
webMethods EntireX

EntireX MSP

Version 9.7

October 2014

This document applies to webMethods EntireX Version 9.7.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-ACI-97-20160805JMS

Table of Contents

EntireX Message Service Provider ... v
1 Writing JMS Applications with the EntireX Broker .. 1

EntireX Broker and JMS ... 2
Writing JMS Applications .. 3
Writing Advanced Applications .. 7
Connecting JMS Applications and non-JMS Applications .. 9
JMS Error Handling ... 11

2 Message Service Administration using System Management Hub 15
Introduction .. 16
Queue Connection Factory ... 16
Queue ... 17
Topic Connection Factory .. 18
Topic ... 18
Batch Interface .. 19

3 Monitoring EntireX Message Service Provider ... 21
Monitoring Queues .. 22
Monitoring Messages ... 22
Monitoring Senders .. 23
Monitoring Receivers ... 23
Monitoring Topics .. 23
Monitoring Publications ... 24
Monitoring Publishers .. 24
Monitoring Subscribers .. 24

iii

iv

EntireX Message Service Provider

The EntireX Broker is a message server provider that supports Java Message Service (JMS) with
both point-to-point and publish and subscribe messaging. This enables JMS-based applications
to profit from the reliability and performance of the EntireX Broker.

The following topics are covered:

Describes how to write JMS applications with the EntireX Broker.Writing JMS Applications with the
EntireX Broker

Describes message service administration using the System
ManagementHub, SoftwareAG's cross-product and cross-platform
product management framework.

Message Service Administration using
System Management Hub

Describes how to monitor items in point-to-point messaging
(queues, messages, senders, and receivers) or items in

Monitoring EntireX Message Service
Provider

publish-and-subscribe messaging (topics, messages, publishers
and subscribers) using the etbinfo tool.

v

vi

1 Writing JMS Applications with the EntireX Broker

■ EntireX Broker and JMS ... 2
■ Writing JMS Applications .. 3
■ Writing Advanced Applications ... 7
■ Connecting JMS Applications and non-JMS Applications .. 9
■ JMS Error Handling ... 11

1

Java Message Service (JMS) is a standard API for enterprise messaging services. This chapter de-
scribes how to write JMS-based applications with the EntireX Broker.

EntireX Broker and JMS

The EntireX Broker is enabled for JavaMessage Service (JMS). JMS is supported with components
on top of Java ACI. JMS in general uses two message models: point-to-point messaging and publish-
and-subscribe messaging. The EntireX Broker supports both messaging models. JMS connections
are mapped to Broker. JMS queues are mapped to services of the Broker. JMS topics are mapped
to topics of the Broker.

The Broker must have EntireX version 7.1.1 or higher for point-to-point messaging. For publish-
and-subscribemessaging, the Brokermust have EntireX version 7.2.1 or higher. For point to point,
the implementation uses units of work to communicate with the Broker. The configuration of the
Broker for JMS includes enabling units of work and configuration of the persistent store for per-
sistent JMS messages. Publish and subscribe uses publications and topics of the Broker. For the
administration of the objects in the JNDI directory, use the Message Service Agent of the System
ManagementHub. SeeMessage Service Administration using SystemManagement Hub. The files
entirex.jar and exxjms.jar are required to run JMS applications with the Broker.

EntireX MSP2

Writing JMS Applications with the EntireX Broker

Writing JMS Applications

Writing JMS applications with the EntireX Broker requires the following steps:

■ Configure the Broker
■ Configure the JNDI Provider
■ Create the Administered Objects with the JMS Agent of the System Management Hub
■ Coding and Compiling Your Application
■ Running Your Application
■ Examples

Configure the Broker

To enable the Broker for JMS Publish and Subscribe

Edit the Broker attribute file. The following examples show the attributes needed for JMS publish
and subscribe. Adapt the numerical values to your needs. The values are examples.

1 Enable the Broker for publish and subscribe.

PUBLISH-AND-SUBSCRIBE = YES
PUBLICATION-DEFAULT = UNLIM
SUBSCRIBER-DEFAULT = UNLIM
TOPIC-UPDATES = YES
AUTO-COMMIT-FOR-SUBSCRIBER = NO

Note: Attribute AUTO-COMMIT-FOR-SUBSCRIBER is required because committingmessages
is controlled by JMS.

2 Configure the subscriber store for durable subscribers.

Use PSTORE as subscriber store. For more details of the PSTORE configuration, see the Broker
Attributes in the platform-independent administration documentation.

SUBSCRIBER-STORE = PSTORE
NUM-SUBSCRIBER-TOTAL = 1000
NUM-TOPIC-TOTAL = 1000

3 Define the topics.

The following example lists the attributes connected to topics. For a detailed description see
the Broker Attributes in the platform-independent administration documentation. At least one
topic definition with topic “*” is needed to enable the temporary topics of JMS. The names of
the topics are restricted to 96 bytes. The lifetime of the messages is controlled by JMS.

3EntireX MSP

Writing JMS Applications with the EntireX Broker

DEFAULTS = TOPIC
ALLOW-DURABLE = YES
UNSECURE-SUBSCRIBE = YES
AUTO-COMMIT-FOR-SUBSCRIBER = NO
CONVERSION = SAGTCHA
LONG-BUFFER-LIMIT = UNLIM
MAX-PUBLICATION-MESSAGE-LENGTH = 31647
MAX-MESSAGES-IN-PUBLICATION = 5
PUBLICATION-LIMIT = UNLIM
PUBLISHER-NONACT = 5M
SHORT-BUFFER-LIMIT = UNLIM
SUBSCRIBER-LIMIT = UNLIM
SUBSCRIBER-NONACT = 3M
TRANSLATION = SAGTCHA
SUBSCRIPTION-EXPIRATION = 90D
TOPIC = *

To enable the Broker for JMS point to point

Edit the Broker attribute file as described below:

1 Set MAX-UOW to some appropriate value greater than 0.

2 Define the services for JMS.

JMS queues are mapped to the service class JMS and the service QUEUE (or TMPQUEUE for tem-
porary queues). The name of the queue is used as the server name. The default Broker attribute
file that is installed contains the definitions for JMS. This enables the installed default Broker
for JMS with non-persistent messages.

* ------------- ENTIREX/JMS example services -------------------------
DEFAULTS = SERVICE

CONV-LIMIT = UNLIM
CONV-NONACT = 4M
LONG-BUFFER-LIMIT = UNLIM
NOTIFY-EOC = NO
SERVER-NONACT = 5M
SHORT-BUFFER-LIMIT = UNLIM

CLASS = JMS, SERVER = *, SERVICE = QUEUE, DEFERRED = yes
CLASS = JMS, SERVER = *, SERVICE = TMPQUEUE, DEFERRED = yes
* --

3 Configure the persistent store of the Broker (optional).

Use the Broker attributes STORE, PSTORE, PSTORE-TYPE to configure the persistent store.

The value STORE=OFF corresponds to DeliveryMode.NON_PERSISTENT and the value
STORE=BROKER corresponds to DeliveryMode.PERSISTENT.

EntireX MSP4

Writing JMS Applications with the EntireX Broker

The defaults set for the Broker are overwritten by the STORE attribute of the service and this
is overwritten by the value JMS sets.

If you use DeliveryMode.PERSISTENT in JMS, you have to use PSTORE to define the status of
the persistent store and PSTORE-TYPE to define the type of persistent store. See Broker Attributes
in the platform-independent administration documentation for details.

Configure the JNDI Provider

To use administered objects of JMS with a JNDI service provider, configure the JNDI service pro-
vider as described below:

To configure the JNDI Service Provider

1 Get the JAR files of the service provider and follow the service provider's documentation to
deploy these JAR files.

2 Create or change the file jndi.properties. Add the path of this file to the Java classpath.

With the installation of EntireX, the JNDI file system service provider is configured. The JAR files
fscontext.jar and providerutil.jar reside in the subfolder classes of the EntireX installation folder.
The JNDI configuration jndi.properties is placed in the subfolder etc.

Create the Administered Objects with the JMS Agent of the System Management Hub

SeeMessage Service Administration using System Management Hub.

Coding and Compiling Your Application

Compile your applicationwith the gf.javax.jms.jar. The JAR files from EntireX are not needed. This
ensures that the JMS application is portable between JMS providers.

Running Your Application

The following JAR files are required to run your application, in addition to the gf.javax.jms.jar and
the JAR files for the JNDI provider.

■ entirex.jar
■ exxjms.jar
■ Jcup.jar
■ Jakarta-regexp-1.2.jar

5EntireX MSP

Writing JMS Applications with the EntireX Broker

Examples

Examples for JMS are in the subfolder jms of the examples folder. For a detailed description see
the README.TXT in this folder. To compile and run the examples use build.bat or the build.xml
script with Ant.

Basic Examples

SenderToQueue.java and SynchQueueReceiver.java can be used to send and synchronously receive
a single textmessage using a queue. SynchTopicExample.javauses a publisher class and a subscriber
class to publish and synchronously receive a single text message using a topic.

Intermediate Examples

The intermediate examples show listeners, conversion and types of messages:

SenderToQueue.java and AsynchQueueReceiver.java send a specified number of text messages to a
queue and asynchronously receive them using a message listener (TextListener), which is in the
file TextListener.java.

AsynchTopicExample.java uses a publisher class and a subscriber class to publish five text messages
to a topic and asynchronously get them using a message listener (TextListener).

MessageFormats.javawrites and readsmessages in the five supportedmessage formats. Themessages
are not sent, so you do not need to specify a queue or topic argument when you run the program.

MessageConversion.java shows that for some message formats, you can write a message using one
data type and read it using another.

ObjectMessages.java shows that objects are copied intomessages, not passed by reference: once you
create a message from a given object, you can change the original object, but the contents of the
message do not change.

BytesMessages.java shows how towrite, then read a BytesMessage of indeterminate length. It reads
the message content from a file.

Advanced Examples

The advanced examples showheader fields, selectors, durable subscriptions, acknowledgemodes,
transacted sessions, and request/reply:

MessageHeadersQueue.java andMessageHeadersTopic.java illustrate the use of the JMS message
header fields.

TopicSelectors.java shows how to use message header fields as message selectors. The program
consists of one publisher and several subscribers. Each subscriber uses amessage selector to receive
a subset of the messages sent by the publisher.

EntireX MSP6

Writing JMS Applications with the EntireX Broker

DurableSubscriberExample.java shows howyou can create a durable subscriber that retainsmessages
published to a topic while the subscriber is inactive.

AckEquivExample.java shows that to ensure that amessagewill not be acknowledgeduntil processing
is complete. Use a receiver with AUTO_ACKNOWLEDGE or CLIENT_ACKNOWLEDGE.

TransactedExample.javademonstrates the use of transactions in a simulated e-commerce application.

RequestReplyQueue.java uses the JMS request/reply facility, which supports situations in which
every message sent requires a response.

SampleJMSClient.java and SampleJMSServer.java demonstrate sending requests and replies. The
server uses a message listener and an exception listener.

Writing Advanced Applications

This section describes the features of JMS and how they are mapped to an EntireX Broker config-
uration and functions.

Persistent and Non-persistent Messages

For persistent messages, the persistent store of the Broker has to be configured. See Configure the
Broker and Broker Attributes in the platform-independent administration documentation for more
information. If the persistent store is disabled, only DeliveryMode.NON_PERSISTENT is supported.
Sending messages with DeliveryMode.PERSISTENT to a Broker without persistent store results in
exception “0078 0388: PSI: UOWs canNOT be persisted”.

Acknowledge Modes

The acknowledge modes DUPS_OK_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, and CLIENT_ACKNOWLEDGE
are supported for non-transacted sessions. In the mode CLIENT_ACKNOWLEDGE, the method
acknowledge() for a message sends a SYNCPOINTwith option EOC to the Broker. For the other
modes, the same is done automatically.

Transacted Sessions

For transacted sessions, commit() sends a SYNCPOINTwith option EOC to the Broker. This sets the
status of the UOW to “accepted” for the sender and “delivered” for the receiver. The rollback()
method sends a SYNCPOINTwith option BACKOUT to the Broker. This sets the status of the UOW to
“backed out” for the sender and “accepted” for the receiver.

7EntireX MSP

Writing JMS Applications with the EntireX Broker

Security

EntireX security is supportedwith themethod ConnectionFactory.createConnection(userName,
password). This uses a logon to the Broker with user and password.

Receiving Messages with a MessageListener

To receive messages with a MessageListener, implement the onMessagemethod of the interface
MessageListener. Since this method does not throw JMSExceptions, it is appropriate to set up an
ExceptionListener for the connection. This listener gets all the exceptions thrown by the
MessageListener. If the Broker returns a shutdown to the receiver (BrokerExceptionswith class
and code 0010 0050 or 0010 0051), the ExceptionListener can handle this exception and stop the
connection.

Restrictions

■ The property JMSXDeliveryCount is not supported.
■ Transactions with XAConnectionFactory, XAConnection, XASession are not supported.
■ setDisableMessageID is ignored. The message ID is always set.
■ setDisableMessageTimestamp is ignored. The message timestamp is always set.
■ Maximum length of subscription name is 32 bytes.
■ Maximum length of connection ID is 32 bytes.
■ Maximum length of topic names is 96 bytes.
■ Maximum length of queue names is 32 bytes.
■ Maximum of 1000 receivers and senders in one connection
■ Administrative Settings of user ID for connection factories are not supported

EntireX MSP8

Writing JMS Applications with the EntireX Broker

Connecting JMS Applications and non-JMS Applications

To connect JMS applications with non-JMS applications you need to modify the format of the
messages. This is done by amessage formatting RRoutine. TheMessage formatting routine formats
the JMSmessages sent by the JMS application in such away that a non-JMS application can receive
them. The routine convertsmessages from the non-JMS application into JMSmessages. Themessage
formatting routine is a user-written class which implements the interface
com.softwareag.entirex.jms.JMSFormatter.Wedeliver examples formessage formatting routines
in the examples folder. These examples can be used as prototypes for your own routines.

The image below illustrates the general concept of JMS-to-non-JMS connections:

To connect JMS applications with non-JMS applications, consider the following aspects:

■ Message Format
■ Message Encoding
■ Transaction Handling

9EntireX MSP

Writing JMS Applications with the EntireX Broker

■ Configuration

Message Format

Implement your own format with a class that implements JMSFormatter. This formatmay include
the text (for TextMessage) or other data (for BytesMessage, StreamMessage, MapMessage, and
ObjectMessage) and properties of JMS.

Message Encoding

Format all data in the message as strings in the default encoding of the JVM. This ensures that
translation inside the Broker works. Obey that the Broker translation may change the number of
bytes for a field. A second approach is to use the encoding that the non-JMS application needs in
the formatter and disable translation or conversion for the queue in the Broker.

Transaction Handling

The non-JMS application has to send the messages in conversations containing one unit of work.
The unit of work may contain one or more messages. The JMS application is not able to receive
more than one unit of work in a conversation. Do not use the USTATUS field of the unit of work.
This is reserved for the receiving JMS application.

A receiving non-JMS application receives the messages in units of work. Each unit of work has its
own conversation. The unit of work contains one or more messages.

Configuration

For the JMS queues or topics that should connect to non-JMS applications, set the formatter to the
name of the class implementing com.softwareag.entirex.jms.JMSFormatter. This enables cus-
tomer-specific formatting of the message for the JMS application. The formatter is set for each
queue or each topic individually. Queues and topics connecting only JMS applications do not need
a formatter. JMS and non-JMS applications can be mixed in a queue with a formatter. The same
applies to topics.

The examples show formatting of text messages with a Natural example application and a Java
example application. For detailed instructions on how to run these examples, see the examples
folder.

Assume the following scenario: a JMS application sends a message and expects the reply in a
special queue. The ACI application has to get the name of the queue from the message and send
the reply to this queue. This is achieved in the following manner:

■ The JMS application creates a temporary queue for the current session and sets this queue as a
JMSReplyTo queue in the message. If a message producer sends a message to a destination with
a formatter and the JMSReplyToproperty is used, the same formatter is used formessages received
at this JMSReplyTo destination.

EntireX MSP10

Writing JMS Applications with the EntireX Broker

■ The formatter gets the JMSReplyTo queue from the JMS message and puts the name and the
type of the queue into the ACI message.

■ The ACI application reads the name and the type of the queue. If the type is a temporary queue,
it uses JMS/<name of queue>/TMPQUEUE as CLASS/SERVER/SERVICE. If the type is not a tem-
porary queue, it uses JMS/<name of queue>/QUEUE as CLASS/SERVER/SERVICE.

The same applies to topics, except that the name of the JMS topic can be used “as is” for the Broker
topic.

JMS Error Handling

For each JMS API interface, the methods which throw a BrokerExceptionwrapped as a
JMSException are listed.

If a JMS exceptionwraps a BrokerException, JMSException.getErrorCode returns the error class
and error code from the Broker as ccccnnnn, where cccc is the class and nnnn the code.
JMSException.getMessage returns BrokerException.toString. This is Broker Error cccc nnnn:
<detailed message>. JMSException.getLinkedException returns the BrokerException. Using
references to a BrokerException forces the JMS application to be compiled with the EntireX Java
ACI and the application is not provider independent.

A BrokerExceptionwith error class 0008 (Security or Encryption errors) is thrown as
JMSSecurityException, a subclass of JMSException.

A BrokerExceptionwith error class 0021 and error code 0043 is thrown as
InvalidDestinationException, a subclass of JMSException.

A JMSExceptionmay wrap other JVM exceptions. Then the JMSException.getErrorCode returns
“EntireX JMS”. JMSException.getMessage returns Exception.toString for thewrapped exception,
which is set as a linked exception.

JMS Class Connection

Method stop

Every BrokerException is thrown, except Broker error 0002 0002. The Broker returns this when
the Broker user is already gone due to a timeout. This error is ignored. If a session of this connection
has a message listener, this listener forwards these exceptions to the exception listener.

11EntireX MSP

Writing JMS Applications with the EntireX Broker

JMS Class Session

Method close

Every BrokerException is thrown, except Broker error 0002 0002. The Broker returns this when
the Broker user is already gone due to a timeout. This error is ignored. If the session has amessage
listener, this listener forwards these exceptions to the exception listener of the connection.

Method commit

The error codes 0002 0002, 0003 0003, 0003 0005, 0010 0050, 0010 0051, and 0020 0134 are handled
in this method. Every other BrokerException is thrown. If the session has a message listener, this
listener forwards these exceptions to the exception listener of the connection.

Method createConsumer

Every BrokerException is thrown.

Method createProducer

Every BrokerException is thrown.

Method createTemporaryQueue

Every BrokerException is thrown.

Method createTemporaryTopic

Every BrokerException is thrown.

Method rollback

Every BrokerException is thrown. If the session has a message listener, this listener forwards
these exceptions to the exception listener of the connection.

EntireX MSP12

Writing JMS Applications with the EntireX Broker

JMS Class QueueSession

Method createReceiver

Every BrokerException is thrown.

Method createSender

Every BrokerException is thrown.

Method createTemporaryQueue

Every BrokerException is thrown.

JMS Class MessageConsumer

Method close

Every BrokerException is thrown, except Broker error 0002 0002. The Broker returns this when
the Broker user is already gone due to a timeout. This error is ignored.

Method receive

This method returns null, which indicates “no message received” on the error codes 0003 0003,
0010 0050, 0010 0051, and 0074 0074. The error codes 0002 0002, 0003 0005, 0020 0134, and 0074
0301 are handled in this method. All other error codes throw a BrokerExceptionwrapped in a
JMSException.

Method setMessageListener

Every BrokerException is thrown.

JMS Class MessageProducer

Method send

The error codes 0002 0002, 0007 0493, and 0020 0134 are handled in this method. Every other
BrokerException is thrown.

13EntireX MSP

Writing JMS Applications with the EntireX Broker

JMS Class QueueSender

Method send

See JMS class MessageProducer, method send.

JMS Class TopicPublisher

Method publish

See class MessageProducer, method send.

JMS Class QueueBrowser

Method getEnumeration

Any error code can occur with the BrokerException that is thrown. The error codes 0003 0003,
0010 0050, 0010 0051, 0074 0074while themessages are being received signal that nomoremessages
are available. The method returns the messages received so far.

Message Listener

The methods Connection.stop, Session.commit and Session.rollback affect the message
listener. If these methods throw exceptions, the message listener will forward those exceptions to
the exception listener of the connection.

While the message listener is receivingmessages, it handles errors as follows. On error codes 0002
0002 and 0020 0134 the listener retries to receive messages. Error codes 0003 0003, 0003 0005, 0074
0074, and 0074 0301 are ignored. A JMSException is thrown to the exception listener on error codes
0010 0050 and 0010 0051. Any other error codes is forwarded as a JMSException to the exception
listener.

EntireX MSP14

Writing JMS Applications with the EntireX Broker

2 Message Service Administration using SystemManagement

Hub
■ Introduction .. 16
■ Queue Connection Factory .. 16
■ Queue ... 17
■ Topic Connection Factory .. 18
■ Topic ... 18
■ Batch Interface ... 19

15

EntireX MSP can be administered using Software AG's System Management Hub. The System
Management Hub is Software AG's cross-product and cross-platform product management
framework. This chapter assumes that you are familiarwith the SystemManagementHub software.
The basic concepts of this product, its installation and SystemManagementHub features common
to all SoftwareAGproducts are described in the separate SystemManagementHubdocumentation.

Note: This was themost recent SystemManagementHub documentationwhen this version
of EntireX was released. As System Management Hub release cycles are independent of
EntireX, a more recent version of System Management Hub may be available.

Introduction

JMS-basedMessage Services are administered from the EntireXMessage Service SMHnode,which
is located below the EntireX node in the System Management Hub tree view. Instances of Queue
Connection Factories, Queues, Topic Connection Factories and Topics can be created, modified
and deleted from the System Management Hub.

The JNDI properties are listed in the detail view of the Message Service root. These properties are
configured in the file jndi.properties in the subfolder config of the installation folder.

Queue Connection Factory

To define a queue connection factory instance to System Management Hub

1 Select theQueue Connection Factory node below the Message Service node.

2 Choose Add.

3 In the fieldQueue Connection Factory, enter the queue connection factory name.

4 In the field Broker ID, enter a Broker identifier.

5 Choose SAVE.

To modify a queue connection factory instance

1 Select the queue connection factory instance node below theQueueConnection Factory node.

2 ChooseModify.

3 The queue connection factory instance name can be modified in the fieldQueue Connection
Factory.

4 The broker identifier can be modified in the field Broker ID.

5 Choose SAVE.

EntireX MSP16

Message Service Administration using System Management Hub

To delete a queue connection factory instance

1 Select the queue connection factory instance node below theQueueConnection Factory node.

2 ChooseDelete.

Queue

To define a queue instance to System Management Hub

1 Select theQueue node below theMessage Service node.

2 Choose Add.

3 Enter the queue name in the fieldQueue.

4 Enter a service name in the field Service.

5 In the (optional) Formatter field, you can either enter a custom name in the space provided,
or choose one of the other options.

6 Choose SAVE.

To modify a queue instance

1 Select the queue instance node below the Queue node.

2 ChooseModify.

3 The queue instance name can be modified in the fieldQueue.

4 The service name can be modified in the field Service.

5 The formatter name can be modified in the field Formatter.

6 Choose SAVE.

To delete a queue connection factory instance

1 Select the queue instance node below theQueue Connection Factory node.

2 ChooseDelete.

17EntireX MSP

Message Service Administration using System Management Hub

Topic Connection Factory

To define a topic connection factory instance to System Management Hub

1 Select the Topic Connection Factory node below theMessage Service node.

2 Choose Add.

3 Enter the topic connection factory name in the field Topic Connection Factory.

4 Enter a broker identifier in the field Broker ID.

5 Choose SAVE.

To modify a topic connection factory instance

1 Select the topic connection factory instance node below the Topic Connection Factory node.

2 ChooseModify.

3 The topic connection factory instance name can be modified in the field Topic Connection
Factory.

4 The broker identifier can be modified in the field Broker ID.

5 Choose SAVE.

To delete a topic connection factory instance

1 Select the Topic Connection Factory Instance node below the Topic Connection Factory
node.

2 ChooseDelete.

Topic

To define a topic instance to System Management Hub

1 Select the Topic node below theMessage Service node.

2 Choose Add.

3 Enter the topic name in the field Topic.

4 Enter a service name in the field Service.

5 In the (optional) Formatter field, you can either enter a custom name in the space provided,
or choose one of the other options.

EntireX MSP18

Message Service Administration using System Management Hub

6 Choose SAVE.

To modify a topic instance

1 Select the Topic Instance node below the Topic node.

2 ChooseModify.

3 The topic instance name can be modified in the field Topic.

4 The service name can be modified in the field Service.

5 The formatter name can be modified in the field Formatter.

6 Choose SAVE.

To delete a topic instance

1 Select the Topic Instance node below the Topic node.

2 ChooseDelete.

Batch Interface

The EntireX Message Service agent supports the System Management Hub's batch interface. The
table below contains the corresponding batch commands.

Batch CommandDescription

show jmspropertiesShow information about the Message Service properties.

show jmsqueueconnectionfactoryList the Message Service Queue Connection Factories.

show jmsqueueList the Message Service Queues

show jmstopicconnectionfactoryList the Message Service Topic Connection Factories

show jmstopicList the Message Service Topics

Example:

Enter the argbatch command with the following parameters to execute the batch command.

argbatch show jmsqueue user=[userid] password=[passwd]
target=[managed host name] "product=webMethods EntireX 8.2" "name=RPC Server1"

Note: argbatch is part of the System Management Hub software. It is located in the bin
directory of the System Management Hub installation.

See SystemManagement Hub Batch Interface (underUser Interfaces) in the separate SystemManage-
ment Hub documentation.

19EntireX MSP

Message Service Administration using System Management Hub

20

3 Monitoring EntireX Message Service Provider

■ Monitoring Queues .. 22
■ Monitoring Messages ... 22
■ Monitoring Senders .. 23
■ Monitoring Receivers ... 23
■ Monitoring Topics .. 23
■ Monitoring Publications .. 24
■ Monitoring Publishers ... 24
■ Monitoring Subscribers ... 24

21

Tomonitor items in point-to-point messaging (queues, messages, senders, and receivers) or items
in publish-and-subscribemessaging (topics,messages, publishers, and subscribers) use the etbinfo
tool. This is located in the subfolder bin of the installation folder. See Command-line Utilities under
Broker Command and Information Services for a general description of this tool. It displays Broker
status information given by the Broker ID. You can select the information by several criteria and
format the display with profiles. In the following, we use the delivered profiles to obtain inform-
ation on items related to JMS. You can edit copies of the delivered profiles to tailor the output to
your needs.

For point-to-point messaging you can use the System Management Hub with the Agent for the
Broker tomonitor queues, messages, senders and receivers. See Broker Administration using System
Management Hub in the UNIX and Windows administration documentation for this agent.

Monitoring Queues

Enter the command

etbinfo -b broker id -d SERVICE -c JMS -p service.pro

to display the queues currently being used. Todisplay only the temporary queues, add -s TMPQUEUE.
To display only the non-temporary queues, add -s QUEUE. The data retrieved is defined in the
profile service.pro.

Monitoring Messages

Enter the command

etbinfo -b broker id -d PSF -e JMS -p psf.pro

to display data for all the units of work containing messages. For transacted sessions and client-
acknowledged messages, a unit of work contains all the messages of one transaction or one ac-
knowledgment. Otherwise, each unit of work contains onemessage. The JMSmessage IDs are not
visible. The parameter -e JMS restricts the selected data to all units of work sent to a JMS queue
(receiver class is JMS). The data retrieved is defined in the profile psf.pro.

EntireX MSP22

Monitoring EntireX Message Service Provider

Monitoring Senders

Enter the command

etbinfo -b broker id -d CLIENT -p client.pro

to display all the clients (senders) currently logged on to the Broker. The data retrieved is defined
in the profile client.pro.

Monitoring Receivers

Enter the command

etbinfo -b broker id -d SERVER -p server.pro

to display all the servers (receivers) currently registered at the Broker. If you want to monitor re-
ceivers for one queue, use:

etbinfo -b broker id -d SERVER -c JMS -n name of queue -s QUEUE -p server.pro

The data retrieved is defined in the profile server.pro.

Monitoring Topics

Enter the command

etbinfo -b broker id -d TOPIC -l FULL -p topic.pro

to display data for all the topics currently available in the Broker. The data retrieved is defined in
the profile topic.pro.

23EntireX MSP

Monitoring EntireX Message Service Provider

Monitoring Publications

Enter the command

etbinfo -b broker id -d PUBLICATION -l FULL -p public.pro

to display data for all the publications currently available in the Broker. A publication is a transac-
tion of a transacted session or a bundle of messages from one acknowledgment. For acknowledge
modes AUTO-ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE each publication contains onemessage. The data
retrieved is defined in the profile public.pro.

Monitoring Publishers

Enter the command

etbinfo -b broker id -d PUBLISHER -l FULL -p pubshr.pro

to display all the publishers currently logged on to the Broker. The data retrieved is defined in the
profile pubshr.pro.

Monitoring Subscribers

Enter the command

etbinfo -b broker id -d SUBSCRIBER -p subscbr.pro

to display all the subscribers currently in the Broker. To select all of the subscribers to a topic use:

etbinfo -b broker id -d SUBSCRIBER -T topic name -p subscbr.pro

The data retrieved is defined in the profile subscbr.pro.

EntireX MSP24

Monitoring EntireX Message Service Provider

	EntireX MSP
	Table of Contents
	EntireX Message Service Provider
	1 Writing JMS Applications with the EntireX Broker
	EntireX Broker and JMS
	Writing JMS Applications
	Configure the Broker
	Configure the JNDI Provider
	Create the Administered Objects with the JMS Agent of the System Management Hub
	Coding and Compiling Your Application
	Running Your Application
	Examples
	Basic Examples
	Intermediate Examples
	Advanced Examples

	Writing Advanced Applications
	Persistent and Non-persistent Messages
	Acknowledge Modes
	Transacted Sessions
	Security
	Receiving Messages with a MessageListener
	Restrictions

	Connecting JMS Applications and non-JMS Applications
	Message Format
	Message Encoding
	Transaction Handling
	Configuration

	JMS Error Handling
	JMS Class Connection
	Method stop

	JMS Class Session
	Method close
	Method commit
	Method createConsumer
	Method createProducer
	Method createTemporaryQueue
	Method createTemporaryTopic
	Method rollback

	JMS Class QueueSession
	Method createReceiver
	Method createSender
	Method createTemporaryQueue

	JMS Class MessageConsumer
	Method close
	Method receive
	Method setMessageListener

	JMS Class MessageProducer
	Method send

	JMS Class QueueSender
	Method send

	JMS Class TopicPublisher
	Method publish

	JMS Class QueueBrowser
	Method getEnumeration

	Message Listener

	2 Message Service Administration using System Management Hub
	Introduction
	Queue Connection Factory
	Queue
	Topic Connection Factory
	Topic
	Batch Interface

	3 Monitoring EntireX Message Service Provider
	Monitoring Queues
	Monitoring Messages
	Monitoring Senders
	Monitoring Receivers
	Monitoring Topics
	Monitoring Publications
	Monitoring Publishers
	Monitoring Subscribers

