
webMethods EntireX

Software AG IDL Extractor for COBOL

Version 9.7

October 2014

This document applies to webMethods EntireX Version 9.7.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-EEXXCOBEXTRACTOR-97-20160805

Table of Contents

I Introduction to the IDL Extractor for COBOL ... 1
1 Introduction to the IDL Extractor for COBOL .. 3

Introduction ... 4
Extractor Wizard .. 5
Mapping Editor .. 6
Supported COBOL Interface Types ... 7
Usage of Server Mapping Files .. 17

II Using the IDL Extractor for COBOL - Overview .. 19
2 Scenario I: Create New IDL and Server Mapping Files .. 23

Step 1: Start the IDL Extractor for COBOL Wizard ... 24
Step 2: Select a COBOL Extractor Environment or Create a New One 25
Step 3: Select the COBOL Source ... 28
Step 4: Define the Extraction Settings and Start Extraction 36
Step 5: Select the COBOL Interface and Map to IDL Interface 45
Step 6: Finishing the Mapping Editor .. 47
Step 7: Validate the Extraction and Test the IDL File 49

3 Scenario II: Append to Existing IDL and Server Mapping Files 51
4 Scenario III: Modify Existing IDL and Server Mapping Files 53

III COBOL Mapping Editor .. 57
5 CICS with DFHCOMMAREA Calling Convention - In same as Out 59

Introduction .. 60
Extracting from a CICS DFHCOMMAREA Program 60
Mapping Editor User Interface .. 61
Mapping Editor IDL Interface Mapping Functions ... 68
Programming Techniques .. 72

6 CICS with DFHCOMMAREA Large Buffer Interface - In same as Out 77
Introduction .. 78
Extracting from a CICS DFHCOMMAREA Large Buffer Program 79
Mapping Editor User Interface .. 80
Mapping Editor IDL Interface Mapping Functions ... 87
Programming Techniques .. 92

7 Batch with Standard Linkage Calling Convention ... 95
Introduction .. 96
Extracting from a Standard Call Interface ... 96
Mapping Editor User Interface .. 97
Mapping Editor IDL Interface Mapping Functions 104
Programming Techniques .. 108

8 Micro Focus with Standard Linkage Calling Convention 111
Introduction .. 112
Extracting from a Standard Call Interface .. 112
Mapping Editor User Interface .. 113
Mapping Editor IDL Interface Mapping Functions 120
Programming Techniques .. 124

iii

9 IMS BMP with Standard Linkage Calling Convention 127
Introduction .. 128
Extracting from an IMS BMP Standard Call Interface 128
Mapping Editor User Interface .. 130
Mapping Editor IDL Interface Mapping Functions 137
Programming Techniques .. 141

10 CICS with DFHCOMMAREA Calling Convention - In different to Out 143
Introduction .. 144
Extracting from a CICS DFHCOMMAREA Program 144
Mapping Editor User Interface .. 145
Mapping Editor IDL Interface Mapping Functions 152
Programming Techniques .. 156

11 CICS with DFHCOMMAREA Large Buffer Interface - In different to Out 161
Introduction .. 162
Extracting from a CICS DFHCOMMAREA Large Buffer Program 163
Mapping Editor User Interface .. 164
Mapping Editor IDL Interface Mapping Functions 171
Programming Techniques .. 176

12 CICS with Channel Container Calling Convention ... 179
Introduction .. 180
Extracting from a CICS Channel Container Program 180
Mapping Editor User Interface .. 182
Mapping Editor IDL Interface Mapping Functions 189
Programming Techniques .. 194

13 IMS MPP Message Interface (IMS Connect) .. 197
Introduction .. 198
Extracting from an IMS MPP Message Interface Program 199
Mapping Editor User Interface .. 202
Mapping Editor IDL Interface Mapping Functions 210
Programming Techniques .. 215

14 IDL Extractor for COBOL Preferences ... 219
Create New Local Extractor Environment (z/OS, z/VSE, BS2000/OSD and
IBM i) .. 222
Create New Local Extractor Environment for Micro Focus (UNIX and
Windows) ... 226
Create New Remote Extractor Environment (z/OS) 230
Create New Remote Extractor Environment (BS2000/OSD) 234

15 COBOL to IDL Mapping .. 239
COBOL Data Type to Software AG IDL Mapping ... 241
DATA DIVISION Mapping .. 244
PROCEDURE DIVISION Mapping .. 254
Copybooks .. 255

Software AG IDL Extractor for COBOLiv

Software AG IDL Extractor for COBOL

I Introduction to the IDL Extractor for COBOL

1

2

1 Introduction to the IDL Extractor for COBOL

■ Introduction .. 4
■ Extractor Wizard ... 5
■ Mapping Editor ... 6
■ Supported COBOL Interface Types ... 7
■ Usage of Server Mapping Files .. 17

3

Introduction

The SoftwareAG IDLExtractor for COBOL inspects a COBOL source and its copybooks for COBOL
data items to extract. It can also extract directly from copybooks. In a user-driven process supported
by an Extractor Wizard, the interface of a COBOL server is extracted and - with various features
offered by aMapping Editor - modelled to a client interface.

Start the wizard, select your server program and make COBOL-specific settings.

Optional. This step is not always necessary: it is possible that parameters have already been
selected, for example as a result of the COBOL USING clause.
Optional. If necessary, you can modify the parameter selection from the Mapping Editor.

Fine-tune the COBOL to IDL mapping.

Generate an IDL file and a server mapping file. These two related files map the client interface
to the COBOL server program and are described below:

■ IDL File
The Software AG IDL file (interface definition language) contains the modelled interface of the
COBOL server. In a follow-up step the IDL file is the starting point for the RPC client-side
wrapping generation tools to generate client interface objects. See EntireX Wrappers.

■ Server Mapping File
A server mapping file to complete the mapping is generated only if it is required by the RPC
server during runtime to call the COBOL server. See Usage of Server Mapping Files.

Software AG IDL Extractor for COBOL4

Introduction to the IDL Extractor for COBOL

Extractor Wizard

The extractorwizard guides you through the extraction process. Thewizard supports the following
tasks:

■ Accessing COBOL source files, either in the local file systemwhere the EntireXWorkbench runs
or remotely from the host computer with the RPC server extractor service. The wizard supports
the following: z/OS partitioned data sets and CA Librarian data sets (includingmember archive
levels) as well as BS2000/OSD LMS libraries. See Extractor Service in the z/OS administration
and BS2000/OSD Batch RPC Server documentation. For this purpose, define a local or remote
COBOL extractor environment. See IDL Extractor for COBOL Preferences.

■ Resolving of COBOL copybooks. If a relevant copybook from the COBOL DATA DIVISON is
missing, a browse dialog is offered where you can locate the copybook - either a folder (local
extractor environment) or data set (remote extractor environment) - interactively. Copybook
folder or data sets can also be predefined in theCOBOL extractor environment. See IDLExtractor
for COBOL Preferences.

■ Resolving of COBOL copybooks with the REPLACE option.
■ CA Librarian (-INC) and CA Panvalet (++INCLUDE) control statements are supported. They are
handled in a similar way to copybooks.

■ Various COBOL server interface types, such as standardCICS DFHCOMMAREA, CICSwith different
structures on input andoutput, CICSwith a large buffer compatible towebMethodsWMTLSRVR,
standard batch, Micro Focus standard calling conventions, and IMS BMP server with PCB
pointers. See Supported COBOL Interface Types.

■ Selecting the COBOL server interface manually within the COBOLMapping Editor page. This
allows you to extract from a COBOL server where the interface definition is not completely
given by the parameters provided in the PROCEDURE DIVISIONMapping, making it impossible
to detect the parameters automatically.

■ Defining the default COBOL to IDL mapping in the IDL Extractor for COBOL Preferences for
the following fields:
■ COBOL pseudo-parameter FILLER fields. You can define whether they should be part of the
RPC client interface or not. By default, they are not contained in the IDL.

■ The name prefix for FILLER and anonymous groups used for IDL parameters.
■ COBOL alphanumeric fields (PICTURE X, A, G, N). They can bemapped either to variable-length
or fixed-length strings in the IDL. This option is provided formodern RPC clients that support
variable-length strings, and also for legacy RPC clients that support fixed-length strings only.

The extractor wizard is described in a step-by-step tutorial; see Using the IDL Extractor for CO-
BOL - Overview.

5Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

Mapping Editor

TheCOBOLMapping Editor is the tool to select andmap the COBOL server interface to IDL. This
section gives a short overview of the mapping features provided. These features are described in
more detail in the documentation section for the respective interface type.

■ Add and remove the parameters of theCOBOL server in the topwindowof theCOBOLMapping
Editor page. The current selection is shown in the bottom window for fine tuning.

■ Provide IDL directions for parameters of the COBOL server. A COBOL server does not contain
IDL direction information, so you can add this information manually in the Mapping Editor.

■ Select REDEFINE paths used in the IDL. TheMapping Editor allows you to select a single REDEFINE
path for every REDEFINE unit (all redefine paths addressing the same storage location).

■ Suppress unneeded fields in the IDL. This keeps the IDL client interface lean and alsominimizes
the amount of data transferred during runtime.

■ Defineparameter constants as input for theCOBOL server. Constant parameters are not contained
in the IDL file, whichmeans they are invisible for RPC clients. Thismakes the IDL client interface
easier and safer to use, minimizing improper usage.

Software AG IDL Extractor for COBOL6

Introduction to the IDL Extractor for COBOL

■ For one COBOL server program, you can create and model multiple interfaces. If the IDL is
processed furtherwith awrapper of the EntireXWorkbench, the business functions are provided
as
■ Web service operations if exposed as a Web service instead of a Web service with a single
operation

■ methods if wrapped with the Java Wrapper or .NET Wrapper instead of a Java class with a
single method

■ etc.

See COBOL Mapping Editor for more information.

Supported COBOL Interface Types

The IDL Extractor for COBOL supports as input a COBOL server with various interface types.
This section covers the following topics:

■ Supported CICS COBOL Interface Types
■ Micro Focus with Standard Linkage Calling Convention
■ Batch with Standard Linkage Calling Convention
■ IMS MPP Message Interface (IMS Connect)
■ IMS BMP with Standard Linkage Calling Convention
■ What to do with other Interface Types?
■ Compatibility between COBOL Interface Types and RPC Server

The interface type you are mostly working with can be set in the preferences. See IDL Extractor
for COBOL Preferences.

Supported CICS COBOL Interface Types

Analyzing the technique used to access the interface with COBOL and CICS statements is the
safest way to determine the interface type. The followingCICSCOBOL interface types are suppor-
ted:

■ CICS with DFHCOMMAREA Calling Convention
■ CICS with Channel Container Calling Convention
■ CICS with DFHCOMMAREA Large Buffer Interface

There is no clear and easy indication how to identify the interface type of a CICS COBOL server
without COBOL and CICS knowledge. Below are some criteria that might help to determine the
interface type. If you are unsure, consult a CICS COBOL specialist.

■ The payload size of the CICS COBOL server is greater than 32 KB:

7Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

■ In this case it is not a DFHCOMMAREA interface, because the DFHCOMMAREA is limited
to 32 KB.

■ It could be a large buffer or channel container interface, which are only limited by the storage
(memory) available to them.

■ The CICS COBOL server is located in a remote CICS region:
■ In this case it is not a large buffer interface (designed to assist with webMethods mainframe
migration), because large buffer programs must reside on the same CICS region as the caller,
that is, the CICS RPC Server (z/OS | z/VSE).

■ It could be a DFHCOMMAREA or channel container interface, which can reside in a remote
CICS region.

Note: The most used interface type is the DFHCOMMAREA interface. Large buffer and
channel container interfaces are used much less frequently.

CICS with DFHCOMMAREA Calling Convention

The IDL Extractor for COBOL supports CICS programs using the standard DFHCOMMAREA calling
convention.

The following illustrates roughly how you can determine whether a COBOL server follows the
DFHCOMMAREA calling convention standard:

LINKAGE SECTION.
01 DFHCOMMAREA.

02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION USING DFHCOMMAREA.
. . .

Most DFHCOMMAREA programs have a DFHCOMMAREA data item in their LINKAGE SECTION and may
address this item in the PROCEDURE DIVISION header. If you find this in your COBOL source it's
a clear indication it is a DFHCOMMAREA server program. But even if this is missing, it can be a

Software AG IDL Extractor for COBOL8

Introduction to the IDL Extractor for COBOL

DFHCOMMAREA program, because there are alternative programming styles. If you are unsure, consult
a COBOL CICS specialist or see Supported CICS COBOL Interface Types for more information.

See Step 4: Define the Extraction Settings and Start Extraction formore information on extracting
COBOL servers with this interface type.

CICS with Channel Container Calling Convention

The IDL Extractor for COBOL supports CICS programs using the channel container calling con-
vention.

The following illustrates roughly how you can determine whether a COBOL server follows the
Channel Container standard.

WORKING-STORAGE SECTION.
01 WS-CONTAINER-IN-NAME PIC X(16) VALUE "CALC-IN".
01 WS-CONTAINER-OUT-NAME PIC X(16) VALUE "CALC-OUT".
. . .
LINKAGE SECTION.
01 LS-CONTAINER-IN-LAYOUT.
 02 OPERATION PIC X(1).
 02 OPERAND1 PIC S9(9) BINARY.
 02 OPERAND2 PIC S9(9) BINARY.
01 LS-CONTAINER-OUT-LAYOUT.
 02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION.
 . . .
 EXEC CICS GET CONTAINER (WS-CONTAINER-IN-NAME) SET (ADDRESS OF ↩
LS-CONTAINER-IN-LAYOUT) ...
 . . .
 EXEC CICS PUT CONTAINER (WS-CONTAINER-OUT-NAME) FROM (ADDRESS OF ↩
LS-CONTAINER-OUT-LAYOUT) ...
 . . .

9Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

Channel Container programs use EXEC CICS GET CONTAINER in their program body (PROCEDURE
DIVISION) to read their input parameters. Output parameters are written using EXEC CICS PUT
CONTAINER. There is no clear indication in the linkage or working storage section to identify a
channel container program. If you are unsure, consult a COBOL CICS specialist for clarification.

See Step 4: Define the Extraction Settings and Start Extraction formore information on extracting
COBOL servers with this interface type.

CICS with DFHCOMMAREA Large Buffer Interface

This type of program has a defined DFHCOMMAREA interface to access more than 31 KB of data in
CICS. The interface is the same as thewebMethodsWMTLSRVR interface. This enableswebMethods
customers to migrate to EntireX.

Technically,

■ the DFHCOMMAREA layout contains a structure with a length and a pointer to a large buffer. The
following illustrates this:

LINKAGE SECTION.
01 DFHCOMMAREA.

10 WM-LCB-MARKER PIC X(4).
10 WM-LCB-INPUT-BUFFER POINTER.
10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-OUTPUT-BUFFER POINTER.
10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-FLAGS PIC X(1).

88 WM-LCB-FREE-OUTPUT-BUFFER VALUE 'F'.
10 WM-LCB-RESERVED PIC X(3).

01 INOUT-BUFFER.
02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

Software AG IDL Extractor for COBOL10

Introduction to the IDL Extractor for COBOL

PROCEDURE DIVISION USING DFHCOMMAREA.
. . .
SET ADDRESS OF INOUT-BUFFER TO WM-LCB-INPUT-BUFFER.
. . .
SET ADDRESS OF INOUT-BUFFER TO WM-LCB-OUTPUT-BUFFER.

The fields subordinated under DFHCOMMAREA prefixed with WM-LCB describe this structure. The
field names themselves can be different, but the COBOL data types must match exactly.

■ data is described by separate structures, here INOUT-BUFFER in the linkage section.

If you find this in your COBOL source, it's a clear indication it is a large buffer program. If you
are unsure, consult a COBOL CICS specialist for clarification.

See Step 4: Define the Extraction Settings and Start Extraction formore information on extracting
COBOL servers with this interface type.

11Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter ad-
dresses a fixed COBOL structure.

Technically, the generated COBOL server skeleton contains

■ a parameter list: PROCEDURE DIVISION USING PARM1 PARM2 ... PARMn

■ the parameters in the linkage section as COBOL data items on level 1

See Step 4: Define the Extraction Settings and Start Extraction andMicro Focus with Standard
Linkage Calling Convention formore information on extracting COBOL serverswith this interface
type.

Software AG IDL Extractor for COBOL12

Introduction to the IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter ad-
dresses a fixed COBOL structure.

Technically, the COBOL server contains

■ a parameter list: PROCEDURE DIVISION USING PARM1 PARM2 ... PARMn

■ the parameters in the linkage section as COBOL data items on level 1

See Step 4: Define the Extraction Settings and Start Extraction and Batch with Standard Linkage
Calling Convention for more information on extracting COBOL servers with this interface type.

13Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

IMSmessage processing programs (MPP) get their parameters through an IMSmessage and return
the result by sending an outputmessage to IMS. The IDL Extractor for COBOL enables extractions
from such programs.

The COBOL server contains:

■ a structure in the working storage section for the input and the output message.
■ an IOPCB in the linkage section used to read input messages and write output messages using
an IMS system call (i.e. CALL "CBLTDLI").

■ The message contains also technical fields specific to IMS (see fields LL, ZZ and TRANCODE in the
picture above).

See Step 4: Define the Extraction Settings and Start Extraction and IMS MPP Message Interface
(IMS Connect) for more information on extracting COBOL servers with this interface type.

Software AG IDL Extractor for COBOL14

Introduction to the IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

IMS batchmessage processing programs (BMP) with PCB parameters are directly supported. You
have the option to specify a PSB list as input to the extractor to locate PCB parameters.

Technically, the COBOL server contains

■ a parameter list: PROCEDURE DIVISION USING PARM1 PCB PARM2 ... PARMn

■ IMS-specific PCB pointerswithin the parameter list
■ the parameters in the linkage section as COBOL data items on level 1

See Step 4: Define the Extraction Settings and Start Extraction and IMS BMP with Standard
Linkage Calling Convention formore information on extracting COBOL serverswith this interface
type.

What to do with other Interface Types?

Other interface types, for example CICS with non-DPL-enabled DFHCOMMAREA, can be supported
bymeans of a customwrapper. If you have to extract from such aCOBOL server, proceed as follows:

1. Implement a custom wrapper, providing one of the supported interface types above.

2. Extract from this custom wrapper.

15Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

Compatibility between COBOL Interface Types and RPC Server

To call a server successfully, the RPC server used must support the interface type of the COBOL
server. The table below gives an overview of possible combinations of an interface type and a
supporting RPC server:

Supported by RPC Server
Supported

by
EntireX
AdapterInterface Type

z/VSEBS2000/OSDUNIX/Windowsz/OS

BatchCICSBatch
IMS

Connect
Micro
Focus

CICS
ECIIMSBatchCICS

xxxxCICS with DFHCOMMAREA Calling
Convention (Extractor | Wrapper)

xxCICS with DFHCOMMAREA Large
Buffer Interface (Extractor |
Wrapper)

xCICS with Channel Container
Calling Convention (Extractor |
Wrapper)

xxxxBatch with Standard Linkage
Calling Convention (Extractor |
Wrapper)

xMicro Focus with Standard
Linkage Calling Convention
(Extractor | Wrapper)

xIMS BMP with Standard Linkage
Calling Convention (Extractor |
Wrapper)

xxIMS MPP Message Interface (IMS
Connect) (Extractor)

Software AG IDL Extractor for COBOL16

Introduction to the IDL Extractor for COBOL

Usage of Server Mapping Files

There aremany situationswhere the RPC server requires a servermapping file to correctly support
special COBOL syntax such as REDEFINES, SIGN LEADING and OCCURS DEPENDING ON clauses,
LEVEL-88 fields, etc.

Servermapping files contain COBOL-specificmapping information that is not included in the IDL
file, but is needed to successfully call the COBOL server program.

The RPC server marshals the data in a two-step process: the RPC request coming from the RPC
client (Step 1) is completed with COBOL-specific mapping information taken from the server
mapping file (Step 2). In this way the COBOL server can be called as expected.

The servermapping files are retrieved as a result of the IDL Extractor for COBOL extraction process
and theCOBOLWrapper if a COBOL server is generated. SeeWhen is a ServerMapping File Required?.

There are server-side mapping files (EntireX Workbench files with extension .svm) and client-side
mapping files (Workbench files with extension .cvm). See ServerMapping Files for COBOL andHow
to Set the Type of Server Mapping Files.

If you are using server-side mapping files, perform the following tasks:

■ Customize the server-side mapping container. See Server-side Mapping Files in the RPC Server in
the respective sections of the documentation.

■ Deploy the files to the RPC server. See Deploying Server-side Mapping Files to the RPC Server in
the respective sections of the documentation.

Note: For IMS Connect and CICS ECI connections with the webMethods EntireX Adapter,
server-side mapping files are not deployed. They are wrapped into the Integration Server
connection - the same as client-sidemapping files. For RPC connections, deployment to the
target RPC server is mandatory. See the EntireX Adapter documentation under http://doc-
umentation.softwareag.com > webMethods Product Line.

17Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

http://documentation.softwareag.com
http://documentation.softwareag.com

18

II Using the IDL Extractor for COBOL - Overview

This chapter describes how to extract IDL from a COBOL source, using the IDL Extractor for CO-
BOL, deploy, validate and test the extraction results. IDL extraction is supported by wizards, ed-
itors and generators.

Choosing a Scenario

The following scenarios are supported and are described in separate sections:

■ Scenario I: Create New IDL and Server Mapping Files
■ Scenario II: Append to Existing IDL and Server Mapping Files
■ Scenario III: Modify Existing IDL and Server Mapping Files

See also COBOL Mapping Editor.

19

Software AG IDL Extractor for COBOL20

Using the IDL Extractor for COBOL - Overview

Before Starting an Extraction

Before you start an extraction, we recommend you first clarify the following issues:

■ The interface type of your COBOL program, see Supported COBOL Interface Types.
■ The input and output parameters of your COBOL server. Note the following:

■ COBOLREDEFINES are used in CICS aswell as in batch servers. For all COBOLREDEFINES
you have to clarify which redefine paths are the relevant ones for your extraction.

■ Particularly in CICS, the interface of a COBOL server is in most cases not described by the
parameters given in the PROCEDURE DIVISON header. See PROCEDURE DIVISIONMapping and
see DFHCOMMAREA examples under Programming Techniques.

■ We recommend you have a basic understanding of your COBOL server, especially if you can
simplify your IDL with the following:
■ Map functions of the COBOL server to IDL programs.
■ Suppress unneeded fields.
■ Map COBOL data items to constants.

The COBOL sources can contain

■ copybook references; see Copybooks under COBOL to IDL Mapping
■ CA Librarian (-INC) or CA Panvalet (++INCLUDE) control statements

In sectionCOBOL to IDLMapping youwill find information on how theCOBOL syntax ismapped
to Software AG IDL using this wizard and the Mapping Editor. We recommend you read this
document because it describes possibilities and alternatives for handlingCOBOL syntax constructs.

Make sure the COBOL source

■ can be compiled with no errors and no warning
■ is written in COBOL fixed format, consisting of sequence number (column 1-6), indicator area
(column7), area A, (column 8-11) and area B (column 12-72) for z/OS, z/VSE, BS2000/OSD and
IBM i extractions

■ is eitherwritten inCOBOLfixed or variable format forMicro FocusUNIXorWindows extractions
and your preferences are adjusted accordingly; see Step 2: Define the Default Settings under
Create New Local Extractor Environment for Micro Focus (UNIX and Windows).

21Software AG IDL Extractor for COBOL

Using the IDL Extractor for COBOL - Overview

22

2 Scenario I: Create New IDL and Server Mapping Files

■ Step 1: Start the IDL Extractor for COBOL Wizard .. 24
■ Step 2: Select a COBOL Extractor Environment or Create a New One ... 25
■ Step 3: Select the COBOL Source .. 28
■ Step 4: Define the Extraction Settings and Start Extraction .. 36
■ Step 5: Select the COBOL Interface and Map to IDL Interface .. 45
■ Step 6: Finishing the Mapping Editor ... 47
■ Step 7: Validate the Extraction and Test the IDL File ... 49

23

Step 1: Start the IDL Extractor for COBOL Wizard

To continue, pressNext and continue with Step 2: Select a COBOL Extractor Environment or
Create a New One.

Software AG IDL Extractor for COBOL24

Scenario I: Create New IDL and Server Mapping Files

Step 2: Select a COBOL Extractor Environment or Create a New One

If no COBOL extractor environments are defined, you only have the option to create a new envir-
onment. An IDL Extractor for COBOL environment provides defaults for the extraction and refers
to COBOL programs and copybooks that are

■ stored locally on the same machine where the EntireX Workbench is running: a local COBOL
extractor environment

or

■ stored remotely on a host computer: a remoteCOBOLextractor environment. The extractor service
is required to access COBOLprograms and copybooks remotelywith a remote COBOL extractor
environment. The extractor service is supported onplatforms z/OS andBS2000/OSD. SeeExtractor
Service in the z/OS administration and BS2000/OSD Batch RPC Server documentation.

25Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

This page offers the following options:

To select an existing local COBOL extractor environment

1 Check radio button Choose an existing COBOL extractor environment and select a local
COBOL extractor environment.

2 Continue with Step 3: Select the COBOL Source below.

To select an existing remote COBOL extractor environment

1 Check radio button Choose an existing COBOL extractor environment and select a remote
COBOL extractor environment.

2 Continue with Step 3: Select the COBOL Source below.

Software AG IDL Extractor for COBOL26

Scenario I: Create New IDL and Server Mapping Files

To create a new local COBOL extractor environment

1 Check radio button Create a new COBOL extractor environment.

2 Follow the instructions in the Preferences section underCreate New Local Extractor Environment
(z/OS, z/VSE, BS2000/OSDand IBM i) |Micro Focus (UNIX andWindows) in the IDLExtractor
for COBOL documentation.

3 Continue with Step 3: Select the COBOL Source below.

To create a new remote COBOL extractor environment

1 Check radio button Create a new COBOL extractor environment.

2 Follow the instructions in the Preferences section underCreateNewRemote Extractor Environment
z/OS | BS2000/OSD in the IDL Extractor for COBOL documentation.

3 Continue with Step 3: Select the COBOL Source below.

27Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

Step 3: Select the COBOL Source

Selecting theCOBOL source is different depending onwhether theCOBOL source is stored locally
on the same machine where the EntireX Workbench is running, or on a remote host computer.

■ Selecting a COBOL Source Stored Locally
■ Selecting a Member from a Partitioned Data Set on Remote Host (z/OS)
■ Selecting a Member from a CA Librarian Data Set on Remote Host (z/OS)
■ Selecting a Member Archive Level from a CA Librarian Data Set on Remote Host (z/OS)
■ Selecting an Element (S) from an LMS Library on Remote Host (BS2000/OSD)

Selecting a COBOL Source Stored Locally

In step 2 above you selected or created a local extractor environment for z/OS. If you select a local
COBOL extractor environment, you can browse for the COBOL program in the local file system.
If you selected the COBOL source file before you started the wizard, and do not have a directory
defined in the preferences of your Local Extractor Environment, the file location is already present.
See Create New Local Extractor Environment (z/OS, z/VSE, BS2000/OSD and IBM i) | Micro Focus
(UNIX andWindows) in the IDL Extractor for COBOL documentation. To browse for the COBOL
source file, choose Browse.

Selecting a Member from a Partitioned Data Set on Remote Host (z/OS)

In step 2 above you selected or created a remote extractor environment. The following page offers
all data sets starting with the high-level qualifier defined in the Filter Settings of the remote ex-
tractor environment. See Create NewRemote Extractor Environment (z/OS) under IDL Extractor
for COBOL Preferences.

Software AG IDL Extractor for COBOL28

Scenario I: Create New IDL and Server Mapping Files

Select the partitioned data set fromwhich youwant to extract and chooseNext. Proceed depending
on the selected data set type. See Selecting aMember from a PartitionedData Set on Remote Host
(z/OS).

The following page offers all members contained in the partitioned data set selected in the previous
step, starting with the member name prefix defined in the Filter Settings of the remote extractor
environment. SeeStep 3:Define theRemoteExtractor Environmentunder IDLExtractor forCOBOL
Preferences.

29Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

Select the member from which you want to extract. You can select only one COBOL source. The
source can be a COBOL program or a COBOL copybook.

ChooseNext and continuewith Step 4: Define the Extraction Settings and Start Extraction below.

Selecting a Member from a CA Librarian Data Set on Remote Host (z/OS)

In step 2 above you selected or created a remote extractor environment. The following page offers
all data sets starting with the high-level qualifier defined in the Filter Settings of the remote ex-
tractor environment. See Create NewRemote Extractor Environment (z/OS) under IDL Extractor
for COBOL Preferences.

Software AG IDL Extractor for COBOL30

Scenario I: Create New IDL and Server Mapping Files

Select theCALibrarian data set fromwhich youwant to extract and chooseNext. Proceed depend-
ing on the selected data set type. See Selecting aMember from a CA Librarian Data Set on Remote
Host (z/OS).

The following page offers all members contained in the CA Librarian data set selected in the pre-
vious step, starting with the member name prefix defined in the Filter Settings of the remote ex-
tractor environment. See Step 3: Define the Remote Extractor Environment under IDL Extractor
for COBOL Preferences.

31Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

You can select only one COBOL source. The source can be a COBOL program or a COBOL copy-
book. If you want to extract from

■ the latest (current) version of the member, select the member, chooseNext and continue with
Step 4: Define the Extraction Settings and Start Extraction below.

■ a previous (archived) version of the member, check the box Show the Archive Levels of the
selectedmember, select themember, chooseNext and continuewith Selecting aMemberArchive
Level from a CA Librarian Data Set on Remote Host (z/OS).

Selecting a Member Archive Level from a CA Librarian Data Set on Remote Host (z/OS)

The following page offers all archive levels of the previously selected member.

Software AG IDL Extractor for COBOL32

Scenario I: Create New IDL and Server Mapping Files

Select the member from which you want to extract. You can select only one archive level. Choose
Next and continue with Step 4: Define the Extraction Settings and Start Extraction below.

Selecting an Element (S) from an LMS Library on Remote Host (BS2000/OSD)

In step 2 above you selected or created a remote extractor environment.

The following page offers all data sets starting with the high-level qualifier defined in the Filter
Settings of the remote extractor environment. See Create New Remote Extractor Environment
(BS2000/OSD) under IDL Extractor for COBOL Preferences .

33Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

The following page offers all elements contained in the LMS library selected in the previous step,
starting with the member name prefix defined in the Filter Settings of the remote extractor envir-
onment. See Step 3: Define the Remote Extractor Environment under IDL Extractor for COBOL
Preferences.

Software AG IDL Extractor for COBOL34

Scenario I: Create New IDL and Server Mapping Files

Select the element from which you want to extract. You can select only one COBOL source. The
source can be a COBOL program or a COBOL copybook.

ChooseNext and continuewith Step 4: Define the Extraction Settings and Start Extraction below.

35Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

Step 4: Define the Extraction Settings and Start Extraction

In this page you specify the COBOL source and Software AG IDL target options used for IDL ex-
traction.

Operating System

The operating system is already defined in the extractor environment in the IDL Extractor for
COBOL preferences, see IDL Extractor for COBOL Preferences.

Interface Type

The interface type must match the type of your COBOL server program. It is used by the RPC
server and the EntireX Adapter at runtime to correctly call the COBOL server and must be a sup-
ported interface type of the RPC server used. See Compatibility between COBOL Interface Types
and RPC Server.

Additional information may be required depending on the interface type:

Software AG IDL Extractor for COBOL36

Scenario I: Create New IDL and Server Mapping Files

■ CICS with DFHCOMMAREA Calling Convention
Specify InputMessage same asOutputMessage. If the COBOL server programuses a different
COBOL output data structure compared to its input data structure, that is, the input message
layout is overlaid with another layout on output, you need to uncheck Input Message same as
Output Message. See the following COBOL server examples:
■ Example 2: Redefines
■ Example 3: Buffer Technique
■ Example 4: COBOL SET ADDRESS Statements

If the COBOL server programuses the sameCOBOLdata structure on input aswell as on output,
you need to check Input Message same as Output Message. See the following COBOL server
examples:
■ Example 2: Redefines
■ Example 3: Buffer Technique
■ Example 4: COBOL SET ADDRESS Statements

■ CICS with Channel Container Calling Convention
Optionally, specify a channel name. See Extracting from a CICS Channel Container Program.

■ CICS with DFHCOMMAREA Large Buffer Calling Convention
Specify InputMessage same asOutputMessage. If the COBOL server programuses a different
COBOL large output buffer data structure compared to its large input buffer data structure,
you need to uncheck Input Message same as Output Message.

■ IMS MPPMessage Interface (IMS Connect)
Specify how youwant the transaction name to be determined. See Extracting from an IMSMPP
Message Interface Program.

■ IMS BMP with Standard Linkage Calling Convention
You can optionally set the IMS PSB List. See Extracting from an IMS BMP Standard Call Inter-
face.

■ Batch with Standard Linkage Convention
No further information is required.

■ MicroFocus with Standard Linkage Convention
No further information is required.

For an introduction to interface types, see Supported COBOL Interface Types.

Software AG IDL File

With the Software AG IDL file target options you specify the IDL file and IDL library names used:

■ File name specifies the file name used by the operating system.
■ Modify existing file is enabled onlywhen the IDLfile already exists. If enabled, check this option
to continue the extraction.

37Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

■ Library name defines the IDL library name used in the IDL file. The dialog box cannot be edited
when youmodify an existing IDL file. If there are multiple libraries, you can select one of these;
if there is only one library, the box is disabled. When you extract the IDL the first time or you
specify the name of an existing IDL file, the box can be edited (like a text widget). If you specified
an existing IDL file, the currently existing library names are available in the box.

For the interface type "Micro Focuswith standard linkage calling convention" and if the COBOL
server is an operating system standard library (.so|.sl on UNIX or .dll on Windows) or a Micro
Focus proprietary library (*.lbr), the IDL library name used must match the operating system
file name. For Micro Focus proprietary formats, intermediate code (*.int) and generated code
(*.gnt), any IDL library name can be used. See Locating and Calling the Target Server underAdmin-
istering the Micro Focus RPC Server in the Micro Focus RPC Server documentation.

■ Container specifies the eclipse container used for the IDL file

COBOL to IDL Mapping

With these target options you specify how COBOL data items are mapped to IDL:

■ If the target RPC clients support variable length strings without any restriction, we recommend
you map alphanumeric fields to "Strings with variable length". This is true for most modern
target environments such as Java, .NET, DCOM, C, Natural, SOAP, XML.

■ If the target RPC clients do not support variable length strings or support themwith restrictions,
we recommend you map alphanumeric fields to "Strings with fixed length"

■ Check the boxMap FILLER fields to IDL if COBOL FILLER pseudo-parameters are to be part
of the RPC client interface. By default they are not mapped to IDL.

ChooseNext and start the extraction. The wizard now analyzes the COBOL program. During this
process the following situations are possible:

Software AG IDL Extractor for COBOL38

Scenario I: Create New IDL and Server Mapping Files

■ Referenced copybooks cannot be found. In this case the wizard prompts you for every missing
copybook. Continue with optional step Step 4.1x: Copybook Cannot be Found - Local Extraction |
Remote Extraction (z/OS) | Remote Extraction (BS2000/OSD) in the IDL Extractor for COBOL
documentation depending on your situation.

39Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

■ If referenced copybooks are not available, you can choose Ignore or Ignore All, a copybook
status summary page is displayed, see Step 4.2: Copybook Status Summary (Optional).

■ NoCOBOLprogram ID can be located if you extract, for example, from a copybook that contains
COBOL data items only. In this case, the wizard prompts you to enter the COBOL program ID.
Continue with Step 4.3: Enter COBOL Program ID (Optional).

■ There is no copybook reference in your COBOL source or all referenced copybooks are found.
Also the COBOLprogram ID can be located. In this case continuewith Step 5: Select the COBOL
Interface and Map to IDL Interface under Scenario I: Create New IDL and Server Mapping
Files.

Step 4.1a: Copybook Cannot be Found - Local Extraction

This dialog enables you to browse directories where missing copybooks might be found. If there
are any specific copybook file extensions, you can define them here.

The copybook that cannot be found is given in the window, here its name is "ACPYBK21". In the
extractor Preferences, the copybook directory that contains the copybook or the copybook file ex-
tension is not defined.

Continue with one of the following actions:

To ignore this copybook only

1 Choose Ignore and go back to Step 4: Define the Extraction Settings and Start Extraction.

Software AG IDL Extractor for COBOL40

Scenario I: Create New IDL and Server Mapping Files

2 ChooseNext to start extraction again.

To ignore this and all further copybooks

1 Choose Ignore All and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 ChooseNext to start extraction again.

To complete the extractor environment

1 ChooseWorkspace or File System to browse for the copybook directory.

2 Check the copybook file extensions. Both will be saved in the COBOL extractor preferences
and reused in further extractions.

3 ChooseOK and go back to Step 4: Define the Extraction Settings and Start Extraction.

4 ChooseNext to start extraction again.

Step 4.1b: Copybook Cannot be Found - z/OS Remote Extraction

This dialog enables you to browse remote locations (partitioned or CA Librarian data sets) where
missing copybooks might be found.

The copybook that cannot be found is given in the window; here its name is "CUSTREC". In the
extractor preferences, the copybook data set that contains the copybook is not defined.

Continue with one of the following choices:

To ignore this copybook only

1 Choose Ignore and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 ChooseNext to start extraction again.

41Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

To ignore this and all further copybooks

1 Choose Ignore All and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 ChooseNext to start extraction again.

To complete the extractor environment

1 Choose Find to browse for the copybook data set. It will be saved in the COBOL extractor
preferences and reused in further extractions.

2 ChooseOK and go back to Step 4: Define the Extraction Settings and Start Extraction.

3 ChooseNext to start extraction again.

Step 4.1c: Copybook Cannot be Found - BS2000/OSD Remote Extraction

This dialog enables you to browse remote locations (LMS libraries) where missing copybooks
might be found.

The copybook that cannot be found is given in thewindow; here its name is "XTAB". In the extractor
preferences, the copybook LMS library that contains the copybook is not defined.

Continue with one of the following choices:

To ignore this copybook only

1 Choose Ignore and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 ChooseNext to start extraction again.

To ignore this and all further copybooks

1 Choose Ignore All and go back to Step 4: Define the Extraction Settings and Start Extraction.

Software AG IDL Extractor for COBOL42

Scenario I: Create New IDL and Server Mapping Files

2 ChooseNext to start extraction again.

To complete the extractor environment

1 Choose Find to browse for the copybook LMS library. It will be saved in the COBOL extractor
preferences and reused in further extractions.

2 ChooseOK and go back to Step 4: Define the Extraction Settings and Start Extraction.

3 ChooseNext to start extraction again.

Step 4.2: Copybook Status Summary (Optional)

This summary page lists all COBOL copybooks which were not available during extraction.

■ If any relevant COBOL data item describing the server interface is contained in one of the listed
copybooks, you cannot continue. Terminate the extraction and try to get themissing copybooks.

■ If no relevant COBOL data item describing the server interface is contained in the copybooks,
you can continue. ChooseOK.

43Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

Step 4.3: Enter COBOL Program ID (Optional)

This page is shownwhenever the program ID of the COBOL source is missing. Entering a COBOL
program name is compulsory.

No COBOL program ID can be located if you extract, for example, from a copybook that contains
COBOL data items only. The COBOL program ID

■ is the COBOL program name
■ is often the name of the executable or load module
■ can be found in the IDENTIFICATION DIVISION (abbreviated to"ID"). Example

ID DIVISION.
PROGRAM-ID. CUSTINFO.
AUTHOR. BMF.
DATE-WRITTEN. 26-11-1996

To complete the extraction

1 Enter the COBOL program ID.

2 ChooseOK to continue with Step 5: Select the COBOL Interface and Map to IDL Interface.

Software AG IDL Extractor for COBOL44

Scenario I: Create New IDL and Server Mapping Files

Step 5: Select the COBOL Interface and Map to IDL Interface

In general, mapping the COBOL data items to IDLwith the COBOLMapping Editor is a two-step
process:

1. First select the COBOL data items describing the COBOL interface from the COBOL source
view. In this example the COBOL interface is preselected as defined in the PROCEDURE DIVISION
USING clause.

2. Then map the COBOL interface to the IDL interface.

See the guidelines on IDL extraction below for further information.

The following table provides guidelines on IDL extraction per interface type. For the CICS interface
types DFHCOMMAREA and DFHCOMMAREA Large Buffer, the guidelines distinguish further
between COBOL server programs overlaying the input data structurewith a different output data
structure and COBOL server programs using same structures on input and output. You already
selected this in the checkbox InputMessage same asOutputMessage in Step 4: Define the Extrac-
tion Settings and Start Extraction.

45Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

CICS Message on Input and OutputInterface TypeEnvironment

same (1,4)DFHCOMMAREA (3)CICS

different (2,5)

same (1)Large Buffer

different (2)

Channel Container

Standard LinkageBatch

BMP with Standard LinkageIMS

MPP Message Interface (IMS Connect)

Standard LinkageMicro Focus

Notes:

1. Checkbox Input Message same as Output Message in Step 4: Define the Extraction Settings
and Start Extraction is checked. The COBOL data structure of the CICS input message is the
same as the structure of the CICS output message.

2. Checkbox Input Message same as Output Message in Step 4: Define the Extraction Settings
and Start Extraction is cleared. TheCOBOLdata structure of the CICS inputmessage is different
to the structure of the CICS output message (that is, the output overlays the input).

3. Your DFHCOMMAREA COBOL server must be DPL-enabled to be directly supported by EntireX.
The distributed program (DPL) link function enables a CICS client program to call another CICS
program (the server program) in a remote CICS region. Technically, a COBOL server is DPL-
enabled if
■ CICS is able to call the COBOL server remotely
■ the DFHCOMMAREA layout does not contain pointers
If your program is not DPL-enabled, seeWhat to dowith other Interface Types? in Introduction
to the IDL Extractor for COBOL

4. See the following COBOL server examples for CICS input message the same as CICS output
message:
■ Example 2: Redefines
■ Example 3: Buffer Technique
■ Example 4: COBOL SET ADDRESS Statements

5. See the following COBOL server examples for CICS input message different to CICS output
message:
■ Example 2: Redefines
■ Example 3: Buffer Technique
■ Example 4: COBOL SET ADDRESS Statements

Software AG IDL Extractor for COBOL46

Scenario I: Create New IDL and Server Mapping Files

The outcome of the Mapping Editor is the IDL file and a server mapping file (optional). There are
server-side mapping files (EntireXWorkbench files with extension .svm) and client-side mapping
files (extension .cvm). See Server Mapping Files in the EntireX Workbench and How to Set the Type of
Server Mapping Files.

Step 6: Finishing the Mapping Editor

When you choose Save in the Mapping Editor, the IDL file is generated. If required, a server
mapping file is generated,too. SeeWhen is a ServerMapping File Required? in the EntireXWorkbench
documentation The servermapping file is either of type client-side (extension .cvm) or server-side
(extension .svm). SeeHow to Set the Type of ServerMapping Files. Both files are writtenwith the "File
Name" entered for the IDL file in Step 4: Define the Extraction Settings and Start Extraction.

■ If you are using client-sidemapping files, continue with Step 7: Validate the Extraction and Test
the IDL File.

■ If you are using server-sidemapping files, the dialog below is displayed whenever the COBOL
Mapping Editor is saved. There are two options to choose from:
■ Save IDL and server mapping files
will save the generated files into the workspace and quit the COBOL Mapping Editor

The generated server-sidemapping file need to be synchronizedwith the server-sidemapping
container of the target RPC server, except for IMS Connect and CICS ECI connections with
the EntireX Adapter, where they are wrapped into the Integration Server connection - the
same as client-side mapping files, see Integration Server Wrapper.
■ Check the option Synchronize with server-side mapping container now for the following
RPC servers:
■ z/OS (CICS, Batch, IMS) | Micro Focus | BS2000/OSD | z/VSE (CICS, Batch)

■ Uncheck the option Synchronize with server-side mapping container now for
■ EntireX Adapter and IMS Connect and CICS ECI connections
■ the following RPC servers: CICS ECI | IMS Connect
■ later synchronization of other RPC servers

■ Extract additional COBOL program and append to the IDL and server mapping files
will save the generated files into the workspace, quit the Mapping Editor and start the IDL
Extractor for COBOL again. The additionally extracted COBOL source will then be added to
the previously generated IDL and server mapping files.

47Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

To save the generated files into the workspace, quit the Mapping Editor and deploy the server-side mapping
file

1 Select Save IDL and server mapping files.

2 Check the option Synchronize with server-side mapping container now and chooseOK.
This calls the Deployment Wizard. See Server Mapping Deployment Wizard in the EntireX
Workbench documentation.

■ If you are using the Server Mapping Deployment Wizard for first time with no predefined
deployment environment preferences, continue with Step 2a: Create a New Deployment En-
vironment in the Server Mapping Deployment Wizard documentation.

■ If deployment environments are already defined, you may also continue with Step 3: Select
and Existing Deployment Environment and Deploy.

3 Continue with Step 7: Validate the Extraction and Test the IDL File.

To save the generated files into the workspace and quit the Mapping Editor without deploying the server-side
mapping file

1 Select Save IDL and server mapping files.

2 Clear the option Synchronize with server-side mapping container now and chooseOK.

Software AG IDL Extractor for COBOL48

Scenario I: Create New IDL and Server Mapping Files

■ Synchronize the server-sidemapping container of the target RPC server later. SeeDeploying
Server-side Mapping Files to the RPC Server in the respective sections of the documentation.

■ For the webMethods EntireX Adapter and IMS Connect or CICS ECI connections, update
your Adapter connection. See Step 3: Select the Connection Type in the Integration Server
Wrapper documentation.

3 Continue with Step 7: Validate the Extraction and Test the IDL File.

To save the generated files into the workspace, quit the Mapping Editor and start the IDL Extractor for COBOL
again

■ Select Extract additional COBOL program and append to the IDL and server mapping files
and chooseOK. Continue with Step 2: Select a COBOL Extractor Environment or Create a
New One.

Caution: Do not edit the IDL file manually or with the IDL Editor, except for changing
parameter names. Otherwise, consistency between the IDL file and the server mapping file
will be lost, resulting in unexpected behavior. For this purpose use the COBOL Mapping
Editor instead and choose Scenario III: Modify Existing IDL and Server Mapping Files.

Caution: A server mapping file extracted this way must not be re-created by the COBOL
Wrapper. Server mapping specifications of such a file would not be powerful enough to
adequately describe your COBOL server program extracted here.

Step 7: Validate the Extraction and Test the IDL File

The IDL file is used to build RPC clients using an EntireXWorkbench wrapper of your choice. See
EntireX Wrappers in the EntireX Workbench documentation.

If you are using client-side mapping files:

■ You need to rebuild all RPC clients communicating with this RPC server program and re-gen-
erate the client interface objects.

■ For connections with the webMethods EntireX Adapter you need to update your Adapter con-
nection, see Step 3: Select the Connection Type in the Integration Server Wrapper documentation.

For a quick validation of your extraction, you can

■ use the IDL Tester to validate the extraction, see EntireX IDL Tester in the EntireX Workbench
documentation.

■ generate an XMLmapping file (XMM) and use the XMLTester for verification. See EntireXXML
Tester in the XML/SOAPWrapper documentation.

49Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

50

3 Scenario II: Append to Existing IDL and Server Mapping

Files

The IDL Extractor for COBOL can be started from an existing pair of IDL and server mapping
files. A server mapping file is an EntireX Workbench file with extension .svm or .cvm. See Server
Mapping Files for COBOL.

To start the IDL Extractor for COBOL

■ Open the context menu of an IDL file and choose COBOL > Extract further Interface.

51

Continue with Step 2: Select a COBOL Extractor Environment or Create a NewOne as described
under Scenario I: Create New IDL and Server Mapping Files.

Software AG IDL Extractor for COBOL52

Scenario II: Append to Existing IDL and Server Mapping Files

4 Scenario III: Modify Existing IDL and Server Mapping Files

The IDL Extractor for COBOL can be started from an existing pair of IDL and server mapping
files. A server mapping file is an EntireX Workbench file with extension .svm or .cvm. See Server
Mapping Files for COBOL.

To start the COBOL Mapping Editor

■ Open the context menu of an IDL file and choose COBOL > Modify Interface.

53

Or:

ChooseOpen With > EntireX COBOLMapping Editor.

Software AG IDL Extractor for COBOL54

Scenario III: Modify Existing IDL and Server Mapping Files

Continue with Step 5: Select the COBOL Interface and Map to IDL Interface as described under
Scenario I: Create New IDL and Server Mapping Files.

55Software AG IDL Extractor for COBOL

Scenario III: Modify Existing IDL and Server Mapping Files

56

III COBOL Mapping Editor

A COBOL source program mostly does not contain all the information needed for IDL mapping.
With the Mapping Editor you enter this missing information. The Mapping Editor allows you to
map the COBOL server interface to Software AG IDL. With the Mapping Editor you

■ select the COBOL data items of the COBOL interface
■ define

■ which COBOL data items are mapped to IDL (Select REDEFINE paths, Suppress COBOL
Unneeded Data Items)

■ the direction of the COBOL data items are mapped to IDL (Map to [In, Out, InOut])
■ field values for COBOLdata items that are not sent by clients to theCOBOL server (SetCOBOL
Data Items to Constant)

■ multiple IDL interfaces (Map to Multiple IDL Interfaces)

The following table provides guidelines on IDL extraction per interface type. For the CICS interface
types DFHCOMMAREA and DFHCOMMAREA Large Buffer, the guidelines distinguish further
between COBOL server programs overlaying the input data structurewith a different output data
structure and COBOL server programs using same structures on input and output. You already
selected this in the checkbox InputMessage same asOutputMessage in Step 4: Define the Extrac-
tion Settings and Start Extraction.

CICS Message on Input and OutputInterface TypeEnvironment

same (1,4)DFHCOMMAREA (3)CICS

different (2,5)

same (1)Large Buffer

different (2)

Channel Container

Standard LinkageBatch

BMP with Standard LinkageIMS

MPP Message Interface (IMS Connect)

57

CICS Message on Input and OutputInterface TypeEnvironment

Standard LinkageMicro Focus

Notes:

1. Checkbox Input Message same as Output Message in Step 4: Define the Extraction Settings
and Start Extraction is checked. The COBOL data structure of the CICS input message is the
same as the structure of the CICS output message.

2. Checkbox Input Message same as Output Message in Step 4: Define the Extraction Settings
and Start Extraction is cleared. TheCOBOLdata structure of the CICS inputmessage is different
to the structure of the CICS output message (that is, the output overlays the input).

3. Your DFHCOMMAREA COBOL server must be DPL-enabled to be directly supported by EntireX.
The distributed program (DPL) link function enables a CICS client program to call another CICS
program (the server program) in a remote CICS region. Technically, a COBOL server is DPL-
enabled if
■ CICS is able to call the COBOL server remotely
■ the DFHCOMMAREA layout does not contain pointers
If your program is not DPL-enabled, seeWhat to dowith other Interface Types? in Introduction
to the IDL Extractor for COBOL

4. See the following COBOL server examples for CICS input message the same as CICS output
message:
■ Example 2: Redefines
■ Example 3: Buffer Technique
■ Example 4: COBOL SET ADDRESS Statements

5. See the following COBOL server examples for CICS input message different to CICS output
message:
■ Example 2: Redefines
■ Example 3: Buffer Technique
■ Example 4: COBOL SET ADDRESS Statements

Software AG IDL Extractor for COBOL58

COBOL Mapping Editor

5 CICS with DFHCOMMAREA Calling Convention - In same

as Out
■ Introduction .. 60
■ Extracting from a CICS DFHCOMMAREA Program .. 60
■ Mapping Editor User Interface .. 61
■ Mapping Editor IDL Interface Mapping Functions ... 68
■ Programming Techniques ... 72

59

Introduction

Depending on the programming style used in the CICS program and the various different tech-
niques for accessing the CICS DFHCOMMAREA interface, finding the relevant COBOL data structures
can be a complex and time-consuming task that may require CICS COBOL programming know-
ledge. Please note also the following:

■ ACICSprogramdoes not require a PROCEDURE DIVISION header, where parameters are normally
defined. See PROCEDURE DIVISIONMapping.

■ The DFHCOMMAEA can be omitted in the linkage section.
■ If there is no DFHCOMMAREA in the linkage section or no PROCEDURE DIVISION header present in
the PROCEDURE DIVISION, the CICS preprocessor completes the interface of the COBOL server
and adds a DFHCOMMAREA and a PROCEDURE DIVISON header to the CICS program before compil-
ation.

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from a CICS DFHCOMMAREA Program

This section assumes Input Message same as Output Message is checked. COBOL output and
COBOL input parameters are the same, that is, the DFHCOMMAREA on output is not overlaid
with a data structure different to the data structure on input.

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL sourcewith interface type CICSwithDFHCOMMAREA calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and checkbox Input Message same as Output Message is
not cleared.

Software AG IDL Extractor for COBOL60

CICS with DFHCOMMAREA Calling Convention - In same as Out

PressNext to open the COBOL Mapping Editor.

To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items of the CICS message to COBOL Interface by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. SeeNotes.

2 Continue with COBOL to IDL Mapping.

Notes:

1. If a DFHCOMMAREA is present, the DFHCOMMAREA COBOL data item itself cannot be selected. In this
case, select the COBOL data items directly subordinated to DFHCOMMAREA and map to IDL. See
Map to In, Out, InOut.

2. It is very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

3. See the examples provided under Programming Techniques.

4. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL interface typeCICSwithDFHCOMMAREA interface, the user interface of the COBOL
Mapping Editor looks like this:

61Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL Program Selection. Currently selected program with interface type

COBOL Source View. Contains all related sources for the currently selected COBOL program

COBOL to IDLMapping. Tree view of your selected COBOLdata items andmapping buttons
with which you can map these items to your IDL interface

Software AG IDL Extractor for COBOL62

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

63Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the EditorwithModify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons

Software AG IDL Extractor for COBOL64

CICS with DFHCOMMAREA Calling Convention - In same as Out

■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameterswithout a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail underMapping Editor IDL Interface Mapping
Functions.

A suppressed COBOL data item becomes visible in the IDL in-
terface. Used also to select another REDEFINE path.

Map to In | Out | InOut

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant
Remove the data item from the COBOL interface. This also re-
moves the mapped IDL parameter from all IDL interfaces for
the current COBOL program. See COBOL Program Selection.

Remove fromCOBOL Inter-
face

65Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to InOut.

Scalar parameter, mapped to Out.

Group parameter, here mapped to InOut.

REDEFINE parameter, here mapped to InOut.

Parameter set to Constant.

Software AG IDL Extractor for COBOL66

CICS with DFHCOMMAREA Calling Convention - In same as Out

Mapping Buttons

The following buttons are available:

Map to In | Out | InOut ->
SeeMap to In, Out, InOut. A suppressedCOBOLdata item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

67Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to In, Out, InOut
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths

Map to In, Out, InOut

With theMap to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

To provide IDL directions

■ Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu and as mapping buttons
to make the COBOL data items visible and provide IDL directions in the IDL interface.

Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subsequent child
COBOL data items and thus to the related IDL parameters in the IDL interface.

2. Subsequent child COBOL data items can only be mapped to the same IDL direction as their
top-level COBOL group data item.

Software AG IDL Extractor for COBOL68

CICS with DFHCOMMAREA Calling Convention - In same as Out

3. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
contextmenu and asmapping button, aCOBOLdata item can be removed from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/OSDRPC server, the amount of data to be transferred to/from the RPC client is reduced
with correct IDL directions.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified – it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the RPC client or Adapter Service does not need an Out parameter
■ if the RPC server or Adapter Service does not need an In parameter and a low value can be
provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse functionMap to In, Out or InOut (see above) available in the context menu
and as mapping button, a COBOL data item is made visible in the IDL interface again.

69Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Set COBOL Data Items to Constants

COBOLdata items that always require fixed constant values on input to theCOBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see below).

To map COBOL data items to constants

■ Use the Set Constant function available in the context menu and asmapping button to define
a constant value for aCOBOLdata item. You are promptedwith awindow to enter the constant
value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionMap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

Software AG IDL Extractor for COBOL70

CICS with DFHCOMMAREA Calling Convention - In same as Out

This example is described inmore detail underExample 1: COBOLServerwithMultiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

■ If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

■ If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or .

2 Give the IDL interfaces meaningful names with the toolbar function .

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY'
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

71Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to In, Out or InOut function available in the context menu and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Programming Techniques

This section covers the following topics:

■ Example 1: COBOL Server with Multiple Functions
■ Example 2: Redefines
■ Example 3: Buffer Technique

Software AG IDL Extractor for COBOL72

CICS with DFHCOMMAREA Calling Convention - In same as Out

■ Example 4: COBOL SET ADDRESS Statements

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following examplewhere a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

■ Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

■ Java or .NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

■ etc.

To do this you need to extract the COBOL server program as described underMap to Multiple
IDL Interfaces.

73Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Example 2: Redefines

The output data is described with a REDEFINE as in the following example. In this case you need
to select REDEFINE path BUFFER2 for the COBOL interface.

LINKAGE SECTION.
01 DFHCOMMAREA.

02 BUFFER1.
03 OPERATION PIC X(1).
03 OPERAND-1 PIC S9(9) BINARY.
03 OPERAND-2 PIC S9(9) BINARY.
03 FUNCTION-RESULT PIC S9(9) BINARY.

02 BUFFER2 REDEFINES BUFFER1.
03 FIELD-1 PIC X(4).
03 FIELD-2 PIC X(2).

. . .
PROCEDURE DIVISION USING DFHCOMMAREA.

* process the BUFFER2 and provide result in BUFFER2
EXEC CICS RETURN.

Example 3: Buffer Technique

On entry, the servermoves linkage section field(s) - often an entire buffer - into theworking storage
and processes the input data inside the working storage field(s). Before return, it moves the
working storage field(s) - often an entire buffer - back to the linkage section. In this case, the relevant
COBOLdata items are describedwithin theworking storage section. You need to select WS-BUFFER
for the COBOL interface.

WORKING STORAGE SECTION.
01 WS-BUFFER.

02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

LINKAGE SECTION.
01 DFHCOMMAREA.

02 IO-BUFFER PIC X(9).
. . .
PROCEDURE DIVISION USING DFHCOMMAREA.

MOVE IO-BUFFER TO WS-BUFFER.
* process the WS-BUFFER and provide result in WS-BUFFER

MOVE WS-BUFFER TO IO-BUFFER.
EXEC CICS RETURN.

Software AG IDL Extractor for COBOL74

CICS with DFHCOMMAREA Calling Convention - In same as Out

Example 4: COBOL SET ADDRESS Statements

COBOL SET ADDRESS statements are used tomanipulate the interface of the CICS server. On entry,
the server addresses the data with a (dummy) structure LS-BUFFER defined in the linkage section.
You need to select LS-BUFFER for the COBOL interface.

LINKAGE SECTION.
01 LS-BUFFER.

02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

. . .
PROCEDURE DIVISION.

SET ADDRESS OF LS-BUFFER TO DFHCOMMAREA.
* process the LS-BUFFER and provide result.

EXEC CICS RETURN.

75Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

76

6 CICSwith DFHCOMMAREA Large Buffer Interface - In same

as Out
■ Introduction .. 78
■ Extracting from a CICS DFHCOMMAREA Large Buffer Program .. 79
■ Mapping Editor User Interface .. 80
■ Mapping Editor IDL Interface Mapping Functions ... 87
■ Programming Techniques ... 92

77

Introduction

A DFHCOMMAREA Large Buffer Interface has the structure given below in the linkage section. The
field subordinated under DFHCOMMAREA prefixed with WM-LCB describe this structure. The field
names themselves can be different, but the COBOL data types (usage clauses) must match exactly.

LINKAGE SECTION.

01 DFHCOMMAREA.
10 WM-LCB-MARKER PIC X(4).
10 WM-LCB-INPUT-BUFFER POINTER.
10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-OUTPUT-BUFFER POINTER.
10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-FLAGS PIC X(1).

88 WM-LCB-FREE-OUTPUT-BUFFER VALUE 'F'.
10 WM-LCB-RESERVED PIC X(3).

01 INOUT-BUFFER.
02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

. . .
PROCEDURE DIVISION USING DFHCOMMAREA.
. . .

SET ADDRESS OF INOUT-BUFFER TO WM-LCB-INPUT-BUFFER.
SET ADDRESS OF INOUT-BUFFER TO WM-LCB-OUTPUT-BUFFER.

* process the INOUT-BUFFER and provide result
EXEC CICS RETURN.

Software AG IDL Extractor for COBOL78

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from a CICS DFHCOMMAREA Large Buffer Program

This section assumes Input Message same as Output Message is checked. COBOL output and
COBOL input parameters are the same, that is, WM-LCB-OUTPUT-BUFFER is set to the same address
as WM-LCB-INPUT-BUFFER (as in the DFHCOMMAREA large buffer example above).

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL sourcewith interface typeCICSwithDFHCOMMAREA large buffer interface, theExtractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct.

PressNext to open the COBOL Mapping Editor.

To select the COBOL interface data items of your COBOL server

1 Add theCOBOLdata items of the large buffer toCOBOL Interface by using the contextmenu
or toolbar available in the COBOL Source View and COBOL Interface. To do this, locate in
the PROCEDURE DIVISION the SET ADDRESS OF <x> TO WM-LCB-INPUT-BUFFER statement and
the SET ADDRESS OF <y> TO WM-LCB-OUTPUT-BUFFER statement. The COBOL data items <x>
and <y> are identical, and this is the large buffer you are looking for. SeeNotes.

2 Continue with COBOL to IDL Mapping.

Notes:

1. Do not select the pointers in the DFHCOMMAREA pointing to the large buffers, in the example above,
WM-LCB-INPUT-BUFFER and WM-LCB-OUTPUT-BUFFER.

2. It is very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

79Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

3. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL interface type CICS with DFHCOMMAREA large buffer interface, the user interface
of the COBOL Mapping Editor looks like this:

Software AG IDL Extractor for COBOL80

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL Program Selection. Currently selected program with interface type

COBOL Source View. Contains all related sources for the currently selected COBOL program

COBOL to IDLMapping. Tree view of your selected COBOLdata items andmapping buttons
with which you can map these items to your IDL interface

81Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL82

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the EditorwithModify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons

83Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameterswithout a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail underMapping Editor IDL Interface Mapping
Functions.

A suppressed COBOL data item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Map to In | Out | InOut

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant

Software AG IDL Extractor for COBOL84

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Map an array to a fixed sized or unbounded array.Set Array Mapping

Note: This option should be used carefully and requires
knowledge of the COBOL server program. Be aware that
an incorrect mapping could result in runtime errors.

Remove the data item from theCOBOL interface. This also removes
the mapped IDL parameter from all IDL interfaces for the current
COBOL program. See COBOL Program Selection.

Remove from COBOL In-
terface

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to InOut.

Scalar parameter, mapped to Out.

85Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Group parameter, here mapped to InOut.

REDEFINE parameter, here mapped to InOut.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Map to In | Out | InOut ->
SeeMap to In, Out, InOut. A suppressedCOBOLdata item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

Software AG IDL Extractor for COBOL86

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to In, Out, InOut
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths
■ Set Arrays (Fixed <-> Unbounded)

Map to In, Out, InOut

With theMap to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

To provide IDL directions

■ Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu and as mapping buttons
to make the COBOL data items visible and provide IDL directions in the IDL interface.

Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subsequent child
COBOL data items and thus to the related IDL parameters in the IDL interface.

87Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

2. Subsequent child COBOL data items can only be mapped to the same IDL direction as their
top-level COBOL group data item.

3. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
contextmenu and asmapping button, aCOBOLdata item can be removed from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/OSDRPC server, the amount of data to be transferred to/from the RPC client is reduced
with correct IDL directions.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified – it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the RPC client or Adapter Service does not need an Out parameter
■ if the RPC server or Adapter Service does not need an In parameter and a low value can be
provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse functionMap to In, Out or InOut (see above) available in the context menu
and as mapping button, a COBOL data item is made visible in the IDL interface again.

Software AG IDL Extractor for COBOL88

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Set COBOL Data Items to Constants

COBOLdata items that always require fixed constant values on input to theCOBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see below).

To map COBOL data items to constants

■ Use the Set Constant function available in the context menu and asmapping button to define
a constant value for aCOBOLdata item. You are promptedwith awindow to enter the constant
value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionMap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

89Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

This example is described inmore detail underExample 1: COBOLServerwithMultiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

■ If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

■ If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or .

2 Give the IDL interfaces meaningful names with the toolbar function .

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY'
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

Software AG IDL Extractor for COBOL90

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to In, Out or InOut function available in the context menu and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Set Arrays (Fixed <-> Unbounded)

For COBOL server programs using the message length to transfer a variable number of elements
in a COBOL table with a fixed size (see Tables with Fixed Size) in a variable manner (see Tables
with Variable Size - DEPENDING ON Clause) you need to set the mapping to unbounded array.

For details of such a COBOL server program see Example 2: COBOL Server Using Data Length
to Process a Variable Number of Array Elements.

To set arrays from fixed to unbounded or vice versa

■ Select the COBOL table and use the function Set Arrays (Fixed<->Unbounded) available in
the context menu. A modal window is displayed. Select Unbounded array. The IDL array
parameter will be changed from fixed array /number to an unbounded array /Vnumber, see
array-definition under Software AG IDL Grammar in the IDL Editor documentation.

Notes:

91Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

1. This option should be used carefully and requires knowledge of the COBOL server program.
Be aware that an incorrect mapping results in runtime errors.

2. The COBOL Table with a fixed size (see Tables with Fixed Size) used in this manner must be
the last parameter of the COBOL interface; it must not be a subparameter of any other COBOL
table andmust not contain any DEPENDING ON clause (see Tableswith Variable Size - DEPENDING
ON Clause).

Programming Techniques

This section covers the following topics:

■ Example 1: COBOL Server with Multiple Functions
■ Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following examplewhere a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

Software AG IDL Extractor for COBOL92

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

■ Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

■ Java or .NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

■ etc.

To do this you need to extract the COBOL server program as described underMap to Multiple
IDL Interfaces.

Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Assume a COBOL CICS large buffer server program has a fixed-sized COBOL table as its last
parameter, similar to COBOLdata item COBOL-TABLE-FIX in the example below; each table element
is 100 bytes; the length of COBOL-FIELD1 + COBOL-FIELD2 + COBOL-FIELD3; the length of the data
preceding the COBOL table is described by COBOL-GROUP1; its length is 1000 bytes.

WORKING-STORAGE SECTION.
01 NUMBER-OF-INCOMING-ELEMENTS PIC S9(8) BINARY.
01 NUMBER-OF-OUTGOMING-ELEMENTS PIC S9(8) BINARY.

. . .

LINKAGE SECTION.
01 DFHCOMMAREA.
10 WM-LCB-MARKER PIC X(4).
10 WM-LCB-INPUT-BUFFER POINTER.
10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-OUTPUT-BUFFER POINTER.
10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-FLAGS PIC X(1).

88 WM-LCB-FREE-OUTPUT-BUFFER VALUE "F".
10 WM-LCB-RESERVED PIC X(3).

01 INOUT-BUFFER.
10 COBOL-GROUP1.

20 COBOL-TABLE-PREFIX PIC X(1000).
10 COBOL-TABLE-FIX OCCURS 20.

20 COBOL-GROUP2.
25 COBOL-FIELD1 PIC X(30).
25 COBOL-FIELD2 PIC X(20).
25 COBOL-FIELD3 PIC X(50).
. . .

PROCEDURE DIVISION USING DFHCOMMAREA.

93Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

SET ADDRESS OF INOUT-BUFFER TO WM-LCB-INPUT-BUFFER.
SET ADDRESS OF INOUT-BUFFER TO WM-LCB-OUTPUT-BUFFER.
COMPUTE NUMBER-OF-INCOMING-ELEMENTS = (WM-LCB-INPUT-BUFFER-SIZE

- LENGTH OF COBOL-GROUP1)
/ LENGTH OF COBOL-GROUP2.

. . .
COMPUTE WM-LCB-OUTPUT-BUFFER-SIZE = LENGTH OF COBOL-GROUP2

+ NUMBER-OF-OUTGOING-ELEMENTS * LENGTH OF COBOL-GROUP2

EXEC CICS RETURN END-EXEC.

During input the COBOL CICS large buffer server program uses the large buffer input length
WM-LCB-INPUT-BUFFER-SIZE to evaluate the NUMBER-OF-INCOMING-ELEMENTS. During output the
large buffer output length is determined accordingly to the NUMBER-OF-OUTGOING-ELEMENTS and
set in WM-LCB-OUTPUT-BUFFER-SIZE.

Although the COBOL table is defined as a table with a fixed size (see Tables with Fixed Size) it is
used in a variable manner, similar to tables with variable Size (see Tables with Variable Size -
DEPENDING ON Clause). In this case it is required to map the COBOL table to an IDL unbounded
array, see Set Arrays (Fixed <-> Unbounded).

Software AG IDL Extractor for COBOL94

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

7 Batch with Standard Linkage Calling Convention

■ Introduction .. 96
■ Extracting from a Standard Call Interface ... 96
■ Mapping Editor User Interface .. 97
■ Mapping Editor IDL Interface Mapping Functions ... 104
■ Programming Techniques .. 108

95

Introduction

Because COBOL servers with a standard call interface always contain a PROCEDURE DIVISION
header (see PROCEDURE DIVISIONMapping) with all parameters, the COBOL data items of the in-
terface can be evaluated by the IDL Extractor for COBOL and are already offered by the wizard.
In most cases the offered COBOL data items will be correct, but you should always check them
manually.

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from a Standard Call Interface

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL source with interface type Batch with standard linkage calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct.

Software AG IDL Extractor for COBOL96

Batch with Standard Linkage Calling Convention

PressNext to open the COBOL Mapping Editor.

To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items to the COBOL Interface, using the context menu or toolbar
available in the COBOL Source View and COBOL Interface. SeeNotes.

2 Continue with COBOL to IDL Mapping.

Notes:

1. If there is a PROCEDURE DIVISION header available, the parameters listed define exactly the
COBOL interface. These COBOL data items are within the LINKAGE SECTION and are already
selected to the COBOL interface in initial state when you enter the COBOL Mapping Editor.
The PROCEDURE DIVISION header might not be available if you are extracting from a copybook
or part of the COBOL source.

2. It is very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

3. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL server programs with standard call interface types, the user interface of the COBOL
Mapping Editor looks like this:

97Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

COBOL Program Selection. Currently selected program with interface type

COBOL Source View. Contains all related sources for the currently selected COBOL program

COBOL to IDLMapping. Tree view of your selected COBOLdata items andmapping buttons
with which you can map these items to your IDL interface

Software AG IDL Extractor for COBOL98

Batch with Standard Linkage Calling Convention

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

99Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the EditorwithModify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons
■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

Software AG IDL Extractor for COBOL100

Batch with Standard Linkage Calling Convention

TheCOBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameterswithout a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail underMapping Editor IDL Interface Mapping
Functions.

A suppressed COBOL data item becomes visible in the IDL in-
terface. Used also to select another REDEFINE path.

Map to In | Out | InOut

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant
Remove the data item from the COBOL interface. This also re-
moves the mapped IDL parameter from all IDL interfaces for
the current COBOL program. See COBOL Program Selection.

Remove fromCOBOL Inter-
face

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

101Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to InOut.

Scalar parameter, mapped to Out.

Group parameter, here mapped to InOut.

REDEFINE parameter, here mapped to InOut.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Software AG IDL Extractor for COBOL102

Batch with Standard Linkage Calling Convention

Map to In | Out | InOut ->
SeeMap to In, Out, InOut. A suppressedCOBOLdata item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

103Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to In, Out, InOut
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths

Map to In, Out, InOut

With theMap to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

To provide IDL directions

■ Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu and as mapping buttons
to make the COBOL data items visible and provide IDL directions in the IDL interface.

Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subsequent child
COBOL data items and thus to the related IDL parameters in the IDL interface.

2. Subsequent child COBOL data items can only be mapped to the same IDL direction as their
top-level COBOL group data item.

3. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
contextmenu and asmapping button, aCOBOLdata item can be removed from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/OSDRPC server, the amount of data to be transferred to/from the RPC client is reduced
with correct IDL directions.

Software AG IDL Extractor for COBOL104

Batch with Standard Linkage Calling Convention

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified – it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the RPC client or Adapter Service does not need an Out parameter
■ if the RPC server or Adapter Service does not need an In parameter and a low value can be
provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse functionMap to In, Out or InOut (see above) available in the context menu
and as mapping button, a COBOL data item is made visible in the IDL interface again.

Set COBOL Data Items to Constants

COBOLdata items that always require fixed constant values on input to theCOBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see below).

To map COBOL data items to constants

■ Use the Set Constant function available in the context menu and asmapping button to define
a constant value for aCOBOLdata item. You are promptedwith awindow to enter the constant
value.

105Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionMap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

This example is described inmore detail underExample 1: COBOLServerwithMultiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

■ If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

■ If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

Software AG IDL Extractor for COBOL106

Batch with Standard Linkage Calling Convention

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or .

2 Give the IDL interfaces meaningful names with the toolbar function .

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY'
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

107Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to In, Out or InOut function available in the context menu and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Programming Techniques

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following examplewhere a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

Software AG IDL Extractor for COBOL108

Batch with Standard Linkage Calling Convention

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

■ Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

■ Java or .NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

■ etc.

To do this you need to extract the COBOL server program as described underMap to Multiple
IDL Interfaces.

109Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

110

8 Micro Focus with Standard Linkage Calling Convention

■ Introduction .. 112
■ Extracting from a Standard Call Interface .. 112
■ Mapping Editor User Interface .. 113
■ Mapping Editor IDL Interface Mapping Functions ... 120
■ Programming Techniques .. 124

111

Introduction

Because COBOL servers with a standard call interface always contain a PROCEDURE DIVISION
header (see PROCEDURE DIVISIONMapping) with all parameters, the COBOL data items of the in-
terface can be evaluated by the IDL Extractor for COBOL and are already offered by the wizard.
In most cases the offered COBOL data items will be correct, but you should always check them
manually.

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from a Standard Call Interface

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL source with interface type Micro Focus with standard linkage calling convention, the Ex-
tractor Settingsdialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct.

PressNext to open the COBOL Mapping Editor.

Software AG IDL Extractor for COBOL112

Micro Focus with Standard Linkage Calling Convention

To select the COBOL interface data items of your COBOL server

1 Add theCOBOLdata items toCOBOL Interface byusing the contextmenu or toolbar available
in the COBOL Source View and COBOL Interface. SeeNotes.

2 Continue with COBOL to IDL Mapping.

Notes:

1. If there is a PROCEDURE DIVISION header available, the parameters listed define exactly the
COBOL interface. These COBOL data items are within the LINKAGE SECTION and are already
selected to the COBOL interface in initial state when you enter the COBOL Mapping Editor.
The PROCEDURE DIVISION header might not be available if you are extracting from a copybook
or part of the COBOL source.

2. It is very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

3. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL server programs with standard call interface types, the user interface of the COBOL
Mapping Editor looks like this:

113Software AG IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

COBOL Program Selection. Currently selected program with interface type

COBOL Source View. Contains all related sources for the currently selected COBOL program

COBOL to IDLMapping. Tree view of your selected COBOLdata items andmapping buttons
with which you can map these items to your IDL interface

Software AG IDL Extractor for COBOL114

Micro Focus with Standard Linkage Calling Convention

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

115Software AG IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the EditorwithModify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons

Software AG IDL Extractor for COBOL116

Micro Focus with Standard Linkage Calling Convention

■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameterswithout a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail underMapping Editor IDL Interface Mapping
Functions.

A suppressed COBOL data item becomes visible in the IDL in-
terface. Used also to select another REDEFINE path.

Map to In | Out | InOut

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant
Remove the data item from the COBOL interface. This also re-
moves the mapped IDL parameter from all IDL interfaces for
the current COBOL program. See COBOL Program Selection.

Remove fromCOBOL Inter-
face

117Software AG IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to InOut.

Scalar parameter, mapped to Out.

Group parameter, here mapped to InOut.

REDEFINE parameter, here mapped to InOut.

Parameter set to Constant.

Software AG IDL Extractor for COBOL118

Micro Focus with Standard Linkage Calling Convention

Mapping Buttons

The following buttons are available:

Map to In | Out | InOut ->
SeeMap to In, Out, InOut. A suppressedCOBOLdata item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

119Software AG IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to In, Out, InOut
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths

Map to In, Out, InOut

With theMap to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

To provide IDL directions

■ Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu and as mapping buttons
to make the COBOL data items visible and provide IDL directions in the IDL interface.

Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subsequent child
COBOL data items and thus to the related IDL parameters in the IDL interface.

2. Subsequent child COBOL data items can only be mapped to the same IDL direction as their
top-level COBOL group data item.

Software AG IDL Extractor for COBOL120

Micro Focus with Standard Linkage Calling Convention

3. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
contextmenu and asmapping button, aCOBOLdata item can be removed from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/OSDRPC server, the amount of data to be transferred to/from the RPC client is reduced
with correct IDL directions.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified – it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the RPC client or Adapter Service does not need an Out parameter
■ if the RPC server or Adapter Service does not need an In parameter and a low value can be
provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse functionMap to In, Out or InOut (see above) available in the context menu
and as mapping button, a COBOL data item is made visible in the IDL interface again.

121Software AG IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

Set COBOL Data Items to Constants

COBOLdata items that always require fixed constant values on input to theCOBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see below).

To map COBOL data items to constants

■ Use the Set Constant function available in the context menu and asmapping button to define
a constant value for aCOBOLdata item. You are promptedwith awindow to enter the constant
value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionMap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

Software AG IDL Extractor for COBOL122

Micro Focus with Standard Linkage Calling Convention

This example is described inmore detail underExample 1: COBOLServerwithMultiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

■ If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

■ If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or .

2 Give the IDL interfaces meaningful names with the toolbar function .

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY'
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

123Software AG IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to In, Out or InOut function available in the context menu and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Programming Techniques

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following examplewhere a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

Software AG IDL Extractor for COBOL124

Micro Focus with Standard Linkage Calling Convention

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

■ Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

■ Java or .NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

■ etc.

To do this you need to extract the COBOL server program as described underMap to Multiple
IDL Interfaces.

125Software AG IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

126

9 IMS BMP with Standard Linkage Calling Convention

■ Introduction .. 128
■ Extracting from an IMS BMP Standard Call Interface .. 128
■ Mapping Editor User Interface .. 130
■ Mapping Editor IDL Interface Mapping Functions ... 137
■ Programming Techniques .. 141

127

Introduction

If your IMSBMPprogram contains PCBpointers, you have assigned the IMSPSB list in the previous
step Step 4: Define the Extraction Settings and Start Extraction. If a required IMS PSB list is not
assigned, the PCB pointers are not detected; go back to Step 4: Define the Extraction Settings and
Start Extraction and assign the IMS PSB list first.

If the IMS PSB list is correctly assigned, the COBOL data items (including the PCB pointers) can
be evaluated by the extractor because this type of COBOL server contains a PROCEDURE DIVISION
header (see PROCEDURE DIVISIONMapping) with all parameters. Inmost cases the offered COBOL
data items will be correct, but you should always check them manually.

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from an IMS BMP Standard Call Interface

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL sourcewith interface type IMSBMPwith standard linkage calling convention, theExtractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct.

Software AG IDL Extractor for COBOL128

IMS BMP with Standard Linkage Calling Convention

You can set optionally the IMS PSB List. If your COBOL server contains PCB pointers, choose
Browse. Otherwise, the PCB pointers are not detected and cannot be provided by the IMS RPC
Server to your COBOL server at runtime, and unexpected behavior may occur. For the contents
of the IMS PSB list, see IMS PCB Pointer IDL Rules.

To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items to the COBOL Interface using the context menu or toolbar
available in the COBOL Source View and COBOL Interface. SeeNotes.

2 Continue with COBOL to IDL Mapping.

Notes:

1. If there is a PROCEDURE DIVISION header available, the parameters listed define exactly the
COBOL interface. These COBOL data items are within the LINKAGE SECTION and are already
selected to the COBOL interface in initial state when you enter the COBOL Mapping Editor.
The PROCEDURE DIVISION header might not be available if you are extracting from a copybook
or part of the COBOL source.

2. It is very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

3. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

4. Make sure the PCB pointers are also selected at the correct position.

The user interface of the COBOL Mapping Editor is described below.

129Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL server programs with standard call interface types, the user interface of the COBOL
Mapping Editor looks like this:

Software AG IDL Extractor for COBOL130

IMS BMP with Standard Linkage Calling Convention

COBOL Program Selection. Currently selected program with interface type

COBOL Source View. Contains all related sources for the currently selected COBOL program

COBOL to IDLMapping. Tree view of your selected COBOLdata items andmapping buttons
with which you can map these items to your IDL interface

131Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL132

IMS BMP with Standard Linkage Calling Convention

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the EditorwithModify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons

133Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameterswithout a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail underMapping Editor IDL Interface Mapping
Functions.

A suppressed COBOL data item becomes visible in the IDL in-
terface. Used also to select another REDEFINE path.

Map to In | Out | InOut

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant
Remove the data item from the COBOL interface. This also re-
moves the mapped IDL parameter from all IDL interfaces for
the current COBOL program. See COBOL Program Selection.

Remove fromCOBOL Inter-
face

Software AG IDL Extractor for COBOL134

IMS BMP with Standard Linkage Calling Convention

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to InOut.

Scalar parameter, mapped to Out.

Group parameter, here mapped to InOut.

REDEFINE parameter, here mapped to InOut.

Parameter set to Constant.

135Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

Mapping Buttons

The following buttons are available:

Map to In | Out | InOut ->
SeeMap to In, Out, InOut. A suppressedCOBOLdata item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

Software AG IDL Extractor for COBOL136

IMS BMP with Standard Linkage Calling Convention

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to In, Out, InOut
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths

Map to In, Out, InOut

With theMap to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

To provide IDL directions

■ Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu and as mapping buttons
to make the COBOL data items visible and provide IDL directions in the IDL interface.

Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subsequent child
COBOL data items and thus to the related IDL parameters in the IDL interface.

2. Subsequent child COBOL data items can only be mapped to the same IDL direction as their
top-level COBOL group data item.

137Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

3. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
contextmenu and asmapping button, aCOBOLdata item can be removed from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/OSDRPC server, the amount of data to be transferred to/from the RPC client is reduced
with correct IDL directions.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified – it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the RPC client or Adapter Service does not need an Out parameter
■ if the RPC server or Adapter Service does not need an In parameter and a low value can be
provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse functionMap to In, Out or InOut (see above) available in the context menu
and as mapping button, a COBOL data item is made visible in the IDL interface again.

Software AG IDL Extractor for COBOL138

IMS BMP with Standard Linkage Calling Convention

Set COBOL Data Items to Constants

COBOLdata items that always require fixed constant values on input to theCOBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see below).

To map COBOL data items to constants

■ Use the Set Constant function available in the context menu and asmapping button to define
a constant value for aCOBOLdata item. You are promptedwith awindow to enter the constant
value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionMap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

139Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

This example is described inmore detail underExample 1: COBOLServerwithMultiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

■ If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

■ If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or .

2 Give the IDL interfaces meaningful names with the toolbar function .

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY'
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

Software AG IDL Extractor for COBOL140

IMS BMP with Standard Linkage Calling Convention

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to In, Out or InOut function available in the context menu and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Programming Techniques

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following examplewhere a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

141Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

■ Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

■ Java or .NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

■ etc.

To do this you need to extract the COBOL server program as described underMap to Multiple
IDL Interfaces.

Software AG IDL Extractor for COBOL142

IMS BMP with Standard Linkage Calling Convention

10 CICS with DFHCOMMAREA Calling Convention - In

different to Out
■ Introduction .. 144
■ Extracting from a CICS DFHCOMMAREA Program .. 144
■ Mapping Editor User Interface .. 145
■ Mapping Editor IDL Interface Mapping Functions ... 152
■ Programming Techniques .. 156

143

Introduction

Depending on the programming style used in the CICS program and the various different tech-
niques for accessing the CICS DFHCOMMAREA interface, finding the relevant COBOL data structures
can be a complex and time-consuming task that may require CICS COBOL programming know-
ledge. Please note also the following:

■ ACICSprogramdoes not require a PROCEDURE DIVISION header, where parameters are normally
defined. See PROCEDURE DIVISIONMapping.

■ The DFHCOMMAEA can be omitted in the linkage section.
■ If there is no DFHCOMMAREA in the linkage section or no PROCEDURE DIVISION header present in
the PROCEDURE DIVISION, the CICS preprocessor completes the interface of the COBOL server
and adds a DFHCOMMAREA and a PROCEDURE DIVISON header to the CICS program before compil-
ation.

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from a CICS DFHCOMMAREA Program

This section assumes Input Message same as Output Message is not checked. COBOL output
and COBOL input parameters are different, that is, the DFHCOMMAREA on output is overlaid
with a data structure that is different to the data structure on input. See the examples provided
under Programming Techniques.

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL sourcewith interface type CICSwithDFHCOMMAREA calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and check box Input Message same as Output Message is
cleared.

Software AG IDL Extractor for COBOL144

CICS with DFHCOMMAREA Calling Convention - In different to Out

PressNext to open the COBOL Mapping Editor.

To select the COBOL interface data items of your COBOL server

1 Add the COBOLdata items of the CICS inputmessage to InputMessage by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. SeeNotes.

2 Add the COBOL data items of the CICS output message toOutput Message by using the
context menu and toolbars available in the COBOL Interface and IDL Interface. SeeNotes.

3 Continue with COBOL to IDL Mapping.

Notes:

1. If a DFHCOMMAREA is present, the DFHCOMMAREA COBOL data item itself cannot be selected. In this
case, select the COBOL data items directly subordinated to DFHCOMMAREA and map to IDL. See
Map to.

2. It is very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

3. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

4. See the examples provided under Programming Techniques.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View

145Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

■ COBOL to IDL Mapping

For COBOL interface types where COBOL input and COBOL output parameters are different, the
user interface of the COBOL Mapping Editor looks like this:

COBOL Program Selection. Currently selected program with interface type

COBOL Source View. Contains all related sources for the currently selected COBOL program

COBOL to IDLMapping. Tree view of your selected COBOLdata items andmapping buttons
with which you can map these items to your IDL interface

Software AG IDL Extractor for COBOL146

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

147Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the EditorwithModify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.

Add selected COBOL data item to COBOL Interface as Output Message.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons

Software AG IDL Extractor for COBOL148

CICS with DFHCOMMAREA Calling Convention - In different to Out

■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameterswithout a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail underMapping Editor IDL Interface Mapping
Functions.

A suppressed COBOL data item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Map to

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant

149Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Remove the data item from theCOBOL interface. This also removes
the mapped IDL parameter from all IDL interfaces for the current
COBOL program. See COBOL Program Selection.

Remove from COBOL In-
terface

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to Out.

Group parameter, here mapped to In.

REDEFINE parameter, here mapped to Out.

Parameter set to Constant.

Software AG IDL Extractor for COBOL150

CICS with DFHCOMMAREA Calling Convention - In different to Out

Mapping Buttons

The following buttons are available:

Map to ->
AsuppressedCOBOLdata itembecomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

151Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths

Map to

With theMap to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

To map a COBOL data item to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the contextmenu and asmapping button tomake a COBOLdata
item visible as an IDL parameter in the input message of the IDL interface.

2 Do the same for the output message of the IDL interface.

Notes:

1. If a COBOL group is mapped, all subsequent child COBOL data items are also made visible in
the IDL interface.

Software AG IDL Extractor for COBOL152

CICS with DFHCOMMAREA Calling Convention - In different to Out

2. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
contextmenu and asmapping button, aCOBOLdata item can be removed from the IDL interface.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified – it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the RPC client or Adapter Service does not need an Out parameter
■ if the RPC server or Adapter Service does not need an In parameter and a low value can be
provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse functionMap to (see above) available in the context menu and as mapping
button, a COBOL data item can be made visible in the IDL interface again.

Set COBOL Data Items to Constants

COBOLdata items that always require fixed constant values on input to theCOBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see below).

153Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

To map COBOL data items to constants

■ Use the Set Constant function available in the context menu and asmapping button to define
a constant value for aCOBOLdata item. You are promptedwith awindow to enter the constant
value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionMap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

This example is described inmore detail underExample 1: COBOLServerwithMultiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

■ If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

Software AG IDL Extractor for COBOL154

CICS with DFHCOMMAREA Calling Convention - In different to Out

■ If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or .

2 Give the IDL interfaces meaningful names with the toolbar function .

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY'
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

155Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to function available in the context menu and as mapping button to make the
COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Programming Techniques

This section covers the following topics:

■ Example 1: COBOL Server with Multiple Functions
■ Example 2: Redefines
■ Example 3: Buffer Technique
■ Example 4: COBOL SET ADDRESS Statements

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following examplewhere a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

Software AG IDL Extractor for COBOL156

CICS with DFHCOMMAREA Calling Convention - In different to Out

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

■ Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

■ Java or .NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

■ etc.

To do this you need to extract the COBOL server program as described underMap to Multiple
IDL Interfaces.

Example 2: Redefines

The output data is described with a REDEFINE that overlays the input data as in the following ex-
ample. In this case you need to select IN-BUFFER for the input message and OUT-BUFFER for the
output message of the COBOL interface.

157Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

LINKAGE SECTION.
01 DFHCOMMAREA.

02 IN-BUFFER.
03 OPERATION PIC X(1).
03 OPERAND-1 PIC S9(9) BINARY.
03 OPERAND-2 PIC S9(9) BINARY.

02 OUT-BUFFER REDEFINES IN-BUFFER.
03 FUNCTION-RESULT PIC S9(9) BINARY.

. . .
PROCEDURE DIVISION USING DFHCOMMAREA.

* process the IN-BUFFER and provide result in OUT-BUFFER
EXEC CICS RETURN.

Example 3: Buffer Technique

On entry, the servermoves linkage section field(s) - often an entire buffer - into theworking storage
and processes the input data inside the working storage field(s). Before return, it moves the
working storage field(s) - often an entire buffer - back to the linkage section. In this case, the relevant
COBOLdata items are describedwithin theworking storage section. You need to select IN-BUFFER
for the input message and OUT-BUFFER for the output message of the COBOL interface.

WORKING STORAGE SECTION
01 IN-BUFFER.

02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.

01 OUT-BUFFER.
02 FUNCTION-RESULT PIC S9(9) BINARY.

LINKAGE SECTION
01 DFHCOMMAREA.

02 IO-BUFFER PIC X(9).
. . .

PROCEDURE DIVISION USING DFHCOMMAREA.
MOVE IO-BUFFER TO IN-BUFFER.

* process the IN-BUFFER and provide result in OUT-BUFFER
MOVE OUT-BUFFER TO IO-BUFFER.
EXEC CICS RETURN.

Software AG IDL Extractor for COBOL158

CICS with DFHCOMMAREA Calling Convention - In different to Out

Example 4: COBOL SET ADDRESS Statements

COBOL SET ADDRESS statements are used tomanipulate the interface of the CICS server. On entry,
the server addresses the input data with a (dummy) structure IN-BUFFER defined in the linkage
section. Upon return, the server addresses the output data againwith a different (dummy) structure
OUT-BUFFER defined in the linkage section. You need to select IN-BUFFER for the input message
and OUT-BUFFER for the output message of the COBOL interface.

LINKAGE SECTION.
01 IN-BUFFER.

02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.

01 OUT-BUFFER.
02 FUNCTION-RESULT PIC S9(9) BINARY.

. . .
PROCEDURE DIVISION.

SET ADDRESS OF IN-BUFFER TO DFHCOMMAREA.
* process the IN-BUFFER and provide result in OUT-BUFFER

SET ADDRESS OF OUT-BUFFER TO DFHCOMMAREA.
EXEC CICS RETURN.

159Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

160

11 CICS with DFHCOMMAREA Large Buffer Interface - In

different to Out
■ Introduction .. 162
■ Extracting from a CICS DFHCOMMAREA Large Buffer Program ... 163
■ Mapping Editor User Interface .. 164
■ Mapping Editor IDL Interface Mapping Functions ... 171
■ Programming Techniques .. 176

161

Introduction

A DFHCOMMAREA Large Buffer Interface has the structure given below in the linkage section. The
field subordinated under DFHCOMMAREA prefixed with WM-LCB describe this structure. The field
names themselves can be different, but the COBOL data types (usage clauses) must match exactly.

LINKAGE SECTION.
01 DFHCOMMAREA.
10 WM-LCB-MARKER PIC X(4).
10 WM-LCB-INPUT-BUFFER POINTER.
10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-OUTPUT-BUFFER POINTER.
10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-FLAGS PIC X(1).

88 WM-LCB-FREE-OUTPUT-BUFFER VALUE 'F'.
10 WM-LCB-RESERVED PIC X(3).

01 IN-BUFFER.
02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.

01 OUT-BUFFER.
02 FUNCTION-RESULT PIC S9(9) BINARY.

. . .
PROCEDURE DIVISION USING DFHCOMMAREA.
. . .

SET ADDRESS OF IN-BUFFER TO WM-LCB-INPUT-BUFFER.
SET ADDRESS OF OUT-BUFFER TO WM-LCB-OUTPUT-BUFFER.

Software AG IDL Extractor for COBOL162

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

* process the IN-BUFFER and provide result in OUT-BUFFER
EXEC CICS RETURN.

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from a CICS DFHCOMMAREA Large Buffer Program

This section assumes Input Message same as Output Message is not checked. COBOL output
and COBOL input parameters are different, that is, the WM-LCB-OUTPUT-BUFFER (as in the large
buffer example above) is set to an address that is different to WM-LCB-INPUT-BUFFER.

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL sourcewith interface typeCICSwithDFHCOMMAREA large buffer, theExtractor Settings
dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and check box Input Message same as Output Message is
cleared.

PressNext to open the COBOL Mapping Editor.

To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items of the input large buffer to Input Message by using the context
menu or toolbar available in theCOBOLSource View andCOBOL Interface. To do this, locate
in the PROCEDURE DIVISION the SET ADDRESS OF <x> TO WM-LCB-INPUT-BUFFER statement.
The COBOL data item <x> is the input large buffer you are looking for. SeeNotes.

2 Add theCOBOLdata items of the output large buffer toOutputMessage by using the context
menu and toolbars available in the COBOL Interface and IDL Interface. To do this, locate in
the PROCEDURE DIVISION the SET ADDRESS OF <y> TO WM-LCB-OUTPUT-BUFFER statement. The
COBOL data item <y> is the output large buffer you are looking for. SeeNotes.

3 Continue with COBOL to IDL Mapping.

Notes:

163Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

1. Do not select the pointers in the DFHCOMMAREA pointing to the large buffers, in the example above,
WM-LCB-INPUT-BUFFER and WM-LCB-OUTPUT-BUFFER.

2. It is very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

3. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL interface types where COBOL input and COBOL output parameters are different, the
user interface of the COBOL Mapping Editor looks like this:

Software AG IDL Extractor for COBOL164

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL Program Selection. Currently selected program with interface type

COBOL Source View. Contains all related sources for the currently selected COBOL program

COBOL to IDLMapping. Tree view of your selected COBOLdata items andmapping buttons
with which you can map these items to your IDL interface

165Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL166

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the EditorwithModify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.

Add selected COBOL data item to COBOL Interface as Output Message.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons

167Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameterswithout a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail underMapping Editor IDL Interface Mapping
Functions.

A suppressedCOBOLdata itembecomes visible in the IDL interface.
Used also to select another REDEFINE path.

Map to

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant

Software AG IDL Extractor for COBOL168

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Map an array to a fixed sized or unbounded array.Set Array Mapping

Note: This option should be used carefully and requires
knowledge of the COBOL server program. Be aware that an
incorrect mapping could result in runtime errors.

Remove the data item from the COBOL interface. This also removes
the mapped IDL parameter from all IDL interfaces for the current
COBOL program. See COBOL Program Selection.

Remove from CO-
BOL Interface

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to Out.

Group parameter, here mapped to In.

169Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

REDEFINE parameter, here mapped to Out.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Map to ->
AsuppressedCOBOLdata itembecomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

Software AG IDL Extractor for COBOL170

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths
■ Set Arrays (Fixed <-> Unbounded)

Map to

With theMap to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

To map a COBOL data item to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the contextmenu and asmapping button tomake a COBOLdata
item visible as an IDL parameter in the input message of the IDL interface.

2 Do the same for the output message of the IDL interface.

Notes:

1. If a COBOL group is mapped, all subsequent child COBOL data items are also made visible in
the IDL interface.

2. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
contextmenu and asmapping button, aCOBOLdata item can be removed from the IDL interface.

171Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified – it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the RPC client or Adapter Service does not need an Out parameter
■ if the RPC server or Adapter Service does not need an In parameter and a low value can be
provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse functionMap to (see above) available in the context menu and as mapping
button, a COBOL data item can be made visible in the IDL interface again.

Set COBOL Data Items to Constants

COBOLdata items that always require fixed constant values on input to theCOBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see below).

To map COBOL data items to constants

■ Use the Set Constant function available in the context menu and asmapping button to define
a constant value for aCOBOLdata item. You are promptedwith awindow to enter the constant
value.

Software AG IDL Extractor for COBOL172

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionMap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

This example is described inmore detail underExample 1: COBOLServerwithMultiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

■ If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

■ If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

173Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or .

2 Give the IDL interfaces meaningful names with the toolbar function .

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY'
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Software AG IDL Extractor for COBOL174

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to function available in the context menu and as mapping button to make the
COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Set Arrays (Fixed <-> Unbounded)

For COBOL server programs using the message length to transfer a variable number of elements
in a COBOL table with a fixed size (see Tables with Fixed Size) in a variable manner (see Tables
with Variable Size - DEPENDING ON Clause) you need to set the mapping to unbounded array.

For details of such a COBOL server program see Example 2: COBOL Server Using Data Length
to Process a Variable Number of Array Elements.

To set arrays from fixed to unbounded or vice versa

■ Select the COBOL table and use the function Set Arrays (Fixed<->Unbounded) available in
the context menu. A modal window is displayed. Select Unbounded array. The IDL array
parameter will be changed from fixed array /number to an unbounded array /Vnumber, see
array-definition under Software AG IDL Grammar in the IDL Editor documentation.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL server program.
Be aware that an incorrect mapping results in runtime errors.

2. The COBOL Table with a fixed size (see Tables with Fixed Size) used in this manner must be
the last parameter of the COBOL interface; it must not be a subparameter of any other COBOL

175Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

table andmust not contain any DEPENDING ON clause (see Tableswith Variable Size - DEPENDING
ON Clause).

Programming Techniques

This section covers the following topics:

■ Example 1: COBOL Server with Multiple Functions
■ Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following examplewhere a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

Software AG IDL Extractor for COBOL176

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

■ Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

■ Java or .NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

■ etc.

To do this you need to extract the COBOL server program as described underMap to Multiple
IDL Interfaces.

Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Assume a COBOL CICS large buffer server program has a fixed-sized COBOL table as its last
parameter, similar to COBOLdata item COBOL-TABLE-FIX in the example below; each table element
is 100 bytes; the length of COBOL-FIELD1 + COBOL-FIELD2 + COBOL-FIELD3; the length of the data
preceding the COBOL table is described by COBOL-GROUP1; its length is 1000 bytes.

WORKING-STORAGE SECTION.
01 NUMBER-OF-INCOMING-ELEMENTS PIC S9(8) BINARY.
01 NUMBER-OF-OUTGOMING-ELEMENTS PIC S9(8) BINARY.

. . .

LINKAGE SECTION.
01 DFHCOMMAREA.
10 WM-LCB-MARKER PIC X(4).
10 WM-LCB-INPUT-BUFFER POINTER.
10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-OUTPUT-BUFFER POINTER.
10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-FLAGS PIC X(1).

88 WM-LCB-FREE-OUTPUT-BUFFER VALUE "F".
10 WM-LCB-RESERVED PIC X(3).

01 INOUT-BUFFER.
10 COBOL-GROUP1.

20 COBOL-TABLE-PREFIX PIC X(1000).
10 COBOL-TABLE-FIX OCCURS 20.

20 COBOL-GROUP2.
25 COBOL-FIELD1 PIC X(30).
25 COBOL-FIELD2 PIC X(20).
25 COBOL-FIELD3 PIC X(50).
. . .

PROCEDURE DIVISION USING DFHCOMMAREA.
SET ADDRESS OF INOUT-BUFFER TO WM-LCB-INPUT-BUFFER.
SET ADDRESS OF INOUT-BUFFER TO WM-LCB-OUTPUT-BUFFER.
COMPUTE NUMBER-OF-INCOMING-ELEMENTS = (WM-LCB-INPUT-BUFFER-SIZE

177Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

- LENGTH OF COBOL-GROUP1)
/ LENGTH OF COBOL-GROUP2.

. . .
COMPUTE WM-LCB-OUTPUT-BUFFER-SIZE = LENGTH OF COBOL-GROUP2

+ NUMBER-OF-OUTGOING-ELEMENTS * LENGTH OF COBOL-GROUP2

EXEC CICS RETURN END-EXEC.

During input the COBOL CICS large buffer server program uses the large buffer input length
WM-LCB-INPUT-BUFFER-SIZE to evaluate the NUMBER-OF-INCOMING-ELEMENTS. During output the
large buffer output length is determined accordingly to the NUMBER-OF-OUTGOING-ELEMENTS and
set in WM-LCB-OUTPUT-BUFFER-SIZE.

Although the COBOL table is defined as a table with a fixed size (see Tables with Fixed Size) it is
used in a variable manner, similar to tables with variable Size (see Tables with Variable Size -
DEPENDING ON Clause). In this case it is required to map the COBOL table to an IDL unbounded
array, see Set Arrays (Fixed <-> Unbounded).

Software AG IDL Extractor for COBOL178

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

12 CICS with Channel Container Calling Convention

■ Introduction .. 180
■ Extracting from a CICS Channel Container Program ... 180
■ Mapping Editor User Interface .. 182
■ Mapping Editor IDL Interface Mapping Functions ... 189
■ Programming Techniques .. 194

179

Introduction

Modern CICS programs may use the CICS channels and containers model. During extraction,
containers are mapped to IDL structures. See structure-parameter-definition (IDL) under
Software AG IDL Grammar in the IDL Editor documentation.

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from a CICS Channel Container Program

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL source with interface type CICS with channel container calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and, if required, that the channel name (max. 16 characters)
is provided. If you do not provide a channel name, "EntireXChannel" is used as the default value.

PressNext to open the COBOL Mapping Editor.

Software AG IDL Extractor for COBOL180

CICS with Channel Container Calling Convention

To select the COBOL interface data items of your COBOL server

1 Define all the CICS input containers, one after another: in the Source View, use the toolbar
icon Find text in Source and enter "EXEC CICS" to find a GET call containing "EXEC CICS
GET", function "CONTAINER" etc. Example:

EXEC CICS GET
CONTAINER(<container name constant>)
CHANNEL (<channel>)
INTO (<container>)
NOHANDLE

END-EXEC

The COBOL data item <container> is the item you are looking for. Add the COBOL data
item <container> to Input Message by using the context menu or toolbar available in the
COBOLSource View andCOBOL Interface. In the InputMessagepane, select the correspond-
ingCOBOLdata item <container>. Enter the container name, found in the value of <container
name constant>. You can select multiple CICS input containers. SeeNotes.

2 Define all the CICS output containers using the steps as above, but look for "EXEC CICS PUT".
Example:

EXEC CICS PUT
CONTAINER(<container name constant>)
CHANNEL (<channel>)
FROM (<container>)
FLENGTH (LENGTH OF <container>)
NOHANDLE

END-EXEC

Add the corresponding COBOL data item <container> toOutput Message. In theOutput
Message pane, select the corresponding COBOL data item <container>. Enter the container
name, found in the value of <container name constant>. The EXEC CICS PUT statement can
be executed multiple times (for example in a loop) for the same container definition, creating
an array of container. If this is true, set the column Array in the wizard to "Yes" and enter the
maximumnumber of occurrences for the container in theMax column. You can selectmultiple
CICS output containers. SeeNotes.

3 Continue with COBOL to IDL Mapping.

Notes:

1. It is very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

181Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

2. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

3. The container name length is restricted to 16 characters.

4. Container arrays will enlarge the container name, because the number of occurrences (Max
column) will be added to the name (max. 16 characters). Example:
For MYCONTAINER as the container name and 99999 as the number of occurrences, the container
names are MYCONTAINER00001 - MYCONTAINER99999.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

ForCOBOL server programswithCICS channel container interface, the user interface of theCOBOL
Mapping Editor looks like this:

Software AG IDL Extractor for COBOL182

CICS with Channel Container Calling Convention

COBOL Program Selection. Currently selected program with interface type

COBOL Source View. Contains all related sources for the currently selected COBOL program

COBOL to IDLMapping. Tree view of your selected COBOLdata items andmapping buttons
with which you can map these items to your IDL interface

183Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL184

CICS with Channel Container Calling Convention

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the EditorwithModify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.

Add selected COBOL data item to COBOL Interface as Output Message.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons

185Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameterswithout a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail underMapping Editor IDL Interface Mapping
Functions.

A suppressedCOBOLdata itembecomes visible in the IDL interface.
Used also to select another REDEFINE path.

Map to

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant

Software AG IDL Extractor for COBOL186

CICS with Channel Container Calling Convention

Map an array to a fixed sized or unbounded array.Set Array Mapping

Note: This option should be used carefully and requires
knowledge of the COBOL server program. Be aware that an
incorrect mapping could result in runtime errors.

Remove the data item from the COBOL interface. This also removes
the mapped IDL parameter from all IDL interfaces for the current
COBOL program. See COBOL Program Selection.

Remove from CO-
BOL Interface

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to Out.

Group parameter, here mapped to In.

187Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

REDEFINE parameter, here mapped to Out.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Map to ->
AsuppressedCOBOLdata itembecomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

Software AG IDL Extractor for COBOL188

CICS with Channel Container Calling Convention

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths
■ Set Arrays (Fixed <-> Unbounded)

Map to

With theMap to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

To map a COBOL data item to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the contextmenu and asmapping button tomake a COBOLdata
item visible as an IDL parameter in the input message of the IDL interface.

2 Do the same for the output message of the IDL interface.

Notes:

1. If a COBOL group is mapped, all subsequent child COBOL data items are also made visible in
the IDL interface.

189Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

2. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
contextmenu and asmapping button, aCOBOLdata item can be removed from the IDL interface.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified – it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the RPC client or Adapter Service does not need an Out parameter
■ if the RPC server or Adapter Service does not need an In parameter and a low value can be
provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse functionMap to (see above) available in the context menu and as mapping
button, a COBOL data item can be made visible in the IDL interface again.

Set COBOL Data Items to Constants

COBOLdata items that always require fixed constant values on input to theCOBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see below).

Software AG IDL Extractor for COBOL190

CICS with Channel Container Calling Convention

To map COBOL data items to constants

■ Use the Set Constant function available in the context menu and asmapping button to define
a constant value for aCOBOLdata item. You are promptedwith awindow to enter the constant
value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionMap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

This example is described inmore detail underExample 1: COBOLServerwithMultiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

■ If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

191Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

■ If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or .

2 Give the IDL interfaces meaningful names with the toolbar function .

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY'
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Software AG IDL Extractor for COBOL192

CICS with Channel Container Calling Convention

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to function available in the context menu and as mapping button to make the
COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Set Arrays (Fixed <-> Unbounded)

For COBOL server programs using the message length to transfer a variable number of elements
in a COBOL table with a fixed size (see Tables with Fixed Size) in a variable manner (see Tables
with Variable Size - DEPENDING ON Clause) you need to set the mapping to unbounded array.

For details of such a COBOL server program see Example 2: COBOL Server Using Data Length
to Process a Variable Number of Array Elements.

To set arrays from fixed to unbounded or vice versa

■ Select the COBOL table and use the function Set Arrays (Fixed<->Unbounded) available in
the context menu. A modal window is displayed. Select Unbounded array. The IDL array
parameter will be changed from fixed array /number to an unbounded array /Vnumber, see
array-definition under Software AG IDL Grammar in the IDL Editor documentation.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL server program.
Be aware that an incorrect mapping results in runtime errors.

2. The COBOL Table with a fixed size (see Tables with Fixed Size) used in this manner must be
the last parameter of the COBOL interface; it must not be a subparameter of any other COBOL

193Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

table andmust not contain any DEPENDING ON clause (see Tableswith Variable Size - DEPENDING
ON Clause).

Programming Techniques

This section covers the following topics:

■ Example 1: COBOL Server with Multiple Functions
■ Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following examplewhere a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

Software AG IDL Extractor for COBOL194

CICS with Channel Container Calling Convention

■ Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

■ Java or .NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

■ etc.

To do this you need to extract the COBOL server program as described underMap to Multiple
IDL Interfaces.

Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Assume a COBOL CICS channel container server program has a fixed-length COBOL table as its
last parameter, similar to COBOL data item COBOL-TABLE-FIX in the example below; each table
element is 100 bytes; the length of COBOL-FIELD1 + COBOL-FIELD2 + COBOL-FIELD3; the length of
the data preceding the COBOL table is described by COBOL-GROUP1; its length is 1000 bytes.

 WORKING-STORAGE SECTION.
 01 LS-CONTAINER-NAME PIC X(16) VALUE "VAR-INPUT".
 01 WS-CONTAINER-NAME PIC X(16) VALUE "VAR-OUTPUT".
 01 NUMBER-OF-INCOMING-ELEMENTS PIC S9(8) BINARY.
 01 NUMBER-OF-OUTGOMING-ELEMENTS PIC S9(8) BINARY.

 . . .

 01 WS-CONTAINER-LAYOUT.
 10 COBOL-GROUP1.
 20 COBOL-TABLE-PREFIX PIC X(1000).
 10 COBOL-TABLE-FIX OCCURS 20.
 20 COBOL-GROUP2.
 25 COBOL-FIELD1 PIC X(4).
 25 COBOL-FIELD2 PIC X(3).
 25 COBOL-FIELD3 PIC X(50).
 LINKAGE SECTION.
 01 LS-CONTAINER-LAYOUT.
 10 COBOL-GROUP1.
 20 COBOL-TABLE-PREFIX PIC X(1000).
 10 COBOL-TABLE-FIX OCCURS 20.
 20 COBOL-GROUP2.
 25 COBOL-FIELD1 PIC X(30).
 25 COBOL-FIELD2 PIC X(20).
 25 COBOL-FIELD3 PIC X(50).
 . . .
 PROCEDURE DIVISION.
 EXEC CICS GET
 CONTAINER (LS-CONTAINER-NAME
 SET (ADDRESS OF LS-CONTAINER-LAYOUT)

195Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

 FLENGTH (WS-CONTAINER-LENGTH)
 RESP (WS-RESP)
 RESP2 (WS-RESP2)
 END-EXEC.
 COMPUTE NUMBER-OF-INCOMING-ELEMENTS = (WS-CONTAINER-LENGTH
 - LENGTH OF COBOL-GROUP1 IN AREA LS-CONTAINER-LAYOUT)
 / LENGTH OF COBOL-GROUP2 IN AREA LS-CONTAINER-LAYOUT.
 . . .
 COMPUTE WS-CONTAINER-LENGTH = LENGTH OF COBOL-GROUP2 IN AREA ↩
WS-CONTAINER-LAYOUT
 + (NUMBER-OF-OUTGOING-ELEMENTS
 * LENGTH OF COBOL-GROUP2 IN AREA WS-CONTAINER-LAYOUT).

 EXEC CICS PUT
 CONTAINER (WS-CONTAINER-NAME)
 FROM (WS-CONTAINER-LAYOUT)
 FLENGTH (WS-CONTAINER-LENGTH)
 RESP (WS-RESP)
 RESP2 (WS-RESP2)
 END-EXEC.
 EXEC CICS RETURN END-EXEC.

During input the COBOL channel container server program uses the container length
WS-CONTAINER-LENGTH to evaluate the NUMBER-OF-INCOMING-ELEMENTS. During output the
WS-CONTAINER-LENGTH is determined according to the NUMBER-OF-OUTGOING-ELEMENTS and set in
the EXEC CICS PUT CONTAINER statement.

Although the COBOL table is defined as a table with a fixed size (see Tables with Fixed Size) it is
used in a variable manner, similar to tables with variable size (see Tables with Variable Size -
DEPENDING ON Clause). In this case you need to map the COBOL table to an IDL unbounded array.
See Set Arrays (Fixed <-> Unbounded).

Software AG IDL Extractor for COBOL196

CICS with Channel Container Calling Convention

13 IMS MPP Message Interface (IMS Connect)

■ Introduction .. 198
■ Extracting from an IMS MPP Message Interface Program .. 199
■ Mapping Editor User Interface .. 202
■ Mapping Editor IDL Interface Mapping Functions ... 210
■ Programming Techniques .. 215

197

Introduction

Depending on the programming style used in the IMS processing program (MPP) and the various
techniques for accessing the IMS input and output messages, finding the relevant COBOL data
structures can be a complex and time-consuming task that may require IMS programming
knowledge.

IMS Message Processing Programs (MPPs) work as follows:

■ IMSmessage processing programs (MPP) are invokedusing an IMS transaction code. Transaction
codes are linked to programs by the IMS system definition.

■ An IMS message processing program (MPP) gets its parameters through an IMS message and
returns the result by sending an output message to IMS. The structure of both messages is
defined in the COBOL source programduring the application design phase. Sender and receiver
of the message must use the same data structure to interpret the message content.

■ The server program accesses input and output messages using the IMS system call CALL
'CBLTDLI' USING <function> IOPCB <message>. The parameters are as follows:

DescriptionParameter

Flag indicating that an input message is to be read. In this case <message> describes the
input message.

GU

Flag indicating that an output message is to be written. In this case <message> describes
the output message.

ISRT

The IO PCB pointer. An IMS-specific section defined in the linkage section of the program
to access the IMS input and output message queue.

IOPCB

The layout of the message. For GU it is the structure of the input message, for ISRT it is the
structure of the output message. The first two fields in every message (input as well as

<message>

output), LL and ZZ, are technical fields, each two bytes long. LL contains the length of the
message. The third field in an inputmessage contains the transaction code and has a variable
length (commonly 8 or 9 bytes). IMS can link one program to various different transaction
codes. For each transaction, the program can apply a separate logic, or even accept a separate
message layout.

Notes:

Software AG IDL Extractor for COBOL198

IMS MPP Message Interface (IMS Connect)

1. Instead of the IOPCB pointer, CALL 'CBLTDLI' statements are also used with database PCB
pointers to access IMS databases.

2. IOPCB, GU and ISRT are defined in the COBOL source (often in a copybook) using COBOL
data items. Names can differ in your program. The value of the COBOL VALUE clauses with
'GU' and 'ISRT' is fixed. In the example below, the IMS system call would be CALL 'CBLTDLI'
USING FCT-GU IO-PCB <message> to read the input message:

WORKING-STORAGE SECTION.
. . .

* DLI Function Codes
77 FCT-GU PIC X(4) VALUE 'GU '.
77 FCT-ISRT PIC X(4) VALUE 'ISRT'.
. . .
LINKAGE SECTION.
. . .
1 IO-PCB.
3 LTERM-NAME PIC X(8).
3 FILLER PIC X(2).
3 IO-STATUS PIC X(2).

. . .

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from an IMS MPP Message Interface Program

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL sourcewith interface type IMSMPPmessage interface (IMSConnect), theExtractor Settings
dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and specify how you want the transaction name to be de-
termined.

There are two ways of defining Transaction Name:

199Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

■ Fixed Value
CheckTransactionName and specify a fixed value for the transaction name in extractor settings.
Your IDL interface is free of this technical parameter, and RPC clients do not have to specify it
at runtime.

Specify the length of the transaction field, which is usually the third physical field starting from
offset 5 (bytes) declared in the input message layout within the server program. Example:

1 INPUT-MESSAGE.
2 INPUT-IMS-META.
3 INPUT-LL PIC S9(3) BINARY.
3 INPUT-ZZ PIC S9(3) BINARY.
3 INPUT-TRANSACTION PIC X(10).
2 INPUT-DATA.
3 OPERATION PIC X(1).
3 OPERAND1 PIC S9(9) BINARY.
3 OPERAND2 PIC S9(9) BINARY.

In this example, the length to specify is "10".
■ Dynamically at Runtime
Check Create IDL parameter for Transaction Name.... Your IDL Interfacewill contain an IDL
parameter for the transaction name. RPC clients are responsible for setting the correct transaction
name dynamically at runtime.

Software AG IDL Extractor for COBOL200

IMS MPP Message Interface (IMS Connect)

To select the COBOL interface data items of your COBOL server

1 Define the IMS MPP (IMS Connect) input message. With toolbar icon Find text in Source ,
enter "CBLTDLI" to look for an IMS system call containing 'CBLTDLI', function GU and the
IOPCB pointer, example:

CALL 'CBLTDLI' USING GU IOPCB input_message

Add the relevant COBOLdata items of input_message to InputMessage by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. The relevant
COBOL data items are contained in fields after the technical fields LL (length of message), ZZ
and the COBOL data item containing the transaction code which is mostly the third physical
field starting from offset 5 (bytes) in the input_message. Do not select the fields LL, ZZ and
the transaction code. SeeNotes.

2 Similar to step 1, define the IMS MPP (IMS Connect) output message. Enter "CBLTDLI" in
toolbar icon Find text in Source to look for an IMS system call containing "CBLTDLI",
function ISRT and the IOPCB pointer, example:

CALL 'CBLTDLI' USING ISRT IOPCB <output-message>

Select the corresponding output_message in COBOL Interface. SeeNotes.

Select the relevant COBOL data items of output_message toOutput Message by using the
context menu or toolbar. The relevant COBOL data items are the fields after the technical
fields LL (length of message) and ZZ. Also, do not select LL and ZZ here.

3 Continue with COBOL to IDL Mapping.

Notes:

1. It is very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

2. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

201Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL server programs with IMS MPP message interface (IMS Connect), the user interface
of the COBOL Mapping Editor looks like this:

Software AG IDL Extractor for COBOL202

IMS MPP Message Interface (IMS Connect)

COBOL Program Selection. Currently selected program with interface type

COBOL Source View. Contains all related sources for the currently selected COBOL program

COBOL to IDLMapping. Tree view of your selected COBOLdata items andmapping buttons
with which you can map these items to your IDL interface

203Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL204

IMS MPP Message Interface (IMS Connect)

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the EditorwithModify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.

Add selected COBOL data item to COBOL Interface as Output Message.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons

205Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameterswithout a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

The appearance of the COBOL Interface depends on how the transaction name is specified in the
Extractor Settings:

■ If Transaction Name is checked, a hidden parameter with this fixed value appears:

■ IfCreate IDL parameter for TransactionName... is checked, the IDL parameter "TRANCODE" sets
the transaction name dynamically at runtime.

Software AG IDL Extractor for COBOL206

IMS MPP Message Interface (IMS Connect)

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail underMapping Editor IDL Interface Mapping
Functions.

A suppressedCOBOLdata itembecomes visible in the IDL interface.
Used also to select another REDEFINE path.

Map to

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant
Map an array to a fixed sized or unbounded array.Set Array Mapping

Note: This option should be used carefully and requires
knowledge of the COBOL server program. Be aware that an
incorrect mapping could result in runtime errors.

Remove the data item from the COBOL interface. This also removes
the mapped IDL parameter from all IDL interfaces for the current
COBOL program. See COBOL Program Selection.

Remove from CO-
BOL Interface

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for

207Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to Out.

Group parameter, here mapped to In.

REDEFINE parameter, here mapped to Out.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Software AG IDL Extractor for COBOL208

IMS MPP Message Interface (IMS Connect)

Note: In this example, a fixed value for transaction name was specified in the Extractor
Settings.

Map to ->
AsuppressedCOBOLdata itembecomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

The appearance of the IDL Interface depends on how the transaction name is specified in the Ex-
tractor Settings. See Extracting from an IMS MPP Message Interface Program.

■ Fixed Value
In the COBOL Interface pane the first parameter shows the value for your transaction name in
square brackets. There is no IDL parameter contained in the IDL Interface for it. Your IDL inter-
face is free of this technical parameter, and RPC clients do not have to specify it at runtime.

209Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

■ Dynamically at Runtime
Your IDL Interface contains an IDLparameter for the transaction name ("TRANCODE"). RPC clients
set the name dynamically at runtime.

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths

Software AG IDL Extractor for COBOL210

IMS MPP Message Interface (IMS Connect)

■ Set Arrays (Fixed <-> Unbounded)

Map to

With theMap to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

To map a COBOL data item to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the contextmenu and asmapping button tomake a COBOLdata
item visible as an IDL parameter in the input message of the IDL interface.

2 Do the same for the output message of the IDL interface.

Notes:

1. If a COBOL group is mapped, all subsequent child COBOL data items are also made visible in
the IDL interface.

2. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
contextmenu and asmapping button, aCOBOLdata item can be removed from the IDL interface.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified – it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the RPC client or Adapter Service does not need an Out parameter
■ if the RPC server or Adapter Service does not need an In parameter and a low value can be
provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

211Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse functionMap to (see above) available in the context menu and as mapping
button, a COBOL data item can be made visible in the IDL interface again.

Set COBOL Data Items to Constants

COBOLdata items that always require fixed constant values on input to theCOBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see below).

To map COBOL data items to constants

■ Use the Set Constant function available in the context menu and asmapping button to define
a constant value for aCOBOLdata item. You are promptedwith awindow to enter the constant
value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionMap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

Software AG IDL Extractor for COBOL212

IMS MPP Message Interface (IMS Connect)

This example is described inmore detail underExample 1: COBOLServerwithMultiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

■ If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

■ If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or .

2 Give the IDL interfaces meaningful names with the toolbar function .

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY'
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

Notes:

213Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to function available in the context menu and as mapping button to make the
COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Software AG IDL Extractor for COBOL214

IMS MPP Message Interface (IMS Connect)

Set Arrays (Fixed <-> Unbounded)

For COBOL server programs using the message length to transfer a variable number of elements
in a COBOL table with a fixed size (see Tables with Fixed Size) in a variable manner (see Tables
with Variable Size - DEPENDING ON Clause) you need to set the mapping to unbounded array.

For details of such a COBOL server program see Example 2: COBOL Server Using Data Length
to Process a Variable Number of Array Elements.

To set arrays from fixed to unbounded or vice versa

■ Select the COBOL table and use the function Set Arrays (Fixed<->Unbounded) available in
the context menu. A modal window is displayed. Select Unbounded array. The IDL array
parameter will be changed from fixed array /number to an unbounded array /Vnumber, see
array-definition under Software AG IDL Grammar in the IDL Editor documentation.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL server program.
Be aware that an incorrect mapping results in runtime errors.

2. The COBOL Table with a fixed size (see Tables with Fixed Size) used in this manner must be
the last parameter of the COBOL interface; it must not be a subparameter of any other COBOL
table andmust not contain any DEPENDING ON clause (see Tableswith Variable Size - DEPENDING
ON Clause).

Programming Techniques

This section covers the following topics:

■ Example 1: COBOL Server with Multiple Functions
■ Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following examplewhere a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

215Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

■ Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

■ Java or .NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

■ etc.

To do this you need to extract the COBOL server program as described underMap to Multiple
IDL Interfaces.

Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Assume a COBOL IMS MPP (IMS Connect) server program has a fixed-sized COBOL table as its
last parameter, similar to COBOL data item COBOL-TABLE-FIX in the example below; each table
element is 100 bytes; the length of COBOL-FIELD1 + COBOL-FIELD2 + COBOL-FIELD3; the length of
the data preceding the COBOL table is described by COBOL-GROUP1; its length is 1000 bytes.

Software AG IDL Extractor for COBOL216

IMS MPP Message Interface (IMS Connect)

WORKING-STORAGE SECTION.
01 NUMBER-OF-INCOMING-ELEMENTS PIC S9(8) BINARY.
01 NUMBER-OF-OUTGOMING-ELEMENTS PIC S9(8) BINARY.
. . .

01 INPUT-MESSAGE.
05 INPUT-IMS-META.

10 INPUT-LL PIC S9(3) BINARY.
10 INPUT-ZZ PIC S9(3) BINARY.
10 INPUT-TRANSACTION PIC X(10).

05 INPUT-DATA.
10 COBOL-GROUP1.
20 COBOL-TABLE-PREFIX PIC X(1000).

10 COBOL-TABLE-FIX OCCURS 20.
20 COBOL-GROUP2.
25 COBOL-FIELD1 PIC X(4).
25 COBOL-FIELD2 PIC X(3).
25 COBOL-FIELD3 PIC X(50).

01 OUTPUT-MESSAGE.
05 OUTPUT-IMS-META.
10 OUTPUT-LL PIC S9(3) BINARY.
10 OUTPUT-ZZ PIC S9(3) BINARY.
05 OUTPUT-DATA.
10 COBOL-GROUP1.

20 COBOL-TABLE-PREFIX PIC X(1000).
10 COBOL-TABLE-FIX OCCURS 20.

20 COBOL-GROUP2.
25 COBOL-FIELD1 PIC X(30).
25 COBOL-FIELD2 PIC X(20).
25 COBOL-FIELD3 PIC X(50).

LINKAGE SECTION.
. . .

PROCEDURE DIVISION USING IO-PCB.
CALL "CBLTDLI" USING GU, IO-PCB, INPUT-MESSAGE.
. . .
COMPUTE NUMBER-OF-INCOMING-ELEMENTS = (INPUT-LL

- LENGTH OF COBOL-GROUP1 IN AREA INPUT-MESSAGE)
/ LENGTH OF COBOL-GROUP2 IN AREA INPUT-MESSAGE.

. . .
COMPUTE OUTPUT-LL = LENGTH OF COBOL-GROUP2 IN AREA OUTPUT-MESSAGE

+ (NUMBER-OF-OUTGOING-ELEMENTS
* LENGTH OF COBOL-GROUP2 IN AREA OUTPUT-MESSAGE).

CALL "CBLTDLI" USING ISRT, IO-PCB, OUTPUT-MESSAGE.
. . .

GOBACK.

During input the COBOL IMS MPP (IMS Connect) server program uses the IMS input message
length INPUT-LL to evaluate the NUMBER-OF-INCOMING-ELEMENTS. During output the IMS output

217Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

message length is determined accordingly to the NUMBER-OF-OUTGOING-ELEMENTS and set in
OUTPUT-LL.

Although the COBOL table is defined as a table with a fixed size (see Tables with Fixed Size) it is
used in a variable manner, similar to tables with variable size (see Tables with Variable Size -
DEPENDING ON Clause.) In this case you need to map the COBOL table to an IDL unbounded array.
See Set Arrays (Fixed <-> Unbounded).

Software AG IDL Extractor for COBOL218

IMS MPP Message Interface (IMS Connect)

14 IDL Extractor for COBOL Preferences

■ Create New Local Extractor Environment (z/OS, z/VSE, BS2000/OSD and IBM i) 222
■ Create New Local Extractor Environment for Micro Focus (UNIX and Windows) ... 226
■ Create New Remote Extractor Environment (z/OS) ... 230
■ Create New Remote Extractor Environment (BS2000/OSD) ... 234

219

The IDL Extractor for COBOL preferences are used to manage COBOL extractor environments.
ACOBOLextractor environment provides defaults for the extraction and refers toCOBOLprograms
and copybooks

■ stored locally on the same machine where the EntireX Workbench is running, a so-called local
COBOL extractor environment, or

■ stored remotely on a host computer, a so-called remote COBOL extractor environment. The
Extractor Service is required to access COBOLprograms and copybooks remotelywith a remote
COBOL extractor environment. The Extractor Service is supported on operating systems z/OS
and BS2000/OSD. See Extractor Service in the z/OS administration and BS2000/OSD Batch RPC
Server documentation.

COBOL extractor environments are offered in the IDL Extractor for COBOL wizard to reference
the COBOL programs and copybooks and retrieve defaults for the IDL extraction. To create, edit,
duplicate and remove COBOL extractor environments, open the Preferences page and use the
buttons on the right.

The Preferences page contains further settings valid for all COBOL extractor environments:

■ Define prefixes for IDL parameter names
The defined prefixes are used for FILLER Pseudo-Parameter.

■ Type of COBOL mapping
Every EntireXWorkbench (Eclipse)workspace is either in client-sidemappingmode (generating
EntireX Workbench server mapping files with extension .cvm) or server-side mapping mode
(generating EntireX Workbench server mapping files with extension .svm). See Server Mapping
Files for COBOL for an introduction. You can adjust the mode here, which will also set the mode

Software AG IDL Extractor for COBOL220

IDL Extractor for COBOL Preferences

of the COBOLWrapper to the same value. See Generation Settings - Preferences in the COBOL
Wrapper documentation.

Server mapping files are generated automatically for RPC servers if required. SeeWhen is a
ServerMapping File Required? - IDL Extractor for COBOL in the EntireXWorkbench documentation.

221Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

Create New Local Extractor Environment (z/OS, z/VSE, BS2000/OSD and
IBM i)

This section describes the four steps for creating a new local COBOL extractor environment to
extract z/OS, z/VSE, BS2000/OSD or IBM i COBOL programs.

■ Step 1: Define the New Local Environment
■ Step 2: Define the Default Settings
■ Step 3: Define the Local Extractor Environment
■ Step 4: Define the Local Copybook Locations

Step 1: Define the New Local Environment

On the New Environment page you can specifyName andOperating system.

To define the new environment settings

1 Enter a uniqueName for the COBOL extractor environment.

2 Select theOperating system.

3 Select "Local" for Source Location.

Software AG IDL Extractor for COBOL222

IDL Extractor for COBOL Preferences

Step 2: Define the Default Settings

TheDefault Settings page provides defaults for Step 4: Define the Extraction Settings and Start
Extraction in Using the IDL Extractor for COBOL - Overview. You can set defaults for interface
type and COBOL to IDL mapping.

To define the default extraction settings

1 Select the default Interface Type. See Supported COBOL Interface Types.

2 Depending on the interface type, additional information can be set. For interface type

223Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

■ CICS with Channel Container Calling Convention, you can set the channel name.
■ IMSMPPMessage Interface (IMS Connect), you can set defaults for the transaction name.
Possible options are a constant transaction name defined during extraction process or an
IDL parameter to be specified at runtime.

■ IMS BMPwith Standard Linkage Calling Convention, you can set the default for IMS PSB
List.

For more information refer to Step 4: Define the Extraction Settings and Start Extraction.

3 Specify a default value for COBOL to IDL Mapping. See COBOL to IDL Mapping.

PressNext and continue with Step 3: Define the Local Extractor Environment below.

Step 3: Define the Local Extractor Environment

On theLocal Extractor Environmentpage you can provide a default directory name for theCOBOL
programs:

1. ChooseWorkspace... or File System... to browse for a folder.

2. ChooseNext and continue with Step 4: Define the Local Copybook Locations below.

Software AG IDL Extractor for COBOL224

IDL Extractor for COBOL Preferences

Step 4: Define the Local Copybook Locations

On the Local Copybook Location page you can add directories that will be used to resolve copy-
books. Copybooks andmembers referencedwithCOPY statements, CALibrarian -INC statements
and CA Panvalet ++INCLUDE statements will be searched for in the defined local directories:

The file extensions for copybooks can also be entered. If no extensions are specified, the IDL Ex-
tractor for COBOL wizard will try to locate copybooks without any file extensions.

PressWorkspace... or File System... to browse for a folder.

Press Finish.

225Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

Create NewLocal Extractor Environment forMicro Focus (UNIX andWindows)

This section describes the four steps for creating a new local COBOL extractor environment to
extract Micro Focus COBOL programs.

■ Step 1: Define the New Local Environment
■ Step 2: Define the Default Settings
■ Step 3: Define the Local Extractor Environment

Software AG IDL Extractor for COBOL226

IDL Extractor for COBOL Preferences

■ Step 4: Define the Local Copybook Locations

Step 1: Define the New Local Environment

On theNew Environment page you can specify theName andOperating system. Only UNIX
and Windows operating systems can be used for Micro Focus COBOL.

To define the default extraction settings

1 Enter a unique name for the COBOL extractor environment.

2 Select theOperating system "UNIX" or "Windows".

3 Select "Local" for Source location.

227Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

Step 2: Define the Default Settings

TheDefault Settings page provides defaults for Step 4: Define the Extraction Settings and Start
Extraction in Using the IDL Extractor for COBOL - Overview.

You can set defaults for Interface type, Compiler directives and COBOL to IDL Mapping.

To define the default extraction settings

1 Refer to Step 2: Define the Default Settings for a local extractor environment for field descrip-
tions. Select the default Interface type. See Supported COBOL Interface Types.

2 Select a value forMeaning of PIC N without USAGE clause. Select "NATIONAL" for IDL
mapping to data type U, or "DISPLAY-1" (DBCS) for data type K. "DISPLAY-1" (DBCS) is the
default, which is the same as Micro Focus compilers. See also COBOL to IDL Mapping.

Software AG IDL Extractor for COBOL228

IDL Extractor for COBOL Preferences

3 Select the source code format. Use "Fixed" (default) or "Variable" to change the interpreted
source code columns. Refer to your Micro Focus documentation for further information.

4 Enter the TAB stop width. Typical values are 4 or 8 (default).

5 Specify the default COBOL to IDL Mapping. See COBOL to IDL Mapping.

6 ChooseNext and continue with the Step 3: Define the Local Extractor Environment below.

Refer to Step 2: Define the Default Settings for a local extractor environment for field descrip-
tions.

Step 3: Define the Local Extractor Environment

On theLocal Extractor Environmentpage you can provide a default directory name for theCOBOL
programs:

1. ChooseWorkspace... or File System... to browse for a folder.

2. ChooseNext and continue with Step 4: Define the Local Copybook Locations below.

229Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

Step 4: Define the Local Copybook Locations

On the Local Copybook Location page you can add directories that will be used to resolve copy-
books. Copybooks andmembers referencedwithCOPY statements, CALibrarian -INC statements
and CA Panvalet ++INCLUDE statements will be searched for in the defined local directories:

The file extensions for copybooks can also be entered. If no extensions are specified, the IDL Ex-
tractor for COBOL wizard will try to locate copybooks without any file extensions.

ChooseWorkspace... or File System... to browse for a folder.

Choose Finish.

Create New Remote Extractor Environment (z/OS)

This section describes the four steps for creating a new remote COBOL extractor environment to
extract remotely z/OS COBOL programs stored in partitioned data sets or CA Librarian data sets.

■ Step 1: Define the New Remote Environment
■ Step 2: Define the Default Settings
■ Step 3: Define the Remote Extractor Environment

Software AG IDL Extractor for COBOL230

IDL Extractor for COBOL Preferences

■ Step 4: Define the Remote Copybook Locations

Step 1: Define the New Remote Environment

On theNewEnvironment page you can specifyName,Operating system and theRemote Source
Location.

To define the new environment settings

1 Enter a unique name for the COBOL extractor environment.

2 Select theOperating system.

3 Select "Remote" for Source location.

Step 2: Define the Default Settings

TheDefault Settings page provides defaults for Step 4: Define the Extraction Settings and Start
Extraction in Using the IDL Extractor for COBOL - Overview.

You can set defaults for Interface Type and COBOL to IDL Mapping.

231Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

To define the default extraction settings

■ See Step 2: Define the Default Settings in section Create New Local Extractor Environment
(z/OS, z/VSE, BS2000/OSD and IBM i).

PressNext and continue with Step 3: Define the Remote Extractor Environment below.

Software AG IDL Extractor for COBOL232

IDL Extractor for COBOL Preferences

Step 3: Define the Remote Extractor Environment

The connection to the Extractor Service to browse for COBOL programs is defined on the Remote
Extractor Environment page. See Extractor Service.

To define the remote extractor environment

1 Under Broker Parameters, enter the required fields Broker ID and Server Address, which
will have the default format brokerID@serverAddress. The last part (broker service) of the
server address must always be "EXTRACTOR". The timeout value must be in the range 1-
9999 seconds (default is 60).

2 The EntireXAuthentication parameters describe the settings for the broker. SeeAuthentication
of User under Overview of EntireX Security in the EntireX Security documentation.

3 The RPC Server Authentication parameters describe the settings for the RPC server. See
Administering the Batch RPC Server | Administering the EntireX RPC Server under z/OS IMS.

4 A high-level qualifier is required in the Data Set Name or HLQ field. The extractor service
will then offer only data sets with this high-level qualifier.

233Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

5 In theMember Name field you can provide a prefix for the partitioned data set or CA Librar-
ian members. The extractor service will then offer only members beginning with this prefix.

PressNext and continue with Step 4: Define the Remote Copybook Locations below.

Step 4: Define the Remote Copybook Locations

On the Remote Copybook Location page you can add PDS or CA Librarian data sets that will be
used to resolve copybooks. Copybooks and members referenced with COPY statements and CA
Librarian -INC statements will be searched for in the defined remote data sets:

Press Insert... to add a new data set entry in the table. Use Remove,Up andDown to manage the
data set list.

Press Finish.

Create New Remote Extractor Environment (BS2000/OSD)

This section describes the four steps for creating a new remote COBOL extractor environment to
extract remotely BS2000/OSD COBOL programs stored in LMS libraries.

■ Step 1: Define the New Remote Environment
■ Step 2: Define the Default Settings
■ Step 3: Define the Remote Extractor Environment

Software AG IDL Extractor for COBOL234

IDL Extractor for COBOL Preferences

■ Step 4: Define the Remote Copybook Locations

Step 1: Define the New Remote Environment

On theNewEnvironment page you can specifyName,Operating system and theRemote Source
Location.

To define the new environment settings

1 Enter a unique name for the COBOL extractor environment.

2 Select theOperating system.

3 Select "Remote" for Source location.

Step 2: Define the Default Settings

TheDefault Settings page provides defaults for Step 4: Define the Extraction Settings and Start
Extraction in Using the IDL Extractor for COBOL - Overview.

You can set defaults for Interface Type and COBOL to IDL Mapping.

235Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

To define the default extraction settings

1 Select the default Interface Type. See Supported COBOL Interface Types.

2 Specify the default COBOL to IDL Mapping. See COBOL to IDL Mapping.

PressNext and continue with Step 3: Define the Remote Extractor Environment below.

Step 3: Define the Remote Extractor Environment

The connection to the Extractor Service to browse for COBOL programs is defined on the Remote
Extractor Environment page. See Extractor Service in the BS2000/OSDBatch RPC Server document-
ation.

Software AG IDL Extractor for COBOL236

IDL Extractor for COBOL Preferences

To define the remote extractor environment

1 Under Broker Parameters, enter the required fields Broker ID and Server Address, which
will have the default format brokerID@serverAddress. The last part (broker service) of the
server address must always be "EXTRACTOR". The Timeout value must be in the range 1-
9999 seconds (default is 60).

2 The EntireXAuthentication parameters describe the settings for the broker. SeeAuthentication
of User under Overview of EntireX Security in the EntireX Security documentation.

3 The RPC Server Authentication parameters describe the settings for the RPC server. See
Configuring the RPC Server in the BS2000/OSD administration documentation.

4 A high-level qualifier can be entered in the LMS Library Name or HLQ field. The extractor
service will then offer only LMS libraries with this high-level qualifier. You can use wildcard
notation with asterisk to specify a range of values.

5 In the Element Name field you can provide a prefix for LMS library source elements. The
extractor service will then offer only COBOL programs beginning with this prefix.

237Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

PressNext and continue with Step 4: Define the Remote Copybook Locations below.

Step 4: Define the Remote Copybook Locations

On the Remote Copybook Location page you can add directories that will be used to resolve
copybooks. Copybooks referencedwith COPY statementswill be searched for in the defined remote
LMS libraries:

Press Insert... to add a new data set entry in the table. Use Remove,Up andDown to manage the
list of LMS libraries.

Press Finish.

Software AG IDL Extractor for COBOL238

IDL Extractor for COBOL Preferences

15 COBOL to IDL Mapping

■ COBOL Data Type to Software AG IDL Mapping .. 241
■ DATA DIVISION Mapping .. 244
■ PROCEDURE DIVISION Mapping .. 254
■ Copybooks ... 255

239

This chapter describes how COBOL data items and related syntax are mapped to Software AG
IDL by the IDL Extractor for COBOL using the Extractor Wizard andMapping Editor.

Software AG IDL Extractor for COBOL240

COBOL to IDL Mapping

COBOL Data Type to Software AG IDL Mapping

The IDL Extractor for COBOL maps the following subset of COBOL data types to Software AG
IDL data types.

The following metasymbols and informal terms are used for the IDL in the table below.

■ The metasymbols "[" and "]" surround optional lexical entities.
■ The informal terms n and m are sequences of numeric characters, for example 123.

NotesSoftware AG IDL Data TypeCOBOL Data Type

1,2AlphanumericAn, AVnPIC A(n)Alphabetic

1,2,3KanjiKn*2, KVn*2PIC G(n)DBCS

1,2,3KanjiKn*2, KVn*2PIC N(n) [USAGE] [IS]
DISPLAY-1

DBCS

1,2,3,10Unicode or KanjiUn, UVn or
Kn*2, KVn*2

PIC N(n)Unicode or DBCS

1,2UnicodeUn, UVnPIC N(n) [USAGE] [IS]
NATIONAL

Unicode

1,2AlphanumericAn, AVnPIC X(n)Alphanumeric

2,4,8Unpacked decimal
unsigned

NUn[,m]PIC 9(n)[V9(m)]Zoned decimalNumeric

2,4,8Unpacked decimalNn[,m]PIC S9(n)[V9(m)]Zoned decimal

2,4,8Packed decimal
unsigned

PUn[,m]PIC 9(n) [V9(m)]
COMP[UTATIONAL]-3

Packeddecimal

2,4,8Packed decimalPn[,m]PIC S9(n) [V9(m)]
COMP[UTATIONAL]-3

Packeddecimal

2,4,8Packed decimal
unsigned

PUn[,m]PIC 9(n) [V9(m)]
PACKED-DECIMAL

Packeddecimal

2,4,8Packed decimalPn[,m]PIC S9(n) [V9(m)]
PACKED-DECIMAL

Packeddecimal

2,4,5,6,7Integer (medium)I2PIC [S]9(n) BINARY
(1<=n<=4)

Binary

2,4,5,6,7Integer (large)I4PIC [S]9(n) BINARY
(5<=n<=9)

Binary

2,4,5,6,7Integer (medium)I2PIC [S]9(n)
COMP[UTATIONAL][-4]
(1<=n<=4)

Binary

2,4,5,6,7Integer (large)I4PIC [S]9(n)
COMP[UTATIONAL][-4]
(5≤n<=9)

Binary

241Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

NotesSoftware AG IDL Data TypeCOBOL Data Type

2,4,6,7Integer (medium)I2PIC [S]9(n) COMP-5
(1<=n<=4)

Binary

2,4,6,7Integer (medium)I4PIC [S]9(n) COMP-5
(5<=n<=9)

Binary

9Floating point
(small)

F4COMP[UTATIONAL]-1Floating point

9Floating point (large)F8COMP[UTATIONAL]-2Floating point

11AlphanumericA(length of
PIC)

Alphanumeric item containing
"0" or "/"

Alphanumeric-edited

11AlphanumericA(length of
PIC)

Numeric item containing "DB",
"CR", "Z", "$", ".", ",", "+", "-",
"*", "B", "O" or "/"

Numeric-edited

Notes:

1. Mapping to fixed-length or variable-length Software AG IDL data type is controlled in the ex-
traction settings of the extraction wizard, see Step 4: Define the Extraction Settings and Start
Extraction.

2. Equivalent alternative forms of the PICTURE clause, e.g. XXX, AAA,NNN, GGG or 999may also be
used.

3. The length for IDL data type is given in bytes. For COBOL the length is in DBCS characters (2
bytes).

4. The character "P[(n)]" stands for a decimal scaling position, this character has no effect on the
length of the generated data type. Only the data fraction will be mapped to the Software AG
IDL:

01 GROUP1.
10 FIELD1 PIC PPP9999.

will be mapped to IDL:

1 GROUP1
2 FIELD1 NU4

5. Behavior depends on the COBOL compiler settings:
■ With COBOL 85 standard, the value range depends on the number of digits in the PICTURE
clause. This differs from the value range of the IDLdata type using the binary field size instead.
If the parameter is of direction "In" your RPC client application has to ensure the integer value
sent is within the allowed range. See Software AG IDL Grammar in the IDL Editor documenta-
tion.

Software AG IDL Extractor for COBOL242

COBOL to IDL Mapping

■ With noCOBOL 85 standard, the value range of the COBOLdata type reflects the binary field
size, thus matches the IDL data type exactly. In this case, there are no restrictions regarding
value ranges. For example:
■ with operating system z/OS and IBM compiler, see option TRUNC(BIN) in your COBOL
compiler documentation

■ with operating systemsUNIX andWindows and aMicro Focus compiler, see option NOTRUNC
in your Micro Focus COBOL documentation.

6. For unsigned COBOL data types (without "S" in the PICTURE clause) the value range of the IDL
data type differs:
■ IDL allows negative values, COBOL does not.
■ For I2, the maximum is 32767 for IDL instead of 65535 for COBOL.
■ For I4, the maximum is 2147483647 for IDL instead of 4294967294 for COBOL.

7. Binaries withmore than 9 digits in the PICTURE clause cannot bemapped to IDL. See the follow-
ing table:

-9,223,372,036,854,775 thru +9.223,372,036,854,775Binary doubleword (8 bytes)S9(10) thru S9(18)

0 thru 18,446,744,073,709,551Binary doubleword (8 bytes)9(10) thru 9(18)

8. The value range of PACKED-DECIMAL and ZONED-DECIMAL is greater than the value range of the
mapped IDL data type. COBOL supports 31 digits (IBM and Fujitsu Siemens), 38 digits (Micro
Focus), and IDL 29 digits. If the COBOLprogramusesmore than 29 digits for a PACKED-DECIMAL
or ZONED-DECIMAL, it cannot be mapped to IDL.

The precision (digits after decimal point) of PACKED-DECIMAL and ZONED-DECIMAL is greater than
the value range of the mapped IDL data type, which is 7. If the COBOL program uses more
than 7 digits after the decimal point for a PACKED-DECIMAL or ZONED-DECIMAL, it cannot be
mapped to IDL.

Only the IDL range 0=n=7 and 1=(m+n)=29 is supported.

9. COMPUTATIONAL-1 (4-byte, single precision) and COMPUTATIONAL-2 items (8-byte, double precision)
items are an IBM-specific extension. When floating-point data types are used, rounding errors
can occur, so the values of senders and receivers might differ slightly.

10. If this form is extracted from a COBOL program originally written for Micro Focus COBOL
and operating system UNIX or Windows, the mapping to the IDL data type depends on the
setting in the IDL Extractor for COBOL Preferences. SeeMeaning of PIC N without USAGE
clausewithin pane Compiler Directives of Step 2: Define the Default Settings. For all other
COBOL program extractions, the mapping is always to IDL data type Un/Uvn.

11. COBOL alphanumeric/numeric edited items will force the generation of IDL data type Awith
an inline comment containing the original COBOL PICTURE clause. The CURRENCY SIGN clause in
the SPECIAL-NAMES and the CURRENCY compiler option is not considered.

243Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

DATA DIVISION Mapping

This section discusses the syntax relevant for extracting the DATA DIVISION:

■ BLANK WHEN ZERO Clause
■ Condition Names - Level-88 Data Items
■ Continuation Lines
■ DATE FORMAT Clause
■ FILLER Pseudo-Parameter
■ GLOBAL and EXTERNAL Clause
■ JUSTIFIED Clause
■ OBJECT REFERENCE Phrase
■ Parameter Names
■ POINTER Phrase
■ PROCEDURE-POINTER Phrase
■ REDEFINE Clause
■ RENAMES Clause - LEVEL 66 Data Items
■ SIGN LEADING and TRAILING SEPARATE Clause
■ SYNCHRONIZED Clause
■ Tables with Fixed Size
■ Tables with Variable Size - DEPENDING ON Clause
■ Unstructured Data Types - LEVEL 77 Data Items
■ USAGE Clause on Group Level
■ USAGE IS INDEX Clause
■ VALUE Clause

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause specifies that an item contains nothing but spaces when its value is
zero. The BLANK WHEN ZERO clause is not considered by the IDL Extractor for COBOL. The DATA
DIVISION is parsed as without the BLANK WHEN ZERO clause. Because the BLANK WHEN ZERO clause
only has an impact if the item is displayed, such a program can bemapped to IDL. Theworkaround
for RPC clients is to imitate the BLANK WHEN ZERO clause.

Software AG IDL Extractor for COBOL244

COBOL to IDL Mapping

Condition Names - Level-88 Data Items

See the following COBOL syntax:

88 condition_name VALUE [IS] 'literal_1'
88 condition_name VALUE [IS] 'literal_1' [THRU | THROUGH] 'literal_2'
88 condition_name VALUES [ARE] 'literal_1' [THRU | THROUGH] 'literal_2'

Semantically, level-88 condition names can be

■ Enumeration Type Values
If your COBOL server requires the level-88 value to be provided on a call-by-call basis, that is,
the value may change with every call, map the level-88 base variable to a simple IDL parameter
with the desired direction In, Out or InOut. RPC clients have to pass correct values, same as
defined by the level-88 condition names.

■ Single Constant Values
If your COBOL server interface expects for your purpose always a constant value,map the level-
88 condition names to a constant.

■ Function or Operation Codes
If the level-88 values are function or operation codes, map the level-88 condition names to an
operation.

Continuation Lines

Continuation lines, starting with a hyphen in the indicator area, are supported.

DATE FORMAT Clause

The DATE FORMAT clause is an IBM-specific extension. The DATE FORMAT clause specifies that a data
item is a windowed or expanded date field.

The DATE FORMAT clause is not considered by the IDL Extractor for COBOL. The DATA DIVISION
is parsed as without the BLANK WHEN ZERO clause. The semantic given by the DATE FORMAT clause
has to be considered by RPC clients.

FILLER Pseudo-Parameter

In the check boxMap FILLER fields to IDL of the COBOL to IDL in the extraction settings of the
wizard (see Step 4: Define the Extraction Settings and Start Extraction) you can define whether
COBOL FILLER pseudo-parameters should be part of the RPC client interface by default or not.
By default they are notmapped to IDL. In theCOBOLMapping Editor you can change themapping
for a FILLER field individually, e.g. mapping required ones to IDL. If FILLER fields are mapped to
IDL, they are made unique by appending a sequence number. You can set the prefix to be used
in the IDL Extractor for COBOL Preferences.

245Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

If the resulting names are not suitable, you can rename IDL field names in the Mapping Editor
with the Rename function of the context menu. See the following example:

01 GROUP1.
10 FIELD1 PIC XX.
10 FILLER PIC XX.
10 FIELD2 PIC S99.
10 FILLER PIC XX.

This will be mapped to Software AG IDL:

1 GROUP1
2 FIELD1 (A2)
2 FILLER_1 (A2)
2 FIELD2 (N2.0)
2 FILLER_2 (A2)

If a group is named FILLER and the group has scalar fields, the group is always mapped to IDL,
independent of the check boxMap FILLER fields to IDL. For example:

01 GROUP1.
10 FIELD1 PIC XX.
10 PIC XX.
10 FIELD2 PIC S99.
10 FILLER PIC XX.
10 .
20 FIELD3 PIC S9(4) BINARY.
20 FIELD4 PIC S9(4) BINARY.

This will be mapped to Software AG IDL:

1 GROUP1
2 FIELD1 (A2)
2 FILLER_1 (A2)
2 FIELD2 (N2.0)
2 FILLER_2 (A2)
2 FILLER_3
3 FIELD3 (I2)
3 FIELD4 (I2)

Software AG IDL Extractor for COBOL246

COBOL to IDL Mapping

GLOBAL and EXTERNAL Clause

The GLOBAL clause

■ specifies that a data-name is available to every program contained within the program that de-
clares it, as long as the contained program does not itself have a declaration for that name.

■ is not considered by the IDL Extractor for COBOL. The DATA DIVISION is parsed as without the
GLOBAL clause.

However, program parameters containing the GLOBAL clause can be mapped to IDL, which can
make sense as long as the EXTERNAL DATA clause is used to pass parameters from the calledCOBOL
server to further subprograms called.

The EXTERNAL clause

■ can only be specified on data description entries that are in the Working-Storage section of a
program.

■ is not considered by the IDL Extractor for COBOL. The DATA DIVISION is parsed as without the
EXTERNAL clause.

Note: EntireX RPC technology cannot pass data using EXTERNAL linkage from the RPC
server to the COBOL server. However, program parameters containing the EXTERNAL
clause can bemapped to IDL, which canmake sense as long as the EXTERNAL DATA clause
is used to pass parameters from the called COBOL server to further subprograms called.

247Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

JUSTIFIED Clause

The IDL Extractor for COBOL ignores the JUSTIFIED clause. The DATA DIVISION is parsed as
without the JUSTIFIED clause. The workaround for RPC clients is to imitate the JUSTIFIED clause.

OBJECT REFERENCE Phrase

The OBJECT REFERENCE phrase is an IBM-specific extension. A program containing an OBJECT
REFERENCE phrase cannot be mapped to IDL.

Parameter Names

Numbers in the first position of the parameter name are not allowed in Software AG IDL syntax
(see Software AG IDL Grammar in the IDL Editor documentation). Thus COBOL names starting
with a number are prefixed with the character "#" by default. You can rename all IDL parameters
in the COBOL Mapping Editor. For example,

Software AG IDL Extractor for COBOL248

COBOL to IDL Mapping

01 1BSP PIC XXX.

by default will be mapped to Software AG IDL:

01 #1BSP A(3).

If a parameter name is not specified, e.g.

01 GROUP1.
10 FIELD1 PIC XX.
10 PIC XX.
10 FIELD2 PIC S99.
10 FILLER PIC XX.
10 .
20 FIELD3 PIC S9(4) BINARY.
20 FIELD4 PIC S9(4) BINARY.

see FILLER Pseudo-Parameter above.

POINTER Phrase

The POINTER phrase is an IBM-specific extension.

Software AG IDL SyntaxCOBOL Syntax

none1 name USAGE IS POINTER

none1 name POINTER

All pointers are mapped to "suppressed" in the Mapping Editor because the Software AG IDL
does not support pointers. Offsets to following parameters are maintained by theUsage of Server
Mapping Files. At runtime, the RPC server passes a null pointer to the COBOL server.

PROCEDURE-POINTER Phrase

The PROCEDURE-POINTER phrase is an IBM-specific extension. A program containing a procedure-
reference phrase cannot be mapped to IDL.

REDEFINE Clause

A redefinition is a secondparameter layout of the samememory portion. Inmostmodern program-
ming languages, and also the Software AG IDL, this is not supported. With the wizard you can
select a single redefine path for IDL usage. You can do this in the

■ COBOL Mapping Editor
■ Select the single REDEFINE path for a level 1 REDEFINE unit (all redefine paths addressing the
same storage location) in the parameter selection window. See Step 5: Select the COBOL In-
terface and Map to IDL Interface in Using the IDL Extractor for COBOL. This is the simplest

249Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

and most straightforward approach for a COBOL server with a single interface, because All
REDEFINE siblings are no longer considered. Further processing is like a single parameter for
the level 1 REDEFINE path.

■ Select the complete REDEFINE unit on level 1 with all paths for a COBOL server with multiple
interfaces that have to bemapped to operation, andwhere each operation interface is described
by a level 1 REDEFINE path in the parameter selection window. See Step 5: Select the COBOL
Interface and Map to IDL Interface in Using the IDL Extractor for COBOL. Then model the
operation interfaces in the Mapping Editor to IDL programs.

■ Only REDEFINE units on level 1 can be selected in the parameter selection. REDEFINE units on
level greater than 1 have to be selected in the Mapping Editor, see below.

■ COBOL Mapping Editor
■ For all REDEFINE units on level greater than 1, the REDEFINE path used by your interface has
to be selected in the Mapping Editor.

■ For REDEFINE units on level 1 that are not selected uniquely in the parameter selectionwindow
above, map the required REDEFINE path to IDL.

If a REDEFINE path is selected, the mapping is as follows:

Software AG IDL SyntaxCOBOL Syntax

1 name_11 [name_1] REDEFINES name_2

1 FILLER_n1 FILLER REDEFINES name_2

RENAMES Clause - LEVEL 66 Data Items

Level-66 entries are ignored and cannot be used formapping to IDL. The DATA DIVISION is parsed
as without the level-66 entry.

SIGN LEADING and TRAILING SEPARATE Clause

The SIGN LEADING and TRAILING SEPARATE clause is supported. The mapping is internal within
the Usage of Server Mapping Files.

SYNCHRONIZED Clause

The synchronized clause aligns COBOL data items at word boundaries. The clause does not have
any relevance for RPC clients and is not written into the IDL file but into the server mapping file.
At runtime, the RPC server aligns the data items accordingly.

Software AG IDL Extractor for COBOL250

COBOL to IDL Mapping

Tables with Fixed Size

Fixed-size COBOL tables are converted to fixed-size IDL arrays. See the following syntax.

Software AG IDL SyntaxCOBOL Syntax

1 name (/n)1 name OCCURS n [TIMES]

1 name (/n)1 name OCCURS n [TIMES] [ASCENDING | DESCENDING [KEY] [IS]
key_name]

1 name (/n)1 name OCCURS n [TIMES] [[INDEXED [BY] index_name]

Rules

■ The combination of the ASCENDING and INDEXED BY phrase as well as DESCENDING and INDEXED
BY phrase is also supported.

Tables with Variable Size - DEPENDING ON Clause

Variable size COBOL tables are converted to unbounded groups with a maximum upper bound
set. The lower-bound is always set to 1. The index is not part of the IDL, but it is in the server
mapping file. See the following example:

01 COUNTER-1 PIC 99.
01 TABLE OCCURS FROM 1 TO 10 DEPENDING ON COUNTER-1
02 FIELD1 PIC XX.
02 FIELD2 PIC 99.

A variable length group (with maximum) will be defined. A presence of the index in the IDL
would be wrong, because the number of elements is implicitly available with the unbounded
group. Therefore the index is not part of the IDL, but the mapping is within the Usage of Server
Mapping Files.

01 TABLES (/V10)
02 FIELD1 (A2)
02 FIELD2 (NU2.0)

Software AG IDL SyntaxCOBOL Syntax

1 name (/m)1 name OCCURS n TO m [TIMES] DEPENDING [ON] index

1 name (/m)1 name OCCURS n TO m [TIMES] DEPENDING [ON] index [ASCENDING |
DESCENDING [KEY] [IS] key_name]

1 name (/m)1 name OCCURS n TO m [TIMES] DEPENDING [ON] index [INDEXED [BY]
index_name]

251Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

Rules

■ The data item referenced by the OCCURS DEPENDING ON clause has to be part of the COBOL
server interface as well - in the sameCOBOLdata item direction. Thismeans that if the variable-
size table is selected as a
■ COBOL InOut Parameter (see Step 5: Select the COBOL Interface andMap to IDL Interface),
the index data item (ODO subject) must be selected as a COBOL InOut parameter as well.

■ COBOL In Parameter, the index data item (ODO subject) must be selected as a COBOL In
parameter as well.

■ COBOLOut Parameter, the index data item (ODO subject) must be selected as a COBOLOut
parameter as well.

■ If the index data item (ODO subject) is not selected correctly with the variable-size table, unex-
pected behavior occurs.

■ The COBOL fromvalue, n above, is semantically different from the IDL lower bound andmeans
a lower-bound of elements which must not be crossed. It is the duty of the calling RPC client to
take care of this and set the corresponding number of elements correctly. Do not send less than
the COBOL lower bound.

■ The combination of the ASCENDING and INDEXED BY phrase as well as DESCENDING and INDEXED
BY phrase is also supported.

Unstructured Data Types - LEVEL 77 Data Items

COBOL level-77 data items are handled as COBOL data items on level 1. They are alwaysmapped
to IDL level 1.

USAGE Clause on Group Level

A USAGE clause can be specified on group level, which defines the data type of subsequent groups
or parameters. The USAGE clause on subsequent groups or parameters may not contradict a higher
level definition. Therefore IDL data types may depend on USAGE clauses of parent groups if the
COBOL data structure is defined as explained.

USAGE IS INDEX Clause

COBOL data items defined with USAGE IS INDEX are parsed as without USAGE IS INDEX. The
USAGE IS INDEX clause is ignored.

Software AG IDL Extractor for COBOL252

COBOL to IDL Mapping

VALUE Clause

The VALUE clause specifies the initial contents of a data item or the value(s) associated with a con-
dition name. For condition names, see Condition Names - Level-88 Data Items above.

COBOL Syntax

1 name <COBOL data type> VALUE [IS] 'literal'

Initial values can be specified on data items in theWorking-Storage Section. As an IBM extension,
in the File and Linkage Sections, the VALUE clause is treated as a comment.

The IDL Extractor for COBOL ignores initial values of data items. The DATA DIVISION is parsed
as without the VALUE clause.

253Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

PROCEDURE DIVISION Mapping

This section discusses the syntax relevant for extraction of the PROCEDURE DIVISION:

■ PROCEDURE DIVISION Header
■ BY VALUE Phrase
■ RETURNING Phrase

PROCEDURE DIVISION Header

For batch and IMS programs, the PROCEDURE DIVISION header is relevant for the COBOL InOut
parameters. The parameters of the header are suggested as default COBOL InOut parameters.

For CICS, the PROCEDURE DIVISION header is of no interest, because the DFHCOMMAREA is the relevant
information to get the COBOL InOut parameters from. If the DFHCOMMAREA is defined in the linkage
section all parameters of the DFHCOMMAREA are suggested as default COBOL InOut parameters. If
there is no DFHCOMMAREA there is no suggestion.

However, you can always add, change and correct the suggested parameters if they are not the
correct ones in the extraction wizard. See also Step 5: Select the COBOL Interface andMap to IDL
Interface in Using the IDL Extractor for COBOL.

BY VALUE Phrase

The BY VALUE clause is an IBM-specific extension for COBOL batch programs. It is ignored by the
IDL Extractor for COBOL. Directions are added in the Mapping Editor manually.

RETURNING Phrase

The RETURNING phrase is an IBM-specific extension for COBOL batch programs. It is ignored by
the IDL Extractor for COBOL. Handling is as without the phrase. No return value is transferred
during execution time. If the RETURNING phrase is relevant for the interface, the COBOL program
cannot be mapped to IDL.

Software AG IDL Extractor for COBOL254

COBOL to IDL Mapping

Copybooks

Copybook Support

COPY statements are supported if nested copy statements do not recursively call the same source
file.

If copybooks cannot be located, the following rules apply:

■ In the case of a remote extraction, the copybook location (data set) is unknown.
■ In the case of a local extraction, either the copybook location (directory) or the copybook extension
is unknown.

■ In both cases, the extractionwizardwill appearwith a dialog to browse for the copybook location
(local directory or remote data set) and allows you to append your copybook extensions. Both
will be saved in the preferences.

You can also predefine the following in the preferences:

■ the copybook locations, see Step 4: Define the Remote Copybook Locations or Step 4: Define
the Local Copybook Locations in IDL Extractor for COBOL Preferences.

■ the copybook extensions for local extractions, see Step 4: Define the Local Copybook Locations
in IDL Extractor for COBOL Preferences.

Copybooks with REPLACE Option

COPY statements with the REPLACE option are supported. Beneath the REPLACE option, those
copybooks are worked off like all other copybooks above. Example:

■ a copybook ACPYBK with REPLACE option

01 WS-ZEUGNIS.
:F: WS-AKTIONEN PIC 9(01).

:L: :C:-NEU VALUE 'N'.
:L: :C:-MOD VALUE 'M'.
:L: :C:-INS VALUE 'I'.
:L: :C:-WEG VALUE 'W'.
:L: :C:-SIG VALUE 'S'.

:F: WS-NOTEN PIC X(03).
:L: SEHR-GUT VALUE 100.
:L: GUT VALUE 95 THROUGH 99.
:L: BEFRIEDIGEND VALUE 80 THROUGH 94.
:L: AUSREICHEND VALUE 50 THROUGH 79.
:L: MANGELHAFT VALUE 01 THROUGH 49.
:L: UNGENUEGEND VALUE 0.

255Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

■ referencing the copybook above

COPY ACPYBK
REPLACING

==:F:== BY ==10==,
==:L:== BY ==88==,
==:C:== BY ==CMD==,
95 BY 90,
94 BY 89,
WS-NOTEN BY WS-PROZENT,
==X(03)== BY ==9(03)==,
==9(01)== BY ==X(01)==.

Software AG IDL Extractor for COBOL256

COBOL to IDL Mapping

	Software AG IDL Extractor for COBOL
	Table of Contents
	I Introduction to the IDL Extractor for COBOL
	1 Introduction to the IDL Extractor for COBOL
	Introduction
	Extractor Wizard
	Mapping Editor
	Supported COBOL Interface Types
	Supported CICS COBOL Interface Types
	CICS with DFHCOMMAREA Calling Convention
	CICS with Channel Container Calling Convention
	CICS with DFHCOMMAREA Large Buffer Interface

	Micro Focus with Standard Linkage Calling Convention
	Batch with Standard Linkage Calling Convention
	IMS MPP Message Interface (IMS Connect)
	IMS BMP with Standard Linkage Calling Convention
	What to do with other Interface Types?
	Compatibility between COBOL Interface Types and RPC Server

	Usage of Server Mapping Files

	II Using the IDL Extractor for COBOL - Overview
	Choosing a Scenario
	Before Starting an Extraction
	2 Scenario I: Create New IDL and Server Mapping Files
	Step 1: Start the IDL Extractor for COBOL Wizard
	Step 2: Select a COBOL Extractor Environment or Create a New One
	Step 3: Select the COBOL Source
	Selecting a COBOL Source Stored Locally
	Selecting a Member from a Partitioned Data Set on Remote Host (z/OS)
	Selecting a Member from a CA Librarian Data Set on Remote Host (z/OS)
	Selecting a Member Archive Level from a CA Librarian Data Set on Remote Host (z/OS)
	Selecting an Element (S) from an LMS Library on Remote Host (BS2000/OSD)

	Step 4: Define the Extraction Settings and Start Extraction
	Step 4.1a: Copybook Cannot be Found - Local Extraction
	Step 4.1b: Copybook Cannot be Found - z/OS Remote Extraction
	Step 4.1c: Copybook Cannot be Found - BS2000/OSD Remote Extraction
	Step 4.2: Copybook Status Summary (Optional)
	Step 4.3: Enter COBOL Program ID (Optional)

	Step 5: Select the COBOL Interface and Map to IDL Interface
	Step 6: Finishing the Mapping Editor
	Step 7: Validate the Extraction and Test the IDL File

	3 Scenario II: Append to Existing IDL and Server Mapping Files
	4 Scenario III: Modify Existing IDL and Server Mapping Files

	III COBOL Mapping Editor
	5 CICS with DFHCOMMAREA Calling Convention - In same as Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions
	Example 2: Redefines
	Example 3: Buffer Technique
	Example 4: COBOL SET ADDRESS Statements

	6 CICS with DFHCOMMAREA Large Buffer Interface - In same as Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Large Buffer Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Set Arrays (Fixed <-> Unbounded)

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions
	Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

	7 Batch with Standard Linkage Calling Convention
	Introduction
	Extracting from a Standard Call Interface
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions

	8 Micro Focus with Standard Linkage Calling Convention
	Introduction
	Extracting from a Standard Call Interface
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions

	9 IMS BMP with Standard Linkage Calling Convention
	Introduction
	Extracting from an IMS BMP Standard Call Interface
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions

	10 CICS with DFHCOMMAREA Calling Convention - In different to Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions
	Example 2: Redefines
	Example 3: Buffer Technique
	Example 4: COBOL SET ADDRESS Statements

	11 CICS with DFHCOMMAREA Large Buffer Interface - In different to Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Large Buffer Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Set Arrays (Fixed <-> Unbounded)

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions
	Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

	12 CICS with Channel Container Calling Convention
	Introduction
	Extracting from a CICS Channel Container Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Set Arrays (Fixed <-> Unbounded)

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions
	Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

	13 IMS MPP Message Interface (IMS Connect)
	Introduction
	Extracting from an IMS MPP Message Interface Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Set Arrays (Fixed <-> Unbounded)

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions
	Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

	14 IDL Extractor for COBOL Preferences
	Create New Local Extractor Environment (z/OS, z/VSE, BS2000/OSD and IBM i)
	Step 1: Define the New Local Environment
	Step 2: Define the Default Settings
	Step 3: Define the Local Extractor Environment
	Step 4: Define the Local Copybook Locations

	Create New Local Extractor Environment for Micro Focus (UNIX and Windows)
	Step 1: Define the New Local Environment
	Step 2: Define the Default Settings
	Step 3: Define the Local Extractor Environment
	Step 4: Define the Local Copybook Locations

	Create New Remote Extractor Environment (z/OS)
	Step 1: Define the New Remote Environment
	Step 2: Define the Default Settings
	Step 3: Define the Remote Extractor Environment
	Step 4: Define the Remote Copybook Locations

	Create New Remote Extractor Environment (BS2000/OSD)
	Step 1: Define the New Remote Environment
	Step 2: Define the Default Settings
	Step 3: Define the Remote Extractor Environment
	Step 4: Define the Remote Copybook Locations

	15 COBOL to IDL Mapping
	COBOL Data Type to Software AG IDL Mapping
	DATA DIVISION Mapping
	BLANK WHEN ZERO Clause
	Condition Names - Level-88 Data Items
	Continuation Lines
	DATE FORMAT Clause
	FILLER Pseudo-Parameter
	GLOBAL and EXTERNAL Clause
	JUSTIFIED Clause
	OBJECT REFERENCE Phrase
	Parameter Names
	POINTER Phrase
	PROCEDURE-POINTER Phrase
	REDEFINE Clause
	RENAMES Clause - LEVEL 66 Data Items
	SIGN LEADING and TRAILING SEPARATE Clause
	SYNCHRONIZED Clause
	Tables with Fixed Size
	Tables with Variable Size - DEPENDING ON Clause
	Unstructured Data Types - LEVEL 77 Data Items
	USAGE Clause on Group Level
	USAGE IS INDEX Clause
	VALUE Clause

	PROCEDURE DIVISION Mapping
	PROCEDURE DIVISION Header
	BY VALUE Phrase
	RETURNING Phrase

	Copybooks
	Copybook Support
	Copybooks with REPLACE Option

