
Natural to IDL Mapping
This chapter describes how Natural data types are mapped to Software AG IDL files by the Software AG
IDL Extractor for Natural and covers the following topics:

Mapping Natural Data Types to Software AG IDL

Redesigning the Extracted Interface

Extracting the IDL Library Name

Extracting the IDL Program Name

Extracting IDL Parameter Names

Extracting IDL Directions (IN,OUT,INOUT)

Extracting Natural REDEFINES

Extracting Multiple Interfaces

Extracting Natural Arrays, Groups, X-Arrays and Variable Arrays

Extracting Natural Structure Information (IDL Levels)

Extracting Parameters defined with OPTIONAL

Setting Natural Parameters to Constants

Suppressing Natural Parameters

Renaming a Program

For more information on Natural syntax, refer to the Natural documentation.

Mapping Natural Data Types to Software AG IDL
The IDL Extractor for Natural maps the following subset of Natural data types to Software AG IDL data
types.

The following metasymbols and informal terms are used for the IDL in the table below.

The metasymbols "[" and "]" surround optional lexical entities

The informal terms n and m are sequences of numeric characters, for example 123.

1

Natural to IDL MappingNatural to IDL Mapping

Natural Data Type Software AG IDL Data Type Description

Anumber An Alphanumeric

A DYNAMIC AVn Alphanumeric variable length

Bnumber Bnumber Binary

B DYNAMIC BV Binary variable length

C not supported

D D Date

F4 F4 Floating point (small)

F8 F8 Floating point (large)

I1 I1 Integer (small)

I2 I2 Integer (medium)

I4 I4 Integer (large)

L L Logical

Nnumber[. number] Nnumber[. number] Unpacked decimal

Pnumber[. number] Pnumber[. number] Packed decimal

T T Time

Unumber Unumber Unicode

U DYNAMIC UV Unicode variable length

Redesigning the Extracted Interface
The IDL Extractor for Natural allows you to design the interface to your Natural subprogram (CALLNAT).
This includes

Extracting Multiple Interfaces

Extracting Natural REDEFINES

Extracting IDL Directions (IN,OUT,INOUT)

Setting Natural Parameters to Constants

Suppressing Natural Parameters

See Step 6: Redesign the Interface for Natural Subprograms (Optional) for more information.

Extracting the IDL Library Name
The Natural library from where Natural programs are extracted is used as the IDL library name. See
library-definition under Software AG IDL Grammar.

2

Redesigning the Extracted InterfaceNatural to IDL Mapping

Extracting the IDL Program Name
The Natural program name is used as the IDL program name, see program-definition under
Software AG IDL Grammar.

Extracting IDL Parameter Names
For source extractions, Natural parameter names are kept and used as IDL parameters, see
simple-parameter-definition and group-parameter-definition under Software AG
IDL Grammar.

For object extractions, Natural programs must be compiled (cataloged) with the compiler option
SYMGEN=ON to keep original Natural parameter names. Otherwise, generic parameter names are
generated (PARAMETER-1, PARAMETER-2, etc.).

In Select Natural Sources (see Step 3: Select the Natural Subprograms from NaturalONE Project if you
are extracting from NaturalONE projects or Step 3: Select the Natural Subprograms if you are extracting
from a Natural RPC environment), you can choose special characters ($, #, &, @, /) in Natural parameter
names to be replaced by underscores. See Rules for Coding Group and Parameter Names.

Extracting IDL Directions (IN,OUT,INOUT)
In most Natural subprograms, parameters have no specification for a direction. Missing a direction is
unproblematic for local calls. For remote RPC calls, however, specifying the direction helps to reduce data
sizes.

If you redesign the interface, you can define IDL directions in Step 6: Redesign the Interface for Natural
Subprograms (Optional) using the mapping operations Map to In , Map to Out, Map to InOut .

Otherwise, IDL directions can be inserted at top-level parameters (level 1) using a Natural line comment
in the Natural subprogram (CALLNAT) interface definition (DEFINE DATA PARAMETER), example:

DEFINE DATA PARAMETER
1 #IN-FIELD-1 (P9) /* IN
1 #OUT-FIELD-1 (P9) /* OUT
1 #INOUT-FIELD-1 (P9) /* INOUT
1 #INOUT-FIELD-2 (P9)
1 #IN-GROUP-1 /* IN
 2 #IN-GROUP-FIELD-1 (A10)
1 #OUT-GROUP-1 /* OUT
 2 #OUT-GROUP-FIELD-1 (A10)
1 #INOUT-GROUP-1 /* INOUT
 2 #INOUT-GROUP-FIELD-1 (A10)
1 #INOUT-GROUP-2
 2 #INOUT-GROUP-FIELD-2 (A10)
1 #INOUT-GROUP-3
 2 #INOUT-GROUP-FIELD-3 (A10) /* OUT
END-DEFINE

If no direction is specified (such as in #INOUT-FIELD-2 and #INOUT-GROUP-2 in the example
above), the default direction INOUT applies.

3

Natural to IDL MappingExtracting the IDL Program Name

Specifications on a level greater than 1 (such as #INOUT-GROUP-FIELD-3 in the example above) are
ignored. Note that in IDL directions are specified on top-level fields (level 1), see attribute-list
under Software AG IDL Grammar.

Specifications on IDL directions are only considered when extracting from a source. If you are extracting
from an object (compiled), as described in Step 5: Select Natural Subprograms from RPC Environment,
the default direction INOUT always applies.

Extracting Natural REDEFINES
A redefinition is a second parameter layout of the same memory portion. The parameter #BASE-FIELD
is redefined by the fields FILLER-1 thru R-P3-01 .

DEFINE DATA PARAMETER
1 #BASE-FIELD (A161)
1 REDEFINE #BASE-FIELD
 2 FILLER-1 (A4)
 2 FILLER-2 (A60)
 2 R-P1-01 (A1)
 2 R-P2-01 (A10)
 2 R-P3-01 (I4)
END-DEFINE

With the extractor wizard you can select a single redefine path for IDL usage (here the fields FILLER-1
thru R-P3-01) if you redesign the interface. See An Example for Extracting Natural REDEFINES and
Step 6: Redesign the Interface for Natural Subprograms (Optional).

Extracting Multiple Interfaces
Legacy Natural subprograms often implement multiple functions in a single Natural subprogram. The
function executed is often controlled by a so-called function code or operation-code field. See An Example
for Extracting Multiple Interfaces.

With the extractor wizard you can extract the functions from the server as separate interfaces (IDL
programs). In this way, the legacy server with a single physical interface can be

turned into a web service with operations, where the legacy functions match operations.

called with an object-oriented wrapper such as the Java Wrapper, the .NET Wrapper or the DCOM
Wrapper, where the legacy functions match methods.

Note that every function in the Natural subprogram may have a different interface described with
REDEFINE syntax. Therefore, multiple interface extraction is often combined with Extracting Natural
REDEFINES.

For more information, see Step 6: Redesign the Interface for Natural Subprograms (Optional).

Extracting Natural Arrays, Groups, X-Arrays and Variable
Arrays

4

Extracting Natural REDEFINESNatural to IDL Mapping

This section describes IDL mapping for Natural arrays and groups:

Arrays and Groups with Fixed upper Limits

Ordinary Natural arrays and groups with fixed/bound upper limits are mapped to Software AG IDL
fixed-bound-array definitions, see array-definition under Software AG IDL Grammar in the IDL
Editor documentation.

Natural syntax example:

DEFINE DATA PARAMETER
1 #ARRAY1 (I4/1:10) /* lower bound is fixed at 1, upper bound is 10
1 #ARRAY2 (I4/10) /* shortcut for (A5/1:10)
1 #GROUP1 (10)
 2 #FIELD1 (I2)
 2 #FIELD2 (A10)
. . .
END-DEFINE

X-Arrays and X-Groups

For X-arrays (eXtensible arrays) the number of occurrences is flexible at runtime. The number of
occurences can be resized, i.e. increased or reduced. It is defined by specifying an asterisk (*) for index
bounds.

Natural syntax example:

DEFINE DATA LOCAL
1 #X-ARRAY1 (A5/1:*) /* lower bound is fixed, upper bound is variable
1 #X-ARRAY2 (A5/*) /* shortcut for (A5/1:*)
. . .
END-DEFINE

Natural X-arrays are mapped to Software AG IDL unbounded-array definitions, see
array-definition .

Natural X-arrays with variable lower bounds are not supported by Software AG RPC technology,
example:

DEFINE DATA PARAMETER
1 #X-ARRAY1 (A5/*:10) /* lower bound is variable, upper bound is fixed
. . .
END-DEFINE

Variable Arrays and Variable Groups

In a Natural parameter data area (PDA), you can specify an array or group with a variable number of
occurrences. This is done with the index notation 1:V . The maximum number of occurrences for such an
array is either passed to the subprogram using an extra parameter such as #ARRAY1-LIMIT (see
example below), or it can be accessed using the system variable *OCCURRENCE.

5

Natural to IDL MappingArrays and Groups with Fixed upper Limits

Natural syntax example:

DEFINE DATA PARAMETER
1 #ARRAY1-LIMIT (I4) /* extra parameter to pass the upper limit
1 #ARRAY1 (I4/1:V)
. . .
END-DEFINE

Natural variable arrays are mapped to Software AG IDL unbounded-array definitions, see
array-definition .

If the Natural server program uses a separate parameter such as #ARRAY1-LIMIT (see the example
above) instead of *OCCURRENCE to determine the upper bound limit, it is required to extract this extra
parameter, too. During runtime, it is also required to specify the number of occurences in a calling RPC
client.

In a Natural server program, Natural variable arrays

cannot be resized for direction INOUT, which means you can only reply the same number of
occurrences to the RPC client.

cannot be used for direction OUT either, because they cannot be created (instantiated). You may get
error 20050031 during extraction.

Arrays and Groups with Mixed Dimensions (X, Variable and Fixed)

Natural arrays and groups with a mixture of fixed variable and eXtensible dimensions are not supported
by Software AG RPC technolgy, example:

DEFINE DATA PARAMETER
1 #ARRAY1 (I4/1:10,1:*) /* first dimension fixed and second eXtensible
1 #ARRAY2 (I4/1:10,1:V) /* first dimension fixed and second variable
1 #ARRAY3 (I4/1:V,1:*) /* first dimension variable and second eXtensible
. . .
END-DEFINE

Extracting Natural Structure Information (IDL Levels)

Source Extractions

Natural levels are always kept. This means that the structure in the extracted IDL is the same as in the
original Natural program.

Object Extractions

UNIX or Windows
In UNIX or Windows RPC environments, Natural levels are not kept. The IDL is extracted in a flat
way, where

all IDL parameters are at level 1;

all Natural groups are removed;

6

Extracting Natural Structure Information (IDL Levels)Natural to IDL Mapping

Natural fields within groups using repetition (PERIODIC GROUPS) are mapped to IDL arrays;

the dimension of Natural arrays within groups using repetion (PERIODIC GROUPS) is
increased in the IDL. For example, a one-dimensional array may become a two-dimensional or
three-dimensional IDL array depending on the dimension of the group;

z/OS
In z/OS RPC environments, the Natural programs must be compiled (cataloged) with the compiler
option SYMGEN=ON to keep Natural levels, otherwise flat extraction is carried out.

Extracting Parameters defined with OPTIONAL
For a parameter defined without OPTIONAL, a value must be passed from the invoking Natural object,
i.e. the caller.

For a parameter defined with OPTIONAL, a value can, but need not be passed from the invoking Natural
object to this parameter. With the SPECIFIED option, a Natural server can find out at runtime whether
an optional parameter has been defined or not.

The IDL Extractor for Natural ignores the OPTIONAL specification, i.e. the parameter is extracted as
without the OPTIONAL specification. See the Natural Documentation for more information.

EntireX RPC technology does not support optional IDL parameters. Using pure Natural RPC (Natural
client to Natural server), Natural optional parameters are supported.

Setting Natural Parameters to Constants
Setting parameters to constant values and suppressing them in the IDL is part of the redesign process of
the extracted interface. This keeps the IDL client interface lean. See An Example for Set Constant.

EntireX and Natural RPC make sure the constant value is passed to the Natural server during runtime. No
data is transferred between the RPC client and the RPC server.

For more information, see Step 6: Redesign the Interface for Natural Subprograms (Optional).

Suppressing Natural Parameters
Hiding or suppressing unneeded parameters in the IDL is part of the redesign process of the extracted
interface. This keeps the IDL client interface lean and minimizes the amount of data to be transferred
during runtime.

EntireX and Natural RPC make sure to provide low values as input for suppressed parameters to the
Natural server called (blank for IDL type A, zero for numeric data types such as IDL I , N and P). No data
is transferred between an RPC client and the RPC server.

For more information, see Step 6: Redesign the Interface for Natural Subprograms (Optional).

7

Natural to IDL MappingExtracting Parameters defined with OPTIONAL

Renaming a Program
Renaming a program to a different name in the IDL is part of the redesign process of the extracted
interface. You can adjust the short Natural name to a meaningful longer name for better readability. See
An Example for Extracting Multiple Interfaces where the original Natural name CALC is renamed to IDL
names ADD, SUBTRACT, MULTIPLY etc.

EntireX and Natural RPC make sure the original Natural server is called during runtime. For more
information, see Step 6: Redesign the Interface for Natural Subprograms (Optional).

8

Renaming a ProgramNatural to IDL Mapping

	Natural to IDL Mapping
	Mapping Natural Data Types to Software AG IDL
	Redesigning the Extracted Interface
	Extracting the IDL Library Name
	Extracting the IDL Program Name
	Extracting IDL Parameter Names
	Extracting IDL Directions (IN,OUT,INOUT)
	Extracting Natural REDEFINES
	Extracting Multiple Interfaces
	Extracting Natural Arrays, Groups, X-Arrays and Variable Arrays
	Arrays and Groups with Fixed upper Limits
	Natural syntax example:

	X-Arrays and X-Groups
	Natural syntax example:

	Variable Arrays and Variable Groups
	Natural syntax example:

	Arrays and Groups with Mixed Dimensions (X, Variable and Fixed)

	Extracting Natural Structure Information (IDL Levels)
	Source Extractions
	Object Extractions

	Extracting Parameters defined with OPTIONAL
	Setting Natural Parameters to Constants
	Suppressing Natural Parameters
	Renaming a Program

