
Writing Web Service Client Applications
This chapter covers the following topics:

Web Service Clients

Configuring Advanced Web Service Clients

Example: Setting up an EntireX Client to Consume a Secured Web Service

Web Service Clients
EntireX, in conjunction with the Software AG Common Web Services Stack (WSS), provides
development and runtime functionality to support EntireX RPC clients consuming (or calling) Web
services. The relevant products parts are:

IDL Extractor for WSDL to generate an XML/SOAP mapping from the service’s WSDL.

XML Mapping Editor to adapt the mapping file if necessary. See XML Mapping Editor.

EntireX XML/SOAP RPC Server, acting as the EntireX Web service runtime, to deploy the XML
mapping file into and perform the Web service call. See Administering the EntireX XML/SOAP RPC
Server under UNIX | Windows.

Web Services Stack client runtime, which handles the underlying SOAP, WS-Policy and message
transport. See the separate Software AG Common Web Services Stack documentation.

For each Web service client that is deployed in XML/SOAP RPC Server, a special configuration is
required. The default name of the configuration file is entirex.xmlrpcserver.configuration.xml. Example
configuration:

...
<TargetServer name="http://localhost:10010/wsstack/services/example">
 <xmms>
 <exx-xmm
 name="C:\MyWorkspace\Example\example.xmm"
 wsdl="http://localhost:10010/wsstack/services/example?wsdl"
 service="example"
 port="EXAMPLESOAP11Port"
 soapVersion="1.1"
 repository="C:\SoftwareAG\WS-Stack\repository" />
 </xmms>
</TargetServer>
...

1

Writing Web Service Client ApplicationsWriting Web Service Client Applications

where code is the XMM mapping file for the service

 wsdl is the reachable URL for the WSDL file of the service. This WSDL file can
contain additional WS-Policy information for the service that is supported by
the Web Services Stack

 service is the service name inside the WSDL file of the service

 port is the port inside the WSDL file. This information is needed when the WSDL
file can contain more than one port. The value in this example is the default
number; this number can be changed during installation

 soapVersion can be "1.1" or "1.2"

 repository is the client "repository" of the Web Services Stack (containing the conf and
modules subfolders)

Configuring Advanced Web Service Clients
A Web Services Stack client using advanced Web services functionality (WS-Security,
WS-ReliableMessaging, etc.) requires the following configuration data:

A "repository" containing configuration files and extension modules (.mar files). The "repository" is
a folder containing subfolders conf and modules.

The conf folder contains the client’s global configuration file axis2.xml for the Web Services Stack
engine.

The modules folder contains modules for WS-* extensions, for example

addressing-1.4.mar if WS-Addressing is used

rampart-1.4.mar if WS-Security is used

rahas-1.4.mar if WS-Trust is used

If WS-Security is used, an additional security configuration file wsclientsec.properties is required.
The name and location of this file can be configured in the client’s global configuration file
axis2.xml, using the securityConfigFile property.

Here is an example of a client security configuration file wsclientsec.properties:

USERNAME=client
ENCRYPTION_USER=service
PASSWORD_CALLBACK_HANDLER_CLASS=com.softwareag.wsstack.test.PasswordCallbackHandler
KEYSTORE_FILE_ENCRYPT=client.jks
KEYSTORE_TYPE_ENCRYPT=jks
KEYSTORE_PASSWORD_ENCRYPT=apache
KEYSTORE_FILE_SIGN=client.jks
KEYSTORE_TYPE_SIGN=jks
KEYSTORE_PASSWORD_SIGN=apache
KEYSTORE_SSL_LOCATION=clientKS.jks
SSL_KEYSTORE_TYPE=jks
SSL_KEYSTORE_PASSWORD=apache
TRUSTSTORE_SSL_LOCATION=clientKS.jks
TRUSTSTORE_SSL_TYPE=jks
TRUSTSTORE_SSL_PASSWORD=apache

2

Configuring Advanced Web Service ClientsWriting Web Service Client Applications

The USERNAME specifies the user name that the Web service client uses to authenticate itself with the
Web service. It corresponds to Alias as described for the service configuration. ENCRYPTION_USER
and PASSWORD_CALLBACK_HANDLER correspond accordingly. The example Java password callback
handler from above can also be used for the client. The Web Services Stack provides some default
password callback handlers that can be instantly used without needing to write a custom one. For example
com.softwareag.wsstack.pwcb.ConfigFilePasswordCallbackHandler , which uses a
simple user configuration file users.xml . See the separate WS-stack documentation for more details.

A Web Services Stack client that connects to a Web Service that requires advanced Web Services policies
(which are attached to the service’s WSDL as policy attachment) automatically sets up and processes the
necessary SOAP headers in the SOAP message exchange with the service and fills the required
parameters according to the configuration information described above.

Example: Setting up an EntireX Client to Consume a
Secured Web Service
This section describes how to set up EntireX RPC clients calling a remote Web service that has a
WS-Security UsernameToken policy in effect. Two scenarios are described: one where the security
policy is defined in the WSDL, and one where the policy is not defined.

Setting up an EntireX RPC Server to Configure WS-Security

Scenario 1: Service requires UsernameToken and has a Security Policy in the WSDL

Scenario 2: Service requires UsernameToken but does not declare this in the WSDL

Setting up an EntireX RPC Server to Configure WS-Security

To set up a dedicated XML/SOAP RPC Server instance to connect EntireX RPC clients to a secured Web
service, the following prerequisites apply, for example in a folder of their own in the file system:

A startup script, jxmlserver.bat . You can copy this from <Install-Dir>\EntireX\bin and adapt
it.

Property file and config file, entirex.xmlrpcserver.properties and
entirex.xmlrpcserver.configuration.xml . You can copy these from
<Install-Dir>\EntireX\conf and adapt them.

A WSS client repository containing the subfolders conf , modules and services . You can copy
this from <Install-Dir>\WS-Stack\repository and adapt it

Note:
For this example only the addressing and rampart modules are required; delete the others.

A WSS client security configuration properties file, wsclientsec.properties , containing at
least values for USERNAME and PASSWORD_CALLBACK_HANDLER_CLASS. You can copy this
from <Install-Dir>\EntireX\bin and adapt it.

3

Writing Web Service Client ApplicationsExample: Setting up an EntireX Client to Consume a Secured Web Service

Scenario 1: Service requires UsernameToken and has a Security Policy in the
WSDL

In this scenario, the Web Services Stack runtime can use the WS-Security policy from the WSDL to
determine which security headers need to be attached to the SOAP message. Follow the steps below:

 To set up an XML/SOAP RPC server with defined security policy

1. Store a copy of the service’s WSDL (which also includes the policy attachment) in the test folder.

2. Generate an XML/SOAP mapping file (.xmm) with the IDL Extractor for WSDL. Enter the name of
the XML/SOAP RPC Server ("XMLSERVER" in this example) under Broker Settings on the
wizard page.

3. Start the XML/SOAP RPC Server in a command window, using the start script.

4. Deploy the mapping file to the XML/SOAP RPC Server. Provide the location of the WSDL and
specify the desired service endpoint, name and port.

5. Configure the Web Services Stack repository for the service, using the following steps:

1. Stop the XML/SOAP RPC Server.

2. Edit the file entirex.xmlrpcserver.configuration.xml and add the repository
definition to the TargetServer section. For example:

<TargetServer
 name="http://localhost:10010/wsstack/services/example.EXAMPLESOAP11Port/">
 <xmms>
 <exx-xmm
 name="D:\TestWS\example.xmm"
 port="EXAMPLESOAP11Port"
 wsdl="D:\TestWS1\example.wsdl"
 service="example"
 soapVersion="1.1"
 repository="repository"/>
 </xmms>
</TargetServer>

3. Restart the XML/SOAP RPC Server.

6. Configure security for the WSS client runtime by modifying files wsclientsec.properties
and users.xml :

File wsclientsec.properties , containing the lines

USERNAME=user
PASSWORD_CALLBACK_HANDLER_CLASS=
 com.softwareag.wsstack.pwcb.ConfigFilePasswordCallbackHandler

Specify the desired username , which should go into the UsernameToken . The password
callback handler class is used by the WSS client runtime to inquire a password for this user. The
ConfigFilePasswordCallbackHandler is a simple default handler delivered with
Web Services Stack that reads the password of a given user from a flat file users.xml . You
can write a custom password callback handler for other methods to acquire passwords.

4

Scenario 1: Service requires UsernameToken and has a Security Policy in the WSDLWriting Web Service Client Applications

File users.xml . Example:

<?xml version="1.0" encoding="UTF-8"?>
<users>
 <user username="user" password="pass" />
 <user username="client" password="apache" />
 <user username="service" password="apache" />
 <user username="bob" password="bobPW" />
</users>

To test access to the remote Web service, use the XML Tester on the IDL file. See XML Tester.

Scenario 2: Service requires UsernameToken but does not declare this in the
WSDL

For this scenario, perform the steps as described above. Because the WSDL does not contain a security
policy stating that UsernameToken is required, perform this additional step:

Explicitly tell the Web Services Stack client runtime about the UsernameToken required by the
service. Edit <SuiteInstallDir>/profiles/CTP/workspace/wsstack/repository/conf/axis2.xml,
uncomment the rampart module and add the OutFlowSecurity parameters:

<module ref="rampart"/>
<parameter name="OutflowSecurity">
 <action>
 <items>UsernameToken</items>
 <user> user</user>
 <passwordType>PasswordText</passwordType>
 <passwordCallbackClass>
 com.softwareag.wsstack.pwcb.ConfigFilePasswordCallbackHandler
 </passwordCallbackClass>
 </action>
</parameter>

where user is a valid user name for authentication.

5

Writing Web Service Client ApplicationsScenario 2: Service requires UsernameToken but does not declare this in the WSDL

	Writing Web Service Client Applications
	Web Service Clients
	Configuring Advanced Web Service Clients
	Example: Setting up an EntireX Client to Consume a Secured Web Service
	Setting up an EntireX RPC Server to Configure WS-Security
	Scenario€1: Service requires UsernameToken and has a Security Policy in the WSDL
	Scenario€2: Service requires UsernameToken but does not declare this in the WSDL

