
Writing Advanced Applications with the
XML/SOAP Wrapper
This chapter covers the following topics:

XML/SOAP Listener

Natural Logon or Changing the Library Name

Using RPC Compression

Using Conversational RPC

Using Natural Security

Using Compression

Using EntireX Security

HTTP Proxy Settings

XML/SOAP RPC Server with HTTP Basic Authentication

XML/SOAP Listener with HTTP Basic Authentication and UsernameToken Authentication for
EntireX Authentication

Using SSL or TLS with the XML/SOAP RPC Server

Using Internationalization with EntireX XML Components

Null Value Suppression

User-specified Settings

Map Fault to IDL Parameter

Whitespace Handling

XML/SOAP Listener
With the XML/SOAP Listener you can define parameters inside the payload of a message. We
recommend this approach rather than HTTP parameters. Define the setting in the SOAP header and under
the first tag of XML document as follows:

SOAP Documents
...
<soap-env:SOAPHeader>
 <exx:EntireX xmlns:exx="urn:com.softwareag.entirex.xml.rt">
 <!-tags with parameter setting e.g: -->
 <exx-natural-library>libraryname</exx-natural-library>
 <exx-natural-security>true</exx-natural-security>

1

Writing Advanced Applications with the XML/SOAP WrapperWriting Advanced Applications with the XML/SOAP Wrapper

 </exx:EntireX>
...
</soap-env:SOAPHeader>
...

XML Documents
<root-tag>
 <exx:EntireX xmlns:exx="urn:com.softwareag.entirex.xml.rt">
 <!-tags with parameter setting e.g: -->
 <exx-natural-library>libraryname</exx-natural-library>
 <exx-natural-security>true</exx-natural-security>
 </exx:EntireX>
...
</root-tag>

2

XML DocumentsWriting Advanced Applications with the XML/SOAP Wrapper

Natural Logon or Changing the Library Name
The library name sent with the RPC request to the EntireX RPC or the Natural RPC Server is specified in
the IDL file. See library-definition under Software AG IDL Grammar. When the RPC is
executed, this library name can be overwritten.

XML/SOAP Wrapper (Java API)

 To overwrite the library

An EntireX XML/SOAP Wrapper client (Java API) must call the setLibraryName method.

 To force the library to be considered by Natural RPC Servers

Call the setNaturalLogon method.

XML/SOAP Listener

 To overwrite the library

Use the parameter exx-natural-library .

 To force the library to be considered by Natural RPC Servers

Set the parameter exx-natural-security to "true".

Warning:
Natural RPC Servers and EntireX RPC Servers behave differently
regarding the library name.

See also Natural Logon or Changing the Library Name under Common Features of Wrappers and
RPC-based Components.

3

Writing Advanced Applications with the XML/SOAP WrapperNatural Logon or Changing the Library Name

Using RPC Compression
EntireX and Natural RPC support a feature called RPC compression to reduce network traffic. The default
for compression is on. See also RPC Compression under Common Features of Wrappers and RPC-based
Components.

XML/SOAP Wrapper (Java API)

 To switch compression on and off

Use the setCompression method of the class XMLRPCService inherited from class
RPCService .

 To check the current compression setting

Use the getCompression method of the class XMLRPCService inherited from class
RPCService .

XML/SOAP Listener

 To switch compression on and off

Use the parameter exx-compression . Possible values: True, False.

Using Conversational RPC
It is assumed that you are familiar with the concepts of conversational and non-conversational RPC. See
also Conversational RPC under Common Features of Wrappers and RPC-based Components.

For conversational RPC you need an instantiated conversation object. See Conversation .
Conversational RPC is enabled by passing a reference to this object to the method setConversation .
See setConversation . Different stubs can participate in the same conversation if they use the same
instance of a Conversation object. An RPC conversation is terminated by calling either the
closeConversation method or the closeConversationCommit method for one stub.

XML/SOAP Wrapper (Java API)

 To enable conversational RPC

Create a Conversation object and set this with setConversation on the wrapper object.

Different wrapper objects can participate in the same conversation if they use the same instance of a
conversation object.

 To abort a conversational RPC communication

Call the closeConversation method.

 To close and commit a conversational RPC communication

4

Using RPC CompressionWriting Advanced Applications with the XML/SOAP Wrapper

Call the closeConversationCommit method.

XML/SOAP Listener

Conversations can only be used in connection with sessions. If the session is interrupted, the conversation
will be deleted.

 To use conversational RPC

Use the parameter exx-conv with the value OPEN.

 To continue conversational RPC

Pick up the parameter exx-sessionID in response and set the parameter as HTTP parameter or in
the same way as in the response document inside the request document.

 To abort a conversational RPC communication

Use the parameter exx-conv with the value BACKOUT.

 To close and commit a conversational RPC communication

Use the parameter exx-conv with the value COMMIT.

See also XML Tester for Conversational RPC.

Warning:
Natural RPC Servers and EntireX RPC Servers behave differently
when ending an RPC conversation.

See also Conversational RPC under Common Features of Wrappers and RPC-based Components.

Using Natural Security
A Natural RPC Server may run under Natural Security to protect RPC requests. See also Natural Security
under Common Features of Wrappers and RPC-based Components.

XML/SOAP Wrapper (Java API)

 To authenticate an EntireX XML/SOAP Wrapper client (Java API) against Natural Security

Specify a user ID and password in the logon method of class Broker .

If different user IDs and/or passwords are used for EntireX Security and Natural Security, use the
methods setRPCUserId or setRPCPassword to set the user IDs and/or passwords for Natural
Security.

 To force an EntireX XML/SOAP Wrapper client (Java API) to log on to a specific Natural
library

5

Writing Advanced Applications with the XML/SOAP WrapperUsing Natural Security

1. Call the setLibraryName method.

2. Call the setNaturalLogon method.

See also Natural Logon or Changing the Library Name.

XML/SOAP Listener

 To authenticate against Natural Security

Specify the parameters exx-userID and exx-password .

If a different user ID or password is used for EntireX Security and Natural Security, use the
parameters exx-rpc-userID and exx-rpc-password to set the user ID or password for
Natural Security.

 To force a logon to a specific Natural library

1. Use the parameter exx-natural-library .

2. Set the parameter exx-natural-security to True.

See also Natural Logon or Changing the Library Name.

Using Compression
Java-based EntireX applications (including applications using classes generated by the Java Wrapper) may
compress the messages sent to and received from the broker. There is a general way to enable
compression using broker ID, and another way that depends on whether you use the XML/SOAP Wrapper
or the XML/SOAP Listener.

Using Broker ID

XML/SOAP Wrapper (Java API)

Using setCompressionLevel()

XML/SOAP Listener

Using Broker ID

You may append the keyword compresslevel with one of the values below to the Broker ID.

Examples

localhost:1971?compresslevel=BEST_COMPRESSION

localhost?poolsize=4&compresslevel=9

Both examples set the compression level to 9.

6

Using CompressionWriting Advanced Applications with the XML/SOAP Wrapper

XML/SOAP Wrapper (Java API)

Using setCompressionLevel()

Set the compression level with the method setCompressionLevel() as an integer or a string
argument.

You can use the constants defined in class java.util.zip.Deflater .

If the string

starts with Y, compression is switched on with level 6,

starts with N, compression is switched off (level 0).

Permitted values are the integers 0 - 9 and the corresponding strings:

Compression Level

BEST_COMPRESSION 9

BEST_SPEED 1

DEFAULT_COMPRESSION 6

DEFLATED 8

NO_COMPRESSION 0

XML/SOAP Listener

 To set the compression level

Use the parameter exx-compressLevel . The values are described in the section above
(XML/SOAP Wrapper (Java API)).

Using EntireX Security
Java-based EntireX applications that require security can use the security services offered by EntireX
Security. See also Overview of EntireX Security

Use the methods for security, which are included in class Broker . See Broker . The two alternatives
using security are:

using EntireX Security

using your own security implementation

XML/SOAP Wrapper (Java API)

To use EntireX Security, call Broker.useEntireXSecurity() for a Broker object. You can set the
encryption level with this call and you can enable the auto mode. The encryption level allows the values
ENCRYPTION_LEVEL_NONE, where the message is not encrypted, ENCRYPTION_LEVEL_BROKER,
where the message is encrypted on the way to the EntireX Broker, and ENCRYPTION_LEVEL_TARGET,

7

Writing Advanced Applications with the XML/SOAP WrapperUsing EntireX Security

where the message is encrypted the whole way to the target. The auto mode specifies that the Broker
object uses the EntireX Security as needed by the EntireX Broker. If the EntireX Broker uses security, the
EntireX Security object is used by the Broker object. The method useEntireXSecurity() must be
called before the first call of logon() , which has to use a password. The security object cannot change
during a session with the EntireX Broker.

To use your own security implementation, implement the interface BrokerSecurity . This
implementation must have an accompanying security exit for the EntireX Broker. See Using Sample
Security Exits for Broker Security. Call the methods setSecurity() with the security object and set
encryption level or auto mode in the same way as the useEntireXSecurity() methods.

XML/SOAP Listener

The parameter exx-use-security (true, false) is responsible for EntireX Security. Set the encryption
level with the required parameter exx-encryption-level (0,1,2).

HTTP Proxy Settings
If the target server of your Web service has to be reached through a firewall, set and adjust to your needs
the following properties:

-Dhttp.proxySet=true

-Dhttps.proxySet=true

-Dhttp.proxyHost=httpprox.mydomain.org

-Dhttps.proxyHost=sslprox.mydomain.org

-Dhttp.proxyPort=8080

-Dhttps.proxyPort=443

-Dhttp.nonProxyHosts=*mydomain.org|localhost

-Dhttps.nonProxyHosts=*mydomain.org|localhost

-Dhttp.proxyUser

-Dhttps.proxyUser

-Dhttp.proxyPassword

-Dhttps.proxyPassword

Add the proxy settings to the start script.

XML/SOAP RPC Server with HTTP Basic Authentication
The XML/SOAP RPC Server uses basic authentication for a Web service if the configuration contains the
attribute basicAuthentication block in <TargetServer> . Basic authentication is used for all
calls associated with defined XMM files for the <TargetServer> .

8

HTTP Proxy SettingsWriting Advanced Applications with the XML/SOAP Wrapper

Basic authentication can be used with fixed credentials or credentials set from the client application:

If <TargetServer> contains attributes user and password , these settings are used for basic
authentication.

Otherwise the client application must provide the credentials: Enable Natural logon and set RPC user
ID and RPC password.

See Configuration File for the XML/SOAP RPC Server under UNIX | Windows.

XML/SOAP Listener with HTTP Basic Authentication and
UsernameToken Authentication for EntireX Authentication
The XML/SOAP Listener allows you to use the user credentials from the incoming request by means of
Basic Authentication or UsernameToken . The same credentials are used for EntireX Broker
authentication and (Natural) RPC Server authentication. This means you need to make some settings for
the EntireX Web service in Web Service Wizard and Configuration Editor.

Note:
UsernameToken is part of WS-Security. See WS-Security UsernameToken Specification. See also
Example: Setting up an EntireX Client to Consume a Secured Web Service in the IDL Extractor for
WSDL documentation.

The priority of credentials settings is as follows:

1. exx-userID , exx-password , exx-rpc-userID , exx-rpc-password (highest priority)

2. UsernameToken

3. Basic Authentication (lowest priority)

 To use the XML/SOAP Listener with Basic Authentication and UsernameToken
Authentication

1. Select an IDL file or XMM file.

2. Choose Web Service > Generate Web Service....

3. Disable check box Use Defaults.

9

Writing Advanced Applications with the XML/SOAP WrapperXML/SOAP Listener with HTTP Basic Authentication and UsernameToken Authentication for EntireX Authentication

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf

4. Enable at least General service parameters....

10

XML/SOAP Listener with HTTP Basic Authentication and UsernameToken Authentication for EntireX AuthenticationWriting Advanced Applications with the XML/SOAP Wrapper

5. If using EntireX Security or Natural Security, enable Set connection and security... too.

6. Press Next.

7. Enable the required authentication. In this example, both possibilities of web service authentication
are enabled.

11

Writing Advanced Applications with the XML/SOAP WrapperXML/SOAP Listener with HTTP Basic Authentication and UsernameToken Authentication for EntireX Authentication

8. Press Next.

9. The page with XMM settings appears if it was selected before (step 5). Enable the required security
(EntireX Security and/or Natural Logon).

12

XML/SOAP Listener with HTTP Basic Authentication and UsernameToken Authentication for EntireX AuthenticationWriting Advanced Applications with the XML/SOAP Wrapper

10. Press Next and follow the wizard.

11. After generating the web service archive (extension "aar"), open the generated AAR file with the
Configuration Editor (e.g. with double click).

For more information on the Configuration Editor see Configuring Web Services.

Using SSL or TLS with the XML/SOAP RPC Server
Using HTTPS with XML/SOAP RPC Server requires setting Java properties and changing the protocol
from http to https in the configuration file. This section covers the following topics:

13

Writing Advanced Applications with the XML/SOAP WrapperUsing SSL or TLS with the XML/SOAP RPC Server

SSL or TLS Settings

Sample Start Script

Configuration File Settings

See also Configuration File for the XML/SOAP RPC Server under UNIX | Windows.

SSL or TLS Settings

 To configure SSL communication for the JRE

Set the following properties:

-Djavax.net.ssl.keyStore=<filename-without-blanks>
Here we keep the certificate and the private signing key of our client application, which is the
EntireX XML/SOAP RPC Server.

-Djavax.net.ssl.keyStorePassword=<you-should-know-it>
The password that protects the keystore.

-Djavax.net.ssl.keyStoreType=pkcs12
If not jks (default).

-Djavax.net.ssl.trustStore=<filename-without-blanks>
Here we keep the trusted certificate of the Web service host or the certificate of its signing
(issuing) certificate authority.

-Djavax.net.ssl.trustStorePassword=<you-should-know-it>
The password that protects the truststore.

-Djavax.net.ssl.trustStoreType=
If not jks (default).

For more information about Java and SSL, see your Java documentation (JSSE documentation).

Sample Start Script
set CLASSPATH=.;.\classes\entirex.jar;..\WS-Stack\lib\wsstack-client.jar

set PROXYSETTINGS=-Dhttps.proxySet=true
-Dhttps.proxyHost=sslproxy.mydomain
-Dhttps.proxyPort=443
-Dhttps.nonProxyHosts="localhost"

set SSL=-Djavax.net.ssl.keyStore=C:\myKeystore.p12
-Djavax.net.ssl.keyStorePassword=myKeystorePassword
-Djavax.net.ssl.keyStoreType=pkcs12
-Djavax.net.ssl.trustStore=C:\myTrustStore.jks
-Djavax.net.ssl.trustStorePassword=myTruststorePassword

java -classpath %CLASSPATH% %SSL% %PROXYSETTING% com.softwareag.entirex.xml.rt.XMLRPCServer

For the changes that are required to the start script, see your Java documentation (JSSE documentation).

14

SSL or TLS SettingsWriting Advanced Applications with the XML/SOAP Wrapper

Configuration File Settings

Specify the fully qualified host name as TargetServer. The host name has to match the CN (Common
Name) item of the host certificate.

<?xml version="1.0" encoding="iso-8859-1" ?>
<EntireX
xmlns="http://namespaces.softwareag.com/entirex/xml/runtime/configuration" version="8.0"
>
 <XmlRuntime Version="1">
 <TargetServer name="https://targethost:8080/entirex/xmlrt">
 <xmms>
 <exx-xmm name="yourFile1.xmm" />
 <exx-xmm name="yourFile2.xmm" />
 </xmms>
 </TargetServer>
 </XmlRuntime>
</EntireX>

15

Writing Advanced Applications with the XML/SOAP WrapperConfiguration File Settings

Using Internationalization with EntireX XML Components
XML components support Conversion and Translation for Internationalization. If you choose Conversion
(which is recommended), the correct codepage must be send as locale string to the EntireX Broker
matching the encoding of the data sent. This codepage must also be a codepage supported by the broker,
see Locale String Mapping for information on how the broker derives the codepage from the locale string.
For Translation and more details on Conversion, see Internationalization with EntireX.

To enable EntireX XML components to send a codepage as locale string to the EntireX Broker, they must
be prepared as described below:

XML/SOAP Wrapper (Java API)

XML/SOAP Listener

XML/SOAP RPC Server

XML/SOAP Wrapper (Java API)

 To enable use of the encoding of an incoming XML document for Broker communication

1. Call useCodePage(true) on the XMLRPCService object. The XML/SOAP Wrapper will then
use the codepage retrieved from the XML document to send data to EntireX Broker.

2. Use a stream-oriented method of XMLRPCService to transfer the data to XML/SOAP Wrapper.

XML/SOAP Listener

 To enable use of the encoding of an incoming XML document for broker communication

Activate the parameter exx-use-codepage (true/false). The XML/SOAP Wrapper will then use
the codepage retrieved from the incoming XML document to send data to the EntireX Broker.

XML/SOAP RPC Server

The encoding for broker communication is defined by the parameter codepage .

The locale string for broker communication can be overridden for a broker version 7.2.x and above.
Instead of using the default encoding of the JVM, the given encoding is used.

It can be forced for a broker version 7.1.x and below.

It does not change the default encoding of your Java virtual machine.

We recommend using UTF-8 as the file encoding for your JVM and the value LOCAL to send the
default encoding of the JVM to the broker, i.e start the XML/SOAP RPC Server with
-Dcodepage=LOCAL and -Dfile.encoding=utf-8 . See also Using the Abstract Codepage
Name LOCAL for more information.

The encoding for the outgoing XML document is determined by the IDL to XML Mapping. See Defining
the XML Encoding.

16

Using Internationalization with EntireX XML ComponentsWriting Advanced Applications with the XML/SOAP Wrapper

Null Value Suppression
This section covers the following topics:

Introduction

Default Setting for Null Value Suppression

Definition and Examples of Null Value Suppression Mode

Default Definition of Null Value

Introduction

The EntireX XML/SOAP Runtime introduced a feature called null value suppression to reduce to amount
of data transferred between Web client and Web service. Null value suppression (NVS) allows you to hide
tags or attributes with a specified value (so-called null value).

The different types of NVS are explained below. The EntireX XML Mapping Editor provides two ways of
setting/modifying the NVS type:

using a general setting on tab Mapping Parameter

on each element or attribute in the definition of request/response on tab XML Request/ XML
Response

For several data types, a null value is defined by default. See Default Definition of Null Value. To change
one of these null values, open the XML Request/XML Response tab, select the element/attribute and
modify the property of the null value manually. For this modification use the Properties view or the
Properties dialog (open with the context menu).

17

Writing Advanced Applications with the XML/SOAP WrapperNull Value Suppression

Default Setting for Null Value Suppression

Data Type Suppression Mode

Simple Elements No Suppression

Simple Attributes No Suppression

Array Types Cells at end (trim)

Complex Types Suppress group elements

Tip:
The default setting for elements and attributes changed with version 7.3 from "Suppress
Element/Attribute" to "No Suppression". The null value suppression for elements and attributes can be set
independently. The null value suppression for Complex Types was introduced with version 7.3.

Definition and Examples of Null Value Suppression Mode

If there is a significant difference between pure XML and SOAP for a null value suppression mode, two
examples are introduced.

18

Default Setting for Null Value SuppressionWriting Advanced Applications with the XML/SOAP Wrapper

Suppression Mode Valid for

No Suppression Elements, attributes

Elements Elements

Attributes Attributes

Cells at End (Trim) Elements inside an array
definition

All Empty Cells Elements inside an array
definition

Suppress Group
Elements

Elements inside a group
definition

Depends On ElementAttributes

No Suppression

The element or attribute is always present in document. The minimum and maximum occurrence of
element/attribute must be set to one.

Example 1

XML document Displayed XML Document

<prog>
 <integer>0</integer>
</prog>

<prog>
 <integer>0</integer>
</prog>

Elements

An element is hidden if

the element value is equal to null value

all attributes of the element can be suppressed

the element has only subelements that can be suppressed

The minimum occurrence of element must be zero, and the maximum occurrence of element must be one.

Example 2

XML document Displayed XML Document

<prog>
 <gr>
 <integer>0</integer>
 </gr>
</prog>

<prog />

19

Writing Advanced Applications with the XML/SOAP WrapperDefinition and Examples of Null Value Suppression Mode

Attributes

An attribute with null value is hidden.

The minimum occurrence of attribute must be zero, and the maximum occurrence of attribute must be one.

Example 3

XML document Displayed XML Document

<prog integer="0" name="Henry"/> <prog name="Henry"/>

Cells at End (Trim)

All elements of array that fulfills the assertion of "Suppress Element/Attribute" are suppressed if its index
is higher than the highest index of the non-suppressed element.

The minimum occurrence of elements must be lower than the maximum occurrence, and the maximum
occurrence of elements must be the maximum number of elements or unlimited.

XML document Displayed XML Document

<prog>
 <array>
 <integer>0</integer>
 <integer>1</integer>
 <integer>0</integer>
 <integer>2</integer>
 <integer>0</integer>
 <integer>0</integer>
 </array>
</prog>

<prog>
 <array>
 <integer>0</integer>
 <integer>1</integer>
 <integer>0</integer>
 <integer>2</integer>
 </array>
</prog>

All Empty Cells

All elements of array that fulfills the assertion of NVS_FIELD are suppressed.

The minimum occurrence of elements must be lower than the maximum of occurrence and maximum
occurrence of elements must be maximum number of elements or unlimited.

Example 5a

XML document Displayed XML Document

<prog>
 <array>
 <integer>0</integer>
 <integer>1</integer>
 <integer>0</integer>
 <integer>2</integer>
 <integer>0</integer>
 <integer>0</integer>
 </array>
</prog>

<prog>
 <array>
 <integer>1</integer>
 <integer>2</integer>
 </array>
</prog>

20

Definition and Examples of Null Value Suppression ModeWriting Advanced Applications with the XML/SOAP Wrapper

Example 5b (for SOAP documents the XML/SOAP Runtime creates position attributes)

SOAP document Displayed SOAP Document

<prog>
 <array>
 <integer>0</integer>
 <integer>1</integer>
 <integer>0</integer>
 <integer>2</integer>
 <integer>0</integer>
 <integer>0</integer>
 </array>
</prog>

<prog>
 <array>
 <integer SOAP-ENC:position="[1]">1</integer>
 <integer SOAP-ENC:position="[3]">2</integer>
 </array>
</prog>

Suppress Group Elements

The suppression mode allows you to suppress group information if - and only if - all elements of the group
can be suppressed.

The minimum occurrence of elements must be zero.

Example 6

XML document Displayed XML Document

<prog>
 <person>
 <firstname>Henry</ firstname >
 <lastname>Miller</ lastname >
 <someInformation>2</ someInformation >
 </person>
 <person>
 <firstname></ firstname >
 <lastname></ lastname >
 <someInformation>0</ someInformation >
 </person>
 <person>
 <firstname>John</ firstname >
 <lastname>Miles</ lastname >
 <someInformation>0</ someInformation >
 </person>
</prog>

<prog>
 <person>
 <firstname>Henry</ firstname >
 <lastname>Miller</ lastname >
 <someInformation>2</ someInformation >
 </person>
 <person/>
 <person>
 <firstname>John</ firstname >
 <lastname>Miles</ lastname >
 <someInformation>0</ someInformation >
 </person>
</prog>

Depends On Element

Attribute of the element is visible if the element does not have the null value.

The minimum occurrence of attribute and associated element must be zero, and the maximum occurrence
must be one.

Example 7

21

Writing Advanced Applications with the XML/SOAP WrapperDefinition and Examples of Null Value Suppression Mode

XML document Displayed XML Document

<prog type="integer">0
 <parm type="integer">0</parm>
</prog>

<prog />

Default Definition of Null Value

Data Types Null Value

String Empty String

Integer 0

Floating Point 0.0

Numeric 0.0

Time No default definition

Date No default definition

Binary No default definition

Boolean False

User-specified Settings
For further settings, use the method setUserProperty in XMLRPCService (EntireX XML/SOAP
Runtime).

Map Fault to IDL Parameter
Introduction

Example

Testing the Fault Mapping

Introduction

The XML/SOAP RPC Server maps the values of IDL parameters to XML/SOAP documents and vice
versa. If the Web service responds with a fault document, this information is mapped to an error and
returned to RPC client normally. With the optional feature Map Fault to IDL Parameter you can map
values from a normal response and also from a fault document response. This means that no RPC error is
returned to the RPC client; instead the fault information is contained in the IDL file. An RPC error is
returned to the client only if internal error processing problems occurred within the XML/SOAP RPC
Server. This feature is available for SOAP and XML documents.

22

User-specified SettingsWriting Advanced Applications with the XML/SOAP Wrapper

Example

Note:
This example illustrates the feature Map Fault to IDL Parameter . Other features mentioned here, such
as renaming parameters or assigning a prefix/namespace to a parameter, are described elsewhere.

Sample IDL File

/* Sample IDL file
library ’Demo’ is
 program ’FaultToIDL’ is
 define data parameter
 1 MyRequest In
 2 RequestData (AV)
 1 MyResponse Out
 2 ResponseData (AV)
 1 MyStatus Out ** parameters for fault information
 2 Code (AV)
 2 String (AV)
 2 Detail (AV)
 end-define

IDL-XML Mapping

 To map fault items to IDL

1. In the XML Mapping Editor, generate a (SOAP) mapping and select the response tab.

2. Remove the parameter MyStatus , including its children, because the regular response will not
contain these parameters and the corresponding IDL parameters will be used for fault information
later.

23

Writing Advanced Applications with the XML/SOAP WrapperExample

3. Open the Fault Document Manager (see bottom of opened tab Response) and select the document to
open the following wizard:

24

ExampleWriting Advanced Applications with the XML/SOAP Wrapper

4. In the following steps, map "faultcode", "faultstring" and "detail" to IDL parameters. Fault item
"faultactor" is not used in this example.

5. Select "faultcode" and open the properties shown on the following screen:

6. Check Fault Mapped to IDL to enable the mapping path button. In this example, a mapping path
has not yet been entered and the button is labelled "<none>".

25

Writing Advanced Applications with the XML/SOAP WrapperExample

7. Press the mapping path button.

26

ExampleWriting Advanced Applications with the XML/SOAP Wrapper

8. Select the path to IDL parameter, for example "FaultToIDL/MyStatus/Code" and choose OK to
display the following screen:

27

Writing Advanced Applications with the XML/SOAP WrapperExample

9. Choose OK .

28

ExampleWriting Advanced Applications with the XML/SOAP Wrapper

10. Repeat the steps above to select the fault items "faultstring" (path to IDL parameter e.g. "FaultToIDL
/MyStatus/String") and "detail" (path to IDL parameter e.g. "FaultToIDL /MyStatus/Detail").

29

Writing Advanced Applications with the XML/SOAP WrapperExample

Note:
The fault item "info:detail" contains the complete document fragment enclosed by an associated tag
(in this example tag <detail>).

11. Choose OK to save the IDL-XML mapping.

In subsequent steps you need to

Set up the XML/SOAP RPC Server with this XMM.

Set up a new Web service or use an existing one.

Testing the Fault Mapping

As a quick test, implement a Web service that behaves as follows:

If the "requestData" field contains any data except "throwException", the field "responseData" in the
response document is set to a concatenation of the string "Receiving:" and the value of field
"requestData". See Request 2).

If the "requestData" field contains "throwException", the Web service responds with a SOAP fault.

30

Testing the Fault MappingWriting Advanced Applications with the XML/SOAP Wrapper

Test Scenario

Request 1 (Expecting Normal Response)

The following screen illustrates a request that expects a normal response:

The following response is received (field responseData is filled):

31

Writing Advanced Applications with the XML/SOAP WrapperTesting the Fault Mapping

Request 2 (Expecting Fault Document)

The following screen illustrates a request where a fault document from the Web service is expected:

The following fault information is provided:

32

Testing the Fault MappingWriting Advanced Applications with the XML/SOAP Wrapper

Whitespace Handling
The XML/SOAP Runtime trims whitespace in values by default. The whitespace handling is also
determined by defining attribute xml:space (see XML specification) on element(s). The attribute
xml:space has the higher priority and is inherited from children of the element recursively.

This section covers the following topics:

Attribute xml:space

Changing the Default for Whitespace Handling

Attribute xml:space

The attribute xml:space can be added in the XML Mapping Editor. Select an element and add new
child, select the checkbox for xml:space and choose OK . Depending on the application, perform these
steps for the request and/or response document definition. The attribute is added with value "preserve". If
another value is required, open the properties on the attribute and change the default value.

Note:
The XML/SOAP Runtime only supports the value "preserve" for attribute xml:space , all other values
disable the preserving of whitespace (that is, whitespace is trimmed).

Changing the Default for Whitespace Handling

The steps required to keep whitespace as default depend on the EntireX component:

XML/SOAP Listener
Add the following line to file axis2.xml in WS-Stack Web application:

33

Writing Advanced Applications with the XML/SOAP WrapperWhitespace Handling

<parameter name="exx-xml-space">preserve</parameter>

Java API (XMLRPCService)
Set the user property entirex.sdk.xml.runtime.xmlspace :

XMLRPCService rpcService = new XMLRPCService(...);
...
rpcService.setUserProperty("entirex.sdk.xml.runtime.xmlspace","preserve");

XML/SOAP RPC Server
Add the following line to properties file of the XML/SOAP RPC Server:

entirex.sdk.xml.runtime.xmlspace=preserve

34

Changing the Default for Whitespace HandlingWriting Advanced Applications with the XML/SOAP Wrapper

	Writing Advanced Applications with the XML/SOAP Wrapper
	XML/SOAP Listener
	SOAP Documents
	XML Documents

	Natural Logon or Changing the Library Name
	XML/SOAP Wrapper (Java API)
	XML/SOAP Listener

	Using RPC Compression
	XML/SOAP Wrapper (Java API)
	XML/SOAP Listener

	Using Conversational RPC
	XML/SOAP Wrapper (Java API)
	XML/SOAP Listener

	Using Natural Security
	XML/SOAP Wrapper (Java API)
	XML/SOAP Listener

	Using Compression
	Using Broker ID
	Examples

	XML/SOAP Wrapper (Java API)
	Using setCompressionLevel()
	XML/SOAP Listener

	Using EntireX Security
	XML/SOAP Wrapper (Java API)
	XML/SOAP Listener

	HTTP Proxy Settings
	XML/SOAP RPC Server with HTTP Basic Authentication
	XML/SOAP Listener with HTTP Basic Authentication and UsernameToken Authentication for EntireX Authentication
	Using SSL or TLS with the XML/SOAP RPC Server
	SSL or TLS Settings
	Sample Start Script
	Configuration File Settings

	Using Internationalization with EntireX XML Components
	XML/SOAP Wrapper (Java API)
	XML/SOAP Listener
	XML/SOAP RPC Server

	Null Value Suppression
	Introduction
	Default Setting for Null Value Suppression
	Definition and Examples of Null Value Suppression Mode
	No Suppression
	Example 1
	Elements
	Example 2
	Attributes
	Example 3
	Cells at End (Trim)
	All Empty Cells
	Example 5a
	Example 5b (for SOAP documents the XML/SOAP Runtime creates position attributes)
	Suppress Group Elements
	Example 6
	Depends On Element
	Example 7

	Default Definition of Null Value

	User-specified Settings
	Map Fault to IDL Parameter
	Introduction
	Example
	Sample IDL File
	IDL-XML Mapping

	Testing the Fault Mapping
	Test Scenario
	Request€1 (Expecting Normal Response)
	Request€2 (Expecting Fault Document)

	Whitespace Handling
	Attribute xml:space
	Changing the Default for Whitespace Handling

