§ software

webMethods EntireX

Software AG IDL Extractor for COBOL

Version 9.7

October 2014

WEBMETHODS

This document applies to webMethods EntireX Version 9.7.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-EEXXCOBEXTRACTOR-97-20160805

Table of Contents

I Introduction to the IDL Extractor for COBOLcccccoviiiiiiiiiiiiiiiiiiiiicec 1
1 Introduction to the IDL Extractor for COBOLcccccovviiiiiiiiiiiiiiiiiicicie, 3
INtroductioncooiiiiiiii 4
Extractor Wizard ... 5
Mapping Editorcccooiiiiiiiiiiiiiiiiiccc 6
Supported COBOL Interface Typescccccovveviiiiiiiiiiiiiiiiiiiccccceccce, 7
Usage of Server Mapping Filesccccoviiiiiiiiiiiiiiiiiiiiicncieccceee 17

IT Using the IDL Extractor for COBOL - OVeIVIeWcccccocviiiiiiiiiiiiiiiiiiiiiiiiiciiccnees 19
2 Scenario I: Create New IDL and Server Mapping Filesc.cccocoiil 23
Step 1: Start the IDL Extractor for COBOL Wizardccccccoeviiiiiiiinninnnninns 24
Step 2: Select a COBOL Extractor Environment or Create a New One 25
Step 3: Select the COBOL SOUTCEcoocviiiiiiiiiiiiiiiiiiieciecee e 28
Step 4: Define the Extraction Settings and Start Extractionc..cc..c........ 36
Step 5: Select the COBOL Interface and Map to IDL Interface 45
Step 6: Finishing the Mapping Editorccccociiiiiiiiiiiiiiiiiiii 47
Step 7: Validate the Extraction and Test the IDL Filec...c.ccoooinil 49

3 Scenario II: Append to Existing IDL and Server Mapping Filesc..c........ 51
4 Scenario III: Modify Existing IDL and Server Mapping Filesc.ccccoccoui. 53
III COBOL Mapping Editorcoocviiiiiiiiiiiiiiiicicccccccecee e 57
5 CICS with DFHCOMMAREA Calling Convention - In same as Out 59
INtroductioncoooiiiiiiii 60
Extracting from a CICS DFHCOMMAREA Programcccccoeiiiiiiininnns 60
Mapping Editor User Interfacec.coccoovveviiiiniiniii, 61
Mapping Editor IDL Interface Mapping Functionscccccceeeeviiiiiinnnnen. 68
Programming Techniquesc.cocooiiiiiiiiiiiii 72

6 CICS with DFHCOMMAREA Large Buffer Interface - In same as Out 77
INtroductionccoiiiiiiii 78
Extracting from a CICS DFHCOMMAREA Large Buffer Program 79
Mapping Editor User Interfaceccccccooviiiiiiiiiiiiiniiiiiiiiciicee 80
Mapping Editor IDL Interface Mapping Functionsccccocooviiiiniininnns 87
Programming TeChniquesccccoceiiiiiiiiiiiiiiiiiiicic e 92

7 Batch with Standard Linkage Calling Conventionccccecvvviiiiiiiiiinicnnnnn. 95
INtroductionccooviiiiiii 96
Extracting from a Standard Call Interfacec.cccoceeviiiiiiiiiiiiiniiiiinins 96
Mapping Editor User Interfacec.cccooviiiiiiiiiiiiiiic, 97
Mapping Editor IDL Interface Mapping Functionscccccccevviviiininnn. 104
Programming Techniquesc.coccooiiiiiiiiiiii 108

8 Micro Focus with Standard Linkage Calling Conventionccccceecveveuiennennnn. 111
INtroductionccciiiiiiiiiiiiii 112
Extracting from a Standard Call Interfacecccccocooiiiiiiiiiiiii, 112
Mapping Editor User Interfacecccccoeoviiiiiiiiiiiiniiiiiiiiiiicccc 113
Mapping Editor IDL Interface Mapping Functionsc.ccccoeoiiiiiiiinn, 120
Programming Techniquescccccocoiiiiiiiiiiiiiiiiiiiiiii e 124

Software AG IDL Extractor for COBOL

9 IMS BMP with Standard Linkage Calling Conventioncccccoeviiiiiiininnnnen. 127
INtroduction ..o 128
Extracting from an IMS BMP Standard Call Interfacecccccoeieinin. 128
Mapping Editor User Interfacecccccooveiiiiiiiiiiii, 130
Mapping Editor IDL Interface Mapping Functionscccocceeviiviiininnn. 137
Programming Techniquescccoccooiiiiiiiiiii 141

10 CICS with DFHCOMMAREA Calling Convention - In different to Out 143
INtroductioncoooiiiiiiii 144
Extracting from a CICS DFHCOMMAREA Programc.ccocovveviiiininns 144
Mapping Editor User Interfaceccccoeoiiiiiiiiiiiiiniiiiiiiiiiniccie 145
Mapping Editor IDL Interface Mapping Functionsc.cccooieiiiiiiinn, 152
Programming Techniquescccccooiiiiiiiiiiiiiiiiiiiiiccee e 156

11 CICS with DFHCOMMAREA Large Buffer Interface - In different to Out 161
INtroductionccoiiiiiiiiii 162
Extracting from a CICS DFHCOMMAREA Large Buffer Program 163
Mapping Editor User Interfacecccccooviiiiiiiiiiiii, 164
Mapping Editor IDL Interface Mapping Functionsccccccceviiviiinnnn. 171
Programming Techniquescccoccooiiiiiiiiiii 176

12 CICS with Channel Container Calling Conventionccccceeeueeviiniiennennnen. 179
INErOAUCHON ...t 180
Extracting from a CICS Channel Container Programc..cccecoeviiiininins 180
Mapping Editor User Interfacecccccovoviiiiiiiiiiiiniiiiniiiiiiicccc 182
Mapping Editor IDL Interface Mapping Functionsc.ccccoeoiiiiiiinnnn, 189
Programming Techniquescccccccviiiiiiiiiiiiiiiiiiii e 194

13 IMS MPP Message Interface (IMS Connect)cccccoevvviiiiiiiiiiiiiiiiiiiininens 197
INtroductioncccoiiiiiiiiiiii 198
Extracting from an IMS MPP Message Interface Programcccccceeueine 199
Mapping Editor User Interfaceccccoovviiiiiiiiiiiiiiiccc, 202
Mapping Editor IDL Interface Mapping Functionsccccccceviiviiinnnnnn. 210
Programming Techniquesc.coccooiiiiiiiiiii 215

14 IDL Extractor for COBOL Preferencesccccccoviiiiiiiiiiiiniiiiiiiciiccieee 219
Create New Local Extractor Environment (z/OS, z/VSE, BS2000/0OSD and
IBM)t 222
Create New Local Extractor Environment for Micro Focus (UNIX and
WINAOWS) et e et e e eeeas 226
Create New Remote Extractor Environment (z/OS)cccceeevviiieeinnineeennnnne. 230
Create New Remote Extractor Environment (BS2000/OSD)cccoveuveeennee 234

15 COBOL t0 IDL MapPingccovuiiiiiiiiiiiiiiiii i 239
COBOL Data Type to Software AG IDL Mappingccccecueevevuieiiiiiennennnns 241
DATA DIVISION Mappingcccccevuiiuiiiiiiiiiiiiiiiiciieiciie e 244
PROCEDURE DIVISION Mappingccccceevuiiiiiiiiiiiiciiiiciicciececeniecneennan 254
COPYDOOKS . 255

Software AG IDL Extractor for COBOL

I Introduction to the IDL Extractor for COBOL

1 Introduction to the IDL Extractor for COBOL

® ntroductioncoveiiiii
m Extractor Wizardcceeeen.
= Mapping Editorccccceeeiins

= Supported COBOL Interface Types

= Usage of Server Mapping Files

Introduction to the IDL Extractor for COBOL

Introduction

The Software AG IDL Extractor for COBOL inspects a COBOL source and its copybooks for COBOL
data items to extract. It can also extract directly from copybooks. In a user-driven process supported
by an Extractor Wizard, the interface of a COBOL server is extracted and - with various features
offered by a Mapping Editor - modelled to a client interface.

Wizard

el | 3 ~~ -/ Parameter ' >
Server - P Settings ; .
Pragram (1] ' e [t (5] . F"f'.l__
' e TP o

_ hJ
» Editor - '
Mapping 4,- ﬂ Client

Editor Interfacs

@ Start the wizard, select your server program and make COBOL-specific settings.

@ Optional. This step is not always necessary: it is possible that parameters have already been
selected, for example as a result of the COBOL USING clause.

© Optional. If necessary, you can modify the parameter selection from the Mapping Editor.
© Fine-tune the COBOL to IDL mapping.

© Generate an IDL file and a server mapping file. These two related files map the client interface
to the COBOL server program and are described below:

= IDL File
The Software AG IDL file (interface definition language) contains the modelled interface of the
COBOL server. In a follow-up step the IDL file is the starting point for the RPC client-side
wrapping generation tools to generate client interface objects. See EntireX Wrappers.

" Server Mapping File
A server mapping file to complete the mapping is generated only if it is required by the RPC
server during runtime to call the COBOL server. See Usage of Server Mapping Files.

4 Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

Extractor Wizard

The extractor wizard guides you through the extraction process. The wizard supports the following
tasks:

Accessing COBOL source files, either in the local file system where the EntireX Workbench runs
or remotely from the host computer with the RPC server extractor service. The wizard supports
the following: z/OS partitioned data sets and CA Librarian data sets (including member archive
levels) as well as BS2000/OSD LMS libraries. See Extractor Service in the z/OS administration
and BS2000/0OSD Batch RPC Server documentation. For this purpose, define a local or remote
COBOL extractor environment. See IDL Extractor for COBOL Preferences.

Resolving of COBOL copybooks. If a relevant copybook from the COBOL DATA DIVISON is
missing, a browse dialog is offered where you can locate the copybook - either a folder (local
extractor environment) or data set (remote extractor environment) - interactively. Copybook

folder or data sets can also be predefined in the COBOL extractor environment. See IDL Extractor
for COBOL Preferences.

Resolving of COBOL copybooks with the REPLACE option.

CA Librarian (- INC) and CA Panvalet (++INCLUDE) control statements are supported. They are
handled in a similar way to copybooks.

Various COBOL server interface types, such as standard CICS DFHCOMMAREA, CICS with different
structures on input and output, CICS with a large buffer compatible to webMethods WMTLSRVR,
standard batch, Micro Focus standard calling conventions, and IMS BMP server with PCB
pointers. See Supported COBOL Interface Types.

Selecting the COBOL server interface manually within the COBOL Mapping Editor page. This
allows you to extract from a COBOL server where the interface definition is not completely
given by the parameters provided in the PROCEDURE DIVISION Mapping, making it impossible
to detect the parameters automatically.

Defining the default COBOL to IDL mapping in the IDL Extractor for COBOL Preferences for
the following fields:

® COBOL pseudo-parameter FILLER fields. You can define whether they should be part of the
RPC client interface or not. By default, they are not contained in the IDL.

® The name prefix for FILLER and anonymous groups used for IDL parameters.

® COBOL alphanumeric fields (PICTURE X, A, G, N). They can be mapped either to variable-length
or fixed-length strings in the IDL. This option is provided for modern RPC clients that support
variable-length strings, and also for legacy RPC clients that support fixed-length strings only.

The extractor wizard is described in a step-by-step tutorial; see Using the IDL Extractor for CO-
BOL - Overview.

Software AG IDL Extractor for COBOL 5

Introduction to the IDL Extractor for COBOL

Mapping Editor

EE ~DTAd 52 = B8
+ COBOL Program | DTA - Interface Type CICS with DFHCOMMAREA calling convention
DTA l'{-} & <:.\\J | Q:'
1 IDENTIFICATION DIVISION. -

2 PROGRAM-ID. DTA.

DATA DIVISION.
o LINKAGE SECTION.
& 01 A1-A-1 PIC X .

m

01 RI1-R-2 PIC X (1) .
8 01 AR8-R-1 PIC X(8) .
3 01 R8-R-2 PIC X0O0O0X .

10| 01 A253-A-1 PIC X(253) .

*

12 PROCEDURE DIVISION USING
13 nl-p-1 -
4 *
COBOL to IDL Mapping
DTA + 4% @B
COBOL Interface IDL Parameters
7501 A-ALPICK. [Map toIn >] 47 AL-A-1 (AVL) In Out
E o1 Al-A-2 PICX(L). 47 AL-A-2 (AVL) In Out
B o1 AB-A-1 PICX(B). [Map to Out ->] ¢ AZ-A-1 (AVE) In Out
T 01 AB-A-2 PIC XXOOUKX . TR 7 AB-A-2 (AVE) In Out
501 A253-A-1 PICX(253]. L 47 A253-A-1 (AV253) In Out
[Suppress]
’ Set Constant...]

The COBOL Mapping Editor is the tool to select and map the COBOL server interface to IDL. This
section gives a short overview of the mapping features provided. These features are described in
more detail in the documentation section for the respective interface type.

® Add and remove the parameters of the COBOL server in the top window of the COBOL Mapping
Editor page. The current selection is shown in the bottom window for fine tuning.

* Provide IDL directions for parameters of the COBOL server. A COBOL server does not contain
IDL direction information, so you can add this information manually in the Mapping Editor.

" Select REDEFINE paths used in the IDL. The Mapping Editor allows you to select a single REDEFINE
path for every REDEFINE unit (all redefine paths addressing the same storage location).

® Suppress unneeded fields in the IDL. This keeps the IDL client interface lean and also minimizes
the amount of data transferred during runtime.

* Define parameter constants as input for the COBOL server. Constant parameters are not contained
in the IDL file, which means they are invisible for RPC clients. This makes the IDL client interface
easier and safer to use, minimizing improper usage.

6 Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

® For one COBOL server program, you can create and model multiple interfaces. If the IDL is
processed further with a wrapper of the EntireX Workbench, the business functions are provided
as

® Web service operations if exposed as a Web service instead of a Web service with a single
operation

* methods if wrapped with the Java Wrapper or .NET Wrapper instead of a Java class with a
single method

" etc.

See COBOL Mapping Editor for more information.

Supported COBOL Interface Types

The IDL Extractor for COBOL supports as input a COBOL server with various interface types.
This section covers the following topics:

= Supported CICS COBOL Interface Types

= Micro Focus with Standard Linkage Calling Convention

= Batch with Standard Linkage Calling Convention

= |MS MPP Message Interface (IMS Connect)

= |MS BMP with Standard Linkage Calling Convention

= What to do with other Interface Types?

= Compatibility between COBOL Interface Types and RPC Server

The interface type you are mostly working with can be set in the preferences. See IDL Extractor
for COBOL Preferences.

Supported CICS COBOL Interface Types

Analyzing the technique used to access the interface with COBOL and CICS statements is the
safest way to determine the interface type. The following CICS COBOL interface types are suppor-
ted:

® CICS with DFHCOMMAREA Calling Convention

® CICS with Channel Container Calling Convention

® CICS with DFHCOMMAREA Large Buffer Interface

There is no clear and easy indication how to identify the interface type of a CICS COBOL server

without COBOL and CICS knowledge. Below are some criteria that might help to determine the
interface type. If you are unsure, consult a CICS COBOL specialist.

® The payload size of the CICS COBOL server is greater than 32 KB:

Software AG IDL Extractor for COBOL 7

Introduction to the IDL Extractor for COBOL

B In this case it is not a DFHCOMMAREA interface, because the DFHCOMMAREA is limited
to 32 KB.

® It could be a large buffer or channel container interface, which are only limited by the storage
(memory) available to them.

® The CICS COBOL server is located in a remote CICS region:

* In this case it is not a large buffer interface (designed to assist with webMethods mainframe
migration), because large buffer programs must reside on the same CICS region as the caller,
that is, the CICS RPC Server (z/OS | z/VSE).

= Jt could be a DFHCOMMAREA or channel container interface, which can reside in a remote
CICS region.

Note: The most used interface type is the DFHCOMMAREA interface. Large buffer and

channel container interfaces are used much less frequently.
CICS with DFHCOMMAREA Calling Convention

The IDL Extractor for COBOL supports CICS programs using the standard DFHCOMMAREA calling
convention.

CFHCOMMAREA

INOUT COBOL
At0] 14 | ato0000 | Ps | 14 < > Server

The following illustrates roughly how you can determine whether a COBOL server follows the
DFHCOMMAREA calling convention standard:

LINKAGE SECTION.
01 DFHCOMMAREA.

02 OPERATION PIC X(1).

02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION USING DFHCOMMAREA.

Most DFHCOMMAREA programs have a DFHCOMMAREA data item in their LINKAGE SECTION and may
address this item in the PROCEDURE DIVISION header. If you find this in your COBOL source it's
a clear indication it is a DFHCOMMAREA server program. But even if this is missing, it can be a

8 Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

DFHCOMMAREA program, because there are alternative programming styles. If you are unsure, consult
a COBOL CICS specialist or see Supported CICS COBOL Interface Types for more information.

See Step 4: Define the Extraction Settings and Start Extraction for more information on extracting
COBOL servers with this interface type.

CICS with Channel Container Calling Convention

The IDL Extractor for COBOL supports CICS programs using the channel container calling con-
vention.

Input container

14 | A2s a5 |14 >
COBOL

Cutput container Server

A10 |14 |A25 [Ps 4«

The following illustrates roughly how you can determine whether a COBOL server follows the
Channel Container standard.

WORKING-STORAGE SECTION.
01 WS-CONTAINER-IN-NAME PIC X(16) VALUE "CALC-IN".
01 WS-CONTAINER-OUT-NAME PIC X(16) VALUE "CALC-0OUT".

LINKAGE SECTION.
01 LS-CONTAINER-IN-LAYOUT.

02 OPERATION PIC X(1).

02 OPERANDI PIC S9(9) BINARY.

02 OPERANDZ PIC S9(9) BINARY.
01 LS-CONTAINER-OQUT-LAYOUT.

02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION.

EXEC CICS GET CONTAINER (WS-CONTAINER-IN-NAME) SET (ADDRESS OF «
LS-CONTAINER-IN-LAYQUT)

EXEC CICS PUT CONTAINER (WS-CONTAINER-OUT-NAME) FROM (ADDRESS OF <«
LS-CONTAINER-OUT-LAYQOUT)

Software AG IDL Extractor for COBOL 9

Introduction to the IDL Extractor for COBOL

Channel Container programs use EXEC CICS GET CONTAINER in their program body (PROCEDURE
DIVISION) to read their input parameters. Output parameters are written using EXEC CICS PUT
CONTAINER. There is no clear indication in the linkage or working storage section to identify a
channel container program. If you are unsure, consult a COBOL CICS specialist for clarification.

See Step 4: Define the Extraction Settings and Start Extraction for more information on extracting
COBOL servers with this interface type.

CICS with DFHCOMMAREA Large Buffer Interface

This type of program has a defined DFHCOMMAREA interface to access more than 31 KB of data in
CICS. The interface is the same as the webMethods WMTLSRVR interface. This enables webMethods
customers to migrate to EntireX.

DFHCOMMAREA

' POINTER

¥

Ato]| 14 | ato0000 | P5 | 14

Large buffer

Technically,

INOUT COBOL
Server

® the DFHCOMMAREA layout contains a structure with a length and a pointer to a large buffer. The
following illustrates this:

LINKAGE SECTION.
01 DFHCOMMAREA.

10
10
10
10
10
10

10

WM-LCB-MARKER
WM-LCB-INPUT-BUFFER
WM-LCB-INPUT-BUFFER-SIZE
WM-LCB-OUTPUT-BUFFER
WM-LCB-OUTPUT-BUFFER-SIZE
WM-LCB-FLAGS

88 WM-LCB-FREE-OUTPUT-BUFFER
WM-LCB-RESERVED

01 INOUT-BUFFER.

02
02
02
02

OPERATION
OPERAND-1
OPERAND-2
FUNCTION-RESULT

PIC X(4).
POINTER.
PIC S9(8) BINARY.
POINTER.
PIC S9(8) BINARY.
PIC X(1).
VALUE "F".
PIC X(3).

PIC X(1).

PIC S9(9) BINARY.
PIC S9(9) BINARY.
PIC S9(9) BINARY.

10

Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

PROCEDURE DIVISION USING DFHCOMMAREA.
SET ADDRESS OF INOUT-BUFFER TO WM-LCB-INPUT-BUFFER.
SET ADDRESS OF INOUT-BUFFER TO WM-LCB-QUTPUT-BUFFER.

The fields subordinated under DFHCOMMAREA prefixed with WM- LCB describe this structure. The
field names themselves can be different, but the COBOL data types must match exactly.

® data is described by separate structures, here INOUT-BUFFER in the linkage section.

If you find this in your COBOL source, it's a clear indication it is a large buffer program. If you
are unsure, consult a COBOL CICS specialist for clarification.

See Step 4: Define the Extraction Settings and Start Extraction for more information on extracting
COBOL servers with this interface type.

Software AG IDL Extractor for COBOL 11

Introduction to the IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter ad-
dresses a fixed COBOL structure.

Farameter 1

Parameter2 | | A10/ 14 | A100000 |12 |P5

: i R i INOUT COBOL
. 12| a15] 14] 14| At00 |14 > > Server

Farameter n

14 | a100000 | P2

Technically, the generated COBOL server skeleton contains

" a parameter list: PROCEDURE DIVISION USING PARMI PARM2 ... PARMn
" the parameters in the linkage section as COBOL data items on level 1

See Step 4: Define the Extraction Settings and Start Extraction and Micro Focus with Standard
Linkage Calling Convention for more information on extracting COBOL servers with this interface

type.

12 Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter ad-
dresses a fixed COBOL structure.

Farameter 1

Parameter2 | | A10/ 14 | A100000 |12 |P5

: K : INOUT BEESL
’ 2] A1S| 14| 14| A100 | 14 4 > Server
Parameter n 4
I4 | A100000 | P2
Technically, the COBOL server contains
" a parameter list: PROCEDURE DIVISION USING PARMI PARM2 ... PARMn

" the parameters in the linkage section as COBOL data items on level 1

See Step 4: Define the Extraction Settings and Start Extraction and Batch with Standard Linkage
Calling Convention for more information on extracting COBOL servers with this interface type.

Software AG IDL Extractor for COBOL 13

Introduction to the IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

IMS Message

LL|zz|TcoDE 14| a25 | A15 | 14 > COBOL
LLzz A10] 14 | At00000 | P5 | 14 < Server

IMS message processing programs (MPP) get their parameters through an IMS message and return
the result by sending an output message to IMS. The IDL Extractor for COBOL enables extractions
from such programs.

The COBOL server contains:

" astructure in the working storage section for the input and the output message.

® an IOPCB in the linkage section used to read input messages and write output messages using
an IMS system call (i.e. CALL "CBLTDLI").

® The message contains also technical fields specific to IMS (see fields LL, 7Z and TRANCODE in the
picture above).

See Step 4: Define the Extraction Settings and Start Extraction and IMS MPP Message Interface
(IMS Comnnect) for more information on extracting COBOL servers with this interface type.

14 Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

IMS batch message processing programs (BMP) with PCB parameters are directly supported. You
have the option to specify a PSB list as input to the extractor to locate PCB parameters.

Farameter 1

A10| 14 |a100000 [12 |P5

Farameter 2
~~ | PCBPOINTER
: ! _ . .) . INOUT COBOL
’ 2] A1S| 14 14| A100 | 14 -4 > Server
Parameter n
4 | A100000 | P2

Technically, the COBOL server contains
" a parameter list: PROCEDURE DIVISION USING PARM1 PCB PARM2 ... PARMn

® IMS-specific PCB pointers within the parameter list

" the parameters in the linkage section as COBOL data items on level 1

See Step 4: Define the Extraction Settings and Start Extraction and IMS BMP with Standard
Linkage Calling Convention for more information on extracting COBOL servers with this interface

type.

What to do with other Interface Types?

Other interface types, for example CICS with non-DPL-enabled DFHCOMMAREA, can be supported
by means of a custom wrapper. If you have to extract from such a COBOL server, proceed as follows:

1. Implement a custom wrapper, providing one of the supported interface types above.

2. Extract from this custom wrapper.

Software AG IDL Extractor for COBOL 15

Introduction to the IDL Extractor for COBOL

Compatibility between COBOL Interface Types and RPC Server

To call a server successfully, the RPC server used must support the interface type of the COBOL
server. The table below gives an overview of possible combinations of an interface type and a

supporting RPC server:

Interface Type

Supported
by
EntireX
Adapter

Supported by RPC Server

z/0S

UNIX/Windows

BS2000/0SD| z/VSE

CiCS

Batch

IMS

cics
ECI

Micro
Focus

IMS

Connect Batch CICS |Batch

CICS with DFHCOMMAREA Calling
Convention (Extractor | Wrapper)

X

X

CICS with DFHCOMMAREA Large
Buffer Interface (Extractor |
Wrapper)

CICS with Channel Container
Calling Convention (Extractor |
Wrapper)

Batch with Standard Linkage
Calling Convention (Extractor |
Wrapper)

Micro Focus with Standard
Linkage Calling Convention
(Extractor | Wrapper)

IMS BMP with Standard Linkage
Calling Convention (Extractor |
Wrapper)

IMS MPP Message Interface (IMS
Connect) (Extractor)

16

Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

Usage of Server Mapping Files

There are many situations where the RPC server requires a server mapping file to correctly support
special COBOL syntax such as REDEFINES, SIGN LEADING and OCCURS DEPENDING ON clauses,
LEVEL-88 fields, etc.

Server mapping files contain COBOL-specific mapping information that is not included in the IDL
file, but is needed to successfully call the COBOL server program.

Step 1 . Step 2

Client
| RPC COBOL
Interface / | -
Object > Server Server
A A
i % Programming i b .
[IDL " language [" %gspii‘.:l‘l_qspecmu
' neutral mapping 0) L

The RPC server marshals the data in a two-step process: the RPC request coming from the RPC
client (Step 1) is completed with COBOL-specific mapping information taken from the server
mapping file (Step 2). In this way the COBOL server can be called as expected.

The server mapping files are retrieved as a result of the IDL Extractor for COBOL extraction process
and the COBOL Wrapper if a COBOL server is generated. See When is a Server Mapping File Required?.

There are server-side mapping files (EntireX Workbench files with extension .svm) and client-side
mapping files (Workbench files with extension .cvm). See Server Mapping Files for COBOL and How
to Set the Type of Server Mapping Files.

If you are using server-side mapping files, perform the following tasks:

® Customize the server-side mapping container. See Server-side Mapping Files in the RPC Server in
the respective sections of the documentation.

® Deploy the files to the RPC server. See Deploying Server-side Mapping Files to the RPC Server in
the respective sections of the documentation.

| Note: For IMS Connect and CICS ECI connections with the webMethods EntireX Adapter,

server-side mapping files are not deployed. They are wrapped into the Integration Server
connection - the same as client-side mapping files. For RPC connections, deployment to the
target RPC server is mandatory. See the EntireX Adapter documentation under http://doc-
umentation.softwareag.com > webMethods Product Line.

Software AG IDL Extractor for COBOL 17

http://documentation.softwareag.com
http://documentation.softwareag.com

18

I I Using the IDL Extractor for COBOL - Overview

This chapter describes how to extract IDL from a COBOL source, using the IDL Extractor for CO-
BOL, deploy, validate and test the extraction results. IDL extraction is supported by wizards, ed-
itors and generators.

Choosing a Scenario

The following scenarios are supported and are described in separate sections:

® Scenario I: Create New IDL and Server Mapping Files
® Scenario II: Append to Existing IDL and Server Mapping Files
® Scenario I1I: Modify Existing IDL and Server Mapping Files

See also COBOL Mapping Editor.

19

Using the IDL Extractor for COBOL -

Overview

Scenario |:
Create New IDL and
Server-side Mapping File

Select or
Create an
Extractor Environment

|
v

Select COBOL Source

v v v
Local | “708° | Bsz000
l 1]

v

Diefine the Extraction
Settings and
Start Extraction

Scenario Il:
Append to Existing IDL and
Server-side Mapping File

Select or

Create an <

Extractor Environment

I
v

Select COBOL Source

;] y
Yy Y v
Remate Remote

L | 2108 | BS2000

v

Define the Extraction
Settings and
Start Extraction

v

Model the COBOL-to-1DL

> Mapping in the -

COBOL Mapping Editor

b4

Finish
the
Mapping
Editor

_ hd
Deploy Server-side
Mapping File
{optional)

Validate the Extraction
and TestIDL File

Scenario lll:
Maodify Existing I1DL and
Server-side Mapping File

Select the
Mapping

20

Software AG IDL Extractor for COBOL

Using the IDL Extractor for COBOL - Overview

Before Starting an Extraction

Before you start an extraction, we recommend you first clarify the following issues:

® The interface type of your COBOL program, see Supported COBOL Interface Types.
® The input and output parameters of your COBOL server. Note the following;:

® COBOL REDEFINES are used in CICS as well as in batch servers. For all COBOL REDEFINES
you have to clarify which redefine paths are the relevant ones for your extraction.

*® Particularly in CICS, the interface of a COBOL server is in most cases not described by the
parameters given in the PROCEDURE DIVISON header. See PROCEDURE DIVISION Mapping and
see DFHCOMMAREA examples under Programming Techniques.

® We recommend you have a basic understanding of your COBOL server, especially if you can
simplify your IDL with the following:

® Map functions of the COBOL server to IDL programs.
® Suppress unneeded fields.

® Map COBOL data items to constants.
The COBOL sources can contain

" copybook references; see Copybooks under COBOL to IDL Mapping
® CA Librarian (- INC) or CA Panvalet (++INCLUDE) control statements
In section COBOL to IDL Mapping you will find information on how the COBOL syntax is mapped

to Software AG IDL using this wizard and the Mapping Editor. We recommend you read this
document because it describes possibilities and alternatives for handling COBOL syntax constructs.

Make sure the COBOL source

" can be compiled with no errors and no warning

® is written in COBOL fixed format, consisting of sequence number (column 1-6), indicator area
(column?), area A, (column 8-11) and area B (column 12-72) for z/OS, z/VSE, BS2000/OSD and
IBM i extractions

® iseither written in COBOL fixed or variable format for Micro Focus UNIX or Windows extractions
and your preferences are adjusted accordingly; see Step 2: Define the Default Settings under
Create New Local Extractor Environment for Micro Focus (UNIX and Windows).

Software AG IDL Extractor for COBOL 21

22

2 Scenario |: Create New IDL and Server Mapping Files

= Step 1: Start the IDL Extractor for COBOL Wizardccoooiiiiiiiiiiii e
= Step 2: Select a COBOL Extractor Environment or Create @ New Oneccoooviiiiiiiiiiiieiiiiiiiiiiieeeeeee

= Step 3: Select the COBOL Source ...

= Step 4: Define the Extraction Settings and Start EXtractionccoooiiiiiii
= Step 5: Select the COBOL Interface and Map t0 IDL INterfacecooovivviiiiiiiiiiiiie e

= Step 6: Finishing the Mapping Editor

= Step 7: Validate the Extraction and Test the IDL Fileccovvvviiiiiiiii e

23

Scenario |; Create New IDL and Server Mapping Files

Step 1: Start the IDL Extractor for COBOL Wizard

Select a wizard
Extract a news Software &S I0L File Fram COBOL

YWizards:

|I:~;.f|:|e Filter bext

= Java
= Plug-in Development
== Software AG
E Web Services Stack Packaging Wizard
=-[= Entirex
-ﬂ Entirel Web Service Project
MR I0L Exctractar For COBOL
EF IDL Extractor for Matural
P 1DL Extractor for PLIT
P 101 Extractor For WSOL
H! IDL Exkractor For #ML Document
@ IDL Extractor for ¥ML Schema
[Software AG IDL File
= User Assistance

Cancel

To continue, press Next and continue with Step 2: Select a COBOL Extractor Environment or
Create a New One.

24 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

Step 2: Select a COBOL Extractor Environment or Create a New One

If no COBOL extractor environments are defined, you only have the option to create a new envir-
onment. An IDL Extractor for COBOL environment provides defaults for the extraction and refers
to COBOL programs and copybooks that are

" stored locally on the same machine where the EntireX Workbench is running: a local COBOL
extractor environment

or

® stored remotely on a host computer: a remote COBOL extractor environment. The extractor service
is required to access COBOL programs and copybooks remotely with a remote COBOL extractor
environment. The extractor service is supported on platforms z/OS and BS2000/OSD. See Extractor
Service in the z/OS administration and BS2000/OSD Batch RPC Server documentation.

Software AG IDL Extractor for COBOL 25

Scenario |; Create New IDL and Server Mapping Files

£ IDL Extractor for COBOL H=13
i

Choose Source Location p
The COBOL source is extracted as defined in the selected COBOL extractar environment, The source
can be in the local file system or accessed remotely using an extractor service,

D Create a new COBOL extractor environment

(*)Choose an existing COBOL extrackor environment;

;"';[n My _COBOL_Fxtractor_Ca_Librarian_Environment (REMOTE ibmz: 3762@RPCHCOBOLCALLMNATY - 203
;"';[n My _COBOL_Extractor_PDS_Environment (REMOTE bz 37e2@RPCICOBOLCALLMAT) - 2/i05

EE My _COBOL_Extractor_Local_Environment (LOCALY - 2/05

;"';[n My _COBOL_Extractor _LMS_Library_Environment (REMOTE nidd00@RPCISRY L CALLMATY - BSZ000

[]Modify the selected COBOL extractor environment

This page offers the following options:

> To select an existing local COBOL extractor environment

1 Check radio button Choose an existing COBOL extractor environment and select a local
COBOL extractor environment.

2 Continue with Step 3: Select the COBOL Source below.

> To select an existing remote COBOL extractor environment

1 Check radio button Choose an existing COBOL extractor environment and select a remote
COBOL extractor environment.

2 Continue with Step 3: Select the COBOL Source below.

26 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

> To create a new local COBOL extractor environment

1 Check radio button Create a new COBOL extractor environment.

2 Follow the instructions in the Preferences section under Create New Local Extractor Environment
(z/OS, z/VSE, BS2000/0OSD and IBM i) | Micro Focus (UNIX and Windows) in the IDL Extractor
for COBOL documentation.

3 Continue with Step 3: Select the COBOL Source below.

> To create a new remote COBOL extractor environment

1 Check radio button Create a new COBOL extractor environment.

2 Follow the instructions in the Preferences section under Create New Remote Extractor Environment
z/OS | BS2000/0OSD in the IDL Extractor for COBOL documentation.

3 Continue with Step 3: Select the COBOL Source below.

Software AG IDL Extractor for COBOL 27

Scenario |; Create New IDL and Server Mapping Files

Step 3: Select the COBOL Source

Selecting the COBOL source is different depending on whether the COBOL source is stored locally
on the same machine where the EntireX Workbench is running, or on a remote host computer.

= Selecting a COBOL Source Stored Locally

= Selecting a Member from a Partitioned Data Set on Remote Host (z/OS)

= Selecting a Member from a CA Librarian Data Set on Remote Host (z/0S)

= Selecting a Member Archive Level from a CA Librarian Data Set on Remote Host (z/OS)
= Selecting an Element (S) from an LMS Library on Remote Host (BS2000/0SD)

Selecting a COBOL Source Stored Locally

In step 2 above you selected or created a local extractor environment for z/OS. If you select a local
COBOL extractor environment, you can browse for the COBOL program in the local file system.
If you selected the COBOL source file before you started the wizard, and do not have a directory
defined in the preferences of your Local Extractor Environment, the file location is already present.
See Create New Local Extractor Environment (z/OS, z/VSE, BS2000/OSD and IBM i) | Micro Focus
(UNIX and Windows) in the IDL Extractor for COBOL documentation. To browse for the COBOL
source file, choose Browse.

& IDL Extractor for, COBOL

Select a Source from Local File i
The Software AG IDL file will be extracked From the selected source., #

Eile Marne: |".DE|'|'I':'".C'-|5'5“'IFU-'I|:'| | Browse, ..

T e

Selecting a Member from a Partitioned Data Set on Remote Host (z/OS)

In step 2 above you selected or created a remote extractor environment. The following page offers
all data sets starting with the high-level qualifier defined in the Filter Settings of the remote ex-
tractor environment. See Create New Remote Extractor Environment (z/OS) under IDL Extractor
for COBOL Preferences.

28 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

& IDL Extractor for COBOL

Select a PDS or CA Librarian data set from COBOL extractor environment -
The source member ko extrack the Software &G IDL and %YM files will be located in the selected *
PDS or iZ4 Librarian data sek (DSM), Ik can be a COBOL program or copyvbook source,

List of data sets:
MNanme
ETS.COB. TRAIMIMG, CHTL
ETS.COBE. TRAIMIMNG, INC]
ETS.COB, TRAIMIMG, SRCE
Toktal: 3
@ <Back || mext> Finish

Select the partitioned data set from which you want to extract and choose Next. Proceed depending
on the selected data set type. See Selecting a Member from a Partitioned Data Set on Remote Host
(z/08).

The following page offers all members contained in the partitioned data set selected in the previous
step, starting with the member name prefix defined in the Filter Settings of the remote extractor
environment. See Step 3: Define the Remote Extractor Environment under IDL Extractor for COBOL
Preferences.

Software AG IDL Extractor for COBOL 29

Scenario |; Create New IDL and Server Mapping Files

& IDL Extractor for COBOL

Select Member from Data Set -

The Software &G IDL and SYM files will be extracked from COBOL data ikems (e.q. PICTURE clause) *
contained in the selected member, It can be a COBOL program or copybook source,

List of members from data set ETS.COB. TRAIMING, SRCE:

Member Creation Time Last Modification
A-TEST 2007-09-20 2008-03-06 10:01
CUSTADD 2007-09-20 2003-03-06 10:01
CUSTCMNT 2007-09-20 Z008-03-06 10:01
CUSTDEL 2007-09-20 Z008-03-06 10:01
CUSTGET 2007-09-20 Z008-03-06 10:01
CLUSTGETA 2007-11-27 2008-03-06 10:01
_USTGETC 2007-11-27 2003-03-06 10:01
CLSTIMFD Z008-01-23 20038-03-06 10:01
_USTOMER 2007-02-20 2005-03-06 10:01
DMO15MPL 2003-02-10 2005-03-06 15:40

Tokal: 10

® T

Select the member from which you want to extract. You can select only one COBOL source. The
source can be a COBOL program or a COBOL copybook.

Choose Next and continue with Step 4: Define the Extraction Settings and Start Extraction below.
Selecting a Member from a CA Librarian Data Set on Remote Host (z/0S)

In step 2 above you selected or created a remote extractor environment. The following page offers
all data sets starting with the high-level qualifier defined in the Filter Settings of the remote ex-
tractor environment. See Create New Remote Extractor Environment (z/OS) under IDL Extractor
for COBOL Preferences.

30 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

& IDL Extractor for COBOL

Select a PDS or CA Librarian data set from COBOL extractor environment -

The source member ko extrack the Software &G IDL and %YM files will be located in the selected *
PDS or iZ4 Librarian data sek (DSM), Ik can be a COBOL program or copyvbook source,

List of data sets:

MNanme

ETS. COB. TRAIMIMG, CNTL
ETS, COB, TRAIMING, INC1

ETS, COB. TRAIMING, SRCE

Toktal: 3

@ <Back || mext> Finish

Select the CA Librarian data set from which you want to extract and choose Next. Proceed depend-
ing on the selected data set type. See Selecting a Member from a CA Librarian Data Set on Remote
Host (z/0S).

The following page offers all members contained in the CA Librarian data set selected in the pre-
vious step, starting with the member name prefix defined in the Filter Settings of the remote ex-
tractor environment. See Step 3: Define the Remote Extractor Environment under IDL Extractor
for COBOL Preferences.

Software AG IDL Extractor for COBOL 31

Scenario |; Create New IDL and Server Mapping Files

£ IDL Extractor for COBOL M=1E3
—

Select Member from Data Set -
The Software 4G I0L and SYM files will be extracted from COBOL data items (e.q. PICTURE clause) contained in the selected member, Ik can
be a COBOL program or copybook source.

List of members From data sek CALLIER.MAST:

Member Level Version Date Type Description Programmer
A-TEST 00006 090914145331 COB DEMO MEMBER. BMF
CICS007 00005 090911153324 COB DEMO SIMPLE EXAMPLE BMF
CUSTADD 00005 090806132600 COB CUSTOMER ADD FUMCTION BMF
CUSTCHT 00003 090806133127 COB CUSTOMER COUMT FUNCTION BMF
CUSTDEL 00002 090306132710 COB CUSTOMER DELETE FUMCTION BMF
CUSTGET 00003 090306134512 COB CUSTOMER GET FUNCTION BMF
CUSTGETA 00006 090916130303 COB CUSTOMER GETA FUNCTION BMF
CUSTGETC 090806134600 COB CUSTOMER GETC FUNCTION BMF
CUSTIMFO | 0000z | 090916131035 CLSTOMER INFO FUNCTION
CUSTOMER: 00005 090806132502 CUSTOMER APPLICATION BMF
DMO15MPL 00005 090306134923 COB DEMO SIMPLE EXAMPLE BMF

Total: 11

[CI5how the Archive Levels of the selected member

I\.:?zl [< Back “ Mextk =]

You can select only one COBOL source. The source can be a COBOL program or a COBOL copy-
book. If you want to extract from

*® the latest (current) version of the member, select the member, choose Next and continue with
Step 4: Define the Extraction Settings and Start Extraction below.

= a previous (archived) version of the member, check the box Show the Archive Levels of the
selected member, select the member, choose Next and continue with Selecting a Member Archive
Level from a CA Librarian Data Set on Remote Host (z/OS).

Selecting a Member Archive Level from a CA Librarian Data Set on Remote Host (z/OS)

The following page offers all archive levels of the previously selected member.

32 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

£ IDL Extractor for COBOL - BX
-

Select Member from Data Set

The Software 4G I0L and SYM files will be extracted from COBOL data items (e.q. PICTURE clause) contained in the selected member, Ik can
be a COBOL program or copybook source.

List of members From data sek CALLIER.MAST:

Member Level Version Date Type Description Programmer
CLISTIMFC |ooo003 [090916131035 CUSTOMER INFO FUNMCTION EMF
CUSTIMFC ooooz 090916131027 COB CUSTOMER IMFO FUMCTION BMF
CUSTIMFC ooo1 130916131019 OB CUSTOMER IMFO FUNCTION BMF
CUSTIMFO ooooo 090916130951 COB CUSTOMER IMFO FUNCTION BMF

Total: 11

)] l < Back ” Mexk =] Finish

Select the member from which you want to extract. You can select only one archive level. Choose
Next and continue with Step 4: Define the Extraction Settings and Start Extraction below.

Selecting an Element (S) from an LMS Library on Remote Host (BS2000/0SD)

In step 2 above you selected or created a remote extractor environment.

The following page offers all data sets starting with the high-level qualifier defined in the Filter
Settings of the remote extractor environment. See Create New Remote Extractor Environment
(BS2000/0SD) under IDL Extractor for COBOL Preferences .

Software AG IDL Extractor for COBOL 33

Scenario |; Create New IDL and Server Mapping Files

& IDL Extractor for COBOL

Select an LMS Library from COBOL extractor environment

The source element ko extrack the Software &G IDL and SYM Files will be

located in the selecked LMS library, Ik can be a COBOL program or copwbook
sOUrceE,

Lisk of LM3 libraries:

Marme

{EX$EXX,ETS.COB, TRAINING, CNTL
{EX:$EXX, ETS.COB, TRAINING, INC1
{Ex:$EXX, ET5.COB, TRAINING SRCE

Takal: 3

) < Back || Mext = Finish Zancel

The following page offers all elements contained in the LMS library selected in the previous step,
starting with the member name prefix defined in the Filter Settings of the remote extractor envir-
onment. See Step 3: Define the Remote Extractor Environment under IDL Extractor for COBOL
Preferences.

34 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

£ IDL Extractor for COBOL Ml=1E3
i

Select Element {5) from LMS Library
=

The Software &G IDL and SYM files will be extracted from COBOL data items (e.q. PICTURE clause)
contained in the selecked element. Ik can be a COBOL program or copvbook source.

List of elements from LMS library (Exxi$Exs ETS. COB, TRAIMING. SRCE:

Type Elerment Yersion Last Modification
is) faTEST . lool [Z009-05-25
(5] CUSTADD oo 2009-038-25
(5] CUSTCHT oo 2009-038-25
(5] CLUSTDEL oo 2009-038-25
(5] CLUSTGET oo 2009-038-25
(5] CUSTGETA oo 2009-08-25
(5] CUSTGETC oo 2009-08-25
(5] CLUSTIMFO oo 2009-08-25
(5 CUSTOMER, oo 2009-05-25
(3 DM013MPL 001 2009-08-25

Total: 10

@ <gack || mext:= | Fneh

Select the element from which you want to extract. You can select only one COBOL source. The
source can be a COBOL program or a COBOL copybook.

Choose Next and continue with Step 4: Define the Extraction Settings and Start Extraction below.

Software AG IDL Extractor for COBOL 35

Scenario |; Create New IDL and Server Mapping Files

Step 4: Define the Extraction Settings and Start Extraction

In this page you specify the COBOL source and Software AG IDL target options used for IDL ex-
traction.

3 IDL Extractor for COBOL e

-
Extraction Settings S

TheIDL and SVM files will be saved to the selected workspace Container. Please decide Input Message same as Qutput Message or different.

COBOL Source
File Name: CUSTINFO

Operating System: z/0S

Interface Type: ’CICS with DFHCOMMAREA calling convention -
[] Input Message same as Output Message
IMS MPP message interface (IM5 Connect) IMS BMP with standard linkage calling convention
*110 : Browse...

(@ Transaction Mame: * . . X .
: CICS with Channel Container calling convention

Create IDL parameter for Transaction Name - specification at runtime EntireXChannel

m

Software AG IDL File
File Name: * CUSTINFO
Modify existing File

Library Name: © CUSTINFO -

. * g
Container: /Demeo Browse...

COBOL te IDL Mapping
Map alphanumeric fields (PICTURE X, A, G, N) to
(@) Strings with variable length (Java, .NET, DCOM, C, Natural, SOAP, XML)
(7) Strings with fixed length (COBOL, PL/T)

[] Map FILLER fields to IDL -

@ <Back || Next> Fneh

Operating System

The operating system is already defined in the extractor environment in the IDL Extractor for
COBOL preferences, see IDL Extractor for COBOL Preferences.

Interface Type

The interface type must match the type of your COBOL server program. It is used by the RPC
server and the EntireX Adapter at runtime to correctly call the COBOL server and must be a sup-
ported interface type of the RPC server used. See Compatibility between COBOL Interface Types
and RPC Server.

Additional information may be required depending on the interface type:

36 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

CICS with DFHCOMMAREA Calling Convention

Specify Input Message same as Output Message. If the COBOL server program uses a different
COBOL output data structure compared to its input data structure, that is, the input message

layout is overlaid with another layout on output, you need to uncheck Input Message same as
Output Message. See the following COBOL server examples:

® Example 2: Redefines
® Example 3: Buffer Technique
® Example 4: COBOL SET ADDRESS Statements

If the COBOL server program uses the same COBOL data structure on input as well as on output,
you need to check Input Message same as Output Message. See the following COBOL server
examples:

® Example 2: Redefines
® Example 3: Buffer Technique
® Example 4: COBOL SET ADDRESS Statements

CICS with Channel Container Calling Convention
Optionally, specify a channel name. See Extracting from a CICS Channel Container Program.

CICS with DFHCOMMAREA Large Buffer Calling Convention

Specity Input Message same as Output Message. If the COBOL server program uses a different
COBOL large output buffer data structure compared to its large input buffer data structure,
you need to uncheck Input Message same as Output Message.

IMS MPP Message Interface (IMS Connect)
Specify how you want the transaction name to be determined. See Extracting from an IMS MPP
Message Interface Program.

IMS BMP with Standard Linkage Calling Convention
You can optionally set the IMS PSB List. See Extracting from an IMS BMP Standard Call Inter-
face.

Batch with Standard Linkage Convention
No further information is required.

MicroFocus with Standard Linkage Convention
No further information is required.

For an introduction to interface types, see Supported COBOL Interface Types.

Software AG IDL File

With the Software AG IDL file target options you specify the IDL file and IDL library names used:

* File name specifies the file name used by the operating system.

® Modify existing file is enabled only when the IDL file already exists. If enabled, check this option
to continue the extraction.

Software AG IDL Extractor for COBOL 37

Scenario |; Create New IDL and Server Mapping Files

Library name defines the IDL library name used in the IDL file. The dialog box cannot be edited
when you modify an existing IDL file. If there are multiple libraries, you can select one of these;
if there is only one library, the box is disabled. When you extract the IDL the first time or you
specify the name of an existing IDL file, the box can be edited (like a text widget). If you specified
an existing IDL file, the currently existing library names are available in the box.

For the interface type "Micro Focus with standard linkage calling convention" and if the COBOL
server is an operating system standard library (.so!.sl on UNIX or .dll on Windows) or a Micro
Focus proprietary library (*.1br), the IDL library name used must match the operating system
file name. For Micro Focus proprietary formats, intermediate code (*.int) and generated code
(*.gnt), any IDL library name can be used. See Locating and Calling the Target Server under Admin-
istering the Micro Focus RPC Server in the Micro Focus RPC Server documentation.

Container specifies the eclipse container used for the IDL file

COBOL to IDL Mapping

With these target options you specify how COBOL data items are mapped to IDL:

If the target RPC clients support variable length strings without any restriction, we recommend
you map alphanumeric fields to "Strings with variable length". This is true for most modern
target environments such as Java, NET, DCOM, C, Natural, SOAP, XML.

If the target RPC clients do not support variable length strings or support them with restrictions,
we recommend you map alphanumeric fields to "Strings with fixed length"

Check the box Map FILLER fields to IDL if COBOL FILLER pseudo-parameters are to be part
of the RPC client interface. By default they are not mapped to IDL.

Choose Next and start the extraction. The wizard now analyzes the COBOL program. During this
process the following situations are possible:

38

Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

-4
¥

Analyze
COBOL Program

|
b

OK or lgnore

Yes 4.1.x Copybook
v cannot be found
A
All MNo
Yes
v
4.2 Copybook
Status Summary
|
OK
v
A\ No
gram ID
Yes 4.3 Enter
COBOL Program ID
|
oK
> .
¥

® Referenced copybooks cannot be found. In this case the wizard prompts you for every missing
copybook. Continue with optional step Step 4.1x: Copybook Cannot be Found - Local Extraction |
Remote Extraction (z/OS) | Remote Extraction (BS2000/OSD) in the IDL Extractor for COBOL
documentation depending on your situation.

Software AG IDL Extractor for COBOL 39

Scenario |; Create New IDL and Server Mapping Files

= If referenced copybooks are not available, you can choose Ignore or Ignore All, a copybook
status summary page is displayed, see Step 4.2: Copybook Status Summary (Optional).

® No COBOL program ID can be located if you extract, for example, from a copybook that contains
COBOL data items only. In this case, the wizard prompts you to enter the COBOL program ID.
Continue with Step 4.3: Enter COBOL Program ID (Optional).

® There is no copybook reference in your COBOL source or all referenced copybooks are found.
Also the COBOL program ID can be located. In this case continue with Step 5: Select the COBOL
Interface and Map to IDL Interface under Scenario I: Create New IDL and Server Mapping
Files.

Step 4.1a: Copybook Cannot be Found - Local Extraction

This dialog enables you to browse directories where missing copybooks might be found. If there
are any specific copybook file extensions, you can define them here.

& IDL Extractor for COBOL

. T
Complete your COBOL Extractor Environment —
The copybook &CPYEKZ1 cannot be Found using the definitions in the COBOL exkractar environment,

Copyboak Directory
Browse For the copybook directory in the workspace ar file system,

Directary Mame: | \Workspace. . |
File Svystem, .,

Copybook File Extensions

Enter any specific copybook extensions,
IUse comma or semicolon to separate mulkiple extensions (For example: cob;cbl;bxk or cob,cbl, kb,

Copyboaok file exkensions: |

':'E"'," Ignore H Ignore Al

The copybook that cannot be found is given in the window, here its name is "ACPYBK21". In the
extractor Preferences, the copybook directory that contains the copybook or the copybook file ex-
tension is not defined.

Continue with one of the following actions:

> To ignore this copybook only

1 Choose Ignore and go back to Step 4: Define the Extraction Settings and Start Extraction.

40 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

2 Choose Next to start extraction again.

> To ignore this and all further copybooks

1 Choose Ignore All and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 Choose Next to start extraction again.

> To complete the extractor environment

1 Choose Workspace or File System to browse for the copybook directory.

2 Check the copybook file extensions. Both will be saved in the COBOL extractor preferences
and reused in further extractions.

3 Choose OK and go back to Step 4: Define the Extraction Settings and Start Extraction.

4 Choose Next to start extraction again.
Step 4.1b: Copybook Cannot be Found - z/0S Remote Extraction

This dialog enables you to browse remote locations (partitioned or CA Librarian data sets) where
missing copybooks might be found.

€ IDL Extractor, for COBOL X
. -

Complete your COBOL Extractor Environment -

The copybook CUSTREC canndt be found with the definftions inthe COBOL extractar environmertt. Use the extractor service ta find the copybook dataset (DSM).

Dataset nanme: |
':':’:' [lgnare] [Ignore All]

The copybook that cannot be found is given in the window; here its name is "CUSTREC". In the
extractor preferences, the copybook data set that contains the copybook is not defined.

Continue with one of the following choices:
> To ignore this copybook only

1 Choose Ignore and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 Choose Next to start extraction again.

Software AG IDL Extractor for COBOL 41

Scenario |; Create New IDL and Server Mapping Files

> To ignore this and all further copybooks

1 Choose Ignore All and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 Choose Next to start extraction again.

> To complete the extractor environment

1 Choose Find to browse for the copybook data set. It will be saved in the COBOL extractor
preferences and reused in further extractions.

2 Choose OK and go back to Step 4: Define the Extraction Settings and Start Extraction.

3 Choose Next to start extraction again.
Step 4.1c: Copybook Cannot be Found - BS2000/0SD Remote Extraction

This dialog enables you to browse remote locations (LMS libraries) where missing copybooks
might be found.

& IDL Extractor for COBOL X
.]

Complete your COBOL Extractor Environment -

The copybook XTAE cannok be Found with the definitions in the COBCOL extrackor environment, Use the extractor service to find the copyboak LMS library,

IUze LIS library name or high level qualifier (HLQ) ta restrict browsing,

LMS library name ar HLey: | SEREDRREEES

|

]

[Lanore H Ignare All]

The copybook that cannot be found is given in the window; here its name is "XTAB". In the extractor
preferences, the copybook LMS library that contains the copybook is not defined.

Continue with one of the following choices:
> To ignore this copybook only

1 Choose Ignore and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 Choose Next to start extraction again.

> To ignore this and all further copybooks

1 Choose Ignore All and go back to Step 4: Define the Extraction Settings and Start Extraction.

42 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

2 Choose Next to start extraction again.

> To complete the extractor environment

1 Choose Find to browse for the copybook LMS library. It will be saved in the COBOL extractor
preferences and reused in further extractions.

2 Choose OK and go back to Step 4: Define the Extraction Settings and Start Extraction.

3 Choose Next to start extraction again.
Step 4.2: Copybook Status Summary (Optional)

This summary page lists all COBOL copybooks which were not available during extraction.

7= IDL Extractor for COBOL

Warning: Some copybooks referenced by the COBOL program are nok used
For extraction, See Details for reasons,

If these copybooks da nok conkain any COBOL data ikems required Far the IDL
extraction, extraction can continue.

il

oK]| << Dietails |

CJSTDAT: copybook not used because ignore button was pressed by user,
CUSTREC: copybook nob used because ignore butkon was pressed by user,

® If any relevant COBOL data item describing the server interface is contained in one of the listed
copybooks, you cannot continue. Terminate the extraction and try to get the missing copybooks.

® If no relevant COBOL data item describing the server interface is contained in the copybooks,
you can continue. Choose OK.

Software AG IDL Extractor for COBOL 43

Scenario |; Create New IDL and Server Mapping Files

Step 4.3: Enter COBOL Program ID (Optional)

This page is shown whenever the program ID of the COBOL source is missing. Entering a COBOL
program name is compulsory.

& IDL Extractor for COBOL M=
|

COBOL Program ID e

Mo COBOL pragram ID was Found in the selected source, The source could possibly be a copybook, Enter the COBOL

program I0 used to call the COBOL program.

Program I0: | | |

@

No COBOL program ID can be located if you extract, for example, from a copybook that contains
COBOL data items only. The COBOL program ID

* is the COBOL program name

" is often the name of the executable or load module

" can be found in the IDENTIFICATION DIVISION (abbreviated to"ID"). Example

ID DIVISION.

PROGRAM-ID. CUSTINFO.
AUTHOR. BMF .
DATE-WRITTEN. 26-11-1996

> To complete the extraction
1 Enter the COBOL program ID.
2 Choose OK to continue with Step 5: Select the COBOL Interface and Map to IDL Interface.

44 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

Step 5: Select the COBOL Interface and Map to IDL Interface

In general, mapping the COBOL data items to IDL with the COBOL Mapping Editor is a two-step
process:

1. First select the COBOL data items describing the COBOL interface from the COBOL source
view. In this example the COBOL interface is preselected as defined in the PROCEDURE DIVISION
USING clause.

2. Then map the COBOL interface to the IDL interface.

See the guidelines on IDL extraction below for further information.

£ DL Extractor for COBOL g x|
|] .
IDL Extractor for COBOL - Mapping Editor S
Inspect the COBOL program parameters pre-selected by the COBOL parser. If necessary correct them. To design the interface set IN, QUT, INOUT directions and suppress parameters via
context menu, buttons or Quick Fix.
~ COBOL Program | CUSTINFO - Interface Type CICSwith DFHCOMMAREA calling convention
CUSTINFO R A&
[01 DFHCCOMMARER. -
&3 (007300 02 L5-CMD PIC X (001).
64 02 L5-KEY PIC 3(008).
63 02 L3-DARTR PIC X (454). A
€6 *
&7 PROCEDURE DIVISION USING DFHCCMMARER.
=] WA T S
7 t
COBOL to IDL Mapping
CUSTINFO +E4xlzo] |
COBOL Interface IDL Parameters
%5 02 L5-CMD PIC X(001). [Map toIn ->] <P L5-CMD (AV1) In Out
5 02 Ls-KEY PIC 9(008). 4P LS-KEY (NUB) In Out
02 Ls-DATA PIC X(454). [Map to Out ->] 47 LS-DATA [AV454) In Out
Map to InOut ->
l
[Suppress]
[Set Constant...]
(1 @:‘ Next » [Finish] l Cancel]

The following table provides guidelines on IDL extraction per interface type. For the CICS interface
types DFHCOMMAREA and DFHCOMMAREA Large Buffer, the guidelines distinguish further
between COBOL server programs overlaying the input data structure with a different output data
structure and COBOL server programs using same structures on input and output. You already
selected this in the checkbox Input Message same as Output Message in Step 4: Define the Extrac-
tion Settings and Start Extraction.

Software AG IDL Extractor for COBOL 45

Scenario |; Create New IDL and Server Mapping Files

Environment |Interface Type CICS Message on Input and Output
CICS DFHCOMMAREA ©|same **
different >
Large Buffer same "
different ®

Channel Container

Batch Standard Linkage

IMS BMP with Standard Linkage

MPP Message Interface (IMS Connect)

Micro Focus|Standard Linkage

2

1.

Notes:

Checkbox Input Message same as Output Message in Step 4: Define the Extraction Settings
and Start Extraction is checked. The COBOL data structure of the CICS input message is the
same as the structure of the CICS output message.

Checkbox Input Message same as Output Message in Step 4: Define the Extraction Settings
and Start Extraction is cleared. The COBOL data structure of the CICS input message is different
to the structure of the CICS output message (that is, the output overlays the input).

Your DFHCOMMAREA COBOL server must be DPL-enabled to be directly supported by EntireX.
The distributed program (DPL) link function enables a CICS client program to call another CICS
program (the server program) in a remote CICS region. Technically, a COBOL server is DPL-
enabled if

® CICS is able to call the COBOL server remotely

" the DFHCOMMAREA layout does not contain pointers
If your program is not DPL-enabled, see What to do with other Interface Types? in Introduction
to the IDL Extractor for COBOL

See the following COBOL server examples for CICS input message the same as CICS output
message:

® Example 2: Redefines
= Example 3: Buffer Technique
® Example 4: COBOL SET ADDRESS Statements

See the following COBOL server examples for CICS input message different to CICS output
message:

® Example 2: Redefines
® Example 3: Buffer Technique
® Example 4: COBOL SET ADDRESS Statements

46

Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

The outcome of the Mapping Editor is the IDL file and a server mapping file (optional). There are
server-side mapping files (EntireX Workbench files with extension .svm) and client-side mapping
files (extension .cvm). See Server Mapping Files in the EntireX Workbench and How to Set the Type of
Server Mapping Files.

Step 6: Finishing the Mapping Editor

When you choose Save in the Mapping Editor, the IDL file is generated. If required, a server
mapping file is generated,too. See When is a Server Mapping File Required? in the EntireX Workbench
documentation The server mapping file is either of type client-side (extension .cvm) or server-side
(extension .svm). See How to Set the Type of Server Mapping Files. Both files are written with the "File
Name" entered for the IDL file in Step 4: Define the Extraction Settings and Start Extraction.

® If you are using client-side mapping files, continue with Step 7: Validate the Extraction and Test
the IDL File.

® If you are using server-side mapping files, the dialog below is displayed whenever the COBOL
Mapping Editor is saved. There are two options to choose from:

® Save IDL and server mapping files
will save the generated files into the workspace and quit the COBOL Mapping Editor

The generated server-side mapping file need to be synchronized with the server-side mapping
container of the target RPC server, except for IMS Connect and CICS ECI connections with
the EntireX Adapter, where they are wrapped into the Integration Server connection - the
same as client-side mapping files, see Integration Server Wrapper.

® Check the option Synchronize with server-side mapping container now for the following
RPC servers:

= z/OS (CICS, Batch, IMS) | Micro Focus | BS2000/OSD | z/VSE (CICS, Batch)
® Uncheck the option Synchronize with server-side mapping container now for

® EntireX Adapter and IMS Connect and CICS ECI connections

* the following RPC servers: CICS ECI | IMS Connect

= later synchronization of other RPC servers

® Extract additional COBOL program and append to the IDL and server mapping files
will save the generated files into the workspace, quit the Mapping Editor and start the IDL
Extractor for COBOL again. The additionally extracted COBOL source will then be added to
the previously generated IDL and server mapping files.

Software AG IDL Extractor for COBOL 47

Scenario |; Create New IDL and Server Mapping Files

|

IDL Extractor for COBOL - Mapping Editor

Save Software AG IDL and Server Mapping Files
You've finished the COBOL Mapping Editor. How do you want to proceed?

==
Ea

@) 5ave IDL and server mapping files

Server mapping file

(E) This extraction generates a server-side mapping file.

i Using server-side mapping file

= Forthe webMethods EntireX Adapter, it must be contained in the same directory as the IDL file. You need te update your adapter connection,
» Forthe Entirel CICS ECI RPC server, it must be contained in the folder specified by 'cics.mapping.folder',

® Forthe EntireX CICS RPC server, it has to be deployed.

| Synchronize with server-side mapping container now

Extract additional COBOL program and append to IDL and server mapping files

|@:| OK l | Cancel

> To save the generated files into the workspace, quit the Mapping Editor and deploy the server-side mapping
file
1 Select Save IDL and server mapping files.

2 Check the option Synchronize with server-side mapping container now and choose OK.
This calls the Deployment Wizard. See Server Mapping Deployment Wizard in the EntireX
Workbench documentation.

= If you are using the Server Mapping Deployment Wizard for first time with no predefined
deployment environment preferences, continue with Step 2a: Create a New Deployment En-
vironment in the Server Mapping Deployment Wizard documentation.

* If deployment environments are already defined, you may also continue with Step 3: Select
and Existing Deployment Environment and Deploy.

3 Continue with Step 7: Validate the Extraction and Test the IDL File.

> To save the generated files into the workspace and quit the Mapping Editor without deploying the server-side
mapping file

1 Select Save IDL and server mapping files.

2 Clear the option Synchronize with server-side mapping container now and choose OK.

48 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

® Synchronize the server-side mapping container of the target RPC server later. See Deploying
Server-side Mapping Files to the RPC Server in the respective sections of the documentation.

* For the webMethods EntireX Adapter and IMS Connect or CICS ECI connections, update
your Adapter connection. See Step 3: Select the Connection Type in the Integration Server
Wrapper documentation.

3 Continue with Step 7: Validate the Extraction and Test the IDL File.

> To save the generated files into the workspace, quit the Mapping Editor and start the IDL Extractor for COBOL
again

m Select Extract additional COBOL program and append to the IDL and server mapping files
and choose OK. Continue with Step 2: Select a COBOL Extractor Environment or Create a
New One.

@ Caution: Do not edit the IDL file manually or with the IDL Editor, except for changing

parameter names. Otherwise, consistency between the IDL file and the server mapping file
will be lost, resulting in unexpected behavior. For this purpose use the COBOL Mapping
Editor instead and choose Scenario I1I: Modify Existing IDL and Server Mapping Files.

@ Caution: A server mapping file extracted this way must not be re-created by the COBOL

Wrapper. Server mapping specifications of such a file would not be powerful enough to
adequately describe your COBOL server program extracted here.

Step 7: Validate the Extraction and Test the IDL File

The IDL file is used to build RPC clients using an EntireX Workbench wrapper of your choice. See
EntireX Wrappers in the EntireX Workbench documentation.

If you are using client-side mapping files:

" You need to rebuild all RPC clients communicating with this RPC server program and re-gen-
erate the client interface objects.

® For connections with the webMethods EntireX Adapter you need to update your Adapter con-
nection, see Step 3: Select the Connection Type in the Integration Server Wrapper documentation.

For a quick validation of your extraction, you can

" use the IDL Tester to validate the extraction, see EntireX IDL Tester in the EntireX Workbench
documentation.

® generate an XML mapping file (XMM) and use the XML Tester for verification. See EntireX XML
Tester in the XML/SOAP Wrapper documentation.

Software AG IDL Extractor for COBOL 49

50

3 Scenario Il: Append to Existing IDL and Server Mapping

Files

The IDL Extractor for COBOL can be started from an existing pair of IDL and server mapping
files. A server mapping file is an EntireX Workbench file with extension .svm or .cvm. See Server
Mapping Files for COBOL.

> To start the IDL Extractor for COBOL

= Open the context menu of an IDL file and choose COBOL > Extract further Interface.

51

Scenario II: Append to Existing IDL and Server Mapping Files

4 = Demo
|X| .project
= CUSTINFO
[0 CUSTINFOLicll

G I

ﬁsb

CEEETS

Mew
Open
Open With

Copy
Paste

Delete
Move...

Rename...

Import...
Export...

Refrech

Validate

Show in Remote Systems view
Profile As

Debug As

Run As

Compare With

Replace With

COBOL
Integration Server
Matural

Web Service
Other

Generate RPC Client

Generate RPC Server

Muodify Interface

Extract further Interface
Deploy/Synchronize Server Mapping...

Continue with Step 2: Select a COBOL Extractor Environment or Create a New One as described

under Scenario I: Create New IDL and Server Mapping Files.

52

Software AG IDL Extractor for COBOL

4 Scenario lll: Modify Existing IDL and Server Mapping Files

The IDL Extractor for COBOL can be started from an existing pair of IDL and server mapping
files. A server mapping file is an EntireX Workbench file with extension .svm or .cvm. See Server
Mapping Files for COBOL.

> To start the COBOL Mapping Editor

= Open the context menu of an IDL file and choose COBOL > Modify Interface.

53

Scenario Ill: Modify Existing IDL and Server Mapping Files

a = Demo
%] .project
|=| CUSTINFO
[CUSTI New N
Open
Open With 3
iE Copy
Paste
¥ Delete
Move...
Rename...
g2y Import..
2y Export.
& Refresh
Validate
Show in Remote Systems view
Profile As r
Debug As 2
Run As r
Compare With 2
Replace With 2
B cosoL C Generate RPC Client
ﬁ Integration Server » Generate RPC Server
ﬂ Matural » Meodify Interface
ﬁ Web Service 4 Extract further Interface
Other » Deploy/Synchronize Server Mapping...
Or:

Choose Open With > EntireX COBOL Mapping Editor.

54 Software AG IDL Extractor for COBOL

Scenario Ill: Modify Existing IDL and Server Mapping Files

4 1= Demo
[= copybog
|¥] .project e '
[CUSTINE Open
Open With ¥ | ®E EntireX COBOL Mapping Editor
B | Copy |mn EntireX IDL Editer
| EntireX XML Mapping Editor
Paste
3 Delete Text Editor
Move... =| System Editor
Rename... = In-Place Editor
o |[impaite Default Editor
] Export... Other...

Continue with Step 5: Select the COBOL Interface and Map to IDL Interface as described under
Scenario I: Create New IDL and Server Mapping Files.

Software AG IDL Extractor for COBOL 55

56

I I I COBOL Mapping Editor

A COBOL source program mostly does not contain all the information needed for IDL mapping.
With the Mapping Editor you enter this missing information. The Mapping Editor allows you to
map the COBOL server interface to Software AG IDL. With the Mapping Editor you

= gselect the COBOL data items of the COBOL interface

" define

which COBOL data items are mapped to IDL (Select REDEFINE paths, Suppress COBOL
Unneeded Data Items)

the direction of the COBOL data items are mapped to IDL (Map to [In, Out, InOut])

field values for COBOL data items that are not sent by clients to the COBOL server (Set COBOL
Data Items to Constant)

multiple IDL interfaces (Map to Multiple IDL Interfaces)

The following table provides guidelines on IDL extraction per interface type. For the CICS interface
types DFHCOMMAREA and DFHCOMMAREA Large Buffer, the guidelines distinguish further
between COBOL server programs overlaying the input data structure with a different output data
structure and COBOL server programs using same structures on input and output. You already
selected this in the checkbox Input Message same as Output Message in Step 4: Define the Extrac-
tion Settings and Start Extraction.

Environment |Interface Type CICS Message on Input and Output
CICS DFHCOMMAREA ©|same ¥
different >
Large Buffer same "
different ¥

Channel Container

Batch Standard Linkage

IMS

BMP with Standard Linkage
MPP Message Interface (IMS Connect)

of

COBOL Mapping Editor

Environment |Interface Type CICS Message on Input and Output

Micro Focus |Standard Linkage

2

1.

3.

Notes:

Checkbox Input Message same as Output Message in Step 4: Define the Extraction Settings
and Start Extraction is checked. The COBOL data structure of the CICS input message is the
same as the structure of the CICS output message.

Checkbox Input Message same as Output Message in Step 4: Define the Extraction Settings
and Start Extraction is cleared. The COBOL data structure of the CICS input message is different
to the structure of the CICS output message (that is, the output overlays the input).

Your DFHCOMMAREA COBOL server must be DPL-enabled to be directly supported by EntireX.
The distributed program (DPL) link function enables a CICS client program to call another CICS

program (the server program) in a remote CICS region. Technically, a COBOL server is DPL-
enabled if

® CICS is able to call the COBOL server remotely

" the DFHCOMMAREA layout does not contain pointers
If your program is not DPL-enabled, see What to do with other Interface Types? in Introduction
to the IDL Extractor for COBOL

. See the following COBOL server examples for CICS input message the same as CICS output

message:
® Example 2: Redefines

® Example 3: Buffer Technique

® Example 4: COBOL SET ADDRESS Statements

See the following COBOL server examples for CICS input message different to CICS output
message:

® Example 2: Redefines
® Example 3: Buffer Technique
® Example 4: COBOL SET ADDRESS Statements

58

Software AG IDL Extractor for COBOL

5 CICS with DFHCOMMAREA Calling Convention - In same

as Out

LI 1o 0o o PSSO UPPPPRRRR 60
= Extracting from a CICS DFHCOMMAREA Programcooiiviiieeieee ettt 60
= Mapping EdItor USEr INTEITACEeeieiiiiiieee e 61
= Mapping Editor IDL Interface Mapping FUNCHONSooiiimiiiiiei e 68
= Programming TECHNIQUESviviiieiiiiiiisiie ettt ettt ettt ettt ettt e aaaaaeeeeees 72

59

CICS with DFHCOMMAREA Calling Convention - In same as Out

DFHCOMMAREA

[— INOUT COBOL
A10| 14 | A1o0000 | P5 | 14 < > Server

Introduction

Depending on the programming style used in the CICS program and the various different tech-
niques for accessing the CICS DFHCOMMAREA interface, finding the relevant COBOL data structures
can be a complex and time-consuming task that may require CICS COBOL programming know-
ledge. Please note also the following:

® A CICS program does not require a PROCEDURE DIVISION header, where parameters are normally
defined. See PROCEDURE DIVISION Mapping.
® The DFHCOMMAEA can be omitted in the linkage section.

= If there is no DFHCOMMAREA in the linkage section or no PROCEDURE DIVISION header present in
the PROCEDURE DIVISION, the CICS preprocessor completes the interface of the COBOL server
and adds a DFHCOMMAREA and a PROCEDURE DIVISON header to the CICS program before compil-
ation.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from a CICS DFHCOMMAREA Program

This section assumes Input Message same as Output Message is checked. COBOL output and
COBOL input parameters are the same, that is, the DFHCOMMAREA on output is not overlaid
with a data structure different to the data structure on input.

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type CICS with DFHCOMMAREA calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and checkbox Input Message same as Output Message is
not cleared.

60 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL Source

File Mame: custinfo.cbl

Operating System: z/05

Interface Type: ’ECICS with DFHCOMMAREA calling convention i v

[/] Input Message same as Output Message
Press Next to open the COBOL Mapping Editor.

> To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items of the CICS message to COBOL Interface by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. See Notes.

2 Continue with COBOL to IDL Mapping.

] Notes:

1. If a DFHCOMMAREA is present, the DFHCOMMAREA COBOL data item itself cannot be selected. In this
case, select the COBOL data items directly subordinated to DFHCOMMAREA and map to IDL. See
Map to In, Out, InOut.

2. Itis very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

3. See the examples provided under Programming Techniques.

4. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL interface type CICS with DFHCOMMAREA interface, the user interface of the COBOL
Mapping Editor looks like this:

Software AG IDL Extractor for COBOL 61

CICS with DFHCOMMAREA Calling Convention - In same as Out

o = [COEOL Program CUSTINFD - Imterface Type CICS with DFHCOMBARES calling corventicn
2 custinfo.chl Ll 1 % - ¥
63 02 L3-CHMD PIC X (001}. -
GO T400 o2 S [o0a) .
L 02 L5-DATA FIC X [4€E5%}-
67 FROCEDUEE DIVISION USTHG DEFHCOMMARER.
METH. "

O [T coBoL 1o IDL Mapping

CUSTINFO = =4 X
COBOL Interlace = 1DL Interface
| Bozus-cmp PIC X[001) Mag to [n -» | & 15-CMD (AVD) In Out
T 02 L5-KEY PIC 900 . LSKEY [NUE) In Ot
B 02 LS-DATA PIC Hid54) Map to Out ->] & L5-DATA (AW4S4) In Out
MagtoinOut-> | ¢
Suppress |
Set Constant.. |

=

@ COBOL Program Selection. Currently selected program with interface type
© COBOL Source View. Contains all related sources for the currently selected COBOL program

© COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

62 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL Program Selection

= COBOL Program | CUSTINFO - Interface Type CICS with DFHCOMMAREA calling convention

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL

63

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL Source View

= COBOL Program | CUSTINFO - Interface Type CICS with DFHCOMMAREA calling convention

custinfo.chl dh % G| &
63 02 L5-CMD PIC X(001). -
64 007400 02 L5-KEY PIC 5S(008).
65 02 L5-DATA PIC X (454). (Tl
66 B =
67 PROCEDURE DIVISION USING DFHCCOMMAREL.
a8 MATH. a

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the Editor with Modify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

it Remove selected COBOL data item from COBOL Interface.
Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

4" Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons

64 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

= |DL Interface
COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping

CUSTINFO i a'h + =
COBOL Interface + IDL Interface

% 02 L5-CMD PIC X(001) LS-CMD (AV1) In Out

% 02 LS-KEY PIC 9(008) LS-KEY (NUEB) In Out

% 02 L5-DATA PIC X(454) Map to Out -» LS-DATA (AVA54) In Out

Map to InOut ->

Suppress

Set Constant...

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail under Mapping Editor IDL Interface Mapping
Functions.

Map toIn | Out | InOut A suppressed COBOL data item becomes visible in the IDL in-
terface. Used also to select another REDEFINE path.

Suppress Suppress unneeded COBOL data items.

Set Constant Set COBOL data items to constant.

Remove from COBOL Inter- Remove the data item from the COBOL interface. This also re-
face moves the mapped IDL parameter from all IDL interfaces for

the current COBOL program. See COBOL Program Selection.

Software AG IDL Extractor for COBOL 65

CICS with DFHCOMMAREA Calling Convention - In same as Out

Toolbar
The toolbar offers the following actions:

4 Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.
#, Rename current IDL Interface.

7 Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

g+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
“ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

. Scalar parameter, mapped to In.

& Scalar parameter, mapped to InOut.
[E! Scalar parameter, mapped to Out.
&+ Group parameter, here mapped to InOut.

=+ REDEFINE parameter, here mapped to InOut.

%, Parameter set to Constant.

66 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

CUSTINFO W a‘h H [
COBOL Interface + IDL Interface

02 LS-CMD PIC X(001) Map to In -> LS-CMD (AV1) In Out

E5 02 LS-KEY PIC 9(D08) LS-KEY (NUEB) In Out

% 02 L5-DATA PIC X(454) Map to Out -» LS-DATA (AV454) In Qut

Map to InOut ->

Suppress

Set Constant...

Map to In | Out | InOut ->
See Map to In, Out, InOut. A suppressed COBOL data item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

® Rename

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

Software AG IDL Extractor for COBOL 67

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL to IDL Mapping
CUSTINFO

o d.h + -
COBOL Interface + | IDL Interface
% 02 LS-CMD PIC X(001) #F L5-CMD (AVL) In Out
£ 02 LS-KEY PIC 9(008)
B 02 Ls-DATA PIC X(454) Map to Out -> #F L5-DATA [AV454) In Out

Map to InOut -=»

Suppress

Set Constant...

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to In, Out, InOut

= Suppress Unneeded COBOL Data Items
= Set COBOL Data ltems to Constants

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

Map to In, Out, InOut

With the Map to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

> To provide IDL directions

» Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu and as mapping buttons
to make the COBOL data items visible and provide IDL directions in the IDL interface.

J Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subsequent child
COBOL data items and thus to the related IDL parameters in the IDL interface.

2. Subsequent child COBOL data items can only be mapped to the same IDL direction as their
top-level COBOL group data item.

68 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

3. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/0OSD RPC server, the amount of data to be transferred to/from the RPC client is reduced
with correct IDL directions.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified — it becomes shorter and tidier. This is useful, for example

® for FILLER data items

= if the RPC client or Adapter Service does not need an Out parameter

= if the RPC server or Adapter Service does not need an In parameter and a low value can be

provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/0OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

> To suppress unneeded COBOL data items

m Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse function Map to In, Out or InOut (see above) available in the context menu
and as mapping button, a COBOL data item is made visible in the IDL interface again.

Software AG IDL Extractor for COBOL 69

CICS with DFHCOMMAREA Calling Convention - In same as Out

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
bothered with IDL parameters that always contain constants, such as RECORD- TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see below).

> To map COBOL data items to constants

= Use the Set Constant function available in the context menu and as mapping button to define
a constant value for a COBOL data item. You are prompted with a window to enter the constant
value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the function Map to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

DISPATCHER

S M

J L

B L
"ﬁ" T T LI]
D
D R I

A =

Cc L

T Y

70 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

This example is described in more detail under Example 1: COBOL Server with Multiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

= If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

= If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

2 To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions % or

2 Give the IDL interfaces meaningful names with the toolbar function «b.

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
" Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD’, 'SUBTRACT', MULTIPLY'

[

® Third, for step 3 above: Define the constants '+, '-' and *'

to the parameter OPERATION respectively.

] Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description

4= |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface | Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

#4 |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

Software AG IDL Extractor for COBOL 71

CICS with DFHCOMMAREA Calling Convention - In same as Out

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

> To select redefine paths

= Use the Map to In, Out or InOut function available in the context menu and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

] Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Programming Techniques

This section covers the following topics:

= Example 1: COBOL Server with Multiple Functions
= Example 2: Redefines
= Example 3: Buffer Technique

72 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

= Example 4: COBOL SET ADDRESS Statements
Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following example where a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

01 OPERATION PIC X(1).

01 OPERANDIL PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERANDI OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT
WHEN "=*"
MULTIPLY OPERANDI BY OPERANDZ
GIVING FUNCTION-RESULT
WHEN .

END-EVALUATE.

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

" Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

" Java or NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

" etc.

To do this you need to extract the COBOL server program as described under Map to Multiple
IDL Interfaces.

Software AG IDL Extractor for COBOL 73

CICS with DFHCOMMAREA Calling Convention - In same as Out

Example 2: Redefines

The output data is described with a REDEFINE as in the following example. In this case you need
to select REDEFINE path BUFFER2 for the COBOL interface.

LINKAGE SECTION.
01 DFHCOMMAREA.

02 BUFFERL.
03 OPERATION PIC X(1).
03 OPERAND-1 PIC S9(9) BINARY.
03 OPERAND-2 PIC S9(9) BINARY.
03 FUNCTION-RESULT PIC S9(9) BINARY.
02 BUFFERZ REDEFINES BUFFERL.
03 FIELD-1 PIC X(4).
03 FIELD-2 PIC X(2).

PROCEDURE DIVISION USING DFHCOMMAREA.
* process the BUFFERZ and provide result in BUFFERZ
EXEC CICS RETURN.

Example 3: Buffer Technique

On entry, the server moves linkage section field(s) - often an entire buffer - into the working storage
and processes the input data inside the working storage field(s). Before return, it moves the
working storage field(s) - often an entire buffer - back to the linkage section. In this case, the relevant
COBOL data items are described within the working storage section. You need to select WS-BUFFER
for the COBOL interface.

WORKING STORAGE SECTION.
01 WS-BUFFER.

02 OPERATION PIC X(1).

02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

LINKAGE SECTION.
01 DFHCOMMAREA.
02 I0-BUFFER PIC X(9).

PROCEDURE DIVISION USING DFHCOMMAREA.
MOVE TO-BUFFER TO WS-BUFFER.
* process the WS-BUFFER and provide result in WS-BUFFER
MOVE WS-BUFFER TO I0-BUFFER.
EXEC CICS RETURN.

74 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Example 4: COBOL SET ADDRESS Statements

COBOL SET ADDRESS statements are used to manipulate the interface of the CICS server. On entry,
the server addresses the data with a (dummy) structure LS-BUFFER defined in the linkage section.
You need to select LS-BUFFER for the COBOL interface.

LINKAGE SECTION.
01 LS-BUFFER.

02 OPERATION PIC X(1).

02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION.
SET ADDRESS OF LS-BUFFER TO DFHCOMMAREA.
* process the LS-BUFFER and provide result.
EXEC CICS RETURN.

Software AG IDL Extractor for COBOL 75

76

6 CICS with DFHCOMMAREA Large Buffer Interface - In same

as Out

LI 1o 0o o PSSO UPPPPRRRR 78
= Extracting from a CICS DFHCOMMAREA Large Buffer Programooeeiiiiiiiiiiiiicccee e, 79
= Mapping EdItor USEr INTEITACEeeieiiiiiieee e 80
= Mapping Editor IDL Interface Mapping FUNCHONSooiiimiiiiiei e 87
= Programming TECHNIQUESviviiieiiiiiiisiie ettt ettt ettt ettt ettt e aaaaaeeeeees 92

77

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

DFHCOMMAREA
' POINTER
h A — INOUT CoBOL
A10| 14 | A100000 | P5 | 14 -1 > Server
Large buffer
Introduction

A DFHCOMMAREA Large Buffer Interface has the structure given below in the linkage section. The
field subordinated under DFHCOMMAREA prefixed with WM- LCB describe this structure. The field
names themselves can be different, but the COBOL data types (usage clauses) must match exactly.

LINKAGE SECTION.

01 DFHCOMMAREA.

10 WM-LCB-MARKER PIC X(4).
10 WM-LCB-INPUT-BUFFER POINTER.
10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-OUTPUT-BUFFER POINTER.
10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-FLAGS PIC X(1).
88 WM-LCB-FREE-OUTPUT-BUFFER VALUE '"F'.
10 WM-LCB-RESERVED PIC X(3).
01 INOUT-BUFFER.
02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION USING DFHCOMMAREA.

SET ADDRESS OF INOUT-BUFFER TO WM-LCB-INPUT-BUFFER.

SET ADDRESS OF INOUT-BUFFER TO WM-LCB-QUTPUT-BUFFER.
* process the INOUT-BUFFER and provide result

EXEC CICS RETURN.

78 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from a CICS DFHCOMMAREA Large Buffer Program

This section assumes Input Message same as Output Message is checked. COBOL output and
COBOL input parameters are the same, that is, WM-LCB-0UTPUT-BUFFER is set to the same address
as WM-LCB-INPUT-BUFFER (as in the DFHCOMMAREA large buffer example above).

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type CICS with DFHCOMMAREA large buffer interface, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct.

COBOL Source
File Mame: LargeBuf

Operating System: z/05

Interface Type: ICICS with DFHCOMMAREA large buffer interface -

[#] Input Message same as Output Message

Press Next to open the COBOL Mapping Editor.

> To select the COBOL interface data items of your COBOL server

1 Addthe COBOL dataitems of the large buffer to COBOL Interface by using the context menu
or toolbar available in the COBOL Source View and COBOL Interface. To do this, locate in
the PROCEDURE DIVISION the SET ADDRESS OF <x> TO WM-LCB-INPUT-BUFFER statement and
the SET ADDRESS OF <y> TO WM-LCB-OUTPUT-BUFFER statement. The COBOL data items <x>
and <y> are identical, and this is the large buffer you are looking for. See Notes.

2 Continue with COBOL to IDL Mapping.

] Notes:

1. Do not select the pointers in the DFHCOMMAREA pointing to the large buffers, in the example above,
WM-LCB-INPUT-BUFFER and WM-LCB-OUTPUT-BUFFER.

2. Itis very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

Software AG IDL Extractor for COBOL 79

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

3. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL interface type CICS with DFHCOMMAREA large buffer interface, the user interface
of the COBOL Mapping Editor looks like this:

o = COBOL Program LargeBuf - Imterface Type CICS with DFHCOMMAREA, Lisge buffer interface
2 LargeBuf Yok |
11 10 WM-LCB-RESERVED PIC X(3}. -
12 01 INGUT-BUFFER.
1 D2 OFERATICH FIC X1} .
02 OFERAND-1 FIC 59%(9) BIHARY. z
02 OPERAND-2 PIC 39(9) BIMARY.
02 FUNCTICM-RESULT PIC 35(%) BIMARY. g
] ;
© COEOL to IDL Mapping
LargeBuf A 2l X @mB
COBOL Interface I0L Interfsce
o NGUTSUREER ' Maptoln-» | | & 4% INOUT-BUFFER In Dut
T2 02 OPERATION Pl i & OPERATION (AV1)
T2 07 OPERAND-1 FIr Map to Out -=] & OPERAND-1 (W)
2 02 OPERAMND-2 PIC o _ 4 OPERAND-2 (M)
2 02 FUMCTION-RESULT e & FUMNCTIOM-RESULT (4)
BUppTess
f Til [

80 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

© COBOL Program Selection. Currently selected program with interface type
© COBOL Source View. Contains all related sources for the currently selected COBOL program

© COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

Software AG IDL Extractor for COBOL 81

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL Program Selection

~ COBOL Program | LargeBuf - Interface Type CICS with DFHCOMMAREA large buffer interface

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

82 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL Source View

LargeBuf
11 10 WM-LCE-RESERVED

02 CPERATICN
02 OPERAND-1
02 CPEBRAND-Z
02 FUNCTION-RESULT

FIC

FIC
FIC
FIC
FIC

X(3).

®il).

59(9) BINARY.
59(9) BINARY.
59(9) BINARY.

ik S

m

s

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a

text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL

Interface. This section can be collapsed. If you open the Editor with Modify Interface it is collapsed
by default. The toolbar provides the following actions:

@ Add selected COBOL data item to COBOL Interface.
i Remove selected COBOL data item from COBOL Interface.
Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

4" Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons

Software AG IDL Extractor for COBOL

83

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

= |DL Interface
COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping

LargeBuf W ah + =]
COBOL Interface IDL Interface
» ‘% 01 INOUT-BUFFER Map to In -> 4 <% INOUT-BUFFER In Out
% 02 OPERATION PIC OPERATION (AV1)
% 02 OPERAND-1 PIC Map to Out -> OPERAND-1 (14)
%5 02 OPERAND-2 PIC OPERAND-2 (14}
% 02 FUNCTION-RESULT FUNCTION-RESULT (1)
Suppress
4 1 . r

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail under Mapping Editor IDL Interface Mapping
Functions.

Map to In | Out | InOut A suppressed COBOL data item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Suppress Suppress unneeded COBOL data items.
Set Constant Set COBOL data items to constant.

84 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Set Array Mapping Map an array to a fixed sized or unbounded array.

| Note: This option should be used carefully and requires

knowledge of the COBOL server program. Be aware that
an incorrect mapping could result in runtime errors.

Remove from COBOL In- Remove the data item from the COBOL interface. This also removes
terface the mapped IDL parameter from all IDL interfaces for the current
COBOL program. See COBOL Program Selection.

Toolbar
The toolbar offers the following actions:

¢+ Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.
#, Rename current IDL Interface.

& Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

g+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
“~ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

5. Scalar parameter, mapped to In.
& Scalar parameter, mapped to InOut.

£ Scalar parameter, mapped to Out.

Software AG IDL Extractor for COBOL 85

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

&+ Group parameter, here mapped to InOut.
= REDEFINE parameter, here mapped to InOut.

%, Parameter set to Constant.

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

LargeBuf W a'h + =
COBOL Interface IDL Interface
s 7% 01 INOUT-BUFFER ’ Map to In ->] 4 5 INOUT-BUFFER In Out

E4 02 OPERATION PIC OPERATION (AV1)

&5 02 OPERAND-1 PIC l Map to Out -» l OPERAND-1 (14)

%5 02 OPERAND-2 PIC IR OPERAND-2 (14)

%4 02 FUNCTION-RESULT vap ot~ FUNCTION-RESULT (4)

’ Suppress l
Set Constant...

Map to In | Out | InOut ->
See Map to In, Out, InOut. A suppressed COBOL data item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

® Rename

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

86 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL to IDL Mapping

LargeBuf

] J'.h + -
COBOL Interface IDL Interface
. B 01 INOUT-BUFFER Map to In -> 4 45 INOUT-BUFFER In Out
%5 02 OPERATION PIC +F OPERATION (AV1)
5 02 OPERAND-1 PIC Map to Out -» «F OPERAND-1 ()
&5 02 OPERAND-2 PIC 4P OPERAND-2 (14)
%5 02 FUNCTION-RESULT 4P FUNCTION-RESULT (14)

Suppress

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to In, Out, InOut

= Suppress Unneeded COBOL Data Items
= Set COBOL Data Items to Constants

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

= Set Arrays (Fixed <-> Unbounded)

Map to In, Out, InOut

With the Map to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

> To provide IDL directions

n Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu and as mapping buttons
to make the COBOL data items visible and provide IDL directions in the IDL interface.

J Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subsequent child
COBOL data items and thus to the related IDL parameters in the IDL interface.

Software AG IDL Extractor for COBOL 87

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

2. Subsequent child COBOL data items can only be mapped to the same IDL direction as their
top-level COBOL group data item.

3. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/0OSD RPC server, the amount of data to be transferred to/from the RPC client is reduced
with correct IDL directions.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified — it becomes shorter and tidier. This is useful, for example

® for FILLER data items

= if the RPC client or Adapter Service does not need an Out parameter

= if the RPC server or Adapter Service does not need an In parameter and a low value can be

provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/0OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

> To suppress unneeded COBOL data items

= Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse function Map to In, Out or InOut (see above) available in the context menu
and as mapping button, a COBOL data item is made visible in the IDL interface again.

88 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
bothered with IDL parameters that always contain constants, such as RECORD- TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see below).

> To map COBOL data items to constants

= Use the Set Constant function available in the context menu and as mapping button to define
a constant value for a COBOL data item. You are prompted with a window to enter the constant
value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the function Map to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

DISPATCHER

S M

J L

B L
"ﬁ" T T LI]
D
D R I

A =

Cc L

T Y

Software AG IDL Extractor for COBOL 89

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

This example is described in more detail under Example 1: COBOL Server with Multiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

® If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

= If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

> To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions % or

2 Give the IDL interfaces meaningful names with the toolbar function «b.

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
" Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY'

[

® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

] Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description

4= |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface | Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

#4 |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

90 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

> To select redefine paths

= Use the Map to In, Out or InOut function available in the context menu and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

] Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Set Arrays (Fixed <-> Unbounded)

For COBOL server programs using the message length to transfer a variable number of elements
in a COBOL table with a fixed size (see Tables with Fixed Size) in a variable manner (see Tables
with Variable Size - DEPENDING ON Clause) you need to set the mapping to unbounded array.

For details of such a COBOL server program see Example 2: COBOL Server Using Data Length
to Process a Variable Number of Array Elements.

> To set arrays from fixed to unbounded or vice versa

m Select the COBOL table and use the function Set Arrays (Fixed<->Unbounded) available in
the context menu. A modal window is displayed. Select Unbounded array. The IDL array
parameter will be changed from fixed array /number to an unbounded array /Vnumber, see
array-definitionunder Software AG IDL Grammar in the IDL Editor documentation.

) Notes:

Software AG IDL Extractor for COBOL 91

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

1. This option should be used carefully and requires knowledge of the COBOL server program.
Be aware that an incorrect mapping results in runtime errors.

2. The COBOL Table with a fixed size (see Tables with Fixed Size) used in this manner must be
the last parameter of the COBOL interface; it must not be a subparameter of any other COBOL
table and must not contain any DEPENDING ON clause (see Tables with Variable Size - DEPENDING
ON Clause).

Programming Techniques

This section covers the following topics:

= Example 1: COBOL Server with Multiple Functions
= Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following example where a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

01 OPERATION PIC X(1).

01 OPERANDIL PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT
WHEN "=*"
MULTIPLY OPERANDI BY OPERANDZ
GIVING FUNCTION-RESULT
WHEN .

END-EVALUATE.

92 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

® Web Service

Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

" Java or NET

Instead having a class with a single method, you want a class with multiple methods, one

method for each COBOL function.

" etc.

To do this you need to extract the COBOL server program as described under Map to Multiple

IDL Interfaces.

Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Assume a COBOL CICS large buffer server program has a fixed-sized COBOL table as its last
parameter, similar to COBOL data item COBOL-TABLE-FIX in the example below; each table element
is 100 bytes; the length of COBOL-FIELD1 + COBOL-FIELD2 + COBOL-FIELD3; the length of the data
preceding the COBOL table is described by COBOL-GROUP1; its length is 1000 bytes.

WORKING-STORAGE SECTION.

01 NUMBER-OF-INCOMING-ELEMENTS
01 NUMBER-OF-OUTGOMING-ELEMENTS

LINKAGE SECTION.
01 DFHCOMMAREA.
10 WM-LCB-MARKER
10 WM-LCB-INPUT-BUFFER

10 WM-LCB-INPUT-BUFFER-SIZE

10 WM-LCB-OUTPUT-BUFFER

10 WM-LCB-OUTPUT-BUFFER-SIZE

10 WM-LCB-FLAGS

88 WM-LCB-FREE-OQUTPUT-BUFFER

10 WM-LCB-RESERVED

01 INOUT-BUFFER.
10 COBOL-GROUPI.
20 COBOL-TABLE-PREFIX
10 COBOL-TABLE-FIX
20 COBOL-GROUP2.
25 COBOL-FIELD1
25 COBOL-FIELDZ
25 COBOL-FIELD3

PROCEDURE DIVISION USING DFHCOMMAREA.

PIC S9(8) BINARY.
PIC S9(8) BINARY.

PIC X(4).
POINTER.
PIC S9(8) BINARY.
POINTER.
PIC S9(8) BINARY.
PIC X(1).
VALUE "F".
PIC X(3).

PIC X(1000).
0CCURS 20.

PIC X(30).
PIC X(20).
PIC X(50).

Software AG IDL Extractor for COBOL

93

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

SET ADDRESS OF INOUT-BUFFER TO WM-LCB-INPUT-BUFFER.

SET ADDRESS OF INOUT-BUFFER TO WM-LCB-OUTPUT-BUFFER.

COMPUTE NUMBER-OF-INCOMING-ELEMENTS = (WM-LCB-INPUT-BUFFER-SIZE
- LENGTH OF COBOL-GROUPI)
/ LENGTH OF COBOL-GROUPZ.

COMPUTE WM-LCB-QUTPUT-BUFFER-SIZE = LENGTH OF COBOL-GROUPZ
+ NUMBER-OF-OUTGOING-ELEMENTS * LENGTH OF COBOL-GROUPZ

EXEC CICS RETURN END-EXEC.

During input the COBOL CICS large buffer server program uses the large buffer input length
WM-LCB-INPUT-BUFFER-SIZE to evaluate the NUMBER-OF - INCOMING-ELEMENTS. During output the
large buffer output length is determined accordingly to the NUMBER-OF-OUTGOING-ELEMENTS and
setin WM-LCB-OUTPUT-BUFFER-SIZE.

Although the COBOL table is defined as a table with a fixed size (see Tables with Fixed Size) it is
used in a variable manner, similar to tables with variable Size (see Tables with Variable Size -
DEPENDING ON Clause). In this case it is required to map the COBOL table to an IDL unbounded
array, see Set Arrays (Fixed <-> Unbounded).

94 Software AG IDL Extractor for COBOL

7

Batch with Standard Linkage Calling Convention

1Yo [V o RSP PPRRRU T PTPUPPPPRRI 96
Extracting from a Standard Call INerfaceccvviiiiiiiii e 96
Mapping Editor USEr INtErTACEoiiiiiiiiee e 97
Mapping Editor IDL Interface Mapping FUNCHONScooiiiiiiiiiiee e 104
Programming TECANIQUESuuueei e 108

95

Batch with Standard Linkage Calling Convention

Farameter 1

Parameter2 | | A10| 14 [A100000 |12 |P5

: I : INQUT CoBOL
' 12| a15] 14| 14| At00 |14 < > Server

Farameter n \

14 | A100000 | P2

Introduction

Because COBOL servers with a standard call interface always contain a PROCEDURE DIVISION
header (see PROCEDURE DIVISION Mapping) with all parameters, the COBOL data items of the in-
terface can be evaluated by the IDL Extractor for COBOL and are already offered by the wizard.
In most cases the offered COBOL data items will be correct, but you should always check them
manually.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from a Standard Call Interface

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type Batch with standard linkage calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct.

COBOL Source
File Mame: batipc.cbl

Operating System: z/05

Interface Type: BATCH with standard linkage calling convention b

Input Message same as Qutput Message

96 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Press Next to open the COBOL Mapping Editor.

> To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items to the COBOL Interface, using the context menu or toolbar
available in the COBOL Source View and COBOL Interface. See Notes.

2 Continue with COBOL to IDL Mapping.

] Notes:

1. If there is a PROCEDURE DIVISION header available, the parameters listed define exactly the
COBOL interface. These COBOL data items are within the LINKAGE SECTION and are already
selected to the COBOL interface in initial state when you enter the COBOL Mapping Editor.
The PROCEDURE DIVISION header might not be available if you are extracting from a copybook
or part of the COBOL source.

2. Itis very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

3. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL server programs with standard call interface types, the user interface of the COBOL
Mapping Editor looks like this:

o

w CEOL I"‘mn.grarn BATIPC - Imtertace |ype BATCH watl standand links ae calling comnventsnm

Software AG IDL Extractor for COBOL 97

Batch with Standard Linkage Calling Convention

e batipc.chl VAR S| 4
LINEACGE SECTION. 1
02 IC-IN.
05 CELLAR PIC X{01). -
O feamec + .4 % | EE
COROL Imerface = [BL Interface
PR e] [Maptoln-=] 4 4% ICALCIO Tn Out
a4 TE02IC-M | a -
S5 03 CELLAR PIC X[01) Map to Chut - = | & CELLAR [AM1)
W 03 COVER-DETALS PIC e i It E # COVER-DETALS (AVE)
2 03 USED-AREA FIC 5311 = kit & USED-AREA (M12.2)
03 COD-PAYMENT-MAMNMER & COD-PAYMENT-MAMNER (§
5 03 RISK-ID PIC i) — o RISK-ID (AVEAS)
T 02 1c-oum - &° 1C-0UT
i m [vl 15Lar N i i v

© COBOL Program Selection. Currently selected program with interface type
© COBOL Source View. Contains all related sources for the currently selected COBOL program

© COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

98 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

COBOL Program Selection

~ COBOL Program | BATIPC - Interface Type BATCH with standard linkage calling convention

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL 99

Batch with Standard Linkage Calling Convention

COBOL Source View

batipc.chl &4 3& & 42

31 LINFAGE SECTION.

SES 003210 01 ICALCIO.

33 02 IC-IN.

34 03 CELLAR FIC X (01). -

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the Editor with Modify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

s Remove selected COBOL data item from COBOL Interface.
Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

+ Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons
= |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

100 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping

BATIPC 0 4, =
COBOL Interface + IDL Interface
- GIEr’_ Map to In -» a4 <®ICALCIO In Out
4 B 021C-IN a 45IC-IN
03 CELLAR PIC X(01) Map to Out -> CELLAR (AV1)
%% 03 COVER-DETAILS ~ PIC i COVER-DETAILS (AVE)
% 03 USED-AREA PIC s8(1 USED-AREA (N12.2)
% 03 COD-PAYMENT-MANNER COD-PAYMENT-MANNER (£
L7= A - C R S
- 2 03 RISK-ID PIC X(08) T— . RISK-ID (AVE/15)
. B ozic-out IC-0UT
1 [m = 3 il 4 b

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail under Mapping Editor IDL Interface Mapping
Functions.

Map toIn | Out | InOut A suppressed COBOL data item becomes visible in the IDL in-
terface. Used also to select another REDEFINE path.

Suppress Suppress unneeded COBOL data items.

Set Constant Set COBOL data items to constant.

Remove from COBOL Inter- Remove the data item from the COBOL interface. This also re-
face moves the mapped IDL parameter from all IDL interfaces for

the current COBOL program. See COBOL Program Selection.

Toolbar
The toolbar offers the following actions:

4= Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Software AG IDL Extractor for COBOL 101

Batch with Standard Linkage Calling Convention

Remove current IDL Interface.
#, Rename current IDL Interface.

7 Expand the full tree.

— Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

f+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
“ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

. Scalar parameter, mapped to In.

& Scalar parameter, mapped to InOut.

£ Scalar parameter, mapped to Out.

&+ Group parameter, here mapped to InOut.
= REDEFINE parameter, here mapped to InOut.

%, Parameter set to Constant.

Mapping Buttons

The following buttons are available:

102 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

COBOL to IDL Mapping

BATIPC d £, T
COBOL Interface + IDL Interface
« SITICALEO 4 #SICALCIO In Out
a Bo2IcIN a FIC-IN
% 03 CELLAR PIC X([01) CELLAR [AV1)
% 03 COVER-DETAILS PIC ¥ T T— : COVER-DETAILS (AVE)
% 03 USED-AREA PIC 59(1 “ap — USED-AREA (N12.2)

2 03 COD-PAYMENT-MANMER COD-PAYMENT-MAMNNER (£
% 03 RISK-ID PIC X(08) A RISK-ID (AVE/15)
02 1C-0UT S 1c-ouT

c . c
p b Set Constant... 4 b

Map to In | Out | InOut ->
See Map to In, Out, InOut. A suppressed COBOL data item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.
IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

" Rename

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

COBOL to IDL Mapping

BATIPC o= 4 ==
COBOL Interface = |IDL Interface
« SITICALE Map toIn -> a4 #5ICALCIO In Out
a4 B 021C-IN a 5IC-IN
% 03 CELLAR PIC X(01) Map to Out -> 4P CELLAR (aV1)
% 03 COVER-DETAILS PIC J : #F COVER-DETAILS (AVE)
T 03 USED-AREA PIC 5971 4" USED-AREA (N12.2)
% 03 COD-PAYMENT-MANMER 4F COD-PAYMENT-MANNER (£
5 03 RISK-ID PIC X(08) Suppress 4" RISK-ID (AV8/15)
02 1C-0UT . S8 1c-0UT
- - il < | Tl | 3

Software AG IDL Extractor for COBOL 103

Batch with Standard Linkage Calling Convention

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to In, Out, InOut

= Suppress Unneeded COBOL Data Items
= Set COBOL Data Items to Constants

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

Map to In, Out, InOut

With the Map to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

> To provide IDL directions

» Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu and as mapping buttons
to make the COBOL data items visible and provide IDL directions in the IDL interface.

] Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subsequent child
COBOL data items and thus to the related IDL parameters in the IDL interface.

2. Subsequent child COBOL data items can only be mapped to the same IDL direction as their
top-level COBOL group data item.

3. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/0OSD RPC server, the amount of data to be transferred to/from the RPC client is reduced
with correct IDL directions.

104 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified — it becomes shorter and tidier. This is useful, for example

® for FILLER data items
= if the RPC client or Adapter Service does not need an Out parameter
® if the RPC server or Adapter Service does not need an In parameter and a low value can be

provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/0OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

> To suppress unneeded COBOL data items

= Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse function Map to In, Out or InOut (see above) available in the context menu
and as mapping button, a COBOL data item is made visible in the IDL interface again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
bothered with IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see below).

> To map COBOL data items to constants

= Use the Set Constant function available in the context menu and as mapping button to define
a constant value for a COBOL data item. You are prompted with a window to enter the constant
value.

Software AG IDL Extractor for COBOL 105

Batch with Standard Linkage Calling Convention

) Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the function Map to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

DISPATCHER

S M

J U

B L
"q' T T W
D
O R I

A F

c L

T Y

This example is described in more detail under Example 1: COBOL Server with Multiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

" If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

® If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

106 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

> To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions + or

2 Give the IDL interfaces meaningful names with the toolbar function «b.

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
" Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD’, 'SUBTRACT', MULTIPLY'

o

® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

] Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description

4= |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface | Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

#4 |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

Software AG IDL Extractor for COBOL 107

Batch with Standard Linkage Calling Convention

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

> To select redefine paths

= Use the Map to In, Out or InOut function available in the context menu and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Programming Techniques

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following example where a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

01 OPERATION PIC X(1).

01 OPERANDI PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERANDI OPERAND2
GIVING FUNCTION-RESULT

108 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERANDZ
GIVING FUNCTION-RESULT

WHEN .

END-EVALUATE.

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

® Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

" Java or NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

" etc.

To do this you need to extract the COBOL server program as described under Map to Multiple
IDL Interfaces.

Software AG IDL Extractor for COBOL 109

110

8

Micro Focus with Standard Linkage Calling Convention

Introduction

Extracting from a Standard Call INEIfaCeviiiiiiiieeie e
Mapping EdItor USEr INTEITACEoviiiiee e
Mapping Editor IDL Interface Mapping FUNCHONScooiiiiiiiiiiee e

Programming Techniques

M

Micro Focus with Standard Linkage Calling Convention

Farameter 1

Parameter2 | | A10| 14 [A100000 |12 |P5

: I : INQUT CoBOL
' 12| a15] 14| 14| At00 |14 < > Server

Farameter n \

14 | A100000 | P2

Introduction

Because COBOL servers with a standard call interface always contain a PROCEDURE DIVISION
header (see PROCEDURE DIVISION Mapping) with all parameters, the COBOL data items of the in-
terface can be evaluated by the IDL Extractor for COBOL and are already offered by the wizard.
In most cases the offered COBOL data items will be correct, but you should always check them
manually.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from a Standard Call Interface

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type Micro Focus with standard linkage calling convention, the Ex-
tractor Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct.

COBOL Source
File Mame: miftipc.chbl

Operating System: Windows

Interface Type: [Micro Focus with standard linkage calling convention -

Press Next to open the COBOL Mapping Editor.

112 Software AG IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

> To select the COBOL interface data items of your COBOL server

1

2

J

Add the COBOL data items to COBOL Interface by using the context menu or toolbar available
in the COBOL Source View and COBOL Interface. See Notes.

Continue with COBOL to IDL Mapping.

Notes:

If there is a PROCEDURE DIVISION header available, the parameters listed define exactly the
COBOL interface. These COBOL data items are within the LINKAGE SECTION and are already
selected to the COBOL interface in initial state when you enter the COBOL Mapping Editor.
The PROCEDURE DIVISION header might not be available if you are extracting from a copybook
or part of the COBOL source.

It is very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas

of

Fo

the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

r COBOL server programs with standard call interface types, the user interface of the COBOL

Mapping Editor looks like this:

o

» COBROL Program BATIFL - Interface Type Micro Foous wih standard inkage calling converison

Software AG IDL Extractor for COBOL 113

Micro Focus with Standard Linkage Calling Convention

9 miftige.chl Ll Ei 2 |
LINHKAGE SECTIUN.
0032140 01 ICALCIO.
U2 IC-IN.
03 CELLAR PIC X{01).
03 COVER-DETAILS PIC {08).
b 03 USED-ARER PIC 59|12)V3(2) -
= T L TR CWRITNTT LEECNTARTR T LLREST- K i
9 COEOL to IDL Mapping
BATIPC 4L N| B
COBOL Interface IDL Interface
. ORI [—re———r— 2 F1CALC0 o
a 15 021C-M ' a 51N
%2 03 CELLAR PIC X[01) [Map to Out-> | & CELLAR [av1)
03 COVER-DETAILS PIC G(OE) S & COVER-DETAILS (KV1E)
T4 03 USED-AREA PIC 59012V — 4 USED-AREA [N12.2)
T3 03 COD-PAYMENT-MAMMER Pt & COD-PAYMENT-MANMER (KV16)
03 BISK-ID MIC NDE) O l Suppress 4P REE-ID (KVI6/15)
& 021C-0UT y & 1c-ouT
ek ar
4 o 13 # Iid]
@ <Bock | ten Emish | Cancel

@ COBOL Program Selection. Currently selected program with interface type
© COBOL Source View. Contains all related sources for the currently selected COBOL program

© COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

114 Software AG IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

COBOL Program Selection

~ COBOL Program | BATIPC - Interface Type Micro Focus with standard linkage calling convention

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL 115

Micro Focus with Standard Linkage Calling Convention

COBOL Source View

~ COBOL Program | BATIPC - Interface Type Micro Focus with standard linkage calling convention

mftipe.cbl i % <1l“\J| o
1 LINEAGE SECTION. -
:
3 02 IC-IN.
4 03 CELLAR PIC X ({01).
5 03 CCVER-DETAILS PIC G(08).

03 USED-AREA PIC 59(12)V9(2).

] o

A2 OT TIAVMTAT MARNMT T T AT AOS

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the Editor with Modify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

#h Remove selected COBOL data item from COBOL Interface.
Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

+" Show dialog to find text in Source.
The same functionality is also available from the context menu.
COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons

116 Software AG IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

= |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping
BATIPC

COBOL Interface

s Bo21cN
%% 03 CELLAR PIC X(01)
%% 03 COVER-DETAILS PIC G(08)
% 03 USED-AREA PIC S8(12)Vg
% 03 COD-PAYMENT-MANNER PI¢
& 03 RISK-ID PIC N(08) O
. B o21c-0UT

Map to In ->

Map to Out -»

Suppress

IDL Interface
4 4SICALCIO In Out
a 48IC-IN
CELLAR (AV1)
COVER-DETAILS (KV16)
USED-AREA (N12.2)
COD-PAYMENT-MANNER (KVL6)
M RISK-ID (KV16/15)
& 1c-ouT

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons

provide additional information.

Context Menu

The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail under Mapping Editor IDL Interface Mapping

Functions.

Map to In | Out | InOut

A suppressed COBOL data item becomes visible in the IDL in-

terface. Used also to select another REDEFINE path.
Suppress Suppress unneeded COBOL data items.
Set Constant Set COBOL data items to constant.

Remove from COBOL Inter- Remove the data item from the COBOL interface. This also re-
face moves the mapped IDL parameter from all IDL interfaces for
the current COBOL program. See COBOL Program Selection.

Software AG IDL Extractor for COBOL 117

Micro Focus with Standard Linkage Calling Convention

Toolbar
The toolbar offers the following actions:

4 Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.
#, Rename current IDL Interface.

7 Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

g+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
“ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

. Scalar parameter, mapped to In.

& Scalar parameter, mapped to InOut.
[E! Scalar parameter, mapped to Out.
&+ Group parameter, here mapped to InOut.

=+ REDEFINE parameter, here mapped to InOut.

%, Parameter set to Constant.

118 Software AG IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

BATIPC o 4 ==
COBOL Interface IDL Interface
[7=n G m1e e
s {5 01ICALCIO [Map toIn -»] a 4FICALCIO In Out
4 B021C-IN a 45IC-IN
% 03 CELLAR PIC X(01) [Map to Out ->»] CELLAR (AV1)
“£5 03 COVER-DETAILS PIC G(08) I COVER-DETAILS (KV16)
%4 03 USED-AREA PIC 59(12)V9 g o mn USED-AREA (N12.2)
&4 03 COD-PAYMENT-MANMER PIC COD-PAYMENT-MANNER (KV16)
4 03 RISK-ID PIC N(D8) O [P—] M RISK-ID (KV16/15)
02 1C-0UT = S 1c-ouT
Set Constant...
4 [El 2

Map to In | Out | InOut ->
See Map to In, Out, InOut. A suppressed COBOL data item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

" Rename

* Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

Software AG IDL Extractor for COBOL 119

Micro Focus with Standard Linkage Calling Convention

COBOL to IDL Mapping

BATIPC o 4 SIS
COBOL Interface IDL Interface
a B 01 ICALCIO Map toIn-> 4 4% ICALCIO In Out
a B021C-IN a 4FICIN
55 03 CELLAR PIC X(01) Map to Out -» 4F CELLAR (aV1)
%5 03 COVER-DETAILS PIC G(08) 4P COVER-DETAILS (KV15)
& 03 USED-AREA PIC S9(12)Vg 4F USED-AREA (MN12.2)
&5 03 COD-PAYMENT-MANMER PI¢ &P COD-PAYMENT-MANNER (KV16)
ke . - oMMRT o
B o3RiskD PIC N{@8) O Po— . 4 RISK-ID (KV16/15)
& 021C-0UT . P Ic-ouT
4 [o 1L} 3

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to In, Out, InOut

= Suppress Unneeded COBOL Data Items
= Set COBOL Data Items to Constants

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

Map to In, Out, InOut

With the Map to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

> To provide IDL directions

n Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu and as mapping buttons
to make the COBOL data items visible and provide IDL directions in the IDL interface.

J Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subsequent child
COBOL data items and thus to the related IDL parameters in the IDL interface.

2. Subsequent child COBOL data items can only be mapped to the same IDL direction as their
top-level COBOL group data item.

120 Software AG IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

3. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/0OSD RPC server, the amount of data to be transferred to/from the RPC client is reduced
with correct IDL directions.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified — it becomes shorter and tidier. This is useful, for example

® for FILLER data items

= if the RPC client or Adapter Service does not need an Out parameter

= if the RPC server or Adapter Service does not need an In parameter and a low value can be

provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/0OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

> To suppress unneeded COBOL data items

m Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse function Map to In, Out or InOut (see above) available in the context menu
and as mapping button, a COBOL data item is made visible in the IDL interface again.

Software AG IDL Extractor for COBOL 121

Micro Focus with Standard Linkage Calling Convention

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
bothered with IDL parameters that always contain constants, such as RECORD- TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see below).

> To map COBOL data items to constants

= Use the Set Constant function available in the context menu and as mapping button to define
a constant value for a COBOL data item. You are prompted with a window to enter the constant
value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the function Map to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

DISPATCHER

S M

J L

B L
"ﬁ" T T LI]
D
D R I

A =

Cc L

T Y

122 Software AG IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

This example is described in more detail under Example 1: COBOL Server with Multiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

= If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

= If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

2 To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions % or

2 Give the IDL interfaces meaningful names with the toolbar function «b.

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
" Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD’, 'SUBTRACT', MULTIPLY'

[

® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

] Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description

4= |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface | Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

#4 |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

Software AG IDL Extractor for COBOL 123

Micro Focus with Standard Linkage Calling Convention

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

> To select redefine paths

= Use the Map to In, Out or InOut function available in the context menu and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Programming Techniques

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following example where a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

124 Software AG IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

01 OPERATION PIC X(1).

01 OPERANDI PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT
WHEN "*"
MULTIPLY OPERANDI BY OPERANDZ
GIVING FUNCTION-RESULT
WHEN

END-EVALUATE.

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

® Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

" Java or NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

" etc.

To do this you need to extract the COBOL server program as described under Map to Multiple
IDL Interfaces.

Software AG IDL Extractor for COBOL 125

126

9

IMS BMP with Standard Linkage Calling Convention

Introduction

Extracting from an IMS BMP Standard Call Interfacecccviiiiiiiiiiii e
Mapping EdItor USEr INTEITACEoviiiiee e
Mapping Editor IDL Interface Mapping FUNCHONScooiiiiiiiiiiee e

Programming Techniques

127

IMS BMP with Standard Linkage Calling Convention

Farameter 1
A10] 14 | A100000 |12 [Ps
Farameter 2
| PCB POINTER
: - — : INOUT CoBOL
' 12| a15| 14| 14| a100 | 14 < > Server
Parameter n .
14 | A100000 | P2
Introduction

If your IMS BMP program contains PCB pointers, you have assigned the IMS PSB list in the previous
step Step 4: Define the Extraction Settings and Start Extraction. If a required IMS PSB list is not
assigned, the PCB pointers are not detected; go back to Step 4: Define the Extraction Settings and
Start Extraction and assign the IMS PSB list first.

If the IMS PSB list is correctly assigned, the COBOL data items (including the PCB pointers) can
be evaluated by the extractor because this type of COBOL server contains a PROCEDURE DIVISION
header (see PROCEDURE DIVISION Mapping) with all parameters. In most cases the offered COBOL
data items will be correct, but you should always check them manually.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from an IMS BMP Standard Call Interface

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type IMS BMP with standard linkage calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct.

128 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

COBOL Source
File Mame: CALC

Operating System: z/05

Interface Type: IMS BMP with standard linkage calling convention -
Input Message same as Qutput Message
IM5 MPP message interface (IMS Connect) IMS BMP with standard linkage calling convention
*10 : IMS PSE List: C:\Demo\IMSBMP\MYPSBLST

Transaction Name: &
- B CICS with Channel Container calling convention

Create IDL parameter for Transaction N - specification at runti i
reate IDL parameter for Transaction Name - specification at runtime EntireXChannel

You can set optionally the IMS PSB List. If your COBOL server contains PCB pointers, choose
Browse. Otherwise, the PCB pointers are not detected and cannot be provided by the IMS RPC
Server to your COBOL server at runtime, and unexpected behavior may occur. For the contents
of the IMS PSB list, see IMS PCB Pointer IDL Rules.

> To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items to the COBOL Interface using the context menu or toolbar
available in the COBOL Source View and COBOL Interface. See Notes.

2 Continue with COBOL to IDL Mapping.

) Notes:

1. If there is a PROCEDURE DIVISION header available, the parameters listed define exactly the
COBOL interface. These COBOL data items are within the LINKAGE SECTION and are already
selected to the COBOL interface in initial state when you enter the COBOL Mapping Editor.
The PROCEDURE DIVISION header might not be available if you are extracting from a copybook
or part of the COBOL source.

2. Itis very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

3. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

4. Make sure the PCB pointers are also selected at the correct position.

The user interface of the COBOL Mapping Editor is described below.

Software AG IDL Extractor for COBOL 129

IMS BMP with Standard Linkage Calling Convention

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL server programs with standard call interface types, the user interface of the COBOL
Mapping Editor looks like this:

o = DOBOL Program CALC - Interface Type IM5 BMP with standard linkage calling convertion
2 CALC iy e &
< LINELGE SECTION.
k 5 LTERM-HAME PIC X (&) .
3 FILLER PIC X(2).
3 I0-5TATUS PIC X ([(2) -
2 FILLER. =
¥
o COBOL ta DL Mapping
CALC + 4 X| B
COBOL Interface M. Imterface
4 E110-pCE Mag to jn -> a #*10-PCE In Out

2 3 LTERM-MAME PIC ¥iE) & LTERM-MAME [AvE)

B 3FLLER PIC X2 Map to Out -= & 10-STATUS [ANZ)

B 3 1D-STATUS PIC X[2) & FILLER,_2

2 3 FILLER & MODD-HAME [AVE)

B 3 MOD-MAME PIC X(E] & USERID (AVE)

T4 3 useErID PIC X(8) Suppress

() Fnish | Cancel
130

Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

© COBOL Program Selection. Currently selected program with interface type
© COBOL Source View. Contains all related sources for the currently selected COBOL program

© COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

Software AG IDL Extractor for COBOL 131

IMS BMP with Standard Linkage Calling Convention

COBOL Program Selection

+ COBOL Program | CALC - Interface Type IMS BMP with standard linkage calling convention

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

132 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

COBOL Source View
CALC I'ﬁ & <L‘,| Q"'
T4 LINFEAGE SECTION. -
77 3 LTERM-MNAME PIC X(8).
78 3 FILLER PIC Xi2).
T 3 IO-5TATUS PIC X(2).
g8 3 FILLER. s

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the Editor with Modify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

ih Remove selected COBOL data item from COBOL Interface.
Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

+" Show dialog to find text in Source.
The same functionality is also available from the context menu.
COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons

Software AG IDL Extractor for COBOL 133

IMS BMP with Standard Linkage Calling Convention

= |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping

CALC A, el
COBOL Interface IDL Interface
a4 T5110-PCB Map to In -> 4 #510-PCB InOut
% 3 LTERM-MAME PIC X(8) LTERM-NAME (AVS)
3FILLER PIC X(2) Map to Out -» [0-STATUS (4V2)
¥ 3 10-5TATUS PIC Xi2) € FILLER 2
. B 3FLLER MOD-NAME (AVE)
% 3 MOD-NAME PIC X(3) USERID (AV&)
% 3 USERID PIC X(8)

Suppress

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons

provide additional information.

Context Menu

The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described
Functions.

Map to In | Out | InOut

Suppress
Set Constant

Remove from COBOL Inter-
face

in more detail under Mapping Editor IDL Interface Mapping

A suppressed COBOL data item becomes visible in the IDL in-
terface. Used also to select another REDEFINE path.

Suppress unneeded COBOL data items.
Set COBOL data items to constant.

Remove the data item from the COBOL interface. This also re-
moves the mapped IDL parameter from all IDL interfaces for
the current COBOL program. See COBOL Program Selection.

134

Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

Toolbar
The toolbar offers the following actions:

4 Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.
#, Rename current IDL Interface.

7 Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

g+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
“ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

. Scalar parameter, mapped to In.

& Scalar parameter, mapped to InOut.
[Scalar parameter, mapped to Out.
& Group parameter, here mapped to InOut.

=+ REDEFINE parameter, here mapped to InOut.

%, Parameter set to Constant.

Software AG IDL Extractor for COBOL 135

IMS BMP with Standard Linkage Calling Convention

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

CALC Z £ 7 B
COBOL Interface IDL Interface
4 B110-pPCE [Map toIn -> l 4 4%10-PCB In Qut
% 3 LTERM-NAME PIC X(8) LTERM-NAME ([AVS)
3FILLER PIC X{2 [Map to Out ->] I0-STATUS (AV2)
L 310-STATUS PIC Xi2) FEER— S FILLER 2
- Viap to Inut ->
L 3FILLER B MOD-NAME (AVE)
1 3 MOD-NAME PIC X(8) USERID (AVS)
% 3 USERID PIC X(8) [Suppress l
Set Constant...

Map to In | Out | InOut ->
See Map to In, Out, InOut. A suppressed COBOL data item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

®" Rename

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

136 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

COBOL to IDL Mapping

CALC y s T O
COBOL Interface IDL Interface
4 5110-PCB Map to In -> 4 4510-PCE InOut
&5 3 LTERM-NAME PIC X(8) 4F LTERM-NAME (AVS)
3FILLER PIC X{2 Map to Out -» 47 I0-STATUS (AV2)
& 310-STATUS PIC X(2) . ¢S FILLER 2
L 3FILLER 47 MOD-NAME (AVS)
5 3 MOD-NAME PIC X(8) <F USERID (AvE)
% 3 USERID PIC X(8) Suppress

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to In, Out, InOut

= Suppress Unneeded COBOL Data ltems
= Set COBOL Data Items to Constants

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

Map to In, Out, InOut

With the Map to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

> To provide IDL directions

» Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu and as mapping buttons
to make the COBOL data items visible and provide IDL directions in the IDL interface.

‘J Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subsequent child
COBOL data items and thus to the related IDL parameters in the IDL interface.

2. Subsequent child COBOL data items can only be mapped to the same IDL direction as their
top-level COBOL group data item.

Software AG IDL Extractor for COBOL 137

IMS BMP with Standard Linkage Calling Convention

3. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/0OSD RPC server, the amount of data to be transferred to/from the RPC client is reduced
with correct IDL directions.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified — it becomes shorter and tidier. This is useful, for example

® for FILLER data items

= if the RPC client or Adapter Service does not need an Out parameter

= if the RPC server or Adapter Service does not need an In parameter and a low value can be

provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/0OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

> To suppress unneeded COBOL data items

m Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse function Map to In, Out or InOut (see above) available in the context menu
and as mapping button, a COBOL data item is made visible in the IDL interface again.

138 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
bothered with IDL parameters that always contain constants, such as RECORD- TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see below).

> To map COBOL data items to constants

= Use the Set Constant function available in the context menu and as mapping button to define
a constant value for a COBOL data item. You are prompted with a window to enter the constant
value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the function Map to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

DISPATCHER

S M

J L

B L
"ﬁ" T T LI]
D
D R I

A =

Cc L

T Y

Software AG IDL Extractor for COBOL 139

IMS BMP with Standard Linkage Calling Convention

This example is described in more detail under Example 1: COBOL Server with Multiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

® If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

= If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

> To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions % or

2 Give the IDL interfaces meaningful names with the toolbar function «b.

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
" Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY'

[

® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

] Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description

4= |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface | Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

#4 |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

140 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

> To select redefine paths

= Use the Map to In, Out or InOut function available in the context menu and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Programming Techniques

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following example where a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

Software AG IDL Extractor for COBOL 141

IMS BMP with Standard Linkage Calling Convention

01 OPERATION PIC X(1).

01 OPERANDI PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT
WHEN "*"
MULTIPLY OPERANDL BY OPERANDZ
GIVING FUNCTION-RESULT
WHEN .

END-EVALUATE.

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

® Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

" Java or .NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

" etc.

To do this you need to extract the COBOL server program as described under Map to Multiple
IDL Interfaces.

142 Software AG IDL Extractor for COBOL

10 CICS with DFHCOMMAREA Calling Convention - In

different to Out

LI 1211 (0o 1o [o) o RSP PPPTPPRR 144
= Extracting from a CICS DFHCOMMAREA Programcc.uvviviiiieiiiiiiiiiie e 144
= Mapping Editor USer INtErfaceooiiiiiiiiii e 145
= Mapping Editor IDL Interface Mapping FUNCHONSooiiiiiiiii e 152
L (oo = 01T 1o TN o] 1o U= 156

143

CICS with DFHCOMMAREA Calling Convention - In different to Out

DFHCOMMAREA

4| azs | a5 | 14 > COROL

10| 14 | At00000 | P5 | 14 < Server
ouT

Introduction

Depending on the programming style used in the CICS program and the various different tech-
niques for accessing the CICS DFHCOMMAREA interface, finding the relevant COBOL data structures
can be a complex and time-consuming task that may require CICS COBOL programming know-
ledge. Please note also the following:

® A CICS program does not require a PROCEDURE DIVISION header, where parameters are normally
defined. See PROCEDURE DIVISION Mapping.
® The DFHCOMMAEA can be omitted in the linkage section.

= If there is no DFHCOMMAREA in the linkage section or no PROCEDURE DIVISION header present in
the PROCEDURE DIVISION, the CICS preprocessor completes the interface of the COBOL server
and adds a DFHCOMMAREA and a PROCEDURE DIVISON header to the CICS program before compil-
ation.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from a CICS DFHCOMMAREA Program

This section assumes Input Message same as Output Message is not checked. COBOL output
and COBOL input parameters are different, that is, the DFHCOMMAREA on output is overlaid
with a data structure that is different to the data structure on input. See the examples provided
under Programming Techniques.

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type CICS with DFHCOMMAREA calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and check box Input Message same as Output Message is
cleared.

144 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL Source

File Mame: custinfo.cbl

Operating System: z/05S

Interface Type: ’ CICS with DFHCOMMAREA calling convention -

Dinj:_rut Message same as Qutput Message!

Press Next to open the COBOL Mapping Editor.

> To select the COBOL interface data items of your COBOL server

1 Addthe COBOL data items of the CICS input message to Input Message by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. See Notes.

2 Add the COBOL data items of the CICS output message to Output Message by using the
context menu and toolbars available in the COBOL Interface and IDL Interface. See Notes.

3 Continue with COBOL to IDL Mapping.

] Notes:

1. If a DFHCOMMAREA is present, the DFHCOMMAREA COBOL data item itself cannot be selected. In this
case, select the COBOL data items directly subordinated to DFHCOMMAREA and map to IDL. See
Map to.

2. Itis very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

3. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

4. See the examples provided under Programming Techniques.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View

Software AG IDL Extractor for COBOL 145

CICS with DFHCOMMAREA Calling Convention - In different to Out

= COBOL to IDL Mapping

For COBOL interface types where COBOL input and COBOL output parameters are different, the
user interface of the COBOL Mapping Editor looks like this:

L1
= COBOL Program | CUSTIMFO - Interface Type CICS with DFHCOMMAREA calling comeeritsan
2 custindio.chi ¥ A
MODULE 170 DATHR r
01 W5-I0-DRTA PIC X(454) .
Q03700 01 WS-CONTACT REDEFIHES WS-I0-DATA.
03 COM-DATA.
T 04 CON-MRAME PIC X (0&0) .
411 04 CON-FIRST PIC X (D&Q) - =
O[T coBot 1o 1DL Mapping
CUSTINEQ + AN B
COROL Interface =g IO It face
P i
Input Message I #’p LS-CMAD (AW In
e . 4 LS-KEY (NUB) Tn
M 1215-CMD IC X(a1) & L5-DATA [AV454) In
T 02 LS-KEY PIC Q(008) WS- CONTACT ut
T8 02 LS-DATA FIC X454 A .
I - . 4 #° CON-DATA
& COM-NAME (AVED)
& CON-FIRST (AVG0)
Output Message +: COMN-TITLE (AV12)
B+ @ OI WS-10-DATA PIC X7d = @' CON-PHONE (AVa0)
i*| & @5 0L WS-CONTACT REDEFINES WS_|| B . Ex::‘: VAVED)
4 5 03 CON-DATA & : {ANA0)
T 04 CON-NAME pic = |~
] m k
i) [cBeck | heas | Enish | Cancel
L

@ COBOL Program Selection. Currently selected program with interface type

@ COBOL Source View. Contains all related sources for the currently selected COBOL program

© COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

146

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL Program Selection

» COBOL Program | CUSTINFO - Interface Type CICS with DFHCOMMAREA calling convention

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL 147

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL Source View
custinfo.cbl @ rﬁ % <:«‘, ‘R):'
36 * MODULE I/fC DATA -
37 01 W5-IC-DATR PIC X (454).
39 03 CCH-DATL.
4 04 CON-NAME PIC X (0&0).
41 04 COM-FIRST PIC X (060). 57

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the Editor with Modify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.
Add selected COBOL data item to COBOL Interface as Output Message.
is Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

<3 Reset COBOL Interface to initial state.

4" Show dialog to find text in Source.
The same functionality is also available from the context menu.
COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons

148 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

= |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping

CUSTINFO W a‘p H =
COBOL Interface H [[IDL Interface
Input Message LS-CMD (AV1) In
- LS-KEY (NUE) In
= 02 L5-CMD PIC X(001) LS-DATA (AVA54) In
1 02 Ls-KEY PIC 9(008) s s
e Suppress 4 WS-CONTACT Out
=] 02 L5-DATA PIC X(454) 4 48 CON-DATA

CON-NAME [AVE0)
CON-FIRST (AVG0)

Cutput Message COM-TITLE (AV12)
= COMN-PHO TAV3I0)
& & 01 ws-10-DATA PIC X4 ~ :::j f:*FILNE;’J
72| 4 25 01 WS-CONTACT REDEFINES Ws_||= CON-MAIL (AVe0)
CON-MSG (AV40)

4+ 7503 CON-DATA
%, 04 CON-NAME PIC ~
a4 1 2

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail under Mapping Editor IDL Interface Mapping

Functions.

Map to A suppressed COBOL data item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Suppress Suppress unneeded COBOL data items.

Set Constant Set COBOL data items to constant.

Software AG IDL Extractor for COBOL 149

CICS with DFHCOMMAREA Calling Convention - In different to Out

Remove from COBOL In- Remove the data item from the COBOL interface. This also removes
terface the mapped IDL parameter from all IDL interfaces for the current
COBOL program. See COBOL Program Selection.

Toolbar
The toolbar offers the following actions:

% Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.
#, Rename current IDL Interface.

7 Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

7+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
“~ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

. Scalar parameter, mapped to In.
£ Scalar parameter, mapped to Out.

&+ Group parameter, here mapped to In.

=" REDEFINE parameter, here mapped to Out.

%, Parameter set to Constant.

150 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

CUSTINFO ¥ b + =
COBOL Interface IDL Interface
Input Message Map to -» L5-CMD (AV1) In
% 02 LS-CMD BIC K001 LS-KEY (MUB) In
— oi LS'EE'_; pl:g-:;é]‘- LS-DATA (AV454) In
e - Jua) Suppress s “WS-CONTACT Out
] 02 L5-DATA PIC X(454) s 45 CON-DATE

Set Lonstant... CON-NAME (AV60)

COM-FIRST (AV6G0)
ON-TITLE (AV12)
JN-PHOME (AWV30)

COMN-MAIL (AVED)
Cr’“

Output Message
Fr 3-DATA -

@ 01 WS-I0-DATA PIC X(4
82| a @3 01 WS-CONTACT REDEFINES WS e
2 %, 03 CON-DATA ON-MSG (AV40)
%, 04 CON-NAME PIC =
4 3

Map to ->
A suppressed COBOL data item becomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

® Rename

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

Software AG IDL Extractor for COBOL 151

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL to IDL Mapping
CUSTINFO W a'p | B B
COBOL Interface IDL Interface

#F L5-CMD (A1) In
#F L5-KEY [NUB) In

Input Message

[C W Y

=l 02 LS-__HP PIC .:K_':]':ll, QP LS-DATA (AVA54) In
Guse b — . WECONTACT ou
% 02 LS-DATA PIC X(454) =

4 45 CON-DATA
4" CON-NAME (AV60)
4" CON-FIRST (AVG0)
Output Message 4" CON-TITLE (AV12)
o o 4" CON-PHONE (AV30)

R_I::.._'_'_'—'— FIL A4 =
i+ 4 2 01 WS-CONTACT REDEFINES WS 4 CON-MAIL (AV60)
<P CON-MSG (AV40)

4 203 CON-DATA
%2 04 CON-NAME PIC ~

fire

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to

= Suppress Unneeded COBOL Data Items
= Set COBOL Data Items to Constants

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

Map to

With the Map to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

> To map a COBOL data item to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the context menu and as mapping button to make a COBOL data
item visible as an IDL parameter in the input message of the IDL interface.

2 Do the same for the output message of the IDL interface.

J Notes:

1. If a COBOL group is mapped, all subsequent child COBOL data items are also made visible in
the IDL interface.

152 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

2. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified — it becomes shorter and tidier. This is useful, for example

® for FILLER data items
= if the RPC client or Adapter Service does not need an Out parameter
® if the RPC server or Adapter Service does not need an In parameter and a low value can be

provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/0OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

> To suppress unneeded COBOL data items

» Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse function Map to (see above) available in the context menu and as mapping
button, a COBOL data item can be made visible in the IDL interface again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
bothered with IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see below).

Software AG IDL Extractor for COBOL 153

CICS with DFHCOMMAREA Calling Convention - In different to Out

> To map COBOL data items to constants

m Use the Set Constant function available in the context menu and as mapping button to define
a constant value for a COBOL data item. You are prompted with a window to enter the constant
value.

) Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the function Map to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

DISPATCHER

s ("]

) L

B L
A T T L]
D
O R I

A P

C L

T ¥

This example is described in more detail under Example 1: COBOL Server with Multiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

" If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

154 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

= If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

> To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions + or

2 Give the IDL interfaces meaningful names with the toolbar function «b.

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
" Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY'

o

® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

] Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description

4= |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface |Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

#4 |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

Software AG IDL Extractor for COBOL 155

CICS with DFHCOMMAREA Calling Convention - In different to Out

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

> To select redefine paths

m Use the Map to function available in the context menu and as mapping button to make the
COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

] Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Programming Techniques

This section covers the following topics:

= Example 1: COBOL Server with Multiple Functions
= Example 2: Redefines

= Example 3: Buffer Technique

= Example 4: COBOL SET ADDRESS Statements

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or 0PERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following example where a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

156 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

01 OPERATION PIC X(1).

01 OPERANDI PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT
WHEN "=*"
MULTIPLY OPERANDI BY OPERANDZ
GIVING FUNCTION-RESULT
WHEN

END-EVALUATE.

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

® Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

" Java or NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

" etc.

To do this you need to extract the COBOL server program as described under Map to Multiple
IDL Interfaces.

Example 2: Redefines
The output data is described with a REDEFINE that overlays the input data as in the following ex-

ample. In this case you need to select IN-BUFFER for the input message and 0UT-BUFFER for the
output message of the COBOL interface.

Software AG IDL Extractor for COBOL 157

CICS with DFHCOMMAREA Calling Convention - In different to Out

LINKAGE SECTION.
01 DFHCOMMAREA.

02 IN-BUFFER.
03 OPERATION
03 OPERAND-1
03 OPERAND-2
02 OUT-BUFFER REDEFINES IN-BUFFER.
03 FUNCTION-RESULT

PROCEDURE DIVISION USING DFHCOMMAREA.

PIC X(1).
PIC S9(9) BINARY.
PIC S9(9) BINARY.

PIC S9(9) BINARY.

* process the IN-BUFFER and provide result in OUT-BUFFER

EXEC CICS RETURN.

Example 3: Buffer Technique

On entry, the server moves linkage section field(s) - often an entire buffer - into the working storage
and processes the input data inside the working storage field(s). Before return, it moves the
working storage field(s) - often an entire buffer - back to the linkage section. In this case, the relevant
COBOL data items are described within the working storage section. You need to select IN-BUFFER
for the input message and OUT-BUFFER for the output message of the COBOL interface.

WORKING STORAGE SECTION
01 IN-BUFFER.

02 OPERATION

02 OPERAND-1

02 OPERAND-2
01 OUT-BUFFER.

02 FUNCTION-RESULT
LINKAGE SECTION
01 DFHCOMMAREA.

02 I0-BUFFER

PROCEDURE DIVISION USING DFHCOMMAREA.
MOVE IO-BUFFER TO IN-BUFFER.

PIC X(1).
PIC S9(9) BINARY.
PIC S9(9) BINARY.

PIC S9(9) BINARY.

PIC X(9).

* process the IN-BUFFER and provide result in OUT-BUFFER

MOVE OUT-BUFFER TO IO-BUFFER.
EXEC CICS RETURN.

158

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Example 4: COBOL SET ADDRESS Statements

COBOL SET ADDRESS statements are used to manipulate the interface of the CICS server. On entry,
the server addresses the input data with a (dummy) structure IN-BUFFER defined in the linkage
section. Upon return, the server addresses the output data again with a different (dummy) structure
OUT-BUFFER defined in the linkage section. You need to select IN-BUFFER for the input message
and 0UT-BUFFER for the output message of the COBOL interface.

LINKAGE SECTION.
01 IN-BUFFER.

02 OPERATION PIC X(1).

02 OPERAND-1 PIC S9(9) BINARY.

02 OPERAND-2 PIC S9(9) BINARY.
01 OUT-BUFFER.

02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION.
SET ADDRESS OF IN-BUFFER TO DFHCOMMAREA.
* process the IN-BUFFER and provide result in OUT-BUFFER
SET ADDRESS OF QUT-BUFFER TO DFHCOMMAREA.
EXEC CICS RETURN.

Software AG IDL Extractor for COBOL 159

160

11 CICS with DFHCOMMAREA Large Buffer Interface - In

different to Out

LI 1211 (0o 1o [o) o RSP PPPTPPRR 162
= Extracting from a CICS DFHCOMMAREA Large Buffer Programccccvvviiiiiiiiiiiiiiccceeeecciiieeeeee 163
= Mapping Editor USer INtErfaceooiiiiiiiiii e 164
= Mapping Editor IDL Interface Mapping FUNCHONSooiiiiiiiii e 171
L (oo = 01T 1o TN o] 1o U= 176

161

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

DFHCOMMAREA

IN POINTER | QUT POINTER

b J

10| 14 | Azs

hJ

A10] 14 | Atooooo [Ps | 14

Large buffer

Introduction

> COBOL

Server
ouT

A DFHCOMMAREA Large Buffer Interface has the structure given below in the linkage section. The
field subordinated under DFHCOMMAREA prefixed with WM- LCB describe this structure. The field
names themselves can be different, but the COBOL data types (usage clauses) must match exactly.

LINKAGE SECTION.

01 DFHCOMMAREA.
10 WM-LCB-MARKER
10 WM-LCB-INPUT-BUFFER
10 WM-LCB-INPUT-BUFFER-SIZE
10 WM-LCB-OUTPUT-BUFFER
10 WM-LCB-OUTPUT-BUFFER-SIZE
10 WM-LCB-FLAGS

PIC

X(4).

POINTER.

PIC

S9(8)

POINTER.

PIC
PIC

S9(8)
X(1).

88 WM-LCB-FREE-QUTPUT-BUFFER VALUE 'F'.

10 WM-LCB-RESERVED
01 IN-BUFFER.

02 OPERATION

02 OPERAND-1

02 OPERAND-2
01 OUT-BUFFER.

02 FUNCTION-RESULT

PROCEDURE DIVISION USING DFHCOMMAREA.

PIC
PIC
PIC
PIC

PIC

X(3).
X(1).
S9(9)
S9(9)

S9(9)

BINARY .

BINARY.

BINARY.
BINARY .

BINARY.

SET ADDRESS OF IN-BUFFER TO WM-LCB-INPUT-BUFFER.
SET ADDRESS OF OUT-BUFFER TO WM-LCB-OQUTPUT-BUFFER.

162

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

* process the IN-BUFFER and provide result in OUT-BUFFER
EXEC CICS RETURN.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from a CICS DFHCOMMAREA Large Buffer Program

This section assumes Input Message same as Output Message is not checked. COBOL output
and COBOL input parameters are different, that is, the WM-LCB-0UTPUT-BUFFER (as in the large
buffer example above) is set to an address that is different to WM-LCB-INPUT-BUFFER.

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type CICS with DFHCOMMAREA large buffer, the Extractor Settings
dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and check box Input Message same as Output Message is
cleared.

COBOL Source
File Name: LargeBuf

Operating Systerm: z/0S

Interface Type: [CICS with DFHCOMMAREA large buffer interface -

Dilnput Message same as Output Message:

Press Next to open the COBOL Mapping Editor.

> To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items of the input large buffer to Input Message by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. To do this, locate
in the PROCEDURE DIVISION the SET ADDRESS OF <x> TO WM-LCB-INPUT-BUFFER statement.
The COBOL data item <x> is the input large buffer you are looking for. See Notes.

2 Addthe COBOL data items of the output large buffer to Output Message by using the context
menu and toolbars available in the COBOL Interface and IDL Interface. To do this, locate in
the PROCEDURE DIVISIONthe SET ADDRESS OF <y> TO WM-LCB-OUTPUT-BUFFER statement. The
COBOL data item <y> is the output large buffer you are looking for. See Notes.

3 Continue with COBOL to IDL Mapping.

] Notes:

Software AG IDL Extractor for COBOL 163

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

. Donot select the pointers in the DFHCOMMAREA pointing to the large buffers, in the example above,
WM-LCB-INPUT-BUFFER and WM-LCB-OUTPUT-BUFFER.

. Itis very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE

path.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas

of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL interface types where COBOL input and COBOL output parameters are different, the

user interface of the COBOL Mapping Editor looks like this:

o » (COBOL Program LangeBul - Imterface Type CICS with DFHCOMMAREA, large buffer interface
2 Largefuf i
02 OPERAHD-1 FIC 25(9) BIHARY. -
D OPERAND-2Z FIC 59(3) BIHARY.
SE T
02 FUNCTION-RESULT FIC 5% (8) BIHARY.

FROCEDURE DIVISION USING DFHCOMMRRFR.

164

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

CDEOL to IDL Mapping
Largefuf
COBOL Interface

4 S 01 N-BUFFER .l
e
02 OPERATION i -
by (L5
T 02 OPERAND-1 i - il I

-

i [T ¥

Cutput Message

4 T} 00 OUT-BUFFER
T, 02 FUMCTION-RESULT

1DL Interfsce

Irput Message tap 1 | 4 @5 IN-BUFFER In

& OPERATION (aV1)
7 OPERAND-1 (M)
& OPERAND-2 (M)

4 & QUT-BUFFER Out

& FUMCTIOM-RESULT ()

© COBOL Program Selection. Currently selected program with interface type

@ COBOL Source View. Contains all related sources for the currently selected COBOL program

© COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons

with which you can map these items to your IDL interface

Software AG IDL Extractor for COBOL

165

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL Program Selection

~ COBOL Program | LargeBuf - Interface Type CICS with DFHCOMMAREA large buffer interface

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

166 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL Source View
LargeBuf y rﬂ 3& <L‘, ‘0"'
02 OPERAND-1 PIC S59(3) BINARY. -
02 OPERAND-2 PIC S9(9) BINARY.

ICH-RESULT PIC S3(3) BINARY.

m

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the Editor with Modify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.
Add selected COBOL data item to COBOL Interface as Output Message.
is Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

<3 Reset COBOL Interface to initial state.

4" Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons

Software AG IDL Extractor for COBOL 167

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

= |DL Interface
COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping

LargeBuf W ah + =]
COBOL Interface H O IDL Interface
G
Input Message 4 IN-EUFFEF‘\ In B
- OPERATION (AV1)
4 =] 01 IN-BUFFER - OPERAND-1 (141
% 02 OPERATION ; b
o Suppress QOPERAND-2 (4}
51 02 OPERAND-1 - 4 <% OUT-BUFFER Out
4 m 3 FUNCTION-RESULT (14}
Output Message

4 T2 01 OUT-BUFFER
%, 02 FUNCTION-RESULT

4 1 I

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail under Mapping Editor IDL Interface Mapping

Functions.

Map to A suppressed COBOL data item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress Suppress unneeded COBOL data items.

Set Constant Set COBOL data items to constant.

168 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Set Array Mapping Map an array to a fixed sized or unbounded array.

| Note: This option should be used carefully and requires

knowledge of the COBOL server program. Be aware that an
incorrect mapping could result in runtime errors.

Remove from CO- Remove the data item from the COBOL interface. This also removes
BOL Interface the mapped IDL parameter from all IDL interfaces for the current
COBOL program. See COBOL Program Selection.

Toolbar
The toolbar offers the following actions:

¢+ Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.
#, Rename current IDL Interface.

& Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

g+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
“~ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

5. Scalar parameter, mapped to In.
£ Scalar parameter, mapped to Out.

&+ Group parameter, here mapped to In.

Software AG IDL Extractor for COBOL 169

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

4= REDEFINE parameter, here mapped to Out.

% Parameter set to Constant.

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

LargeBuf W a'h +H 1=
COBOL Interface IDL Interface
Input Message Map to -» 4 % IN-BUFFER In

OPERATION (AV1)

[Z=3 _B| -
. Eou IglﬂEJPFEFPEBWN F OPERAND-1 (1)
%] 02 OPERATIO Suppress OPERAND-2 (1)
%1 02 OPERAND-1 . EE -

a 4% OUT-BUFFER Out
FUNCTION-RESULT (14}

] - b Set Constant...
Output Message
a T 01 OUT-BUFFER
‘= 02 FUNCTION-RESULT

Map to ->
A suppressed COBOL data item becomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

® Rename

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

170 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL to IDL Mapping

LargeBuf W a'h H =]
COBOL Interface IDL Interface
s ‘7% 01 INOUT-BUFFER Map to In -> 4 4% INOUT-BUFFER In Out
5 02 OPERATION PIC @POPERAT[ON (AN1)
&5 02 OPERAND-1 PIC Map to Out -» 4 OPERAND-1 (14)
5 02 OPERAND-2 PIC @POPERAND-.'-_‘ 14)
4 02 FUNCTION-RESULT @P FUNCTIOM-RESULT (14)
Suppress
4 ¥

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to

= Suppress Unneeded COBOL Data Items
= Set COBOL Data Items to Constants

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

= Set Arrays (Fixed <-> Unbounded)

Map to

With the Map to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

> To map a COBOL data item to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the context menu and as mapping button to make a COBOL data
item visible as an IDL parameter in the input message of the IDL interface.

2 Do the same for the output message of the IDL interface.

‘J Notes:

1. If a COBOL group is mapped, all subsequent child COBOL data items are also made visible in
the IDL interface.

2. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.

Software AG IDL Extractor for COBOL 171

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified — it becomes shorter and tidier. This is useful, for example

® for FILLER data items
= if the RPC client or Adapter Service does not need an Out parameter
® if the RPC server or Adapter Service does not need an In parameter and a low value can be

provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/0OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

> To suppress unneeded COBOL data items

= Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse function Map to (see above) available in the context menu and as mapping
button, a COBOL data item can be made visible in the IDL interface again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
bothered with IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see below).

> To map COBOL data items to constants

= Use the Set Constant function available in the context menu and as mapping button to define
a constant value for a COBOL data item. You are prompted with a window to enter the constant
value.

172 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

) Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the function Map to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

DISPATCHER

S M

J U

B L
"q' T T W
D
O R I

A F

c L

T Y

This example is described in more detail under Example 1: COBOL Server with Multiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

" If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

= If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

Software AG IDL Extractor for COBOL 173

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

> To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions + or

2 Give the IDL interfaces meaningful names with the toolbar function «b.

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
" Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY'

o

® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

] Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description

4= |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface | Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

#4 |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

174 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

> To select redefine paths

m Use the Map to function available in the context menu and as mapping button to make the
COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

] Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Set Arrays (Fixed <-> Unbounded)

For COBOL server programs using the message length to transfer a variable number of elements
in a COBOL table with a fixed size (see Tables with Fixed Size) in a variable manner (see Tables
with Variable Size - DEPENDING ON Clause) you need to set the mapping to unbounded array.

For details of such a COBOL server program see Example 2: COBOL Server Using Data Length
to Process a Variable Number of Array Elements.

> To set arrays from fixed to unbounded or vice versa

m Select the COBOL table and use the function Set Arrays (Fixed<->Unbounded) available in
the context menu. A modal window is displayed. Select Unbounded array. The IDL array
parameter will be changed from fixed array /number to an unbounded array /Vnumber, see
array-definitionunder Software AG IDL Grammar in the IDL Editor documentation.

] Notes:

1. This option should be used carefully and requires knowledge of the COBOL server program.
Be aware that an incorrect mapping results in runtime errors.

2. The COBOL Table with a fixed size (see Tables with Fixed Size) used in this manner must be
the last parameter of the COBOL interface; it must not be a subparameter of any other COBOL

Software AG IDL Extractor for COBOL 175

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

table and must not contain any DEPENDING ON clause (see Tables with Variable Size - DEPENDING
ON Clause).

Programming Techniques

This section covers the following topics:

= Example 1: COBOL Server with Multiple Functions
= Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following example where a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

01 OPERATION PIC X(1).

01 OPERANDIL PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERANDI OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT
WHEN "=*"
MULTIPLY OPERANDI BY OPERANDZ
GIVING FUNCTION-RESULT
WHEN .

END-EVALUATE.

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

176 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

= Web Service

Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

® Java or NET
Instead having a class with a single method, you want a class with multiple methods, one

method for each COBOL function.

" etc.

To do this you need to extract the COBOL server program as described under Map to Multiple

IDL Interfaces.

Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Assume a COBOL CICS large buffer server program has a fixed-sized COBOL table as its last

parameter, similar to COBOL data item COBOL-TABLE - FIX in the example below; each table element
is 100 bytes; the length of COBOL-FIELD1 + COBOL-FIELD2 + COBOL-FIELD3; the length of the data

preceding the COBOL table is described by COBOL-GROUP1; its length is 1000 bytes.

WORKING-STORAGE SECTION.
01 NUMBER-OF-INCOMING-ELEMENTS
01 NUMBER-OF-OUTGOMING-ELEMENTS

LINKAGE SECTION.
01 DFHCOMMAREA.

10
10
10
10
10
10

10

WM-LCB-MARKER
WM-LCB-INPUT-BUFFER
WM-LCB-INPUT-BUFFER-SIZE
WM-LCB-OUTPUT-BUFFER
WM-LCB-OUTPUT-BUFFER-SIZE
WM-LCB-FLAGS

88 WM-LCB-FREE-OUTPUT-BUFFER

WM-LCB-RESERVED

01 INOUT-BUFFER.
10 COBOL-GROUPI.

10

PROCEDURE DIVISION USING DFHCOMMAREA.

20 COBOL-TABLE-PREFIX

COBOL-TABLE-FIX

20 COBOL-GROUPZ.

25 COBOL-FIELD1
25 COBOL-FIELDZ
25 COBOL-FIELD3

PIC S9(8) BINARY.
PIC S9(8) BINARY.

PIC X(4).
POINTER.
PIC S9(8) BINARY.
POINTER.
PIC S9(8) BINARY.
PIC X(1).
VALUE "F".
PIC X(3).

PIC X(1000).
0CCURS 20.

PIC X(30).
PIC X(20).
PIC X(50).

SET ADDRESS OF INOUT-BUFFER TO WM-LCB-INPUT-BUFFER.
SET ADDRESS OF INOUT-BUFFER TO WM-LCB-OUTPUT-BUFFER.

COMPUTE NUMBER-OF-INCOMING-ELEMENTS = (WM-LCB-INPUT-BUFFER-SIZE

Software AG IDL Extractor for COBOL

177

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

- LENGTH OF COBOL-GROUPI)
/ LENGTH OF COBOL-GROUP2.

COMPUTE WM-LCB-OUTPUT-BUFFER-SIZE = LENGTH OF COBOL-GROUPZ
+ NUMBER-OF-OUTGOING-ELEMENTS * LENGTH OF COBOL-GROUPZ

EXEC CICS RETURN END-EXEC.

During input the COBOL CICS large buffer server program uses the large buffer input length
WM-LCB-INPUT-BUFFER-SIZE to evaluate the NUMBER-OF - INCOMING-ELEMENTS. During output the
large buffer output length is determined accordingly to the NUMBER-OF-OUTGOING-ELEMENTS and
setin WM-LCB-OUTPUT-BUFFER-SIZE.

Although the COBOL table is defined as a table with a fixed size (see Tables with Fixed Size) it is
used in a variable manner, similar to tables with variable Size (see Tables with Variable Size -
DEPENDING ON Clause). In this case it is required to map the COBOL table to an IDL unbounded
array, see Set Arrays (Fixed <-> Unbounded).

178 Software AG IDL Extractor for COBOL

12 CICS with Channel Container Calling Convention

LI 121 (oo 1 o110 o PRSP PPPTPPRR 180
= Extracting from a CICS Channel Container Programccuuieoiiiiiieiiiiii et 180
= Mapping Editor USer INtErfaceooiiiiiiii e 182
= Mapping Editor IDL Interface Mapping FUNCHONSooiiiiiiiiiiie e 189
L (oo = 21T 1o TN o] 10U 194

179

CICS with Channel Container Calling Convention

Input container

14 | A2s la1s |14 >

COBOL

Output container Server

'A1n||4|A25 ||=5 ||4 «

Introduction

Modern CICS programs may use the CICS channels and containers model. During extraction,
containers are mapped to IDL structures. See structure-parameter-definition (IDL) under
Software AG IDL Grammar in the IDL Editor documentation.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from a CICS Channel Container Program

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type CICS with channel container calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and, if required, that the channel name (max. 16 characters)
is provided. If you do not provide a channel name, "EntireXChannel" is used as the default value.

COBOL Source
File Mame: ChanCon

Operating System: /05

Interface Type: ’ECICSwith Channel Container calling convention R 4

Input Message same as Qutput Message

Press Next to open the COBOL Mapping Editor.

180 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

> To select the COBOL interface data items of your COBOL server

1 Define all the CICS input containers, one after another: in the Source View, use the toolbar

icon Find text in Source 4" and enter "EXEC CICS"to find a GET call containing "EXEC CICS
GET", function "CONTAINER" etc. Example:

EXEC CICS GET
CONTAINER(<container name constant>)
CHANNEL (<channel>)
INTO (<container>)
NOHANDLE
END-EXEC

The COBOL data item <container> is the item you are looking for. Add the COBOL data
item <container> to Input Message by using the context menu or toolbar available in the
COBOL Source View and COBOL Interface. In the Input Message pane, select the correspond-
ing COBOL data item <container>. Enter the container name, found in the value of <container
name constant>. You can select multiple CICS input containers. See Notes.

2 Define all the CICS output containers using the steps as above, but look for "EXEC CICS PUT".
Example:

EXEC CICS PUT
CONTAINER(<container name constant>)
CHANNEL (<channel>)

FROM (<container>)
FLENGTH (LENGTH OF <container>)
NOHANDLE

END-EXEC

Add the corresponding COBOL data item <container> to Output Message. In the Output
Message pane, select the corresponding COBOL data item <container>. Enter the container
name, found in the value of <container name constant>. The EXEC CICS PUT statement can
be executed multiple times (for example in a loop) for the same container definition, creating
an array of container. If this is true, set the column Array in the wizard to "Yes" and enter the
maximum number of occurrences for the container in the Max column. You can select multiple
CICS output containers. See Notes.

3 Continue with COBOL to IDL Mapping.

Notes:

1. Itis very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

Software AG IDL Extractor for COBOL 181

CICS with Channel Container Calling Convention

If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The container name length is restricted to 16 characters.

Container arrays will enlarge the container name, because the number of occurrences (Max
column) will be added to the name (max. 16 characters). Example:

For MYCONTAINER as the container name and 99999 as the number of occurrences, the container
names are MYCONTAINEROOOOI - MYCONTAINER99999.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL server programs with CICS channel container interface, the user interface of the COBOL
Mapping Editor looks like this:

o

2]

» COBOL Program CCEXAMPLE - Imterface Type CIC5 with Chanmel Container calling conventson
Chaml on
D5 HaMKE.
D5 SORHAHE.
01 ouTpuT |
05 ADDREZS.
5% PHOME.

182 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

COBOL to DL Mapping

COEAMPLE
COBOL Interface

Imput Message
s 0L mPUT
B 05 ManE
T4 05 SURMAME

| Suppress

Cemtamer Mame

Aotheng selecied

Cutput Message
% 05 ADDRESS
T 05 PHONE

Containgr Mame Array
Outputhlessage s

Pelax

ML Interface

a4
Fl %‘r" INFUT {"inputhlessage’} In
o NAME
& SURMAME
4 4 QUTPUT (OutputMessage’
& ADDRESS
& PHOMNE

| ok | pes Einish

@ COBOL Program Selection. Currently selected program with interface type
© COBOL Source View. Contains all related sources for the currently selected COBOL program

© COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons

with which you can map these items to your IDL interface

183

Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

COBOL Program Selection

~ COBOL Program | CCEXAMPLE -~ Interface Type CICS with Channel Container calling convention

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

184 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

COBOL Source View

= COBOL Program | CCEXAMPLE - Interface Type CICS with Channel Container calling convention
ChanCon 3 ik <,l:,| 5

05 HMNAME. -

m

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the Editor with Modify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.
Add selected COBOL data item to COBOL Interface as Output Message.
s Remove selected COBOL data item from COBOL Interface.

% Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

+ Show dialog to find text in Source.
The same functionality is also available from the context menu.
COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons

Software AG IDL Extractor for COBOL 185

CICS with Channel Container Calling Convention

= |DL Interface
COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.
The COBOL data item names are derived from the COBOL source from which they were extracted.

If your COBOL interface contains parameters without a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping
CCEXAMPLE u ah 7 B

COBOL Interface HO O IDL Interface
a <9 INPUT (inputMessage’) In

G s
NAME
Gt -

a = 0LINPUT & SURNAME

G
505 NAME Suppress 4 <R ouTpPuT {'OutputMessage'/V5) Out
] 05 SURMAME & ADDRESS

Container Name % PHONE

Input Message

P [P
notning selected

Output Message
‘&, 05 ADDRESS
%, 05 PHONE -

Container Name Array Max

OutputMessage Yes 5

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail under Mapping Editor IDL Interface Mapping

Functions.

Map to A suppressed COBOL data item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress Suppress unneeded COBOL data items.

Set Constant Set COBOL data items to constant.

186 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

Set Array Mapping Map an array to a fixed sized or unbounded array.

| Note: This option should be used carefully and requires

knowledge of the COBOL server program. Be aware that an
incorrect mapping could result in runtime errors.

Remove from CO- Remove the data item from the COBOL interface. This also removes
BOL Interface the mapped IDL parameter from all IDL interfaces for the current
COBOL program. See COBOL Program Selection.

Toolbar
The toolbar offers the following actions:

¢+ Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.
#, Rename current IDL Interface.

& Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

g+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
“~ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

5. Scalar parameter, mapped to In.
£ Scalar parameter, mapped to Out.

&+ Group parameter, here mapped to In.

Software AG IDL Extractor for COBOL 187

CICS with Channel Container Calling Convention

4= REDEFINE parameter, here mapped to Out.

% Parameter set to Constant.

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

CCEXAMPLE L 2% ==
COBOL Interface IDL Interface
Input Message Map to -> 4 SIf\{;P'JT ('inputMessage”) In
— | NAME
4 ."_JJZE_IHP JT‘ - £ SURNAME
.;..05 NI-\I‘.1E‘ Suppress s < ouTeuT ('OutputMessage'/V5) Out
05 SURNAME — % ADDRESS
Container Name S TSR £ PHONE

Output Message
« /01 0UTRUT -

& 05 ADDRESS
% 05 PHONE -

Container Name Array Maz
OutputMessage Yes 5
Map to ->

A suppressed COBOL data item becomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

®" Rename

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

188 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

COBOL to IDL Mapping

CCEXAMPLE u 4 7 B
COBOL Interface IDL Interface
Input Message 4 QSINGPUT ('inputMessage") In
7= : & NAME
4 = r"_JJ:E_II'»JP JT‘ - 5 SURNAME
. 05 NAME Suppress 4 @q OUTPUT ('OutputMessage'/V5) Out
= 05 SURMAME = C
& ADDRESS
Container Name 4% PHONE

Output Message

2 7401 OUTPUT -
5 05 ADDRESS
E, 05 PHONE -

Container Name Array Max

OutputMessage Yes 5

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to

= Suppress Unneeded COBOL Data ltems
= Set COBOL Data Items to Constants

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

= Set Arrays (Fixed <-> Unbounded)

Map to

With the Map to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

> To map a COBOL data item to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the context menu and as mapping button to make a COBOL data
item visible as an IDL parameter in the input message of the IDL interface.

2 Do the same for the output message of the IDL interface.

J Notes:

1. If a COBOL group is mapped, all subsequent child COBOL data items are also made visible in
the IDL interface.

Software AG IDL Extractor for COBOL 189

CICS with Channel Container Calling Convention

2. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified — it becomes shorter and tidier. This is useful, for example

® for FILLER data items
= if the RPC client or Adapter Service does not need an Out parameter
* if the RPC server or Adapter Service does not need an In parameter and a low value can be

provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/0OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

> To suppress unneeded COBOL data items

» Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse function Map to (see above) available in the context menu and as mapping
button, a COBOL data item can be made visible in the IDL interface again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
bothered with IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see below).

190 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

> To map COBOL data items to constants

m Use the Set Constant function available in the context menu and as mapping button to define
a constant value for a COBOL data item. You are prompted with a window to enter the constant
value.

) Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the function Map to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

DISPATCHER

s ("]

) L

B L
A T T L]
D
O R I

A P

C L

T ¥

This example is described in more detail under Example 1: COBOL Server with Multiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

® If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

Software AG IDL Extractor for COBOL 191

CICS with Channel Container Calling Convention

= If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

> To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions + or

2 Give the IDL interfaces meaningful names with the toolbar function «b.

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
" Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD’, 'SUBTRACT', MULTIPLY'

o

® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

] Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description

4= |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface |Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

#4 |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

192 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

> To select redefine paths

m Use the Map to function available in the context menu and as mapping button to make the
COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

] Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Set Arrays (Fixed <-> Unbounded)

For COBOL server programs using the message length to transfer a variable number of elements
in a COBOL table with a fixed size (see Tables with Fixed Size) in a variable manner (see Tables
with Variable Size - DEPENDING ON Clause) you need to set the mapping to unbounded array.

For details of such a COBOL server program see Example 2: COBOL Server Using Data Length
to Process a Variable Number of Array Elements.

> To set arrays from fixed to unbounded or vice versa

m Select the COBOL table and use the function Set Arrays (Fixed<->Unbounded) available in
the context menu. A modal window is displayed. Select Unbounded array. The IDL array
parameter will be changed from fixed array /number to an unbounded array /Vnumber, see
array-definitionunder Software AG IDL Grammar in the IDL Editor documentation.

] Notes:

1. This option should be used carefully and requires knowledge of the COBOL server program.
Be aware that an incorrect mapping results in runtime errors.

2. The COBOL Table with a fixed size (see Tables with Fixed Size) used in this manner must be
the last parameter of the COBOL interface; it must not be a subparameter of any other COBOL

Software AG IDL Extractor for COBOL 193

CICS with Channel Container Calling Convention

table and must not contain any DEPENDING ON clause (see Tables with Variable Size - DEPENDING
ON Clause).

Programming Techniques

This section covers the following topics:

= Example 1: COBOL Server with Multiple Functions
= Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following example where a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

01 OPERATION PIC X(1).

01 OPERANDIL PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERANDI OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT
WHEN "=*"
MULTIPLY OPERANDI BY OPERANDZ
GIVING FUNCTION-RESULT
WHEN .

END-EVALUATE.

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

194 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

® Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

® Java or NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

" etc.

To do this you need to extract the COBOL server program as described under Map to Multiple
IDL Interfaces.

Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements
Assume a COBOL CICS channel container server program has a fixed-length COBOL table as its
last parameter, similar to COBOL data item COBOL-TABLE-FIX in the example below; each table
element is 100 bytes; the length of COBOL-FIELD1 + COBOL-FIELD2 + COBOL-FIELD3; the length of
the data preceding the COBOL table is described by COBOL-GROUP1; its length is 1000 bytes.

WORKING-STORAGE SECTION.

01 LS-CONTAINER-NAME PIC X(16) VALUE "VAR-INPUT".
01 WS-CONTAINER-NAME PIC X(16) VALUE "VAR-OUTPUT".
01 NUMBER-OF-INCOMING-ELEMENTS PIC S9(8) BINARY.
01 NUMBER-OF-QUTGOMING-ELEMENTS PIC S9(8) BINARY.

01 WS-CONTAINER-LAYQUT.
10 COBOL-GROUP1.

20 COBOL-TABLE-PREFIX PIC X(1000).
10 COBOL-TABLE-FIX 0CCURS 20.
20 COBOL-GROUP2.
25 COBOL-FIELDI PIC X(4).
25 COBOL-FIELDZ PIC X(3).
25 COBOL-FIELD3 PIC X(50).

LINKAGE SECTION.
01 LS-CONTAINER-LAYOUT.
10 COBOL-GROUPI.

20 COBOL-TABLE-PREFIX PIC X(1000).
10 COBOL-TABLE-FIX 0CCURS 20.
20 COBOL-GROUP2.
25 COBOL-FIELD1 PIC X(30).
25 COBOL-FIELDZ PIC X(20).
25 COBOL-FIELD3 PIC X(50).

PROCEDURE DIVISION.
EXEC CICS GET
CONTAINER (LS-CONTAINER-NAME
SET (ADDRESS OF LS-CONTAINER-LAYOUT)

Software AG IDL Extractor for COBOL 195

CICS with Channel Container Calling Convention

FLENGTH (WS-CONTAINER-LENGTH)

RESP (WS-RESP)
RESP2 (WS-RESP2)
END-EXEC.

COMPUTE NUMBER-OF-INCOMING-ELEMENTS = (WS-CONTAINER-LENGTH
- LENGTH OF COBOL-GROUP1 IN AREA LS-CONTAINER-LAYQUT)
/ LENGTH OF COBOL-GROUPZ IN AREA LS-CONTAINER-LAYOUT.

COMPUTE WS-CONTAINER-LENGTH = LENGTH OF COBOL-GROUPZ IN AREA <
WS-CONTAINER-LAYOUT
+ (NUMBER-OF-OUTGOING-ELEMENTS
* LENGTH OF COBOL-GROUPZ IN AREA WS-CONTAINER-LAYOUT).

EXEC CICS PUT
CONTAINER (WS-CONTAINER-NAME)

FROM (WS-CONTAINER-LAYQOUT)
FLENGTH (WS-CONTAINER-LENGTH)
RESP (WS-RESP)
RESP?2 (WS-RESP2)

END-EXEC.

EXEC CICS RETURN END-EXEC.

During input the COBOL channel container server program uses the container length
WS-CONTAINER-LENGTH to evaluate the NUMBER-OF-INCOMING-ELEMENTS. During output the
WS-CONTAINER-LENGTH is determined according to the NUMBER-OF-0UTGOING-ELEMENTS and set in
the EXEC CICS PUT CONTAINER statement.

Although the COBOL table is defined as a table with a fixed size (see Tables with Fixed Size) it is
used in a variable manner, similar to tables with variable size (see Tables with Variable Size -
DEPENDING ON Clause). In this case you need to map the COBOL table to an IDL unbounded array.
See Set Arrays (Fixed <-> Unbounded).

196 Software AG IDL Extractor for COBOL

13 IMS MPP Message Interface (IMS Connect)

LI 121 (oo 1 o110 o PRSP PPPTPPRR 198
= Extracting from an IMS MPP Message Interface Programcoccveveiiiiiiie oo 199
= Mapping Editor USer INtErfaceooiiiiiiii e 202
= Mapping Editor IDL Interface Mapping FUNCHONSooiiiiiiiiiiie e 210
L (oo = 21T 1o TN o] 10U 215

197

IMS MPP Message Interface (IMS Connect)

IMS Message

LL|zz|TcODE 14 | a25 A5 | 14 > COBOL
LLzz A10] 14 | At00000 | P5 | 14 < Server

Introduction

Depending on the programming style used in the IMS processing program (MPP) and the various
techniques for accessing the IMS input and output messages, finding the relevant COBOL data
structures can be a complex and time-consuming task that may require IMS programming
knowledge.

IMS Message Processing Programs (MPPs) work as follows:

® IMS message processing programs (MPP) are invoked using an IMS transaction code. Transaction
codes are linked to programs by the IMS system definition.

® An IMS message processing program (MPP) gets its parameters through an IMS message and
returns the result by sending an output message to IMS. The structure of both messages is
defined in the COBOL source program during the application design phase. Sender and receiver
of the message must use the same data structure to interpret the message content.

® The server program accesses input and output messages using the IMS system call CALL
"CBLTDLI" USING <function> IOPCB <message>. The parameters are as follows:

Parameter |Description

GU Flag indicating that an input message is to be read. In this case <message> describes the
input message.

ISRT Flag indicating that an output message is to be written. In this case <message> describes
the output message.

I0PCB The IO PCB pointer. An IMS-specific section defined in the linkage section of the program
to access the IMS input and output message queue.

<message>|The layout of the message. For GU it is the structure of the input message, for I SRT it is the
structure of the output message. The first two fields in every message (input as well as
output), LL and 7/, are technical fields, each two bytes long. LL contains the length of the
message. The third field in an input message contains the transaction code and has a variable
length (commonly 8 or 9 bytes). IMS can link one program to various different transaction
codes. For each transaction, the program can apply a separate logic, or even accept a separate
message layout.

] Notes:

198 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

1. Instead of the IOPCB pointer, CALL 'CBLTDLI" statements are also used with database PCB

pointers to access IMS databases.

2. 1I0PCB, GU and ISRT are defined in the COBOL source (often in a copybook) using COBOL
data items. Names can differ in your program. The value of the COBOL VALUE clauses with
'GU" and 'ISRT'is fixed. In the example below, the IMS system call would be CALL 'CBLTDLI'
USING FCT-GU I0-PCB <message> to read the input message:

WORKING-STORAGE SECTION.

* DLI Function Codes
77 FCT-GU
77 FCT-ISRT

LINKAGE SECTION.

1 I0-PCB.
3 LTERM-NAME
3 FILLER
3 I0-STATUS

PIC
PIC

PIC
PIC
PIC

X(4) VALUE 'GU '.
X(4) VALUE "ISRT'.

X(8).
X(2).
X(2).

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from an IMS MPP Message Interface Program

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type IMS MPP message interface (IMS Connect), the Extractor Settings

dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and specify how you want the transaction name to be de-

termined.

COBOL Source
File Mame: CALC

Operating System: z/05

Interface Type: |IMS MPP message interface (IMS Connect)

Input Message same as Output Message

There are two ways of defining Transaction Name:

Software AG IDL Extractor for COBOL

199

IMS MPP Message Interface (IMS Connect)

* Fixed Value
Check Transaction Name and specify a fixed value for the transaction name in extractor settings.
Your IDL interface is free of this technical parameter, and RPC clients do not have to specity it
at runtime.

IMS MPP message interface (IM5S Connect)
Transaction field length in COBOL source: * 10 —

@ Transaction Name: WlE < AMPLE

Create IDL parameter for Transaction Name - specification at runtime

Specify the length of the transaction field, which is usually the third physical field starting from
offset 5 (bytes) declared in the input message layout within the server program. Example:

1 INPUT-MESSAGE.
2 INPUT-IMS-META.

3 INPUT-LL PIC S9(3) BINARY.
3 INPUT-ZZ PIC S9(3) BINARY.
3 INPUT-TRANSACTION PIC X(10).

2 INPUT-DATA.

3 OPERATION PIC X(1).

3 OPERANDI PIC S9(9) BINARY.
3 OPERANDZ PIC S9(9) BINARY.

In this example, the length to specify is "10".

* Dynamically at Runtime
Check Create IDL parameter for Transaction Name.... Your IDL Interface will contain an IDL
parameter for the transaction name. RPC clients are responsible for setting the correct transaction
name dynamically at runtime.

IMS MPP message interface (IM5 Connect)
Transaction field length in COBOL source: * 10 —

1 Transaction Mame:

200 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

> To select the COBOL interface data items of your COBOL server

1

J

Define the IMS MPP (IMS Connect) input message. With toolbar icon Find text in Source +,
enter "CBLTDLI" to look for an IMS system call containing 'CBLTDLI', function GU and the
[0PCB pointer, example:

CALL '"CBLTDLI' USING GU IOPCB input_message

Add the relevant COBOL data items of input_message to Input Message by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. The relevant
COBOL data items are contained in fields after the technical fields LL (length of message), 77
and the COBOL data item containing the transaction code which is mostly the third physical
field starting from offset 5 (bytes) in the input_message. Do not select the fields LL, ZZ and
the transaction code. See Notes.

Similar to step 1, define the IMS MPP (IMS Connect) output message. Enter "CBLTDLI" in

toolbar icon Find text in Source # to look for an IMS system call containing "CBLTDLI",
function ISRT and the I0PCB pointer, example:

CALL "CBLTDLI'" USING ISRT IOPCB <output-message>
Select the corresponding output_message in COBOL Interface. See Notes.

Select the relevant COBOL data items of output_message to Output Message by using the
context menu or toolbar. The relevant COBOL data items are the fields after the technical
fields LL (length of message) and ZZ. Also, do not select LL and 77 here.

Continue with COBOL to IDL Mapping.

Notes:

. Itis very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number
and in sequence of formats (COBOL usage clause).

If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Software AG IDL Extractor for COBOL 201

IMS MPP Message Interface (IMS Connect)

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL server programs with IMS MPP message interface (IMS Connect), the user interface
of the COBOL Mapping Editor looks like this:

= COBOL Program CALC - Interface Type IMS MPP message interface (M5 Connect)

2]

CALC A e

: CPERATIOHN PIC X(l).
48 3 CPEERRNDA PIC 29(%) BINARY.
4 3 CFERANDZ FIC 53(2) BIHARY.

202 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

COEDL to TDL Mapping
MYTA -
COBOL Interface =Nl IDL Imterface
Input Message a #-‘l:l:.IITPUT-EIﬁ.Th Out
B e & FUNCTION-RESULT (M)
el ;-[F-IF'i.T‘E}JA_T.-.ﬂ.... N = a 4% INPUT-DATA In
S = _ Suppress J 4" OPERATION (Av1)
L..._ n
o' OPERANDL (M)
L =
P2 3 CPFRAND PIC 5191 Al | SetConstant..] o OPERAND2 ()

4 1]

Owtput Message

s T 2 0UTPUT-DATA
% 3 FUNCTION-RESULT PIC 59(9) E

| <Bsck | hes Einizh

I::._;‘}:I

@ COBOL Program Selection. Currently selected program with interface type
@ COBOL Source View. Contains all related sources for the currently selected COBOL program

© COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons

with which you can map these items to your IDL interface

203

Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

COBOL Program Selection

* COBOL Program | CALC - Interface Type IMS MPP message interface (IMS Connect)

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within associated IDL file, you can
switch to another COBOL program with its mapping by selecting the name in the combo box.

204 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

COBOL Source View

= COBOL Program | CALC - Interface Type IMS MPP message interface (IM5 Connect)

caLC FToRA| s
42 # IDL Interface - IN parameters (IMS input message)

‘‘ |
44 2 INFUT-DATA.

45 5 OPERATICH PIC X(1).

46 3 OPERZND1 PIC 52(9) BINARY.
47 3 OPERLND2 PIC 52 (9) BINARY.

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original
COBOL sources. The light green bar indicates that the data item is already contained in the COBOL
Interface; a dark green bar indicates the data item is selectable and can be added to the COBOL
Interface. This section can be collapsed. If you open the Editor with Modify Interface it is collapsed
by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.
Add selected COBOL data item to COBOL Interface as Output Message.
i Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

4" Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons

Software AG IDL Extractor for COBOL 205

IMS MPP Message Interface (IMS Connect)

= |DL Interface
COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name, that is, the keyword FILLER is used,
those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

The appearance of the COBOL Interface depends on how the transaction name is specified in the
Extractor Settings:

® If Transaction Name is checked, a hidden parameter with this fixed value appears:

COBOL to IDL Mapping
MYTA ¥ 2 A4 =
COBOL Interface HOMN IDL Interface
4 4~ QUTPUT-DATA Out
FUMNCTIOMN-RESULT (14)
4 2FINPUT-DATA In
Suppress OPERATION (AV1)

CI'J;_ 3 OPFRANM PIC Q01 AT ™ i
— N R Set Constant... OPERAND2 (4)

Input Message
& 01 TRANCODE [MYTA]
4 B 2INPUT-DATA

fm| »

Output Message

4 5 2 OUTPUT-DATA
% 3 FUNCTION-RESULT PIC 59(9) E

® If Create IDL parameter for Transaction Name... is checked, the IDL parameter "TRANCODE" sets
the transaction name dynamically at runtime.

206 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

COBOL to IDL Mapping

CALC

COBOL Interface

Input Message

%7 01 TRANCODE
4 T 2INPUT-DATA
2 3 OPERATION
]
“ 3 OPERAND2

PIC 59(9) BINA

L] a‘h =
H |I| E IDL Interface
TRANCODE (A10) In
4 <SINPUT-DATA In
OPERATION (AV1)
Suppress OPERANDL (M)
PIC X(1)

OPERANDZ (14)
4 5 OUTPUT-DATA Out
FUNCTION-RESULT (14}

Set Constant...

« | 1

"

Output Message

4 ‘£ 2 OUTPUT-DATA
%, 3 FUNCTION-RESULT

PIC 59(9) E

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu

The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail under Mapping Editor IDL Interface Mapping

Functions.
Map to

Suppress
Set Constant
Set Array Mapping

Remove from CO-
BOL Interface

Toolbar

A suppressed COBOL data item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress unneeded COBOL data items.
Set COBOL data items to constant.

Map an array to a fixed sized or unbounded array.

B

Note: This option should be used carefully and requires

knowledge of the COBOL server program. Be aware that an
incorrect mapping could result in runtime errors.

Remove the data item from the COBOL interface. This also removes
the mapped IDL parameter from all IDL interfaces for the current
COBOL program. See COBOL Program Selection.

The toolbar offers the following actions:

4= Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for

Software AG IDL Extractor for COBOL

207

IMS MPP Message Interface (IMS Connect)

COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.
#, Rename current IDL Interface.

7 Expand the full tree.

— Collapse the full tree.

See also Map to Multiple IDL Interfaces

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

f+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
“~ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

E. Scalar parameter, mapped to In.
[E Scalar parameter, mapped to Out.

&+ Group parameter, here mapped to In.

= REDEFINE parameter, here mapped to Out.

% Parameter set to Constant.

Mapping Buttons

The following buttons are available:

208 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

COBOL to IDL Mapping

MYTA y 'y 7 B
COBOL Interface IDL Interface
G P
Input Message Map to -> 4 QUTPUT-DATA Out
T ———— — FUNCTION-RESULT (14)
= 'I‘ A i 4 @S INPUT-DATA In
4 & ZINPUT-DATA ' [Suppress | OPERATION (AV1)
] 3 OPERATION PIC %(1) GPERANDL (1)
1 2 OPFRAND PIC S99y RT T [Set Constant...] i

. - OPERAND2 (1)

Qutput Message
4 T2 OUTPUT-DATA
= 3 FUNCTION-RESULT PIC 59(9) E

| Note: In this example, a fixed value for transaction name was specified in the Extractor

Settings.

Map to ->
A suppressed COBOL data item becomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

" Rename

* Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

The appearance of the IDL Interface depends on how the transaction name is specified in the Ex-
tractor Settings. See Extracting from an IMS MPP Message Interface Program.

* Fixed Value
In the COBOL Interface pane the first parameter shows the value for your transaction name in
square brackets. There is no IDL parameter contained in the IDL Interface for it. Your IDL inter-
face is free of this technical parameter, and RPC clients do not have to specify it at runtime.

Software AG IDL Extractor for COBOL 209

IMS MPP Message Interface (IMS Connect)

COBOL to IDL Mapping
MYTA
COBOL Interface

Input Message

T 7 ToA

= UL El
2 B 2INPUT-DATA

Suppress

T4 3 OPERATION PIC X(1)

Set Constant...

%4 3 OPFRANM PIC S@f9 AT ™ |
‘ 3
Output Message
4 T 2 OUTPUT-DATA
%, 3 FUNCTION-RESULT PIC 59(9) E
o 3

* Dynamically at Runtime

Your IDL Interface contains an IDL parameter for the transaction name ("TRANCODE"). RPC clients

set the name dynamically at runtime.

COBOL to IDL Mapping
CALC
COBOL Interface

Input Message

7=

27 01 TRANCODE
a Y 2INPUT-DATA |

T 3 OPERATION PIC X(1)
74 3 OPERANDL PIC S9(9) BINA |
& 3 OPERAND2 PIC 59(9) BINA
] 3
Output Message

4 T2 QUTPUT-DATA

% 3 FUNCTION-RESULT PIC 59(9) E

IDL Interface

a4 #% OUTPUT-DATA Out

4" FUNCTION-RESULT (1)
4 45 INPUT-DATA In

< OPERATION (AV1)

<" OPERAND1 ()

4" OPERAND2 (4)

Suppress

Set Constant...

IDL Interface

4" TRANCODE (A10) In
s 4% INPUT-DATA In
4F OPERATION (AV1)
4F OPERANDI (14)
4F OPERAND2 (4)
4 % QUTPUT-DATA Out
4P FUNCTION-RESULT (4)

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to

= Suppress Unneeded COBOL Data ltems

= Set COBOL Data Items to Constants
= Map to Multiple IDL Interfaces
= Select REDEFINE Paths

210

Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

= Set Arrays (Fixed <-> Unbounded)
Map to

With the Map to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

> To map a COBOL data item to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the context menu and as mapping button to make a COBOL data
item visible as an IDL parameter in the input message of the IDL interface.

2 Do the same for the output message of the IDL interface.

Notes:

1. If a COBOL group is mapped, all subsequent child COBOL data items are also made visible in
the IDL interface.

2. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified — it becomes shorter and tidier. This is useful, for example

® for FILLER data items

* if the RPC client or Adapter Service does not need an Out parameter

= if the RPC server or Adapter Service does not need an In parameter and a low value can be

provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus
or BS2000/0OSD RPC server, the amount of data to be transferred to/from the RPC client is also
reduced.

> To suppress unneeded COBOL data items

m Use the Suppress function available in the context menu and as mapping button to make the
COBOL data item invisible in the IDL interface.
. Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

Software AG IDL Extractor for COBOL 211

IMS MPP Message Interface (IMS Connect)

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as
well.

4. With the inverse function Map to (see above) available in the context menu and as mapping
button, a COBOL data item can be made visible in the IDL interface again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program
can be made invisible in the IDL interface and initialized with the required constant values. This
is useful for keeping the IDL interface short and tidy. RPC clients or Adapter Services are not
bothered with IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see below).

> To map COBOL data items to constants

= Use the Set Constant function available in the context menu and as mapping button to define
a constant value for a COBOL data item. You are prompted with a window to enter the constant
value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to
your COBOL server.

3. With the function Map to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

212 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

DISPATCHER

S M

J L

B L
"q' T T L
D
D R I

A =

Cc L

T Y

This example is described in more detail under Example 1: COBOL Server with Multiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

= If your target endpoint is a web service: instead having a Web service with a single operation,
you get a web service with multiple operation, one operation for each COBOL function.

= If your target endpoint is Java or .NET: instead having a class with a single method, you get a
class with multiple methods, one method for each COBOL function.

> To map a COBOL interface to multiple IDL interfaces
1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions % or

2 Give the IDL interfaces meaningful names with the toolbar function #&.

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

* First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
" Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY'

® Third, for step 3 above: Define the constants '+','-' and *' to the parameter OPERATION respectively.

] Notes:

Software AG IDL Extractor for COBOL 213

IMS MPP Message Interface (IMS Connect)

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon

Function

Description

o

Create IDL Interface

Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Rename current IDL
Interface

The default name for the IDL interface is based on the COBOL program
name plus appended number. With this function you can give the IDL
interface a suitable name.

Remove current IDL
Interface

Deletes the current IDL interface.

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

> To select redefine paths

= Use the Map to function available in the context menu and as mapping button to make the
COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

]

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

214

Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

Set Arrays (Fixed <-> Unbounded)

For COBOL server programs using the message length to transfer a variable number of elements
in a COBOL table with a fixed size (see Tables with Fixed Size) in a variable manner (see Tables
with Variable Size - DEPENDING 0N Clause) you need to set the mapping to unbounded array.

For details of such a COBOL server program see Example 2: COBOL Server Using Data Length
to Process a Variable Number of Array Elements.

> To set arrays from fixed to unbounded or vice versa

= Select the COBOL table and use the function Set Arrays (Fixed<->Unbounded) available in
the context menu. A modal window is displayed. Select Unbounded array. The IDL array
parameter will be changed from fixed array /number to an unbounded array /Vnumber, see
array-definitionunder Software AG IDL Grammar in the IDL Editor documentation.

) Notes:

1. This option should be used carefully and requires knowledge of the COBOL server program.
Be aware that an incorrect mapping results in runtime errors.

2. The COBOL Table with a fixed size (see Tables with Fixed Size) used in this manner must be
the last parameter of the COBOL interface; it must not be a subparameter of any other COBOL
table and must not contain any DEPENDING ON clause (see Tables with Variable Size - DEPENDING
ON Clause).

Programming Techniques

This section covers the following topics:

= Example 1: COBOL Server with Multiple Functions
= Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of
this data item. See the following example where a COBOL programs implements a calculator with
the functions ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled
by the COBOL data item OPERATION:

Software AG IDL Extractor for COBOL 215

IMS MPP Message Interface (IMS Connect)

01 OPERATION PIC X(1).

01 OPERANDI PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT
WHEN "=*"
MULTIPLY OPERANDL BY OPERANDZ
GIVING FUNCTION-RESULT
WHEN .

END-EVALUATE.

You can expose each COBOL server program function separately. The advantages or reasons for
wanting this depend on the target endpoint. For example:

® Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

" Java or .NET
Instead having a class with a single method, you want a class with multiple methods, one
method for each COBOL function.

" etc.

To do this you need to extract the COBOL server program as described under Map to Multiple
IDL Interfaces.

Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Assume a COBOL IMS MPP (IMS Connect) server program has a fixed-sized COBOL table as its
last parameter, similar to COBOL data item COBOL-TABLE-FIX in the example below; each table
element is 100 bytes; the length of COBOL-FIELDI + COBOL-FIELD2 + COBOL-FIELD3; the length of
the data preceding the COBOL table is described by COBOL-GROUP1; its length is 1000 bytes.

216 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

WORKING-STORAGE SECTION.
01 NUMBER-OF-INCOMING-ELEMENTS PIC S9(8) BINARY.
01 NUMBER-OF-QUTGOMING-ELEMENTS PIC S9(8) BINARY.

01 INPUT-MESSAGE.
05 INPUT-IMS-META.

10 INPUT-LL PIC S9(3) BINARY.
10 INPUT-ZZ PIC S9(3) BINARY.
10 INPUT-TRANSACTION PIC X(10).

05 INPUT-DATA.
10 COBOL-GROUPI.

20 COBOL-TABLE-PREFIX PIC X(1000).
10 COBOL-TABLE-FIX 0CCURS 20.
20 COBOL-GROUPZ.
25 COBOL-FIELD1 PIC X(4).
25 COBOL-FIELD2 PIC X(3).
25 COBOL-FIELD3 PIC X(50).

01 OUTPUT-MESSAGE.
05 OUTPUT-IMS-META.
10 OUTPUT-LL PIC S9(3) BINARY.
10 OUTPUT-ZZ PIC S9(3) BINARY.
05 OUTPUT-DATA.
10 COBOL-GROUPI.

20 COBOL-TABLE-PREFIX PIC X(1000).
10 COBOL-TABLE-FIX 0CCURS 20.
20 COBOL-GROUPZ2.
25 COBOL-FIELDI PIC X(30).
25 COBOL-FIELD2 PIC X(20).
25 COBOL-FIELD3 PIC X(50).

LINKAGE SECTION.

PROCEDURE DIVISION USING IO-PCB.
CALL "CBLTDLI"™ USING GU, I0-PCB, INPUT-MESSAGE.

COMPUTE NUMBER-OF-INCOMING-ELEMENTS = (INPUT-LL
- LENGTH OF COBOL-GROUP1 IN AREA INPUT-MESSAGE)
/ LENGTH OF COBOL-GROUPZ IN AREA INPUT-MESSAGE.
COMPUTE OUTPUT-LL = LENGTH OF COBOL-GROUPZ IN AREA OUTPUT-MESSAGE
+ (NUMBER-OF-OUTGOING-ELEMENTS
* LENGTH OF COBOL-GROUPZ IN AREA OUTPUT-MESSAGE).

CALL "CBLTDLI"™ USING ISRT, IO-PCB, OUTPUT-MESSAGE.

GOBACK.

During input the COBOL IMS MPP (IMS Connect) server program uses the IMS input message
length INPUT-LL to evaluate the NUMBER-OF - INCOMING-ELEMENTS. During output the IMS output

Software AG IDL Extractor for COBOL 217

IMS MPP Message Interface (IMS Connect)

message length is determined accordingly to the NUMBER-OF-OUTGOING-ELEMENTS and set in
OUTPUT-LL.

Although the COBOL table is defined as a table with a fixed size (see Tables with Fixed Size) it is
used in a variable manner, similar to tables with variable size (see Tables with Variable Size -
DEPENDING ON Clause.) In this case you need to map the COBOL table to an IDL unbounded array.
See Set Arrays (Fixed <-> Unbounded).

218 Software AG IDL Extractor for COBOL

14 IDL Extractor for COBOL Preferences

= Create New Local Extractor Environment (z/OS, z/VSE, BS2000/0SD and IBM i)cccvvieviiiiiiiiiiiiiene, 222
= Create New Local Extractor Environment for Micro Focus (UNIX and Windows)cccceeeiiiiiieiiiiineeeenne, 226
= Create New Remote Extractor Environment (Z/OS)oooiiiiiiiiii e 230
= Create New Remote Extractor Environment (BS2000/OSD)ccuvviiiiiiiiiiiiiiiiieeiiee e 234

219

IDL Extractor for COBOL Preferences

The IDL Extractor for COBOL preferences are used to manage COBOL extractor environments.
A COBOL extractor environment provides defaults for the extraction and refers to COBOL programs
and copybooks

" stored locally on the same machine where the EntireX Workbench is running, a so-called local
COBOL extractor environment, or

" stored remotely on a host computer, a so-called remote COBOL extractor environment. The
Extractor Service is required to access COBOL programs and copybooks remotely with a remote
COBOL extractor environment. The Extractor Service is supported on operating systems z/OS
and BS52000/OSD. See Extractor Service in the z/OS administration and BS2000/0OSD Batch RPC
Server documentation.

COBOL extractor environments are offered in the IDL Extractor for COBOL wizard to reference
the COBOL programs and copybooks and retrieve defaults for the IDL extraction. To create, edit,
duplicate and remove COBOL extractor environments, open the Preferences page and use the
buttons on the right.

— I T —
% Preferences - - l (51 S
type filter text IDL Extractor for COBOL - A 4
2 S -
4 S:;\ce\rrare 4G Manage COBOL Extractor Environments
A Table of defined COBOL Extractor Environments:
jax Developer
> Business Services MName Extractor Environment Operating System Insert...
> Code Generation ?;ECOBOL_E)ctractor_Environment-1 z/0S Edit
> Construct . ?gECOBOL_E)ctractor_Environment-2 Windows =
Eoc.uer;ent Expansion EE COBOL_Extractor_Environment - 3 VSE Duplicate
4 nter ETw ?;E COBOL_Extractor_Environment - 4 i5/0% :
e E£ COBOL_Extractor_Environment - 5 BS2000 SR
rapper 3 e . i
COBOL Wrapper = s COBOL_BExtractor_Envirenment - 6 LMK
Custom Wrapper
DCOM Wrapper Define prefixes for IDL parameter names
Deployment Environments FILLER: FILLER
EIB Wrapper Anonymous Group: FILLER
IDL Extractor for COBOL
IDL Extractor for Natural To avoid duplicates, prefixes are appended by '_n' (2.g. FILLER results in FILLER_1, FILLER_2 etc.).
IDL Extractor for PL/ Type of COBOL mapping
Integration Servers @ Server-side Mapping () Client-side Mapping
Java Wrapper
Matural Wrapper i ’Restore Qefaults] ’ Apply]
>
'\?J' [0K l ’ Cancel]

The Preferences page contains further settings valid for all COBOL extractor environments:

® Define prefixes for IDL parameter names
The defined prefixes are used for FILLER Pseudo-Parameter.

* Type of COBOL mapping
Every EntireX Workbench (Eclipse) workspace is either in client-side mapping mode (generating
EntireX Workbench server mapping files with extension .cvm) or server-side mapping mode
(generating EntireX Workbench server mapping files with extension .svm). See Server Mapping
Files for COBOL for an introduction. You can adjust the mode here, which will also set the mode

220 Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

of the COBOL Wrapper to the same value. See Generation Settings - Preferences in the COBOL
Wrapper documentation.

Server mapping files are generated automatically for RPC servers if required. See When is a
Server Mapping File Required? - IDL Extractor for COBOL in the EntireX Workbench documentation.

Software AG IDL Extractor for COBOL 221

IDL Extractor for COBOL Preferences

Create New Local Extractor Environment (z/OS, z/VSE, BS2000/0SD and
IBM i)

This section describes the four steps for creating a new local COBOL extractor environment to
extract z/OS, z/VSE, BS2000/OSD or IBM i COBOL programes.

= Step 1: Define the New Local Environment

= Step 2: Define the Default Settings

= Step 3: Define the Local Extractor Environment
= Step 4: Define the Local Copybook Locations

Step 1: Define the New Local Environment

On the New Environment page you can specify Name and Operating system.

& IDL Extractor for COBOL M=
i

Mew Environment -

Define a new COBOL extractor environment,

COBOL Exkractor Environment

Mame:; | My COBOL Exbractor Environment

Cperating Swstem: |2,|'DS o |

Source Locakion
(%) Local) Remote

@ [Mext = H Einish H Cancel

> To define the new environment settings

1 Enter a unique Name for the COBOL extractor environment.
2 Select the Operating system.
3 Select "Local" for Source Location.

222 Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

Step 2: Define the Default Settings

The Default Settings page provides defaults for Step 4: Define the Extraction Settings and Start
Extraction in Using the IDL Extractor for COBOL - Overview. You can set defaults for interface
type and COBOL to IDL mapping.

7= IDL Extractor for COBOL M(=13
—

Default Settings

Define the default settings For the COBOL extractor environment,

COBOL Extrackor Environmment

Mame:

COBOL Source Charackeristics
Operating Syskem:

Interface Tvpe: |CICS with DFHCOMMARER, calling convention

¥

IMS MPP message interface (IM3 Connect)

1

IM3 BMP with standard linkage calling convention

ZIiZ5 with Channel Container calling convention

COBCL bo IDL Mapping
Map alphanumeric Figlds (PICTURE ¥, A, G, M) ko

(%) Strings with variable length {Java, JMET, DCOM, C, Matural, SOAP, XML

() Strings with fized length (COBOL, PLIT)

[]Map FILLER fields tao IDL

@j [< Back]| Bext = |[Finish H Cancel

> To define the default extraction settings

1
2

Select the default Interface Type. See Supported COBOL Interface Types.

Depending on the interface type, additional information can be set. For interface type

Software AG IDL Extractor for COBOL

223

IDL Extractor for COBOL Preferences

® CICS with Channel Container Calling Convention, you can set the channel name.

= IMS MPP Message Interface (IMS Connect), you can set defaults for the transaction name.
Possible options are a constant transaction name defined during extraction process or an
IDL parameter to be specified at runtime.

= IMS BMP with Standard Linkage Calling Convention, you can set the default for IMS PSB
List.

For more information refer to Step 4: Define the Extraction Settings and Start Extraction.

3 Specify a default value for COBOL to IDL Mapping. See COBOL to IDL Mapping.

Press Next and continue with Step 3: Define the Local Extractor Environment below.
Step 3: Define the Local Extractor Environment
On the Local Extractor Environment page you can provide a default directory name for the COBOL
programs:
& IDL Extractor for COBOL
Local Extractor Environment

Define a root directory to extract COBOL sources From,

During extrackion you can browse for COBOL sources in this root direckory and its
subdirectories anly.

Foak Directory Mame: | Workspace. ..

| File Swstern. ..

1. Choose Workspace... or File System... to browse for a folder.

2. Choose Next and continue with Step 4: Define the Local Copybook Locations below.

224 Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

Step 4: Define the Local Copybook Locations

On the Local Copybook Location page you can add directories that will be used to resolve copy-
books. Copybooks and members referenced with COPY statements, CA Librarian - INC statements
and CA Panvalet ++INCLUDE statements will be searched for in the defined local directories:

& IDL Extractor for COBOL

Local Copybook Locations
Define local directories where the extractor will search For copybooks (COPY statements) and include components {-INC,
++IMCLUDE statements), using the defined file extensions.

Direckory List
List of directories:

\Warkspace. ..

File Swstem, .,

Enter any specific copybook extensions,
IUse comma or semicolon to separate mulkiple extensions (For example: cob;cbl;cpy;txt or cob, chl,cpy, bxb),

Copvhbook File extensions: |

':':’:' [Finish H Zancel]

The file extensions for copybooks can also be entered. If no extensions are specified, the IDL Ex-
tractor for COBOL wizard will try to locate copybooks without any file extensions.

Press Workspace... or File System... to browse for a folder.

Press Finish.

Software AG IDL Extractor for COBOL 225

IDL Extractor for COBOL Preferences

Create New Local Extractor Environment for Micro Focus (UNIX and Windows)

This section describes the four steps for creating a new local COBOL extractor environment to
extract Micro Focus COBOL program:s.

= Step 1: Define the New Local Environment
= Step 2: Define the Default Settings
= Step 3: Define the Local Extractor Environment

226 Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

= Step 4: Define the Local Copybook Locations

Step 1: Define the New Local Environment

& IDL Extractor for COBOL

MNew Environment

Define a new COBOL exkractor environment.,

COBOL Exkrackor Environment

Marme: WMy COBOL Extractor Environment

Qoperating Syskem: | Windows

Saurce Lacakion

Local

On the New Environment page you can specify the Name and Operating system. Only UNIX
and Windows operating systems can be used for Micro Focus COBOL.

> To define the default extraction settings

1 Enter a unique name for the COBOL extractor environment.
2 Select the Operating system "UNIX" or "Windows".

3 Select "Local" for Source location.

Software AG IDL Extractor for COBOL 227

IDL Extractor for COBOL Preferences

Step 2: Define the Default Settings

The Default Settings page provides defaults for Step 4: Define the Extraction Settings and Start

Extraction in Using the IDL Extractor for COBOL - Overview.

You can set defaults for Interface type, Compiler directives and COBOL to IDL Mapping.

& IDL Extractor for COBOL

Default Settings

Define the default settings For the COBOL extrackor environment,

ZOBOL Exkrackor Environment

Mame:;

COBOL Source Charackeriskics
Operating System:

Inkerface Tvpe: Micro Focus with standard linkage caling convention

Campiler Directives

Meaning of BIC M without USAGE clause: |DISF‘LP."E-1 (DBCT

Format of source code: |Fixed (column 7 - 72)

TAE stop width: &

COBOL Eo IDL Mapping
Map alphanumeric fields (PICTIURE &, &, G, M) ko

(%) Strings with variable length {Java, JMET, DCOM, C, Natural, SOAR, XML)

() 5krings with fixed length (COBOL, PLIT)

':'E’:' < Back

[| s

l [Cancel

> To define the default extraction settings

1

Refer to Step 2: Define the Default Settings for a local extractor environment for field descrip-
tions. Select the default Interface type. See Supported COBOL Interface Types.

Select a value for Meaning of PIC N without USAGE clause. Select "NATIONAL" for IDL
mapping to data type U, or "DISPLAY-1" (DBCS) for data type K. "DISPLAY-1" (DBCS) is the
default, which is the same as Micro Focus compilers. See also COBOL to IDL Mapping.

228

Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

3 Select the source code format. Use "Fixed" (default) or "Variable" to change the interpreted
source code columns. Refer to your Micro Focus documentation for further information.

4 Enter the TAB stop width. Typical values are 4 or 8 (default).
5 Specify the default COBOL to IDL Mapping. See COBOL to IDL Mapping.

6 Choose Next and continue with the Step 3: Define the Local Extractor Environment below.

Refer to Step 2: Define the Default Settings for a local extractor environment for field descrip-
tions.

Step 3: Define the Local Extractor Environment

On the Local Extractor Environment page you can provide a default directory name for the COBOL
programs:

& IDL Extractor for COBOL

Local Extractor Environment

Define a root directory to extract COBOL sources From,

During extrackion you can browse for COBOL sources in this root direckory and its
subdirectories anly.

Foak Directory Mame: | Workspace. ..

| File Swstern. ..

1. Choose Workspace... or File System... to browse for a folder.

2. Choose Next and continue with Step 4: Define the Local Copybook Locations below.

Software AG IDL Extractor for COBOL 229

IDL Extractor for COBOL Preferences

Step 4: Define the Local Copybook Locations

On the Local Copybook Location page you can add directories that will be used to resolve copy-
books. Copybooks and members referenced with COPY statements, CA Librarian - INC statements
and CA Panvalet ++INCLUDE statements will be searched for in the defined local directories:

[i=]

& IDL Extractor for COBOL E

Local Copybook Locations p
Define local directories where the extractor will search For copybooks (COPY statements) and include components {-INC,
++IMCLUDE statements), using the defined file extensions.

Direckory List
List of directories:

\Warkspace. ..
File Swstem, .,

Enter any specific copybook extensions,
IUse comma or semicolon to separate mulkiple extensions (For example: cob;cbl;cpy;txt or cob, chl,cpy, bxb),

Copvbook file extensions: | chl;CPY |

':':’:' [Finish H Zancel]

The file extensions for copybooks can also be entered. If no extensions are specified, the IDL Ex-
tractor for COBOL wizard will try to locate copybooks without any file extensions.

Choose Workspace... or File System... to browse for a folder.

Choose Finish.

Create New Remote Extractor Environment (z/OS)

This section describes the four steps for creating a new remote COBOL extractor environment to
extract remotely z/OS COBOL programs stored in partitioned data sets or CA Librarian data sets.

= Step 1: Define the New Remote Environment
= Step 2: Define the Default Settings
= Step 3: Define the Remote Extractor Environment

230 Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

= Step 4: Define the Remote Copybook Locations
Step 1: Define the New Remote Environment

On the New Environment page you can specify Name, Operating system and the Remote Source
Location.

& IDL Extractor for COBOL

. i
New Environment =
Define a new COBOL extrackor environment,
COBOL Exkrackor Environment
Mame:; | My COBOL Exbractor Environment |
Cperating Swstem: |2,|'DS o |

Source Locakion
() Local (% Remote

> To define the new environment settings

1 Enter a unique name for the COBOL extractor environment.
2 Select the Operating system.
3 Select "Remote" for Source location.

Step 2: Define the Default Settings

The Default Settings page provides defaults for Step 4: Define the Extraction Settings and Start
Extraction in Using the IDL Extractor for COBOL - Overview.

You can set defaults for Interface Type and COBOL to IDL Mapping.

Software AG IDL Extractor for COBOL 231

IDL Extractor for COBOL Preferences

7= IDL Extractor for COBOL Eu@
- |

Default Settings -
Define the default settings for the COBOL extractor environment,

COBOL Extrackar Environmenk

Marne: |

COBCL Source Charackeristics

Operating Syskem:

Interface Tvpe: ZIiCS with DFHCOMMAREA calling convention w |
IM5S MPP message interface (IMS Connect)

1 |

IMS BMP with standard linkage calling convention

ZIZ5 with Channel Container calling consvention

COBCL bo IDL Mapping
Map alphanurmeric fields (PICTIURE ¥, &, G, M) o
(%) Strings with variable length (Jawva, JMET, DCOM, C, Natural, SOAP, XML

{3 5krings with fixed length (COBOL, PLIT)

[ImMap FILLER fields ko I0L

@ [<gack ||

Mext = |[Firish H Carncel

> To define the default extraction settings

m See Step 2: Define the Default Settings in section Create New Local Extractor Environment
(z/0OS, z/VSE, BS2000/0OSD and IBM i).

Press Next and continue with Step 3: Define the Remote Extractor Environment below.

232 Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

Step 3: Define the Remote Extractor Environment

The connection to the Extractor Service to browse for COBOL programs is defined on the Remote
Extractor Environment page. See Extractor Service.

& IDL Extractor, for COBOL

Remote Extractor Environment -
Define an extractor service ko extract remoke COBOL sources From PDS or CA-Librarian datasets, Specify broker #

parameters and filker settings.,

Broker Parameters

Broker I *| |

Server fddress *| | Edit...

Timeout (Seconds): | &0 |

Entirey Authenticakion RPC Server Authentication
User ID: | | RPCUserID: | |
Password: | | RPC Password: | |

Filker Settings
IUse Filker settings to restrick browsing with a dataset name (D3N}, or high level qualifier (HLG), Optionally, give member name.

Dataset Mame ar HLG: +‘| |

Member Mame: | |

®

> To define the remote extractor environment

1 Under Broker Parameters, enter the required fields Broker ID and Server Address, which
will have the default format brokerID@serverAddress. The last part (broker service) of the
server address must always be "EXTRACTOR". The timeout value must be in the range 1-
9999 seconds (default is 60).

2 The EntireX Authentication parameters describe the settings for the broker. See Authentication
of User under Overview of EntireX Security in the EntireX Security documentation.

3 The RPC Server Authentication parameters describe the settings for the RPC server. See
Administering the Batch RPC Server | Administering the EntireX RPC Server under z/OS IMS.

4 A high-level qualifier is required in the Data Set Name or HLQ field. The extractor service
will then offer only data sets with this high-level qualifier.

Software AG IDL Extractor for COBOL 233

IDL Extractor for COBOL Preferences

5 Inthe Member Name field you can provide a prefix for the partitioned data set or CA Librar-
ian members. The extractor service will then offer only members beginning with this prefix.

Press Next and continue with Step 4: Define the Remote Copybook Locations below.

Step 4: Define the Remote Copybook Locations

On the Remote Copybook Location page you can add PDS or CA Librarian data sets that will be
used to resolve copybooks. Copybooks and members referenced with COPY statements and CA
Librarian - INC statements will be searched for in the defined remote data sets:

£ DL Extractor for COBOL M=
i

Remote Copybook Locations
Define remote PDS or CA Librarian data sets where the extractor service will search for copybooks {(COPY statements)
and include components (-INC skatements).

[aka Sets
List of P03 or CA Librarian data set names (DEks):

Insert...

[Finish H Zancel]

Press Insert... to add a new data set entry in the table. Use Remove, Up and Down to manage the
data set list.

Press Finish.

Create New Remote Extractor Environment (BS2000/0SD)

This section describes the four steps for creating a new remote COBOL extractor environment to
extract remotely BS2000/OSD COBOL programs stored in LMS libraries.

= Step 1: Define the New Remote Environment
= Step 2: Define the Default Settings
= Step 3: Define the Remote Extractor Environment

234 Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

= Step 4: Define the Remote Copybook Locations
Step 1: Define the New Remote Environment

On the New Environment page you can specify Name, Operating system and the Remote Source
Location.

£ IDL Extractor for COBOL M=
|

Mew Environment p
Define a new COBOL extrackor environment,

COBOL Extractor Environment

Mame: | My _COBOL_Extractor_Enwvironment |

Operating System: | B52000 v |

Source Locakion

" Local (%) Remake;

®

> To define the new environment settings

1 Enter a unique name for the COBOL extractor environment.
2 Select the Operating system.

3 Select "Remote" for Source location.
Step 2: Define the Default Settings

The Default Settings page provides defaults for Step 4: Define the Extraction Settings and Start
Extraction in Using the IDL Extractor for COBOL - Overview.

You can set defaults for Interface Type and COBOL to IDL Mapping.

Software AG IDL Extractor for COBOL 235

IDL Extractor for COBOL Preferences

& IDL Extractor, for COBOL

Default Settings p
Define the defaulk settings For the COBOL extractor environment, #

COBOL Extractor Environment

Mame:

ZOBDL Source Charackeristics
Operating System:

Interface Type: BATCH with standard linkage calling convention w

COBDL bo IDL Mapping
Map alphanumeric figlds (PICTURE ¥, &, G, M) to
() Strings with variable length (Java, JWET, DCOM, C, Natural, SOAR, XML

() Strings with Fixed length (COBOL, PLITY

[ImMap FILLER Fields ko IDL

@ < Barck Mext > | [Einish l [Cancel

> To define the default extraction settings

1 Select the default Interface Type. See Supported COBOL Interface Types.
2 Specify the default COBOL to IDL Mapping. See COBOL to IDL Mapping.

Press Next and continue with Step 3: Define the Remote Extractor Environment below.
Step 3: Define the Remote Extractor Environment

The connection to the Extractor Service to browse for COBOL programs is defined on the Remote
Extractor Environment page. See Extractor Service in the BS2000/OSD Batch RPC Server document-
ation.

236 Software AG IDL Extractor for COBOL

IDL Extractor for COBOL Preferences

& IDL Extractor, for COBOL

. .
Remote Extractor Environment -
Define an extractor service ko extract remobe COBOL sources From LMS libraries, Specify broker parameters and Filker #

settings.

Broker Parameters

Broker I *|

Server fddress *| | Edit...

Timeout (Seconds): | &0

Entirel Authenticakion RPiZ Server Authentication
User ID: | | RPCUserID: | |
Password: | | RPiZ Password; | |

Filker Settings

IJse Filker settings to restrick browsing with a LM3 library name, or high level qualifier (HLQ), Optionally, give element (30
narme.

LMS Library Marme or HLO: +‘| |

Element (51 Name: | |

@

> To define the remote extractor environment

1 Under Broker Parameters, enter the required fields Broker ID and Server Address, which
will have the default format brokerID@serverAddress. The last part (broker service) of the
server address must always be "EXTRACTOR". The Timeout value must be in the range 1-
9999 seconds (default is 60).

2 The EntireX Authentication parameters describe the settings for the broker. See Authentication
of User under Overview of EntireX Security in the EntireX Security documentation.

3 The RPC Server Authentication parameters describe the settings for the RPC server. See
Configuring the RPC Server in the BS2000/OSD administration documentation.

4 A high-level qualifier can be entered in the LMS Library Name or HLQ field. The extractor
service will then offer only LMS libraries with this high-level qualifier. You can use wildcard
notation with asterisk to specify a range of values.

5 Inthe Element Name field you can provide a prefix for LMS library source elements. The
extractor service will then offer only COBOL programs beginning with this prefix.

Software AG IDL Extractor for COBOL 237

IDL Extractor for COBOL Preferences

Press Next and continue with Step 4: Define the Remote Copybook Locations below.
Step 4: Define the Remote Copybook Locations
On the Remote Copybook Location page you can add directories that will be used to resolve

copybooks. Copybooks referenced with COPY statements will be searched for in the defined remote
LMS libraries:

£ IDL Extractor for COBOL M=
i

Remote Copybook Locations p
Define remote LM3 libraries where the extractor service will search for copybooks (COPY statements),

LM3 Libraries
List of LM3 library names:

Insert...

[Finish H Zancel]

Press Insert... to add a new data set entry in the table. Use Remove, Up and Down to manage the
list of LMS libraries.

Press Finish.

238 Software AG IDL Extractor for COBOL

15 COBOL to IDL Mapping

= COBOL Data Type to Software AG IDL MaPPINGvvveeeeiiiiiiiiii e 241
B DATA DIVISION MEPPING ...ttt ettt e et e e et e e e e st e e e e e e e e 244
® PROCEDURE DIVISION MaPPING ©..civtttieeiitie ettt e e e e e e 254
B COPYDOOKS ...ttt 255

239

COBOL to IDL Mapping

This chapter describes how COBOL data items and related syntax are mapped to Software AG
IDL by the IDL Extractor for COBOL using the Extractor Wizard and Mapping Editor.

240 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

COBOL Data Type to Software AG IDL Mapping

The IDL Extractor for COBOL maps the following subset of COBOL data types to Software AG

IDL data types.

The following metasymbols and informal terms are used for the IDL in the table below.

® The metasymbols "[" and "]" surround optional lexical entities.

® The informal terms n and m are sequences of numeric characters, for example 123.

COMPLUTATIONALI[-4]
(5<n<=9)

COBOL Data Type Software AG IDL Data Type Notes
Alphabetic PIC A(n) An, AV'n Alphanumeric 1,2
DBCS PIC G(n) Kn*2, KVn*2 |Kanji 1,2,3
DBCS PIC N(n) [USAGE] [IS] Kn*2, KVn*2 |Kanji 1,2,3
DISPLAY-1
Unicode or DBCS PIC N(n) Un, UVnor Unicode or Kanji 1,2,3,10
Kn*2, K\n*2
Unicode PIC N(n) [USAGE] [IS] Un, UVn Unicode 1,2
NATIONAL
Alphanumeric PIC X(n) An, AVn Alphanumeric 1,2
Numeric |Zoned decimal |[PIC 9(n)[V9(m)] NUnL, m] Unpacked decimal (2,4,8
unsigned
Zoned decimal [PIC S9(n)[V9(m)] Nnl,m] Unpacked decimal (2,4,8
Packed decimal [PIC 9(n) [V9(m)] PUNL, m] Packed decimal 2,48
COMPLUTATIONALI-3 unsigned
Packed decimal |PIC S9(n) [V9(m)] Pnl,m] Packed decimal 2,48
COMPLUTATIONAL]-3
Packed decimal [PIC 9(n) [V9(m)] PUNL,m] Packed decimal 2,48
PACKED-DECIMAL unsigned
Packed decimal |PIC S9(n) [V9(m)] Pnl,m] Packed decimal 2,48
PACKED-DECIMAL
Binary PIC [S]9(n) BINARY 12 Integer (medium) (2,4,5,6,7
(1<=n<=4)
Binary PIC [S19(n) BINARY 14 Integer (large) 2,4,5,6,7
(5<=n<=9)
Binary PIC [S]19(n) 12 Integer (medium) (2,4,5,6,7
COMPLUTATIONALI[-4]
(1<=n<=4)
Binary PIC [S]9(n) 14 Integer (large) 2,4,5,6,7

Software AG IDL Extractor for COBOL

241

COBOL to IDL Mapping

COBOL Data Type Software AG IDL Data Type Notes
Binary PIC [S19(n) COMP-5 12 Integer (medium) |2,4,6,7
(1<=n<=4)
Binary PIC [S19(n) COMP-5 14 Integer (medium) |2,4,6,7
(5<=n<=9)
Floating point [COMPLUTATIONAL]-1 F4 Floating point 9
(small)
Floating point |[COMPLUTATIONAL]-2 F8 Floating point (large) |9
Alphanumeric-edited Alphanumeric item containing |A(Tength of |Alphanumeric 11
"0"or"/" PIC)
Numeric-edited Numeric item containing "DB", |A(Tength of |Alphanumeric 11
YIC RYI/ ||Z”’ ||$Yl/ " . ”’ n , Vl/ l|+”’ "_ Vl/ PIC)
H*H’ HBH’ HOH Or H/"
Notes:
1. Mapping to fixed-length or variable-length Software AG IDL data type is controlled in the ex-

traction settings of the extraction wizard, see Step 4: Define the Extraction Settings and Start
Extraction.

Equivalent alternative forms of the PICTURE clause, e.g. XXX, AAA,NNN, GGG or 999 may also be
used.

The length for IDL data type is given in bytes. For COBOL the length is in DBCS characters (2
bytes).
The character "P[(n) 1" stands for a decimal scaling position, this character has no effect on the

length of the generated data type. Only the data fraction will be mapped to the Software AG
IDL:

01 GROUPI.
10 FIELD1 PIC PPP9999.

will be mapped to IDL:

1 GROUP1
2 FIELDI NU4

Behavior depends on the COBOL compiler settings:

= With COBOL 85 standard, the value range depends on the number of digits in the PICTURE
clause. This differs from the value range of the IDL data type using the binary field size instead.
If the parameter is of direction "In" your RPC client application has to ensure the integer value
sent is within the allowed range. See Software AG IDL Grammar in the IDL Editor documenta-
tion.

242

Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

= With no COBOL 85 standard, the value range of the COBOL data type reflects the binary field
size, thus matches the IDL data type exactly. In this case, there are no restrictions regarding
value ranges. For example:

* with operating system z/OS and IBM compiler, see option TRUNC(BIN) in your COBOL
compiler documentation

® with operating systems UNIX and Windows and a Micro Focus compiler, see option NOTRUNC
in your Micro Focus COBOL documentation.

. For unsigned COBOL data types (without "S" in the PICTURE clause) the value range of the IDL
data type differs:

® IDL allows negative values, COBOL does not.
= For 12, the maximum is 32767 for IDL instead of 65535 for COBOL.
" For I4, the maximum is 2147483647 for IDL instead of 4294967294 for COBOL.

. Binaries with more than 9 digits in the PICTURE clause cannot be mapped to IDL. See the follow-
ing table:

S9(10) thru S9(18) |Binary doubleword (8 bytes) |-9,223,372,036,854,775 thru +9.223,372,036,854,775
9(10) thru9(18) |Binary doubleword (8 bytes)|0 thru 18,446,744,073,709,551

. The value range of PACKED-DECIMAL and ZONED-DECIMAL is greater than the value range of the

mapped IDL data type. COBOL supports 31 digits (IBM and Fujitsu Siemens), 38 digits (Micro
Focus), and IDL 29 digits. If the COBOL program uses more than 29 digits for a PACKED-DECIMAL
or ZONED-DECIMAL, it cannot be mapped to IDL.

The precision (digits after decimal point) of PACKED-DECIMAL and ZONED-DECIMAL is greater than
the value range of the mapped IDL data type, which is 7. If the COBOL program uses more
than 7 digits after the decimal point for a PACKED-DECIMAL or ZONED-DECIMAL, it cannot be
mapped to IDL.

Only the IDL range 0=n=7 and 1=(m+n)=29 is supported.

. COMPUTATIONAL-1 (4-byte, single precision) and COMPUTATIONAL - 2 items (8-byte, double precision)
items are an IBM-specific extension. When floating-point data types are used, rounding errors
can occut, so the values of senders and receivers might differ slightly.

10. If this form is extracted from a COBOL program originally written for Micro Focus COBOL

and operating system UNIX or Windows, the mapping to the IDL data type depends on the
setting in the IDL Extractor for COBOL Preferences. See Meaning of PIC N without USAGE
clause within pane Compiler Directives of Step 2: Define the Default Settings. For all other
COBOL program extractions, the mapping is always to IDL data type Un/Uvn.

11. COBOL alphanumeric/numeric edited items will force the generation of IDL data type A with

an inline comment containing the original COBOL PICTURE clause. The CURRENCY SIGN clause in
the SPECIAL-NAMES and the CURRENCY compiler option is not considered.

Software AG IDL Extractor for COBOL 243

COBOL to IDL Mapping

DATA DIVISION Mapping

This section discusses the syntax relevant for extracting the DATA DIVISION:

= BLANK WHEN ZERO Clause

= Condition Names - Level-88 Data ltems

= Continuation Lines

= DATE FORMAT Clause

= F|LLER Pseudo-Parameter

= GLOBAL and EXTERNAL Clause

= JUSTIFIED Clause

= OBJECT REFERENCE Phrase

= Parameter Names

= POINTER Phrase

= PROCEDURE-POINTER Phrase

= REDEFINE Clause

= RENAMES Clause - LEVEL 66 Data ltems

= SIGN LEADING and TRAILING SEPARATE Clause
= SYNCHRONIZED Clause

= Tables with Fixed Size

= Tables with Variable Size - DEPENDING ON Clause
= Unstructured Data Types - LEVEL 77 Data ltems
= JSAGE Clause on Group Level

= USAGE IS INDEX Clause

= VALUE Clause

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause specifies that an item contains nothing but spaces when its value is
zero. The BLANK WHEN ZERO clause is not considered by the IDL Extractor for COBOL. The DATA
DIVISION is parsed as without the BLANK WHEN ZERO clause. Because the BLANK WHEN ZERO clause
only has an impact if the item is displayed, such a program can be mapped to IDL. The workaround
for RPC clients is to imitate the BLANK WHEN ZERO clause.

244 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

Condition Names - Level-88 Data Items
See the following COBOL syntax:

88 condition_name VALUE [IS] 'Titeral_I'
88 condition_name VALUE [IS] 'Titeral_I1' [THRU | THROUGH] 'Titeral_2'
88 condition_name VALUES [ARE] 'Titeral_I1' [THRU | THROUGH] 'Titeral_2'

Semantically, level-88 condition names can be

® Enumeration Type Values
If your COBOL server requires the level-88 value to be provided on a call-by-call basis, that is,
the value may change with every call, map the level-88 base variable to a simple IDL parameter
with the desired direction In, Out or InOut. RPC clients have to pass correct values, same as
defined by the level-88 condition names.

® Single Constant Values
If your COBOL server interface expects for your purpose always a constant value, map the level-
88 condition names to a constant.

® Function or Operation Codes
If the level-88 values are function or operation codes, map the level-88 condition names to an
operation.

Continuation Lines

Continuation lines, starting with a hyphen in the indicator area, are supported.

DATE FORMAT Clause

The DATE FORMAT clause is an IBM-specific extension. The DATE FORMAT clause specifies that a data
item is a windowed or expanded date field.

The DATE FORMAT clause is not considered by the IDL Extractor for COBOL. The DATA DIVISION
is parsed as without the BLANK WHEN ZERO clause. The semantic given by the DATE FORMAT clause
has to be considered by RPC clients.

FILLER Pseudo-Parameter

In the check box Map FILLER fields to IDL of the COBOL to IDL in the extraction settings of the
wizard (see Step 4: Define the Extraction Settings and Start Extraction) you can define whether
COBOL FILLER pseudo-parameters should be part of the RPC client interface by default or not.
By default they are not mapped to IDL. In the COBOL Mapping Editor you can change the mapping
for a FILLER field individually, e.g. mapping required ones to IDL. If FILLER fields are mapped to
IDL, they are made unique by appending a sequence number. You can set the prefix to be used
in the IDL Extractor for COBOL Preferences.

Software AG IDL Extractor for COBOL 245

COBOL to IDL Mapping

If the resulting names are not suitable, you can rename IDL field names in the Mapping Editor
with the Rename function of the context menu. See the following example:

01 GROUPI.
10 FIELD1 PIC XX.
10 FILLER PIC XX.
10 FIELD2 PIC S99.
10 FILLER PIC XX.

This will be mapped to Software AG IDL:

1 GROUP1
2 FIELDI (A2)
2 FILLER_I (A2)
2 FIELD? (N2.0)
2 FILLER_Z2 (A2)

If a group is named FILLER and the group has scalar fields, the group is always mapped to IDL,
independent of the check box Map FILLER fields to IDL. For example:

01 GROUPI.
10 FIELD1 PIC XX.
10 PIC XX.

10 FIELD2 PIC $S99.

10 FILLER PIC XX.

10 .

20 FIELD3 PIC S9(4) BINARY.
20 FIELD4 PIC S9(4) BINARY.

This will be mapped to Software AG IDL:

1 GROUP1

FIELDI (A2)
FILLER_1 (A2)
FIELD2 (N2.0)
FILLER_2 (A2)
FILLER_3

3 FIELD3 (I2)

3 FIELD4 (I2)

R NN NN

246

Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

GLOBAL and EXTERNAL Clause

The GLOBAL clause

" specifies that a data-name is available to every program contained within the program that de-
clares it, as long as the contained program does not itself have a declaration for that name.

® isnot considered by the IDL Extractor for COBOL. The DATA DIVISION is parsed as without the
GLOBAL clause.

However, program parameters containing the GLOBAL clause can be mapped to IDL, which can
make sense as long as the EXTERNAL DATA clause is used to pass parameters from the called COBOL
server to further subprograms called.

The EXTERNAL clause

" can only be specified on data description entries that are in the Working-Storage section of a
program.

® isnot considered by the IDL Extractor for COBOL. The DATA DIVISION is parsed as without the
EXTERNAL clause.

| Note: EntireX RPC technology cannot pass data using EXTERNAL linkage from the RPC
server to the COBOL server. However, program parameters containing the EXTERNAL
clause can be mapped to IDL, which can make sense as long as the EXTERNAL DATA clause
is used to pass parameters from the called COBOL server to further subprograms called.

Software AG IDL Extractor for COBOL 247

COBOL to IDL Mapping

Passing external
data is not
possitle here
- ?

I ey

Passing external
data Is
possible here

—~
—~

=

JUSTIFIED Clause

The IDL Extractor for COBOL ignores the JUSTIFIED clause. The DATA DIVISION is parsed as
without the JUSTIFIED clause. The workaround for RPC clients is to imitate the JUSTIFIED clause.

OBJECT REFERENCE Phrase

The 0BJECT REFERENCE phrase is an IBM-specific extension. A program containing an 0BJECT
REFERENCE phrase cannot be mapped to IDL.

Parameter Names

Numbers in the first position of the parameter name are not allowed in Software AG IDL syntax
(see Software AG IDL Grammar in the IDL Editor documentation). Thus COBOL names starting
with a number are prefixed with the character "#" by default. You can rename all IDL parameters
in the COBOL Mapping Editor. For example,

248 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

01 1BSP PIC XXX.

by default will be mapped to Software AG IDL:

01 #1BSP A(3).

If a parameter name is not specified, e.g.

01 GROUPI.
10 FIELD1 PIC XX.
10 PIC XX.

10 FIELD2 PIC $S99.

10 FILLER PIC XX.

10 .

20 FIELD3 PIC S9(4) BINARY.
20 FIELD4 PIC S9(4) BINARY.

see FILLER Pseudo-Parameter above.
POINTER Phrase

The POINTER phrase is an IBM-specific extension.

COBOL Syntax Software AG IDL Syntax

1 name USAGE IS POINTER|none
1 name POINTER none

All pointers are mapped to "suppressed"” in the Mapping Editor because the Software AG IDL
does not support pointers. Offsets to following parameters are maintained by the Usage of Server
Mapping Files. At runtime, the RPC server passes a null pointer to the COBOL server.

PROCEDURE-POINTER Phrase

The PROCEDURE-POINTER phrase is an IBM-specific extension. A program containing a procedure-
reference phrase cannot be mapped to IDL.

REDEFINE Clause

A redefinition is a second parameter layout of the same memory portion. In most modern program-
ming languages, and also the Software AG IDL, this is not supported. With the wizard you can
select a single redefine path for IDL usage. You can do this in the

® COBOL Mapping Editor

" Select the single REDEFINE path for a level 1 REDEFINE unit (all redefine paths addressing the
same storage location) in the parameter selection window. See Step 5: Select the COBOL In-
terface and Map to IDL Interface in Using the IDL Extractor for COBOL. This is the simplest

Software AG IDL Extractor for COBOL 249

COBOL to IDL Mapping

and most straightforward approach for a COBOL server with a single interface, because All
REDEFINE siblings are no longer considered. Further processing is like a single parameter for
the level 1 REDEFINE path.

= Select the complete REDEFINE unit on level 1 with all paths for a COBOL server with multiple
interfaces that have to be mapped to operation, and where each operation interface is described
by a level 1 REDEFINE path in the parameter selection window. See Step 5: Select the COBOL
Interface and Map to IDL Interface in Using the IDL Extractor for COBOL. Then model the
operation interfaces in the Mapping Editor to IDL programs.

® Only REDEFINE units on level 1 can be selected in the parameter selection. REDEFINE units on
level greater than 1 have to be selected in the Mapping Editor, see below.

® COBOL Mapping Editor

® For all REDEFINE units on level greater than 1, the REDEFINE path used by your interface has
to be selected in the Mapping Editor.

® For REDEFINE units on level 1 that are not selected uniquely in the parameter selection window
above, map the required REDEFINE path to IDL.

If a REDEFINE path is selected, the mapping is as follows:

COBOL Syntax Software AG IDL Syntax

1 [name_1] REDEFINES name_2|1 name_1
1 FILLER REDEFINES name_2Z2 1 FILLER_n

RENAMES Clause - LEVEL 66 Data Items

Level-66 entries are ignored and cannot be used for mapping to IDL. The DATA DIVISION is parsed
as without the level-66 entry.

SIGN LEADING and TRAILING SEPARATE Clause

The SIGN LEADING and TRAILING SEPARATE clause is supported. The mapping is internal within
the Usage of Server Mapping Files.

SYNCHRONIZED Clause

The synchronized clause aligns COBOL data items at word boundaries. The clause does not have
any relevance for RPC clients and is not written into the IDL file but into the server mapping file.
At runtime, the RPC server aligns the data items accordingly.

250 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

Tables with Fixed Size

Fixed-size COBOL tables are converted to fixed-size IDL arrays. See the following syntax.

COBOL Syntax Software AG IDL Syntax
1 name OCCURS n [TIMES] 1 name (/n)

1 name OCCURS n [TIMES] [ASCENDING | DESCENDING [KEY] [IS] 1 name (/n)
key_name]

1 name OCCURS n [TIMES] [[INDEXED [BY] index_name] 1 name (/n)
Rules

® The combination of the ASCENDING and INDEXED BY phrase as well as DESCENDING and INDEXED
BY phrase is also supported.

Tables with Variable Size - DEPENDING ON Clause

Variable size COBOL tables are converted to unbounded groups with a maximum upper bound
set. The lower-bound is always set to 1. The index is not part of the IDL, but it is in the server
mapping file. See the following example:

01 COUNTER-1 PIC 99.

01 TABLE OCCURS FROM 1 TO 10 DEPENDING ON COUNTER-1
02 FIELDI PIC XX.
02 FIELDZ PIC 99.

A variable length group (with maximum) will be defined. A presence of the index in the IDL
would be wrong, because the number of elements is implicitly available with the unbounded

group. Therefore the index is not part of the IDL, but the mapping is within the Usage of Server
Mapping Files.

01 TABLES (/V10)
02 FIELDI (A2)
02 FIELDZ (NU2.0)

COBOL Syntax Software AG IDL Syntax

1 name OCCURS n TO m [TIMES] DEPENDING [ON] index 1 name (/m)

1 name OCCURS n TO m [TIMES] DEPENDING [ON] 7index [ASCENDING | |1 name (/m)
DESCENDING [KEY] [IS] key_name]

1 name OCCURS n TO m [TIMES] DEPENDING [ON] index [INDEXED [BYI|1 name (/m)
index_name]

Software AG IDL Extractor for COBOL 251

COBOL to IDL Mapping

Rules

The data item referenced by the 0CCURS DEPENDING ON clause has to be part of the COBOL
server interface as well - in the same COBOL data item direction. This means that if the variable-
size table is selected as a

® COBOL InOut Parameter (see Step 5: Select the COBOL Interface and Map to IDL Interface),
the index data item (ODO subject) must be selected as a COBOL InOut parameter as well.

® COBOL In Parameter, the index data item (ODO subject) must be selected as a COBOL In
parameter as well.

® COBOL Out Parameter, the index data item (ODO subject) must be selected as a COBOL Out
parameter as well.

If the 7ndex data item (ODO subject) is not selected correctly with the variable-size table, unex-
pected behavior occurs.

The COBOL from value, n above, is semantically different from the IDL lower bound and means
a lower-bound of elements which must not be crossed. It is the duty of the calling RPC client to
take care of this and set the corresponding number of elements correctly. Do not send less than
the COBOL lower bound.

The combination of the ASCENDING and INDEXED BY phrase as well as DESCENDING and INDEXED
BY phrase is also supported.

Unstructured Data Types - LEVEL 77 Data ltems

COBOL level-77 data items are handled as COBOL data items on level 1. They are always mapped
to IDL level 1.

USAGE Clause on Group Level

A USAGE clause can be specified on group level, which defines the data type of subsequent groups
or parameters. The USAGE clause on subsequent groups or parameters may not contradict a higher
level definition. Therefore IDL data types may depend on USAGE clauses of parent groups if the
COBOL data structure is defined as explained.

USAGE IS INDEX Clause

COBOL data items defined with USAGE IS INDEX are parsed as without USAGE IS INDEX. The
USAGE IS INDEX clause isignored.

252 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

VALUE Clause

The VALUE clause specifies the initial contents of a data item or the value(s) associated with a con-
dition name. For condition names, see Condition Names - Level-88 Data Items above.

COBOL Syntax

1 name <COBOL data type> VALUE [IS] 'literal’

Initial values can be specified on data items in the Working-Storage Section. As an IBM extension,
in the File and Linkage Sections, the VALUE clause is treated as a comment.

The IDL Extractor for COBOL ignores initial values of data items. The DATA DIVISION is parsed
as without the VALUE clause.

Software AG IDL Extractor for COBOL 253

COBOL to IDL Mapping

PROCEDURE DIVISION Mapping

This section discusses the syntax relevant for extraction of the PROCEDURE DIVISION:

= PROCEDURE DIVISION Header
= BY VALUE Phrase
= RETURNING Phrase

PROCEDURE DIVISION Header

For batch and IMS programs, the PROCEDURE DIVISION header is relevant for the COBOL InOut
parameters. The parameters of the header are suggested as default COBOL InOut parameters.

For CICS, the PROCEDURE DIVISION header is of no interest, because the DFHCOMMAREA is the relevant
information to get the COBOL InOut parameters from. If the DFHCOMMAREA is defined in the linkage
section all parameters of the DFHCOMMAREA are suggested as default COBOL InOut parameters. If
there is no DFHCOMMAREA there is no suggestion.

However, you can always add, change and correct the suggested parameters if they are not the
correct ones in the extraction wizard. See also Step 5: Select the COBOL Interface and Map to IDL
Interface in Using the IDL Extractor for COBOL.

BY VALUE Phrase

The BY VALUE clause is an IBM-specific extension for COBOL batch programes. It is ignored by the
IDL Extractor for COBOL. Directions are added in the Mapping Editor manually.

RETURNING Phrase

The RETURNING phrase is an IBM-specific extension for COBOL batch programs. It is ignored by
the IDL Extractor for COBOL. Handling is as without the phrase. No return value is transferred
during execution time. If the RETURNING phrase is relevant for the interface, the COBOL program
cannot be mapped to IDL.

254 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

Copybooks

Copybook Support

COPY statements are supported if nested copy statements do not recursively call the same source
file.

If copybooks cannot be located, the following rules apply:

* In the case of a remote extraction, the copybook location (data set) is unknown.

* Inthe case of a local extraction, either the copybook location (directory) or the copybook extension
is unknown.

* Inboth cases, the extraction wizard will appear with a dialog to browse for the copybook location
(local directory or remote data set) and allows you to append your copybook extensions. Both
will be saved in the preferences.

You can also predefine the following in the preferences:

* the copybook locations, see Step 4: Define the Remote Copybook Locations or Step 4: Define
the Local Copybook Locations in IDL Extractor for COBOL Preferences.

* the copybook extensions for local extractions, see Step 4: Define the Local Copybook Locations
in IDL Extractor for COBOL Preferences.

Copybooks with REPLACE Option

COPY statements with the REPLACE option are supported. Beneath the REPLACE option, those
copybooks are worked off like all other copybooks above. Example:

® a copybook ACPYBK with REPLACE option

01 WS-ZEUGNIS.

:F: WS-AKTIONEN PIC 9(01).
slbg 2Cs=NEU VALUE "N'.
:L: :C:-MOD VALUE 'M'.
:L: :C:-INS VALUE 'I°'.
:L: :C:-WEG VALUE '"W'.
:L: :C:-SIG VALUE 'S"'.

:F: WS-NOTEN PIC X(03).
:L: SEHR-GUT VALUE 100.
:L: GUT VALUE 95 THROUGH 99.
:L: BEFRIEDIGEND VALUE 80 THROUGH 94.
:L: AUSREICHEND VALUE 50 THROUGH 79.
:L: MANGELHAFT VALUE 01 THROUGH 49.
:L: UNGENUEGEND VALUE 0.

Software AG IDL Extractor for COBOL 255

COBOL to IDL Mapping

* referencing the copybook above

COPY ACPYBK

REPLACING

WS-NOTEN
==X (03)==
=9(01)=

BY
BY
BY
BY
BY
BY
BY
BY

—=10==,
——88—-,
——CMD—=,
90,

89,
WS-PROZENT,
==9(03)==,
—=X(01)=-.

256

Software AG IDL Extractor for COBOL

	Software AG IDL Extractor for COBOL
	Table of Contents
	I Introduction to the IDL Extractor for COBOL
	1 Introduction to the IDL Extractor for COBOL
	Introduction
	Extractor Wizard
	Mapping Editor
	Supported COBOL Interface Types
	Supported CICS COBOL Interface Types
	CICS with DFHCOMMAREA Calling Convention
	CICS with Channel Container Calling Convention
	CICS with DFHCOMMAREA Large Buffer Interface

	Micro Focus with Standard Linkage Calling Convention
	Batch with Standard Linkage Calling Convention
	IMS MPP Message Interface (IMS Connect)
	IMS BMP with Standard Linkage Calling Convention
	What to do with other Interface Types?
	Compatibility between COBOL Interface Types and RPC Server

	Usage of Server Mapping Files

	II Using the IDL Extractor for COBOL - Overview
	Choosing a Scenario
	Before Starting an Extraction
	2 Scenario I: Create New IDL and Server Mapping Files
	Step 1: Start the IDL Extractor for COBOL Wizard
	Step 2: Select a COBOL Extractor Environment or Create a New One
	Step 3: Select the COBOL Source
	Selecting a COBOL Source Stored Locally
	Selecting a Member from a Partitioned Data Set on Remote Host (z/OS)
	Selecting a Member from a CA Librarian Data Set on Remote Host (z/OS)
	Selecting a Member Archive Level from a CA Librarian Data Set on Remote Host (z/OS)
	Selecting an Element (S) from an LMS Library on Remote Host (BS2000/OSD)

	Step 4: Define the Extraction Settings and Start Extraction
	Step 4.1a: Copybook Cannot be Found - Local Extraction
	Step 4.1b: Copybook Cannot be Found - z/OS Remote Extraction
	Step 4.1c: Copybook Cannot be Found - BS2000/OSD Remote Extraction
	Step 4.2: Copybook Status Summary (Optional)
	Step 4.3: Enter COBOL Program ID (Optional)

	Step 5: Select the COBOL Interface and Map to IDL Interface
	Step 6: Finishing the Mapping Editor
	Step 7: Validate the Extraction and Test the IDL File

	3 Scenario II: Append to Existing IDL and Server Mapping Files
	4 Scenario III: Modify Existing IDL and Server Mapping Files

	III COBOL Mapping Editor
	5 CICS with DFHCOMMAREA Calling Convention - In same as Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions
	Example 2: Redefines
	Example 3: Buffer Technique
	Example 4: COBOL SET ADDRESS Statements

	6 CICS with DFHCOMMAREA Large Buffer Interface - In same as Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Large Buffer Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Set Arrays (Fixed <-> Unbounded)

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions
	Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

	7 Batch with Standard Linkage Calling Convention
	Introduction
	Extracting from a Standard Call Interface
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions

	8 Micro Focus with Standard Linkage Calling Convention
	Introduction
	Extracting from a Standard Call Interface
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions

	9 IMS BMP with Standard Linkage Calling Convention
	Introduction
	Extracting from an IMS BMP Standard Call Interface
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions

	10 CICS with DFHCOMMAREA Calling Convention - In different to Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions
	Example 2: Redefines
	Example 3: Buffer Technique
	Example 4: COBOL SET ADDRESS Statements

	11 CICS with DFHCOMMAREA Large Buffer Interface - In different to Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Large Buffer Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Set Arrays (Fixed <-> Unbounded)

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions
	Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

	12 CICS with Channel Container Calling Convention
	Introduction
	Extracting from a CICS Channel Container Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Set Arrays (Fixed <-> Unbounded)

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions
	Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

	13 IMS MPP Message Interface (IMS Connect)
	Introduction
	Extracting from an IMS MPP Message Interface Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Set Arrays (Fixed <-> Unbounded)

	Programming Techniques
	Example 1: COBOL Server with Multiple Functions
	Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

	14 IDL Extractor for COBOL Preferences
	Create New Local Extractor Environment (z/OS, z/VSE, BS2000/OSD and IBM i)
	Step 1: Define the New Local Environment
	Step 2: Define the Default Settings
	Step 3: Define the Local Extractor Environment
	Step 4: Define the Local Copybook Locations

	Create New Local Extractor Environment for Micro Focus (UNIX and Windows)
	Step 1: Define the New Local Environment
	Step 2: Define the Default Settings
	Step 3: Define the Local Extractor Environment
	Step 4: Define the Local Copybook Locations

	Create New Remote Extractor Environment (z/OS)
	Step 1: Define the New Remote Environment
	Step 2: Define the Default Settings
	Step 3: Define the Remote Extractor Environment
	Step 4: Define the Remote Copybook Locations

	Create New Remote Extractor Environment (BS2000/OSD)
	Step 1: Define the New Remote Environment
	Step 2: Define the Default Settings
	Step 3: Define the Remote Extractor Environment
	Step 4: Define the Remote Copybook Locations

	15 COBOL to IDL Mapping
	COBOL Data Type to Software AG IDL Mapping
	DATA DIVISION Mapping
	BLANK WHEN ZERO Clause
	Condition Names - Level-88 Data Items
	Continuation Lines
	DATE FORMAT Clause
	FILLER Pseudo-Parameter
	GLOBAL and EXTERNAL Clause
	JUSTIFIED Clause
	OBJECT REFERENCE Phrase
	Parameter Names
	POINTER Phrase
	PROCEDURE-POINTER Phrase
	REDEFINE Clause
	RENAMES Clause - LEVEL 66 Data Items
	SIGN LEADING and TRAILING SEPARATE Clause
	SYNCHRONIZED Clause
	Tables with Fixed Size
	Tables with Variable Size - DEPENDING ON Clause
	Unstructured Data Types - LEVEL 77 Data Items
	USAGE Clause on Group Level
	USAGE IS INDEX Clause
	VALUE Clause

	PROCEDURE DIVISION Mapping
	PROCEDURE DIVISION Header
	BY VALUE Phrase
	RETURNING Phrase

	Copybooks
	Copybook Support
	Copybooks with REPLACE Option

