
Writing Advanced Web Services Applications
This chapter covers the following topics:

Supported Features

SOAP 1.2

WSDL Query

Transports

Policies

WS-ReliableMessaging

Configuring Web Services

See also Writing Web Service Client Applications in the IDL Extractor for WSDL documentation.

Supported Features
EntireX version 8.1 and above supports a number of advanced Web services features in combination with
the Web Services Stack. This includes support for

SOAP 1.2 messaging

SOAP 1.2 binding in WSDL 1.1

multiple transports (HTTP, HTTPS, TCP, JMS)

WS-Policy (WS-Addressing, WS-Security, WS-ReliableMessaging)

WS-Policy Attachment to WSDL 1.1

SOAP 1.2
Web services created with the EntireX Workbench support by default SOAP 1.2
(http://www.w3.org/TR/soap12-part1/) in addition to SOAP 1.1. No extra configuration is needed for this.

WSDL 1.1 descriptions generated for EntireX services with the EntireX Workbench contain both SOAP
1.1 and SOAP 1.2 binding definitions and endpoints.

Example (excerpt from a WSDL file):

1

Writing Advanced Web Services ApplicationsWriting Advanced Web Services Applications

http://www.w3.org/TR/soap12-part1/

...
<wsdl:service name="Calc">
 <wsdl:port name="CalcSOAP11port_http" binding="ns0:CalcSOAP11Binding">
 <soap:address location="http://host:port/wsstack/services/Calc" />
 </wsdl:port>
 <wsdl:port name="CalcSOAP12port_http" binding="ns0:CalcSOAP12Binding">
 <soap12:address location="http://host:port/wsstack/services/Calc" />
 </wsdl:port>
</wsdl:service>
...

WS-Stack also supports the Representational State Transfer (REST) style of messaging.

WSDL Query
The WSDL of an EntireX service that has been generated, configured and deployed in a Web Services
Stack runtime running in a servlet engine can be retrieved using the service URI appended with "?wsdl".

Example: http://host:port/wsstack/service/myService?wsdl

The returned WSDL will reflect to the requestor all relevant configuration information of the service, for
example all endpoints through which the service is accessible and policies that are in effect for the service.

Transports
Services can be configured to be accessible over multiple transport protocols. The default transport is
HTTP. Using the Configuration Editor, you can configure different transports via which the service can be
accessed.

HTTPS: This requires that HTTPS is configured for the servlet engine that is running the Web
Services Stack service runtime.

TCP: Additional configuration of the Web Services Stack runtime in axis2.xml is necessary to enable
support of this transport. See the separate Web Services Stack documentation for more information.

JMS: Additional configuration of the Web Services Stack runtime in axis2.xml is necessary to enable
support of this transport. See the separate Web Services Stack documentation for more information.

Policies
For services created with EntireX and Web Services Stack, additional policies can be defined per service.
These include WS-Addressing, WS-Security and WS-ReliableMessaging.

WS-Addressing

A WS-Addressing policy assertion can be defined for a service to accept SOAP messages containing a
WS-Addressing SOAP header.

Example: WS-Addressing policy assertion

2

WSDL QueryWriting Advanced Web Services Applications

<wsp:Policy wsu:Id="Addressing"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsaws:UsingAddressing
 xmlns:wsaws="http://www.w3.org/2006/05/addressing/wsdl"/>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

WS-Addressing can be configured for a service using the Configuration Editor.

WS-Security

WS-Security policy assertions can be defined for a service to accept and enforce SOAP messages
containing a WS-Security SOAP header. With WS-Security the message exchange between a Web service
client and a service can be secured in the following aspects:

confidentiality: messages (or parts of messages) are encrypted on transport or on message level

integrity: messages (or parts of messages) are signed on transport or on message level

authentication: the sender of a message supplied authentication information on transport or on
message level that allows the service to perform authentication

WS-Security can be configured for a service using the Web Services Stack configuration editor.

The following security policies are supported:

Security bindings: TransportBinding, SymmetricBinding and AsymmetricBinding, which specify by
which mechanism confidentiality and integrity are ensured.

TransportBinding: specifies that the message exchange is secured on transport level (HTTPS).
As a prerequisite, the secure transport needs to be enabled and configured for the servlet engine
that hosts the Web Services Stack service runtime.

SymmetricBinding: specifies that the confidentiality of the message exchange is achieved on
message level, using a symmetric encryption key that is shared between Web service client and
service.

AsymmetricBinding: specifies that the confidentiality of the message exchange is achieved on
message level using, an asymmetric encryption key (that is, client and service use different
private/public key pairs for encryption and decryption).

Timestamps: a service can have a policy that requires that timestamps are added to messages.

Authentication: policies can be defined that require messages exchanged contain authentication
information such that receivers can authenticate the sender. The following authentication methods are
supported:

HTTP basic authentication

client certificates for the HTTPS transport

3

Writing Advanced Web Services ApplicationsWS-Security

user-name token contained in the message

digital signatures and X509 tokens contained in the message

WS-ReliableMessaging
A WS-ReliableMessaging policy assertion can be defined for a service. This service then only accepts
SOAP requests using the WS-ReliableMessaging protocol.

Example: WS-ReliableMessaging policy assertion

<wsp:Policy wsu:Id="ReliableMessaging" xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsp:ExactlyOne>
 <wsp:All>
<wsrm:RMAssertion xmlns:wsrm= "http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrm:InactivityTimeout Milliseconds="600000"/>
 </wsrm:RMAssertion>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>

Configuring Web Services
Introduction

Services Configuration View

EntireX Settings View

Introduction

The global configuration for the Web services engine is done in the configuration file axis2.xml. See the
separate Web Services Stack documentation for more on configuring the Web Services Stack engine. For
the services runtime, this configuration file is located in the Web Services Stack Web application’s
configuration directory <servlet_engine_root>\webapps\wsstack\WEB-INF\conf. The default location of
the configuration folder of the Software AG Web Server based on Apache Tomcat is
<SuiteInstallDir>/profiles/CTP/configuration.

Individual services or services group are configured in the services.xml file that is part of a services
archive. The Web Services Stack configuration editor provides an Eclipse user interface to configure a
service. Open a Web service archive (.aar) that was generated with the EntireX Workbench with the Web
Services Stack configuration editor. There are five views on different aspects of the service:

The Archive view displays the contents of a service archive and allows you to add additional files to
the archive or remove files from the archive. You can add additional Web service files (*.idl, *.xmm)
to the EntireX service. If an XMM file is selected, the mapping of the file must match the mapping of
the service.

If an IDL file is selected and a corresponding XMM file is available in the project, you are prompted
to

4

WS-ReliableMessagingWriting Advanced Web Services Applications

overwrite the existing mapping file on the basis of the IDL file, or

use the existing mapping file.

The Service view allows you to view and modify various settings that apply to a service contained in
the archive.

The Operations view allows you to view and modify settings that apply to an operation of a service
in the archive and corresponds to the Service view.

File services.xml allows you to view the services archive’s configuration file in clear text (XML
format).

Configuration parameters for the XML/SOAP Listener; see EntireX Settings View.

See the separate Web Services Stack documentation for more information on the Configuration Editor.

Services Configuration View

EntireX Web services have some specific configurations that are defined by the Web Services wizard of
the EntireX Workbench. The ServiceLifeCycleClass, the EntireXMessageReceiver and the session scope
Application. You should not modify these settings for EntireX Web services.

WS-Addressing Configuration
WS-Security Configuration
Security Bindings
Keystore Configuration
Additional Security Options

WS-Addressing Configuration

To enable WS-Addressing headers for a service, check the Enable WS-Addressing check box. This
inserts a WS-Addressing policy into services.xml and enables the addressing module of the Web Services
Stack engine that processes addressing SOAP headers.

<wsp:Policy wsu:Id="User defined"
xmlns:wsp=http://schemas.xmlsoap.org/ws/2004/09/policy
 xmlns:wsu="http://docs.oasis-open.org/.../...wssecurity-utility-1.0.xsd">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsaws:UsingAddressing
 xmlns:wsaws="http://www.w3.org/2006/05/addressing/wsdl"/>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>
<module ref="addressing"/>

WS-Security Configuration

WS-Security can be configured to ensure integrity, confidentiality and allow authentication of messages
exchanged between Web services clients and Web services. To enable WS-Security for a service, check
the Enable WS-Security check box, which then displays additional configuration options. Message
exchange can be secured either on transport level or on message level. You can configure three different
"bindings" for secure message exchange.

5

Writing Advanced Web Services ApplicationsServices Configuration View

Security Bindings

Transport Security with SSL: message exchange is secured on transport level using SSL (HTTPS
transport). To be able to configure transport security, the servlet engine must have HTTPS configured
and enabled as a prerequisite. In addition, HTTPS must be configured for the Web Services Stack in
the global configuration file axis2.xml. This is not configured by default. As an option you can
specify whether a client certificate has to be provided on the transport.

Message-level security with symmetric binding: Message exchange is secured using a symmetric
key. Additional keystore configuration is required for symmetric binding.

Message level security with asymmetric binding: Message exchange is secured using an asymmetric
key. Additional keystore configuration is required for asymmetric binding.

Keystore Configuration

Location: the location of a Java keystore. This can be a relative path to a Java keystore contained in
the service archive, or an absolute path to a keystore located in the file system.

Keystore Password: the password required to access keys in the keystore.

Alias: the alias of the private key in the keystore that is used for signing outgoing messages. The alias
name is also used as the username that is used for authentication. The password for accessing the
private key is queried at runtime using the Password Callback Handler (see below). To verify a
signature, a corresponding public key is used.

Encryption User: the alias of the public key in the keystore that is used for encryption. For
decryption, a private key is required. The password for accessing the private key is queried at
runtime, using the Password Callback Handler (see below).

Password Callback Class: This is the name of a class that implements a password callback handler
that is called by the Web Services Stack runtime to query a password for accessing a private key in
the keystore for singing or decrypting or a password for username token authentication. The
password callback handler class implementation needs to be provided by the application writer.

Additional Security Options

Username Token authentication: the services requires a username token in the message header.

Include timestamp: the service requires a (signed) timestamp in the message header.

Sign header: the message header must be signed

Sign body: the message body must be signed

Encrypt body: the message body must be encrypted

Encrypt/sign message part: Xpath expressions can be specified to identify parts of a message that are
signed and/or encrypted.

Example:

6

Services Configuration ViewWriting Advanced Web Services Applications

Password Callback Handler

/*
/*
 * PasswordCallbackHandler.java -
 * com.softwareag.wsstack.test.PasswordCallbackHandler class
 *
 * Server/Client Password Callback Handler, responsible for delivering
 * passwords for accessing a private signing or decryption key from a
 * keystore or a password for a username token.
 */

package com.softwareag.wsstack.test;

import java.io.IOException;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import org.apache.ws.security.WSPasswordCallback;

public class PasswordCallbackHandler implements CallbackHandler
{
 /*
 * Handles all supported callbacks
 * @see javax.security.auth.callback.CallbackHandler#handle(
 * javax.security.auth.callback.Callback[])
 */

 public void handle(Callback[] callbacks) throws IOException,
 UnsupportedCallbackException
 {
 try {
 for (int i = 0; i < callbacks.length; i++) {
 WSPasswordCallback pwcb = (WSPasswordCallback)callbacks[i];
 //get the type of the callback: SIGNATURE, DECRYPT, USERNAME_TOKEN
 int usage = pwcb.getUsage();
 String id = pwcb.getIdentifer();
 if (usage == WSPasswordCallback.SIGNATURE) {
 //supply password for signing key
 if ("client".equals(id)) pwcb.setPassword("apache"); else
 if ("service".equals(id)) pwcb.setPassword("apache");
 } else
 if (usage == WSPasswordCallback.DECRYPT) {
 //supply password for decryption key
 if ("client".equals(id)) pwcb.setPassword("apache"); else
 if ("service".equals(id)) pwcb.setPassword("apache");
 } else
 if (usage == WSPasswordCallback.USERNAME_TOKEN_UNKNOWN) {
 // verify username token on the server side
 if (id != null) {
 //get the password from the request
 String pass = pwcb.getPassword();
 // authenticate the user
 if (id.equals("client") && pass.equals("apache")) {
 return;
 } else {
 throw new UnsupportedCallbackException(callbacks[i],
 "authentication failed");
 }
 }
 } else
 if (usage == WSPasswordCallback.USERNAME_TOKEN) {

7

Writing Advanced Web Services ApplicationsServices Configuration View

 // supply password for username token on the client side
 if (id != null) {
 // supply the password
 String pass = pwcb.getPassword();
 if (pass == null) {
 if ("client".equals(id)) pwcb.setPassword("apache"); else
 if ("service".equals(id)) pwcb.setPassword("apache");
 pass = pwcb.getPassword();
 }
 }
 }
 } // for
 }
 catch (Throwable e) {
 throw new RuntimeException(e);
 }
 return;
 } // handle
}
}

EntireX Settings View

The EntireX Settings view allows you to modify file xml-init.xml, which is part of the Web Services
archive. The view contains two sections:

EntireX Service Parameters
XML/SOAP Listener Initialization Parameters

EntireX Service Parameters

The service section contains a combo box with one entry for the general settings and one entry for each
XMM file describing the service. The general settings are for all XMM files in the archive; special
settings for an XMM file supersede the general settings for this file.

8

EntireX Settings ViewWriting Advanced Web Services Applications

Parameter Description

Broker ID The broker to be used.

User ID The user ID used for calling the broker.

Password The password used for calling the broker.

Encryption
Level

Possible values: 0|1|2. See ENCRYPTION-LEVEL, class Broker and method
setSecurity .

Compression
Level

Sets the compression level. See Using Compression under Writing Advanced
Applications - EntireX Java ACI.

Use
Codepage

Determines the translation processing of the broker. Valid values:
true|false|<character encoding>. If a character encoding is set, this character encoding
is used for RPC message. See method useCodePage and
setCharacterEncoding in the documentation on class BrokerService
(EntireX Java ACI).

Use security Possible values: true|false. To use EntireX Security. See EntireX Security for EntireX
Broker.

Server
Address

This is the triplet of server class/server name/service.

RPC User ID The RPC user ID specified here is used for EntireX Security.

RPC
Password

The RPC Password specified here is used for EntireX Security.

Natural
Library

The Natural library. Works only if exx-natural-security is true. See Using
Natural Security in the Java Wrapper documentation.

Natural
Logon

Possible values: true|false. To use Natural Security. See Using Natural Security in the
Java Wrapper documentation.

XML/SOAP Listener Initialization Parameters

Parameter Description

Default Wait Time Sets the value of the default wait time field to the argument (see
setDefaultWaittime of class BrokerService).

Servlet Internal
Sweep Time

Interval in which the servlet checks and frees unused resources. The default is 60
seconds.

Enable Character
Reference

Enable/disable the character reference for the XML payload.

Behavior of
Non-conversation
Calls

The parameter indicates whether a non-conversational call is finalized with a
logoff call to free Broker resource (default), or by means of timeout. The default
value for this parameter is "nonConv-with-logoff", which defines that a
non-conversational call will finish with an additional logoff call (two calls per
message). Set to "nonConv-without-logoff" to specify that a non-conversational
call will finish without logoff call (one call per message); Broker will clean up
resources by means of timeout.

9

Writing Advanced Web Services ApplicationsEntireX Settings View

	Writing Advanced Web Services Applications
	Supported Features
	SOAP€1.2
	WSDL Query
	Transports
	Policies
	WS-Addressing
	WS-Security

	WS-ReliableMessaging
	Configuring Web Services
	Introduction
	Services Configuration View
	WS-Addressing Configuration
	WS-Security Configuration
	Security Bindings
	Keystore Configuration
	Additional Security Options

	EntireX Settings View
	EntireX Service Parameters
	XML/SOAP Listener Initialization Parameters

