
Conversational RPC
RPC conversations are supported when communicating with an RPC server.

It is assumed that you are familiar with the concepts of conversational RPC and non-conversational RPC.
Open and closing conversations are provided through the Generic RPC Services Module.

This chapter covers the following topics:

Using Conversational RPC

Terminating a Conversational RPC Communication

Closing and Committing a Conversational RPC Communication

Using Conversational RPC
 To use conversational RPC

1. Open a conversation with the function Open Conversation OC (see COM_FUNCTION under RPC
Communication Area) from Generic RPC Services module:

With the Call Interface:

...
ERXCOM.COM_FUNCTION = ’OC’; /* Open Conversation */
ERXCOM. COM_SERVER_LIBRARY = ’MYLIB’;
call xxxSRVI(ERXCOM); /* see (1) below */
IF SUBSTR(ERXCOM.COM_ERROR,8) ^= ERX_S_SUCCESS then
DO;
/* error handling */
 /* ... */
END;
/* begin of application logic including calls to interface objects */
...

With the EXEC CICS LINK Interface:

ERXCOM.COM_FUNCTION = ’OC’; /* Open Conversation */
ERXCOM. COM_SERVER_LIBRARY = ’MYLIB’;
CICS_LEN = STORAGE(ERXCOM);
CICS_RESP1 = DFHRESP(NORMAL);
CICS_RESP2 = DFHRESP(NORMAL);
/* called CICS program name depends on PP switch ERXFCTPRE */
EXEC CICS LINK PROGRAM (’xxxSRVI’) /* see (1) below */
 RESP (CICS_RESP1)
 RESP2 (CICS_RESP2)
 COMMAREA (ERXCOM)
 LENGTH (CICS_LEN);
IF SUBSTR(ERXCOM.COM_ERROR,8) ^= ERX_S_SUCCESS then
DO;
/* error handling */
 /* ... */
END;
/* begin of application logic including calls to interface objects */
...

1

Conversational RPCConversational RPC

(1) The prefix of the program name (xxxSRVI) can be customized, see PL/I Preprocessor Settings.
The default is PLISRVI .

The Open Conversation requires a library to be set in the RPC communication area field
COM_SERVER_LIBRARY. See The RPC Communication Area (Reference).

After a successful Open Conversation, the broker’s conversation ID is stored within the RPC
communication area field COM_SERVER_CONVID. See The RPC Communication Area
(Reference). The conversation ID

is used during calls to interface objects and also needed for closing the conversation.

is cleared if the end of conversation is forced by the broker or the RPC server. This
happens if an error with message class 0003 occurs. See Message Class 0003 - EntireX ACI
- Conversation Ended.

is not cleared and remains for any other error returned to be able to continue the
conversation.

2. Issue your RPC requests as is done within non-conversational mode, using the generated interface
objects.

Different interface objects can participate in the same RPC conversation.

RPC conversations and simple non-conversational RPC requests can not be handled in parallel
using the same RPC communication area without saving and restoring some fields.

If you need to handle RPC conversations in parallel, or simple non-conversational RPC requests
within an ongoing RPC conversation, use multiple RPC communication areas or save and
restore the following fields:

COM_BROKER_ID (if another broker)

COM_SERVER_CLASS (if another class)

COM_SERVER_NAME (if another name)

COM_SERVER (if another service)

COM_SERVER_LIBRARY (if another library)

COM_SERVER_CONVID

and possibly others, for example user ID, token and password if needed

Terminating a Conversational RPC Communication
Terminate an RPC conversation unsuccessfully with the function Close Conversation CB (see
COM_FUNCTION under RPC Communication Area) from Generic RPC Services module:

2

Terminating a Conversational RPC CommunicationConversational RPC

With the Call Interface:

...
ERXCOM.COM_FUNCTION = ’CB’; /* Close Conversation */
call xxxSRVI(ERXCOM); /* see (1) below */
IF SUBSTR(ERXCOM.COM_ERROR,8) ^= ERX_S_SUCCESS then
DO;
/* error handling */
 /* ... */
END;
/* begin of application logic including calls to interface objects */
...

(1) The prefix of the program name (xxxSRVI) can be customized, see PL/I Preprocessor Settings. The
default is PLISRVI .

With the EXEC CICS LINK Interface:

See Using Conversational RPC above.

Closing and Committing a Conversational RPC
Communication
Close the RPC conversation successfully with the function Close Conversation and Commit CE (see
COM_FUNCTION under RPC Communication Area) from Generic RPC Services module:

With the Call Interface:

...
ERXCOM.COM_FUNCTION = ’CE’; /* Close Conversation and Commit */
call xxxSRVI(ERXCOM); /* see (1) below */
IF SUBSTR(ERXCOM.COM_ERROR,8) ^= ERX_S_SUCCESS then
DO;
/* error handling */
 /* ... */
END;
/* begin of application logic including calls to interface objects */
...

(1) The prefix of the program name (xxxSRVI) can be customized, see PL/I Preprocessor Settings. The
default is PLISRVI .

With the EXEC CICS LINK Interface:

See Open Conversation above.

3

Conversational RPCClosing and Committing a Conversational RPC Communication

	Conversational RPC
	Using Conversational RPC
	Terminating a Conversational RPC Communication
	
	With the Call Interface:
	With the EXEC CICS LINK Interface:

	Closing and Committing a Conversational RPC Communication
	
	With the Call Interface:
	With the EXEC CICS LINK Interface:

