX COBOL Wrapper

Client and Server Examples for BS2000/0SD

*x X kX kx x *x x *x x kx kx *x kx *x kx kxk *x kx kx kxk kx kxk kx kxk kx kxk kxk kxk *xk kxk *x *x *x *

* Example CALC Client Input Parameter *
* kX *k kX kX Kk k¥ Kk Kk Kk Kk k Kk Kk Kk Kk k Kk Kk Kk Kk *k Kk Kk k¥ k¥ Kk k¥ Kk * k¥ Kk Kk XK
BROKERID <ipaddr>:<port>:TCP s
* BROKERID ETB<nnnnn>::NET *
* USERID <userid> *
* PASSWORD <password> *
CLASS RPC *
SERVER ~ SRV1 *
SERVICE CALLNAT *
LOGON *
CALC + 00012345 00067890 *
CALC - 00067890 00012345 *
CALC * 00001234 00005678 *
CALC / 00005678 00001234 *
CALC % 00005678 00001234 @
LOGOFF *
END

Set up BROKERID in one of two formats, depending on the transport method:
® TCP Transport Method
<ip><port>TCP

where 7ip isthe address or DNS host name,
port is the port number that EntireX Broker is listening on, and

TCP is the protocol name.

® NET Transport Method
ETB<nnnnn>:NET

where nnnnn is the ID under which EntireX Broker is connected to the Adabas ID table and

NET is the protocol name.

2 Adapt S-element CLIENT-ADAPARM.

If "NET" is chosen as transport method, specify the name of the ID table to which the broker

is connected:

EntireX COBOL Wrapper

159

Client and Server Examples for BS2000/0SD

ADALNK IDTNAME=ADAXXxXXX

where xxxxx is any uppercase value.

This parameter is shared between all sample clients.

3 Make sure the RPC server runs as COBOL RPC server (refer to the RPC-CONFIG S-element
in library EXP811.JOBS) and library EXP811.COBS is included as PROGRAM- L1B in the start up
procedure START-RPC-SERVER.

4 Enter the following command to run the CALC COBOL example client:

/CALL-PROCEDURE *LIB(LIB=EXP811.COBC,ELE=RUN-CALC-CLIENT)

CALCCLT : START

OPEN INg ======== : <00>
: BROKERID : ETBOO1
: CLASS : RPC
: SERVER : SRV1

: SERVICE : CALLNAT
CALCCLT : BROKER LOGON.
CALC called successfully: 000012345 + 000067890 000080235
CALC called successfully: 000067890 - 000012345 = 000055545
CALC called successfully: 000001234 * 000005678 007006652
CALC called successfully: 000005678 / 000001234 = 000000004
CALC called successfully: 000005678 % 000001234 = 000000742
CALCCLT : BROKER LOGOFF.
CLOSE 1IMNg ======== : <00>
CALCCLT : LEAVE

160 EntireX COBOL Wrapper

21 Client and Server Examples for IBM i

= Qverview of Client and Server Examples for IBM ioooiiiiiiiiii e 162
= |nstalling and Running the Client Examples for IBM ioooiiiiiioii e 163
= |nstalling and Running the Server Examples for IBM ic.oviiiiiiiiii e 163

161

Client and Server Examples for IBM i

This chapter describes the examples provided for the COBOL Wrapper for z/OS Batch.

Overview of Client and Server Examples for IBM i

The following examples are delivered for IBM i in the library EXAMPLE of the Developer's Kit

for IBM i.

Module Source file Windows File Name |Description Notes
CALCMENU | QCBLLESRC |- not delivered here -|COBOL client display file (source) 1
CALCMAIN |QCBLLESRC |- not delivered here -|COBOL client dialog program (source)|1
CCALC QCBLLESRC |- not delivered here - |client interface object (generated) 1
RPCSRVI QCBLLESRC |- not delivered here - |generic RPC service module 1
CALC QCBLLESRC |- not delivered here - |RPC server calc (source) 2
Module

The name of the delivered module.

Source file

The name of the source file where the modules are delivered.

Windows File Name

IBM i examples are not delivered in the Windows installation

Description

The purpose of the module

] Notes:

1. The client application is built by the source members: CALCMENU, CALCMAIN, CCALC and
RPCSRVI. You can find the associated IDL file example.idl in the Windows installation.

2. The server application.

162

EntireX COBOL Wrapper

Client and Server Examples for IBM i

Installing and Running the Client Examples for IBM i

> To run the client examples for IBM i

1 The EntireX product library EXX must be in your library list. It contains the Broker ACI service
program EXA.

2 Confirm that the broker and the RPC server are active.

3 Start the client application CALCCLIENT that you built, see Using the COBOL Wrapper for
Batch (z/OS, BS2000/OSD, z/VSE and IBM 1i).

4 A menu similar to the following will be displayed:

Calculator Menu

Operation: + (type + - * / to calculate or
type . to terminate)

Operand 1:

Operand 2:

Result:

Broker-ID: localhost:1971 Server: SRVI

Specity the ID of the remote Broker and the name of the server that provides the CALC program.
Specify the numbers you want to compute and press ENTER. If the Broker connection fails, you will
get an appropriate error message.

Installing and Running the Server Examples for IBM i

> To install and run the server examples for IBM i

1 For IBM i, the delivered program CALC in QCBLLESRC source file must be provided to the
RPC server under IBM i.

2 Confirm that the broker is active.

3 Start the RPC server under IBM i.

EntireX COBOL Wrapper 163

164

22 Client and Server Examples for z/VSE Batch

= Basic RPC Client Examples - CALC, SQUAREoouiiiiiii e 166
= Basic RPC Server Examples - CALC, SQUAREoooiiiiiiiii e 168
= Reliable RPC Client Example - SENDMAILoviiiiiiiiiei e 169
= Reliable RPC Server Example - SENDMAILooiiiiii et 170

165

Client and Server Examples for z/VSE Batch

This chapter describes the examples provided for the COBOL Wrapper for z/VSE Batch. All ex-
amples here can be found in the EntireX directory examples/RPC under UNIX and Windows. Al-
ternatively, you can download the full set of z/VSE COBOL examples from Software AG's customer
service site Empower. In Empower, choose Products > Download Components. The examples
are provided as AWS tape EXAMPLE . AWS. The tape contains source code and the corresponding
objects and phases, ready to run.

Basic RPC Client Examples - CALC, SQUARE

This section covers the following examples:

= CALC Client
= SQUARE Client

CALC Client

The CALC client is built with COBOL Wrapper interface type "Batch with standard linkage calling
convention". See Client Interface Types for more information.

Name Type Sublibrary Description Notes

READMEL . TXT|Text document EXAMPLE.COBCLTB |Client build instructions and description.

CALCCLT.C |COBOL source code|EXAMPLE.COBCLTB|A client application calling the remote 2
procedure (RPC service) CALC, with
associated example.idl.

CALC.C COBOL source code|EXAMPLE . COBCLTB|Client interface object for IDL program |1
CALC.

CALC.C COBOL copybook |EXAMPLE.COBCPYB|Client interface object copybook for IDL |1
program CALC.

ERXCOMM.C |COBOL source code | EXAMPLE.COBCPY |RPC Communication Area copybook. 1

COBSRVIB.C |COBOL source code|EXAMPLE.COBCLTB|Generic RPC Service. 1

CALCCLT.J |JCL EXAMPLE.COBCLTB |Job control to build the RPC client CALCCLT. |3

CALCRUN.J |JCL EXAMPLE.COBCLTB|Job control to execute the RPC client 3
CALCCLT.

| Notes:

1. Generate these objects with the EntireX Workbench or use the example library contained in
EXAMPLE. AWS.

2. Application built according to the client-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000/0OSD, z/VSE and IBM 1i).

3. Adapt the JCL to your needs.

166 EntireX COBOL Wrapper

https://empower.softwareag.com

Client and Server Examples for z/VSE Batch

For more information refer to the file READMEL. TXT in EntireX directory examples/RPC/basic/ex-
ample/CobolClient/vseBatch under UNIX or Windows, or the downloaded example sublibrary
EXAMPLE.COBCLTB.

SQUARE Client
For batch under operating system z/VSE, the SQUARE client is built with COBOL Wrapper interface

type "Batch with standard linkage calling convention". See Client Interface Types for more inform-
ation.

Name Type Sublibrary Description Notes

READMEL . TXT|Text document EXAMPLE.COBCLTB|Client build instructions and description

SQRECLT.C |COBOL source code|EXAMPLE.COBCLTB|A client application calling the remote 1
procedure (RPC service) SQUARE, with
associated example.idl.

SQUARE.C COBOL source code|EXAMPLE . COBCLTB|Client interface object for IDL program |3
SQUARE.

SQUARE.C COBOL copybook |EXAMPLE.COBCPYB|Client interface object copybook for IDL |3
program SQUARE.

ERXCOMM.C |COBOL source code|EXAMPLE.COBCPY |RPC Communication Area copybook.
COBSRVIB.C |COBOL source code|EXAMPLE.COBCLTB|Generic RPC Service.

SQRECLT.J |JCL EXAMPLE.COBCLTB|Job control to build the RPC client SQRECLT.|2
SQRERUN.J [JCL EXAMPLE.COBCLTB|Job control to execute the RPC client 2
SQRECLT.
] Notes:

1. Application built according to the client-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000/0OSD, z/VSE and IBM 1i).

2. Adapt the JCL to your needs.
3. Generate these objects with the EntireX Workbench or use the example library contained in

EXAMPLE . AWS.

For more information, refer to the file READMEL. TXT in EntireX directory examples/RPC/basic/ex-
ample/CobolClient/vseBatch under UNIX or Windows, or the downloaded example sublibrary
EXAMPLE.COBCLTB.

EntireX COBOL Wrapper 167

Client and Server Examples for z/VSE Batch

Basic RPC Server Examples - CALC, SQUARE

This section covers the following examples:

= CALC Server
= SQUARE Server

CALC Server
For batch under operating system z/VSE, the CALC server is built with COBOL Wrapper "Batch

with standard linkage calling convention" interface type. See Server Interface Types for more in-
formation.

Name Type Sublibrary Description Notes

READMEL . TXT |Text file EXAMPLE.COBSRVB|CALC server build instructions and
description

CALC.C COBOL source |EXAMPLE.COBSRVB|A server application providing the remote |1

code procedure CALC (RPC service), with

associated example.idl.

CALC.J JCL EXAMPLE.COBSRVB |Job control to build the remote procedure 2
CALC (RPC service).

| Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000/0OSD, z/VSE and IBM 1i).

2. Adapt the JCL to your needs.
For more information refer to the file READMEL. TXT in EntireX directory examples/RPC/basic/ex-

ample/CobolServer/vseBatch under UNIX or Windows, or the downloaded example sublibrary
EXAMPLE.COBSRVB.

SQUARE Server
For batch on operating system z/VSE, the SQUARE server is built with COBOL Wrapper interface

type "Batch with standard linkage calling convention". See Client Interface Types for more inform-
ation.

168 EntireX COBOL Wrapper

Client and Server Examples for z/VSE Batch

Name Type Sublibrary Description Notes
READMEL . TXT |Text file EXAMPLE.COBSRVB|SQUARE server build instructions and
description
SQUARE.C COBOL source |EXAMPLE.COBSRVB|A server application providing the remote |1
code procedure SQUARE (RPC service), with
associated example.idl
SQUARE.J JCL EXAMPLE.COBSRVB|Job control to build the remote procedure 2
SQUARE (RPC service)

) Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000/0OSD, z/VSE and IBM 1i).

2. Adapt the JCL to your needs.

For more information refer to the file READMEL. TXT in EntireX directory examples/RPC/basic/ex-
ample/CobolServer/vseBatch under UNIX or Windows, or the downloaded example sublibrary
EXAMPLE.COBSRVB.

Reliable RPC Client Example - SENDMAIL

For batch on operating system z/VSE, the SENDMAIL client is built with COBOL Wrapper interface
type "Batch with standard linkage calling convention". See Client Interface Types for more inform-
ation.

Name Type Sublibrary Description Notes

READMEZ . TXT|Text file EXAMPLE.COBCLTB |Client build instructions and description.

SENDCLT.C |COBOL source code|EXAMPLE.COBCLTB|A client application calling the reliable 1.
remote procedure (RPC service), SENDMAIL,
with associated mail.idl.

SENDMAIL.C |COBOL source code|EXAMPLE.COBCLTB|Client interface object for IDL program 3.
SENDMATL.

SENDMAIL.C |COBOL copybook |EXAMPLE.COBCPYB|Client interface object copybook for IDL 3.
program SENDMATL.

ERXCOMM.C |COBOL copybook [EXAMPLE.COBCPY |RPC Communication Area copybook. 3
COBSRVIB.C |COBOL source code|EXAMPLE.COBCLTB|Generic RPC Service. 3.
SENDCLT.J |JCL EXAMPLE.COBCLTB|Job control to build the RPC client SENDCLT.|2
SENDRUN.J |JCL EXAMPLE.COBCLTRB|Job control to execute the RPC client 2
SENDCLT.
| Notes:

EntireX COBOL Wrapper 169

Client and Server Examples for z/VSE Batch

1. Application built according to the client-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000/0SD, z/VSE and IBM 1i). See also Reliable RPC for COBOL Wrapper.

2. Adapt the JCL to your needs.

3. Generate these objects with the EntireX Workbench or use the example library contained in
EXAMPLE. AWS.

For more information refer to the file README2 . TXT in EntireX directory examples/RPCl/reliable/ex-
ample/CobolClient/vseBatch under UNIX or Windows, or the downloaded example sublibrary
EXAMPLE.COBCLTB.

Reliable RPC Server Example - SENDMAIL

For batch on operating system z/VSE, the SENDMAIL server is built with COBOL Wrapper interface

type "Batch with standard linkage calling convention". See Client Interface Types for more inform-
ation.

Name Type Sublibrary Description Notes
READMEZ . TXT |Text file EXAMPLE.COBSRVB|SENDMATIL server build instructions and
description
SENDMAIL.C |COBOL source |EXAMPLE.COBSRVB|A server application providing the reliable |2
code remote procedure (RPC service) SENDMAIL,
with associated mail.idl.
SENDMAIL.J |JCL EXAMPLE.COBSRVB |Job control to build the remote procedure 1
SENDMATIL (RPC service).

] Notes:

1. Adapt the JCL to your needs.

2. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000/0SD, z/VSE and IBM 1i). See also Reliable RPC for COBOL Wrapper.

For more information refer to the file READMEZ2 . TXT in EntireX directory examples/RPC/reliable/ex-
ample/CobolServer/vseBatch under UNIX or Windows, or the downloaded example sublibrary
EXAMPLE.COBSRVB.

170 EntireX COBOL Wrapper

23 Client and Server Examples for z/VSE CICS

B BasiC RPC CALC EXAMPIE ...t e et e e e e e ettt e e e e e e e e 172
® Basic RPC SQUARE EXAMPIEoeiiiiiiiiieiii ettt e e 174
= Reliable RPC SENDMAIL EXGMPIEeeeiiiiiiiiiiie ettt e aa e e e 177

171

Client and Server Examples for z/VSE CICS

This chapter describes the examples provided for the COBOL Wrapper for z/VSE CICS. All examples
here can be found in the EntireX directory examples/RPC under UNIX and Windows. Alternatively,
you can download the full set of z/VSE COBOL examples from Software AG's customer service
site Empower. In Empower, choose Products > Download Components. The examples are provided
as AWS tape EXAMPLE . AWS. The tape contains source code and the corresponding objects and
phases, ready to run.

Basic RPC CALC Example

= CALC Client using Call Interface (CALCCLT)
= CALC Client using DFHACOMMAREA (CALC1CLT)
= CALC Server (CALC)

CALC Client using Call Interface (CALCCLT)

The CALC CICS client example CALCCLT is implemented with interface type "CICS with standard
linkage calling convention". See Client Interface Types for more information.

Name Type Sublibrary Description Notes

READMEL. TXT|Text file EXAMPLE.COBCLTC |Client build instructions and description.

CALCCLT.C |COBOL source code|EXAMPLE.COBCLTC|An RPC client application calling the 1
remote procedure (RPC service) CALC.

CALC.C COBOL source code|EXAMPLE . COBCLTC|Client interface object for IDL program |2
CALC.

CALC.C COBOL copybook |EXAMPLE.COBCPYC|Client interface object copybook for IDL |2
program CALC.

ERXCOMM.C |COBOL copybook [EXAMPLE.COBCPY |RPC Communication Area copybook. 2

COBSRVID.C |COBOL source code|EXAMPLE.COBCLTC|Generic RPC Service. 2

CALCMAP.A |CICS map EXAMPLE.COBCLTC|CICS map for RPC client CALCCLT.

CALCMAP.C |COBOL copybook |EXAMPLE.COBCPYC|Generated CICS Map COBOL Definitions. |3

CALCLT.J JCL EXAMPLE.COBCLTC |Job control to build the RPC client CALCCLT. |4

CALCDFH.J |JCL EXAMPLE.COBCLTC|CICS CSD definitions job control for RPC
client CALCCLT.

| Notes:

1. Built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with Call Interfaces (z/OS and z/VSE).

2. Generate these objects with the EntireX Workbench or use the example library contained in
EXAMPLE. AWS.

172 EntireX COBOL Wrapper

https://empower.softwareag.com

Client and Server Examples for z/VSE CICS

3. Generated from CALCMAP. A during execution of CALCCLT. J.

4. Adapt the JCL to your needs.

For more information, refer to the READMEL. TXT file in EntireX directory examples/RPC/basic/ex-
ample/CobolClient/vseCICS/Callinterface under UNIX or Windows, or the downloaded example
sublibrary EXAMPLE.COBCLTC.

CALC Client using DFHACOMMAREA (CALC1CLT)

The CALC CICS client example CALC1CLT is implemented with interface type "CICS with DFHCOM-
MAREA calling convention". See Client Interface Types for more information.

Name Type Sublibrary Description Notes

README3 . TXT|Text file EXAMPLE.COBCLTC|Client build instructions and description.

CALCICLT.C |COBOL source code|EXAMPLE.COBCLTC|An RPC client application calling the 1
remote procedure (RPC service) CALC.

CALC1.C COBOL source code | EXAMPLE . COBCLTC |Client interface object for IDL program |2
CALC.

CALCL.C COBOL copybook |EXAMPLE.COBCPYC |Client interface object copybook for IDL |2
program CALC.

ERXCOMM.C |COBOL copybook [EXAMPLE.COBCPY |RPC Communication Area copybook. 2,5

COBSRVIC.C |COBOL source code|EXAMPLE.COBCLTC|Generic RPC Service. 2

CALCIMAP.A |CICS map EXAMPLE.COBCLTC|CICS map for RPC client CALC1CLT.

CALCIMAP.C |COBOL copybook |EXAMPLE.COBCPYC|Generated CICS Map COBOL Definitions. |3

CALCICLT.J [(JCL EXAMPLE.COBCLTC|Job control to build the RPC client 4
CALCICLT.

CALCIDFH.J |JCL EXAMPLE.COBCLTC|CICS CSD definitions job control for RPC
client CALCI1CLT.

| Notes:

1. Built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

EXAMPLE. AWS.

Adapt the JCL to your needs.

Built as COBSRVI.PHASE by CALCICLT.J.

Generated from CALCIMAP.A during execution of CALCICLT.J.

Generate these objects with the EntireX Workbench or use the example library contained in

EntireX COBOL Wrapper

173

Client and Server Examples for z/VSE CICS

For more information, refer to the README3. TXT file in EntireX directory examples/RPC/basic/ex-
ample/CobolClient/vseCICS/Callinterface under UNIX or Windows, or the downloaded example
sublibrary EXAMPLE.COBCLTC.

CALC Server (CALC)

The CALC CICS server example is built with COBOL Wrapper interface type "CICS with DFHCOM-
MAREA calling convention”. See Server Interface Types for more information.

Name Type Data Set Description Notes

READMEL . TXT |Text file EXAMPLE.COBSRVC|CALC server build instructions and description.

CALC.C COBOL source [EXAMPLE.COBSRVC|A server application providing the remote 1

code procedure CALC (RPC service), with associated

example.idl.

CALC.J JCL EXAMPLE.COBSRVC|Job control to build the remote procedure CALC|2
(RPC service).

CALCDFH.J |JCL EXAMPLE.COBSRVC|CICS CSD definitions job control for remote
procedure CALC (RPC service).

] Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. Adapt the JCL to your needs.

For more information, refer to the READMEL. TXT file in EntireX directory examples/RPC/basic/ex-
ample/CobolServer/vseCICS under UNIX or Windows, or the downloaded example sublibrary
EXAMPLE.COBSRVC.

Basic RPC SQUARE Example

= SQUARE Client using Call Interface (SQRECLT)
= SQUARE Client using DFHACOMMAREA (SQRE1CLT)

174 EntireX COBOL Wrapper

Client and Server Examples for z/VSE CICS

= SQUARE Server (SQUARE)

SQUARE Client using Call Interface (SQRECLT)

The SQUARE CICS client example SQRECLT is implemented with interface type "CICS with
standard linkage calling convention". See Client Interface Types for more information.

Name Type Sublibrary Description Notes

READMEL . TXT|Text file EXAMPLE.COBCLTC|Client build instructions and description.

SQRECLT.C |COBOL source code|EXAMPLE.COBCLTC|An RPC client application calling the 1
remote procedure (RPC service) SQUARE.

SQUARE.C COBOL source code|EXAMPLE . COBCLTC|Client interface object for IDL program |2
SQUARE.

SQUARE.C COBOL copybook |EXAMPLE.COBCPYC|Client interface object copybook for IDL |2
program SQUARE.

ERXCOMM.C |COBOL copybook [EXAMPLE.COBCPY |RPC Communication Area copybook. 2

COBSRVID.C [COBOL source code|EXAMPLE.COBCLTC|Generic RPC Service. 2

SQREMAP. A |CICS map EXAMPLE.COBCLTC|CICS map for RPC client SQRECLT.

SQREMAP.C |COBOL copybook |EXAMPLE.COBCPYC|Generated CICS Map COBOL Definitions. |3

SQRECLT.J |JCL EXAMPLE.COBCLTC|Job control to build the RPC client SQRECLT. |4

SQREDFH.J |JCL EXAMPLE.COBCLTC|CICS CSD definitions job control for RPC
client SORECLT.

| Notes:

1. Built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with Call Interfaces (z/OS and z/VSE).

EXAMPLE . AWS.

3.
4.

Adapt the JCL to your needs.

Generated from SQREMAP . A during execution of SQRECLT . J.

Generate these objects with the EntireX Workbench or use the example library contained in

For more information, refer to the READMEL. TXT file in EntireX directory examples/RPC/basic/ex-
ample/CobolClient/vseCICS/Callinterface under UNIX or Windows, or the downloaded example
sublibrary EXAMPLE.COBCLTC.

EntireX COBOL Wrapper

175

Client and Server Examples for z/VSE CICS

SQUARE Client using DFHACOMMAREA (SQRE1CLT)

The SQUARE CICS client example SQREICLT is implemented with interface type "CICS with DFH-
COMMAREA calling convention". See Client Interface Types for more information.

Name Type Sublibrary Description Notes

README3. TXT|Text file EXAMPLE.COBCLTC |Client build instructions and description.

SQREICLT.C |COBOL source code|EXAMPLE.COBCLTC|An RPC client application calling the 1
remote procedure (RPC service) SQUARE.

SQRETL.C COBOL source code | EXAMPLE . COBCLTC |Client interface object for IDL program |2
SQUARE.

SQRETL.C COBOL copybook |[EXAMPLE.COBCPYC |Client interface object copybook for IDL |2
program SQUARE.

ERXCOMM.C |COBOL copybook [EXAMPLE.COBCPY |RPC Communication Area copybook. 2,5

COBSRVIC.C |COBOL source code|EXAMPLE.COBCLTC|Generic RPC Service. 2

SQREIMAP.A |CICS map EXAMPLE.COBCLTC|CICS map for RPC client SQREICLT.

SQREIMAP.C |COBOL copybook |EXAMPLE.COBCPYC|Generated CICS Map COBOL Definitions. |3

SQREICLT.J |JCL EXAMPLE.COBCLTC|{Job control to build the RPC client 4
SQRE1CLT.

CALCIDFH.J |JCL EXAMPLE.COBCLTC|CICS CSD definitions job control for RPC
client SQRE1ICLT.

| Notes:

1. Built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

EXAMPLE . AWS.

4.
5.

Adapt the JCL to your needs.

Built as COBSRVI.PHASE by SQREICLT.J.

Generated from SQREIMAP.A during execution of SQREICLT.J.

Generate these objects with the EntireX Workbench or use the example library contained in

For more information, refer to the README3. TXT file in EntireX directory examples/RPC/basic/ex-
ample/CobolClient/vseCICS/Callinterface under UNIX or Windows, or the downloaded example
sublibrary EXAMPLE.COBCLTC.

176

EntireX COBOL Wrapper

Client and Server Examples for z/VSE CICS

SQUARE Server (SQUARE)

The SQUARE CICS server example is built with COBOL Wrapper interface type "CICS with DFH-
COMMAREA calling convention". See Server Interface Types for more information.

Name Type Data Set Description Notes
READMEL . TXT|Text file EXAMPLE.COBSRVC|CALC server build instructions and description.
SQUARE.C COBOL source |EXAMPLE.COBSRVC|A server application providing the remote 1
code procedure SQUARE (RPC service), with
associated example.idl.
SQUARE . J JCL EXAMPLE.COBSRVC |Job control to build the remote procedure 2
SQUARE (RPC service).
SQREDFH.J |JCL EXAMPLE.COBSRVC|CICS CSD definitions job control for remote
procedure SQUARE (RPC service).

] Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. Adapt the JCL to your needs.

For more information, refer to the READMEL. TXT file in EntireX directory examples/RPC/basic/ex-
ample/CobolServer/vseCICS under UNIX or Windows, or the downloaded example sublibrary
EXAMPLE.COBSRVC.

Reliable RPC SENDMAIL Example

= SENDMAIL Client using Call Interface (SENDCLT)
= SENDMAIL Client using DFHACOMMAREA (SEND1CLT)
= SENDMAIL Server (SENDMAIL)

SENDMAIL Client using Call Interface (SENDCLT)

The SENDMAIL CICS client example SENDCLT is implemented with interface type "CICS with
standard linkage calling convention". See Client Interface Types for more information.

EntireX COBOL Wrapper 177

Client and Server Examples for z/VSE CICS

Name Type Sublibrary Description Notes

READMEZ.TXT|Text file EXAMPLE.COBCLTC |Client build instructions and description.

SENDCLT.C |COBOL source code|EXAMPLE.COBCLTC|An RPC client application calling the 1
remote procedure (RPC service) SENDMATL.

SENDMAIL.C |COBOL source code|EXAMPLE.COBCLTC |Client interface object for IDL program |2
SENDMATIL.

SENDMAIL.C |COBOL copybook |EXAMPLE.COBCPYC|Client interface object copybook for IDL |2
program SENDMATL.

ERXCOMM.C |COBOL copybook |EXAMPLE.COBCPY |RPC Communication Area copybook. 2

COBSRVID.C |COBOL source code|EXAMPLE.COBCLTC|Generic RPC Service. 2

SENDMAP. A |CICS map EXAMPLE.COBCLTC|CICS map for RPC client SENDCLT.

SENDMAP.C |COBOL copybook |EXAMPLE.COBCPYC|Generated CICS Map COBOL Definitions. |3

SENDCLT.J [|JCL EXAMPLE.COBCLTC|Job control to build the RPC client SENDCLT. |4

SENDDFH.J |JCL EXAMPLE.COBCLTC|CICS CSD definitions job control for RPC
client SENDCLT.

| Notes:

1. Built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with Call Interfaces (z/OS and z/VSE). See also Reliable RPC for COBOL Wrapper.

EXAMPLE . AWS.

3.
4.

Adapt the JCL to your needs.

Generated from SENDMAP . A during execution of SENDCLT . J.

. Generate these objects with the EntireX Workbench or use the example library contained in

For more information, refer to the README2 . TXT file in EntireX directory examples/RPC/reliable/ex-
ample/CobolClient/vseCICS/Callinterface under UNIX or Windows, or the downloaded example
sublibrary EXAMPLE.COBCLTC.

SENDMAIL Client using DFHACOMMAREA (SEND1CLT)

The SENDMAIL CICS client example SEND1CLT is implemented with interface type "CICS with DFH-
COMMAREA calling convention". See Client Interface Types for more information.

Name Type Sublibrary Description Notes
README4 . TXT |Text file EXAMPLE.COBCLTC|Client build instructions and description.
SENDICLT.C |COBOL source code|EXAMPLE.COBCLTC|An RPC client application calling the 1
remote procedure (RPC service) SENDMAIL.
SENDI.C COBOL source code|EXAMPLE . COBCLTC|Client interface object for IDL program |2
SENDMATL.
178 EntireX COBOL Wrapper

Client and Server Examples for z/VSE CICS

Name Type Sublibrary Description Notes

SEND1.C COBOL copybook |EXAMPLE.COBCPYC|Client interface object copybook for IDL |2
program SENDMATL.

ERXCOMM.C |COBOL copybook [EXAMPLE.COBCPY |RPC Communication Area copybook. 2,5

COBSRVIC.C |COBOL source code|EXAMPLE.COBCLTC|Generic RPC Service. 2

SENDIMAP.A |CICS map EXAMPLE.COBCLTC|CICS map for RPC client SENDICLT.

SENDIMAP.C |COBOL copybook |EXAMPLE.COBCPYC|Generated CICS Map COBOL Definitions. |3

SENDICLT.J [JCL EXAMPLE.COBCLTC|Job control to build the RPC client 4
SENDICLT.

SENDIDFH.J |JCL EXAMPLE.COBCLTC|CICS CSD definitions job control for RPC
client SENDICLT.

| Notes:

1. Built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE). See also Reliable RPC for COBOL

Wrapper

2. Generate these objects with the EntireX Workbench or use the example library contained in
EXAMPLE. AWS.

3. Generated from SENDIMAP.A during execution of SEND1CLT.J.

4. Adapt the JCL to your needs.
5. Built as COBSRVI.PHASE by SENDICLT.J.

For more information, refer to the README4 . TXT file in EntireX directory examples/RPC/reliable/ex-
ample/CobolClient/vseCICS/Callinterface under UNIX or Windows, or the downloaded example

sublibrary EXAMPLE.COBCLTC.

SENDMAIL Server (SENDMAIL)

The SENDMAIL CICS server example is built with COBOL Wrapper interface type "CICS with DF-
HCOMMAREA calling convention". See Server Interface Types for more information.

Name Type Data Set Description Notes
README?Z . TXT |Text file EXAMPLE.COBSRVC|SENDMATIL server build instructions and
description.
SENDMAIL.C |COBOL source |EXAMPLE.COBSRVC|A server application providing the remote 1
code procedure SENDMATL (RPC service), with
associated example.idl.
SENDMAIL.J |JCL EXAMPLE.COBSRVC |Job control to build the remote procedure 2
SENDMATIL (RPC service).
EntireX COBOL Wrapper 179

Client and Server Examples for z/VSE CICS

Name Type Data Set Description Notes
SENDDFH.J |JCL EXAMPLE.COBSRVC|CICS CSD definitions job control for remote
procedure SENDMAIL (RPC service).

J Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE). See also Reliable RPC for
COBOL Wrapper.

2. Adapt the JCL to your needs.
For more information, refer to the README2 . TXT file in EntireX directory examples/RPC/reliable/ex-

ample/CobolServer/vseCICS under UNIX or Windows, or the downloaded example sublibrary
EXAMPLE.COBSRVC.

180 EntireX COBOL Wrapper

24 COBOL Wrapper Reference

= The RPC Communication Area (REfErENCE)eoeiiiiiiiiiiiiii e

= Generic RPC Services Modules

181

COBOL Wrapper Reference

The RPC Communication Area (Reference)

The RPC communication area is used to specify parameters that are needed to communicate with
the broker and are not specific to client interface objects. These are, for example, the Broker ID,
client parameters such as user ID, password and the server address such as class/servername/service
etc. See the table below for a complete listing.

] Notes:

1. See below the table for an explanation of column headings.

2. The RPC communication area is provided with the generated copybook ERXCOMM in the folder
include for RPC client generation. See Generating COBOL Source Files from Software AG IDL
Files.

3. See section Using the RPC Communication Area for the usage of the RPC communication area.

Reg/
Opt/ | In/
RPC Communication Area Field Explanation Auto |Out |Notes

ERXCOMM-HEADER Label. S I
COMM-REQUEST Label. S

COMM-VERSION Version of RPC communication area. Possible values: | R | T |-
2000.

COMM-FUNCTION LO - log on to the Broker O |1
LF - log off from the Broker

0C - open conversation

CE - close conversation with commit

CB - close conversation with backout

CT - create Natural Security token
RC - do reliable RPC commit
RR - do reliable RPC rollback

RS - get reliable status

Q|G| G| G| s W] W| W| V|

EC - end of conversation

COMM-RETURN-CODE Message class and message code returned by COBOL| - | O
Wrapper.

COMM-MESSAGE-TEXT-EX Message text provided by COBOL Wrapper (long - 10O |-
versions).

COMM-MESSAGE-TEXT Message text provided by COBOL Wrapper (short - 10 |-
versions).

ERXCOMM-AREAL Label. - - -

182 EntireX COBOL Wrapper

COBOL Wrapper Reference

Req/
Opt/ | In/

RPC Communication Area Field Explanation Auto |Out |Notes
COMM-USERID Label. - -
COMM-USERID1 User ID (8 characters) used for Natural Security tokens.| O | I |4
COMM-USERIDZ User ID extension. O |T1]|-
COMM-PASSWORD Password used for Natural Security tokens. O |1 |4
COMM-LIBRARY Library information used by Natural Security token. | O | I |4
COMM-SECURITY-TOKEN-LENGTH |Length of Natural Security token. - 10 |4
COMM-SECURITY-TOKEN Natural Security token. - 10 |-
COMM-IN-CONVERSATION Control variable internally used by generic RPC A |I/O|3,6

services and client interface objects. If set to Y, RPC

requests will use COMM-ETB-CONV - 1D for

conversationality.
COMM-IN-ACTIVE-UQW Control variable internally used by generic RPC A |I/O|5,6

services and client interface objects for reliable RPC. If

set to Y, RPC requests will use COMM-ETB-UOW- ID for

reliability.
COMM-RELIABLE-STATE Control variable used by the application to determine| R |I/O|5

whether standard RPC requests or reliable RPC

messages are used. Valid values:

"' (blank) normal RPC requests

A reliable RPC in AUTO-COMMIT mode

C reliable RPCin CLIENT-COMMIT mode
COMM-RELIABLE-STATUS Result of a “get reliable status” call to generic RPC O |5

services, see field COMM-FUNCTION above. Values

correspond to broker ACI field UOWSTATUS.
COMM-ETB-BROKER-ID Corresponds to Broker ACI field BROKER-ID. R|T]-
COMM-ETB-SERVER-CLASS Corresponds to Broker ACI field SERVER-CLASS. R|T|-
COMM-ETB-SERVER-NAME Corresponds to Broker ACI field SERVER-NAME. R |T|-
COMM-ETB-SERVICE-NAME Corresponds to Broker ACI field SERVICE. R |TI|-
COMM-ETB-USER-ID Corresponds to Broker ACI field USER-ID. O |1]12
COMM-ETB-PASSWORD Corresponds to Broker ACI field PASSWORD. O |1]12
COMM-ETB-TOKEN Corresponds to Broker ACI field TOKEN. O |I/O|-
COMM-ETB-SECURITY-TOKEN Internal field. Corresponds to Broker ACI field A |I/O|6

SECURITY-TOKEN.
COMM-ETB-CONV-ID Internal field. Corresponds to Broker ACI field A [I/O|3,6

CONV-1ID.
COMM-ETB-WAIT Corresponds to Broker ACI field WAIT. Default: 60 O ||

seconds.
EntireX COBOL Wrapper 183

COBOL Wrapper Reference

Req/
Opt/ | In/
RPC Communication Area Field Explanation Auto |Out |Notes
COMM-ETB-APIVERS Corresponds to Broker ACI field APT-VERSION. O |1}
Default=4.
COMM-ETB-UOW-1ID Corresponds to Broker ACI field UOWID. O |I/O|5
COMM-ETB-STORE Corresponds to Broker ACI field STORE. O |I/O|5
COMM-ETB-PROGRAM-OFFSET Fields are used internally for accounting purposes. See| A |I/O|6
COMM-ETB-LIBRARY-OFFSET Accounting in EntireX Broker in the platform-specific [o /0|6
administration documentation.
APPMON-SUPPORT Fields are used internally to support Application A |I/O|6
APPMON-VERTFY Monitoring A [1/0[6
APPMON-TIMEVALUE A |I/O|6
APPMON-TRANSPORT-BUFFER A |I/O|6
APPMON-LEN-TRANSPORT-BUFFER A |I/O|6
APPMON-RECEIVE-BUFFER A |I/O|6
APPMON-LEN-RECEIVE-BUFFER A |I/O|6
APPMON-LEN-DATA A |I/O|6
APPMON-RETURN-CODE A |I/O|6

RPC Communication Area field
Name of the filed in the RPC

Explanation

communication area.

Explanation of the purpose of the field.

Req/Opt/Auto

Indicates for input fields whether they have to be given by the RPC application (required) or
may be given by the user (optional). Fields marked with "Auto" are managed internally by the
Generic RPC Services Modules themselves.

In/Out

Indicates whether the field is an input field (to be given by the RPC application) or an output
field (returned to your RPC application).

] Notes:

1. See Using Broker Logon and Logoff.

2. Optional if broker does not require security, required if broker is secured.

3. RPC conversations are supported when communicating with an RPC server. For more inform-
ation, see Using Conversational RPC.

4. Natural Security is only relevant if communicating with a Natural RPC server. See Using the
COBOL Wrapper with Natural Security and Impersonation.

184

EntireX COBOL Wrapper

COBOL Wrapper Reference

5. See Reliable RPC for COBOL Wrapper.

6. Field ismanaged internally by the Generic RPC Services Modules themselves. For these to work
properly you need to initialize the RPC Communication Area before using it in your RPC client
application. See Step 1: Declare and Initialize the RPC Communication Area. Do not change
this field in your RPC client application.

EntireX COBOL Wrapper 185

COBOL Wrapper Reference

Generic RPC Services Modules

This section covers the following topics:

= |ntroduction

= Generic RPC Services Modules Usage
= Delivered Modules for z/0OS

= Delivered Modules for z/VSE

= Delivered Modules for BS2000/0SD

= Delivered Modules for IBM i

= Adapting the Used Broker Stub

Introduction

The generic RPC services module COBSRVI is required for RPC clients.

It can be optionally generated during RPC client generation in the folder client in the container
folder. Section Generate Generic RPC Service for Module COBSRVI under Generating COBOL
Source Files from Software AG IDL Files explains how to generate the RPC service module
COBSRVI.

It contains functions needed for RPC communication where a client interface object(s) is not
needed. Refer to the functions documented with the RPC communication area field
COMM-FUNCTION under The RPC Communication Area (Reference) for a list of provided functions.

It manages internal states held inside the RPC communication area for conversational RPC, re-
liable RPC etc. See The RPC Communication Area (Reference).

From a COBOL programmer's point of view, it is always called with the COBOL program name
COBSRVI, even for the delivered mainframe sources COBSRVIB, COBSRVIC and COBSRVID.

It contains the call to the broker stub.

Generic RPC Services Modules Usage

The delivered modules on mainframe platforms are mainly for a quick demonstration of the de-
livered examples. The best approach is to use the modules generated by the EntireX Workbench,
for the following reasons:

The modules delivered on mainframe platforms may be out-of-date.

You can set generation options, for example String Literal (see Characters Used for String Liter-
als), individually as required.

186 EntireX COBOL Wrapper

COBOL Wrapper Reference

Source to

Environment |Scenarios be Used |Description Installation Linkage Usage

z/OSand |Batch. See Using the COBOL|COBSRVIB |This module has a call Linked to your client

z/VSE Wrapper for Batch (z/OS, interface to your COBOL |application or can be
BS2000/0SD, z/VSE and RPC client application. called dynamically.
IBM).
CICS with DFHCOMMAREA |COBSRVIC|This module has an EXEC |Installed only once
calling convention. See CICS LINKinterface to within CICS as a CICS
Using the COBOL Wrapper your COBOL RPC client |program and shared by
for CICS with DFHCOMMAREA application. all COBOL RPC client
Calling Convention (z/0OS applications.
and z/VSE).
CICS with call interfaces. See| COBSRV ID|This module has a call Linked to your client
Using the COBOL Wrapper interface to your COBOL |application or can be
for CICS with Call RPC client application. called dynamically.
Interfaces (z/OS and z/VSE).

z/OSIMS |IMS. See Using the COBOL |COBSRVIB |This module has a call Linked to your client
Wrapper for IMS (z/0S). interface to your COBOL |application or can be

RPC client application. called dynamically.
z/OS IDMS/DC with call Not This module has a call Linked to your client

IDMS/DC |interfaces. See Using the |delivered. |interface to your COBOL |application or can be
COBOL Wrapper for RPC client application. called dynamically.
IDMS/DC with Call Generate it with the EntireX
Interfaces (z/0S). Workbench.

BS2000/OSD |Batch. See Using the COBOL|COBSRVI |This module has a call Linked to your client
Wrapper for Batch (z/OS, interface to your COBOL |application or can be
BS2000/0SD, z/VSE and RPC client application. called dynamically.
IBM).

IBM i Batch. See Using the COBOL|RPCSRVI |This module has a call Linked to your client

Wrapper for Batch (z/OS,

interface to your COBOL

application or can be

BS2000/0SD, z/VSE and RPC client application. Do |called dynamically.
IBM i). not use this module; it is out
of date. Generate it as
COBSRVI with the EntireX
Workbench.
EntireX COBOL Wrapper 187

COBOL Wrapper Reference

Delivered Modules for z/0OS

Module

Data Set

Description Notes

COBSRVIB

EXP970.SRCE

Batch generic RPC services with call interface. 2

COBSRVIC

EXP970.SRCE

CICS generic RPC services with EXEC CICS LINK interface.

COBSRVID

EXP970.SRCE

COBIGYIC

EXP970.SRCE

2
CICS generic RPC services with call interface. 2
2

JCL to compile the CICS generic RPC services module COBSRVIC with
EXEC CICS LINKinterface.

ERXCOMM

EXP970.INCL

RPC communication area.

ERXRCSRY

EXP970.SRCE

C main module for application errors.

ERXRCSRV

EXP970.LD00

Ready-to-use ERXRCSRV module for application errors.

EXPCOBCL

EXP970.JOBS

N| Q| Q| —

JCL to compile the CICS generic RPC service module COBSRVIC with EXEC
CICS LINKinterface.

Module

Name of the delivered module.

vrs

Version, release and service pack.

EXP970.INCL

Generic RPC include data set. The generic RPC include data set may be delivered as a patch
with a different name EXP970.INnn, where nn is the patch level number. Make sure you install

the highest patch level available. The data set is required to SYSLIB input for the COBOL
compiler.

EXP970.SRCE
Generic RPC source data set. The generic RPC source data set may be delivered as a patch

with a different name EXP970.50nn, where nn is the patch level number. Make sure you install

the highest patch level available. The data set is required to SYSLIB input for the COBOL
compiler.

] Notes:

1. See The RPC Communication Area (Reference).

2. See Generic RPC Services Modules Usage.

3. See Aborting RPC Server Customer Code and Returning Error to RPC Client in the CICS RPC Server

documentation.

188

EntireX COBOL Wrapper

COBOL Wrapper Reference

Delivered Modules for z/VSE

File Sublibrary |Description Notes
ERXCOMM EXP970 |RPC Communication area. 1
COBSRVIB.C |EXP970 |Batch generic RPC services with call interface (source). 2,3
COBSRVIB.0BJ|EXP970 |Batch generic RPC services with call interface (object). 2,3

COBSRVIC.C |EXP970 |CICS generic RPC services with EXEC CICS LINK interface (source).|2, 3
COBSRVIC.0BJ|EXP970 |CICS generic RPC services with EXEC CICS LINK interface (object). (2,3
COBSRVID.C |EXP970 |CICS generic RPC services with call interface (source). 2,3
COBSRVID.0BJ|EXP970 |CICS generic RPC services with call interface (object). 2,3

File
Name of the delivered file.

Sublibrary
Name of the delivered sublibrary.

Description
Purpose of the file.

] Notes:

1. See The RPC Communication Area (Reference).
2. See Generic RPC Services Modules Usage.

3. We recommend you use module COBSRVI generated by the EntireX Workbench instead of the
modules COBSRVIB, COBSRVIC and COBSRVID delivered with your z/VSE installation. The reason
for this is that the EntireX Workbench is updated much more frequently. Section Generate
Generic RPC Service for Module COBSRVIunder Generating COBOL Source Files from Software
AG IDL Files explains how to generate the RPC service module.

Delivered Modules for BS2000/0SD

Module Data Set Description Notes

ERXCOMM EXP811.COBC |RPC communication area. 1
COBSRVI.COB|EXP811.COBC|Batch generic RPC services with call interface. |2, 3

] Notes:

1. See The RPC Communication Area (Reference).
2. See Generic RPC Services Modules Usage

3. We recommend you use module COBSRVI generated by the EntireX Workbench instead of the
delivered module. The reason for this is that the EntireX Workbench is updated much more

EntireX COBOL Wrapper 189

COBOL Wrapper Reference

frequently. Section Generate Generic RPC Service for Module COBSRVI under Generating
COBOL Source Files from Software AG IDL Files explains how to generate the RPC service
module.

Delivered Modules for IBM i

Module |Source file [Description Notes

ERXCOMM|QCBLLESRC|RPC communication area. 1
RPCSRVI|QCBLLESRC |Batch generic RPC services with call interface. |2, 3

j Notes:

1. See The RPC Communication Area (Reference).
2. See Generic RPC Services Modules Usage

3. Do not use module RPCSRVI delivered with your IBM i installation. It does not support all the
features described here, for example reliable RPC. Use module COBSRVI generated by the En-
tireX Workbench instead. Section Generate Generic RPC Service for Module COBSRVI under
Generating COBOL Source Files from Software AG IDL Files explains how to generate the
RPC service module.

Adapting the Used Broker Stub

Because multiple broker stubs may be offered per operating system and environments, it may be
necessary to adapt the COBSRVI module to the correct broker stub that supports the required
transport (TCP, SSL, NET). To do this, modify the COBOL subprogram DOBROKER inside the COBSRV1I
source file with a broker stub that meets your requirements.

For availability and information on broker stubs, see Administration of Broker Stubs under z/OS |
UNIX | Windows | BS2000/OSD | IBM i.

@ Caution: Do not make any modifications other than changing the broker stub name, and do

not modify the COBOL subprogram COBSRVI inside the same COBSRVI program source.
Unexpected behavior will occur.

190 EntireX COBOL Wrapper

	EntireX COBOL Wrapper
	Table of Contents
	EntireX COBOL Wrapper
	1 Introduction to the COBOL Wrapper
	Description
	Generic RPC Services Module
	COBOL Client Applications
	COBOL Server Application
	COBOL Server Interface Types
	CICS with DFHCOMMAREA Calling Convention
	CICS with Channel Container Calling Convention
	CICS with DFHCOMMAREA Large Buffer Interface
	Micro Focus with Standard Linkage Calling Convention
	Batch with Standard Linkage Calling Convention
	IMS BMP with Standard Linkage Calling Convention
	Compatibility between COBOL Interface Types and RPC Server

	2 Using the COBOL Wrapper for the Client Side
	Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
	Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE)
	Using the COBOL Wrapper for Batch (z/OS, BS2000/OSD, z/VSE and IBM i)
	Using the COBOL Wrapper for IMS (z/OS)
	Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS)
	Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

	3 Using the COBOL Wrapper for the Server Side
	Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
	Using the COBOL Wrapper for CICS with Channel Container Calling Convention (z/OS)
	Introduction
	CICS Channel Container IDL Rules
	Restrictions
	Example 1: Same Container for Direction In and Out
	Example 2: Different Container for Direction In and Out
	Example 3: Multiple Containers
	Example 4: Variable Number of Containers (Direction Out Only)
	Steps

	Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE)
	Using the COBOL Wrapper for Batch (z/OS, BS2000/OSD, z/VSE and IBM i)
	Using the COBOL Wrapper for IMS BMP (z/OS)
	Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

	4 Generating COBOL Source Files from Software AG IDL Files
	Select an IDL File and Generate RPC Client or RPC Server
	Generation Settings - Properties
	Introduction
	Target Operating System
	Characters Used for String Literals
	IDL-Specific Output Folder
	Client Interface Types
	Customize Automatically Generated Client Names
	z/OS and z/VSE
	IBM i
	UNIX and Windows with Micro Focus
	BS2000/OSD

	Starting COBOL Level for Data Items in Generated Copybooks
	RPC Communication Area
	Generate Generic RPC Service for Module COBSRVI
	Customize Automatically Generated Server Names
	Server Interface Types
	IMS PSB List
	Channel Name

	Generation Settings - Preferences

	5 Using the COBOL Wrapper in Command-line Mode
	Command-line Options
	Generate a COBOL RPC Client from IDL File
	Generate a COBOL RPC Server from IDL File

	Example Generating an RPC Client
	Example Generating an RPC Server
	Further Examples
	Windows
	Example 1
	Example 2
	Example 3
	Example 4

	Linux
	Example 1
	Example 2
	Example 3

	6 Software AG IDL to COBOL Mapping
	Mapping IDL Data Types to COBOL Data Types
	Mapping Library Name and Alias
	Client Side
	Server Side

	Mapping Program Name and Alias
	Client Side
	Server Side

	Mapping Parameter Names
	Mapping Fixed and Unbounded Arrays
	Mapping Groups and Periodic Groups
	Mapping Structures
	Mapping the Direction Attributes In, Out, InOut
	Mapping the ALIGNED Attribute
	Calling Servers as Procedures or Functions

	7 Writing Standard Call Interface Clients
	Step 1: Declare and Initialize the RPC Communication Area
	Step 2: Declare the Data Structures for RPC Stubs
	Step 3: Required Settings in the RPC Communication Area
	Step 4: Optional Settings in the RPC Communication Area
	Step 5: Issue the RPC Request
	Step 6: Examine the Error Code

	8 Using the RPC Communication Area
	Purpose of the RPC Communication Area
	Using the RPC Communication Area with a Standard Call Interface
	Option External Clause
	Option Linkage Section
	Option Copybook

	Using the RPC Communication Area with EXEC CICS LINK
	Example

	9 Using the Generated Copybooks
	IDL Interface Copybooks
	COBINIT Copybook
	COBEXIT Copybook

	10 Using Broker Logon and Logoff
	11 Using Conversational RPC
	12 Using the COBOL Wrapper with Natural Security and Impersonation
	13 Reliable RPC for COBOL Wrapper
	Introduction to Reliable RPC
	Writing a Client
	Step 1: Declare the Data Structures for RPC Client Interface Objects
	Step 2: Declare and Initialize the RPC Communication Area
	Step 3: Required Settings in the RPC Communication Area
	Step 4a: Perform a Broker Logon
	Step 4b: Examine the Error Code
	Step 5: Enable Reliable RPC with CLIENT_COMMIT
	Step 6a: Send the RPC Message
	Step 6b: Examine the Error Code
	Step 7a: Check the Reliable RPC Message Status
	Step 7b: Examine the Error Code
	Step 8: Send a Second RPC Message
	Step 9: Check the Reliable RPC Message Status
	Step 10a: Commit both Reliable RPC Messages
	Step 10b: Examine the Error Code
	Step 11: Send a Third RPC Message
	Step 12: Check the Reliable RPC Message Status
	Step 13a: Roll Back the Third RPC Message
	Step 13b: Examine the Error Code
	Step 14a: Perform a Broker Logoff
	Step 14b: Examine the Error Code

	Writing a Server
	Broker Configuration

	14 Using the COBOL Wrapper with EntireX Security
	15 Client and Server Examples for Micro Focus (UNIX and Windows)
	Basic RPC Client Examples - CALC, SQUARE
	Basic RPC Server Examples - CALC, SQUARE
	Reliable RPC Client Example - SENDMAIL
	Reliable RPC Server Example - SENDMAIL

	16 Client and Server Examples for z/OS Batch
	Basic RPC Client Examples - CALC, SQUARE
	CALC Client
	SQUARE Client

	Basic RPC Server Examples - CALC, SQUARE
	CALC Server
	SQUARE Server

	Reliable RPC Client Example - SENDMAIL
	Reliable RPC Server Example - SENDMAIL

	17 Client and Server Examples for z/OS CICS
	Basic RPC Client Examples - CALC, SQUARE
	CALC Client using DFHCOMMAREA
	CALC Client using Call Interface
	SQUARE Client using DFHCOMMAREA
	SQUARE Client using Call Interface

	Basic RPC Server Examples - CALC, SQUARE
	CALC Server
	SQUARE Server

	Reliable RPC Client Examples - SENDMAIL
	SENDMAIL Client using DFHCOMMAREA
	SENDMAIL Client using Call Interface

	Reliable RPC Server Example - SENDMAIL
	Advanced CICS Channel Container RPC Server Example - DFHCON
	Advanced CICS Large Buffer RPC Server Example - DFHLBUF

	18 Client and Server Examples for z/OS IMS BMP
	19 Server Examples for z/OS IMS MPP
	CALC Server
	SQUARE Server

	20 Client and Server Examples for BS2000/OSD
	Overview of Client and Server Examples for BS2000/OSD
	CALC Example
	Client
	Server

	SQUARE Example
	Client
	Server

	SENDMAIL Reliable RPC Example
	Client
	Server

	Notes

	Creating the Sample COBOL Client Programs
	Creating the Sample COBOL Server Programs
	Running the Sample COBOL Client Programs

	21 Client and Server Examples for IBM i
	Overview of Client and Server Examples for IBM i
	Installing and Running the Client Examples for IBM i
	Installing and Running the Server Examples for IBM i

	22 Client and Server Examples for z/VSE Batch
	Basic RPC Client Examples - CALC, SQUARE
	CALC Client
	SQUARE Client

	Basic RPC Server Examples - CALC, SQUARE
	CALC Server
	SQUARE Server

	Reliable RPC Client Example - SENDMAIL
	Reliable RPC Server Example - SENDMAIL

	23 Client and Server Examples for z/VSE CICS
	Basic RPC CALC Example
	CALC Client using Call Interface (CALCCLT)
	CALC Client using DFHACOMMAREA (CALC1CLT)
	CALC Server (CALC)

	Basic RPC SQUARE Example
	SQUARE Client using Call Interface (SQRECLT)
	SQUARE Client using DFHACOMMAREA (SQRE1CLT)
	SQUARE Server (SQUARE)

	Reliable RPC SENDMAIL Example
	SENDMAIL Client using Call Interface (SENDCLT)
	SENDMAIL Client using DFHACOMMAREA (SEND1CLT)
	SENDMAIL Server (SENDMAIL)

	24 COBOL Wrapper Reference
	The RPC Communication Area (Reference)
	Generic RPC Services Modules
	Introduction
	Generic RPC Services Modules Usage
	Delivered Modules for z/OS
	Delivered Modules for z/VSE
	Delivered Modules for BS2000/OSD
	Delivered Modules for IBM i
	Adapting the Used Broker Stub

