
Writing an RPC Client Application with the
PL/I Wrapper
This chapter is a step-by-step guide for writing your first PL/I RPC client program.

Step 1: Generic Declarations Required by the PL/I Wrapper

Step 2: Declare the (Generated) Data Structures for (Generated) Interface Objects

Step 3: Declare ENTRY Definitions to (Generated) Interface Objects

Step 4: Required Settings in the RPC Communication Area

Step 5: Optional Settings in the RPC Communication Area

Step 6: Issue the RPC Request

Step 7: Examine the Error Code

The example given here does not use function calls as described under Using Broker Logon and Logoff. It
demonstrates an implicit broker logon (because no broker logon/logoff calls are implemented), where it is
required to switch on the AUTOLOGON feature in the broker attribute file.

The following steps describe how to write a PL/I RPC client program. We recommend reading them first
before writing your first RPC client program and following them if appropriate.

Step 1: Generic Declarations Required by the PL/I Wrapper

Step 1a: Embed PL/I Wrapper Preprocessor Definitions

The Preprocessor is always needed. Always embed RPCPPD and take care to set the correct values for
your environment in the PL/I Preprocessor Settings.

%include RPCPPD;

Step 1b: Declare PL/I Built-in Functions

These built-in functions are needed to communicate with the Using the Generic RPC Services Module and
the generated RPC stubs:

DECLARE STORAGE built in;
DECLARE SUBSTR built in;

Step 1c: Declare API Constants to PL/I Wrapper

This delivered include file defines constants and generic definitions to the PL/I Wrapper:

/* RPC API Interface */
%include RPCAPI;

1

Writing an RPC Client Application with the PL/I WrapperWriting an RPC Client Application with the PL/I Wrapper

Step 1d: Declare and Initialize the RPC Communication Area

Declare and initialize the The RPC Communication Area (Reference) in your RPC client program as
follows:

/* Declare RPC communication area */
DECLARE 1 ERXCOM,
%include RPCCOM; /* RPC communication area fields */

/* Initialize RPC communication area */
ERXCOM = ’’;
ERXCOM.COM_VERSION = ERX_COM_VERSION_1;
ERXCOM.COM_SIZE = STORAGE(ERXCOM);

Step 2: Declare the (Generated) Data Structures for
(Generated) Interface Objects
For every program definition of the IDL file, the templates generate an include file that describes the
customer data of the interface as a PL/I structure. For ease of use, you can embed these structures into
your RPC client program:

/* Declare customer data to generated interface objects */
%include CALC;
/* RESULT as a local variable because of function call */
DCL RESULT BIN FIXED (31);

However, if more appropriate, you can use your own customer data structures. In this case the PL/I data
types and structures must match the interfaces of the generated interface objects, otherwise unpredictable
results may occur.

Step 3: Declare ENTRY Definitions to (Generated) Interface
Objects
This step is appropriate for TARGET BATCH_xxx only. For TARGET CICS_xxx , no ENTRY
declarations are generated, because communication with the interface objects is through the CICS
COMMAREA, where ENTRY declarations are not suitable.

For TARGET BATCH_xxx, the templates generate for every library-definition of the IDL file, an include
file containing the ENTRY declarations to your client interface objects. We recommend embedding them
into your RPC client program:

/* Declare ENTRY definitions to generated interface objects */
%include EXAMPLE;

Step 4: Required Settings in the RPC Communication Area
The following settings to the RPC communication area are required as a minimum to use the PL/I
Wrapper. These settings have to be applied in your RPC client program. No defaults are generated into
your interface objects:

2

Step 2: Declare the (Generated) Data Structures for (Generated) Interface ObjectsWriting an RPC Client Application with the PL/I Wrapper

/* assign the broker to talk with ... */
ERXCOM.COM_BROKER_ID = ’ETB001’;

/* assign the server to talk with ... */
ERXCOM.COM_SERVER_CLASS = ’RPC’;
ERXCOM.COM_SERVER_NAME = ’SRV1’;
ERXCOM.COM_SERVER = ’CALLNAT’;

/* assign the user id to the broker ... */
ERXCOM.COM_CLIENT_USERID = ’PLI-USER’;

Step 5: Optional Settings in the RPC Communication Area
Here you specify optional settings to the RPC communication area used by the PL/I Wrapper, for
example:

ERXCOM.COM_CLIENT_PASSWORD = ’PLI-PASS’;
ERXCOM.COM_CLIENT_CODEPAGE = ’ECS0037’;
ERXCOM.COM_CLIENT_TOKEN = ’PLI-TOKEN’;
ERXCOM.COM_SERVER_LIBARY = ’MYLIB’;
ERXCOM.COM_SERVER_WAIT = ’300S’;
. . .

The client password can be given here if implicit broker logon is required in your environment. It is
provided then through the interface object call, see also Using Broker Logon and Logoff.

Step 6: Issue the RPC Request
The procedure for issuing RPC requests varies, depending on whether you are using a call interface or an
EXEC CICS LINK interface.

Using the Call Interface

This interface is used in the scenarios Batch and CICS with Call Interfaces.

RESULT = CALC(P_CALC.OPERATOR,
 P_CALC.OPERAND_1,
 P_CALC.OPERAND_2,
 ERXCOM);

The interface object CALC is called as PL/I function. See Calling Servers as Procedures or Functions.

Using the EXEC CICS LINK Interface

This interface is used in the scenario CICS.

/* move RPC Communication area to DFHCOMMAREA */
P_CALC.ERXCOM = ERXCOM;

/* call CICS program */
CICS_LEN = STORAGE(P_CALC);
CICS_RESP1 = DFHRESP(NORMAL);
CICS_RESP2 = DFHRESP(NORMAL);
EXEC CICS LINK PROGRAM (’CALC’)
 RESP (CICS_RESP1)
 RESP2 (CICS_RESP2)

3

Writing an RPC Client Application with the PL/I WrapperStep 5: Optional Settings in the RPC Communication Area

 COMMAREA (P_CALC)
 LENGTH (CICS_LEN);

/* move DFHCOMMAREA to RPC Communication area */
ERXCOM = P_CALC.ERXCOM;

Step 7: Examine the Error Code
When the RPC reply is returned, check that it was successful:

IF SUBSTR(ERXCOM.COM_ERROR,1,8) ^= ERX_S_SUCCESS then
DO;

/* error handling */
/* ... */

END;

The field COM_ERROR in the RPC communication area contains the error provided in a variable length
char field. The 8-digit error number precedes the error text, and with the SUBSTR inbuilt function you can
check the error number. In addition, you can use the COM_ERROR field simply in a PUT SKIP LIST
statement for printouts.

For the error messages returned, see Error Messages and Codes.

4

Step 7: Examine the Error CodeWriting an RPC Client Application with the PL/I Wrapper

	Writing an RPC Client Application with the PL/I Wrapper
	Step€1: Generic Declarations Required by the PL/I Wrapper
	Step€1a: Embed PL/I Wrapper Preprocessor Definitions
	Step€1b: Declare PL/I Built-in Functions
	Step€1c: Declare API Constants to PL/I Wrapper
	Step€1d: Declare and Initialize the RPC Communication Area

	Step€2: Declare the (Generated) Data Structures for (Generated) Interface Objects
	Step€3: Declare ENTRY Definitions to (Generated) Interface Objects
	Step€4: Required Settings in the RPC Communication Area
	Step€5: Optional Settings in the RPC Communication Area
	Step€6: Issue the RPC Request
	Using the Call Interface
	Using the EXEC CICS LINK Interface

	Step€7: Examine the Error Code

