
Merging and Refactoring Software AG IDL
IDL refactoring is a process that checks all programs and structures in a single library if they contain
identical groups. All identical groups are extracted in a single structure in the same library, and replaced
with a structure reference. If a structure exists that is identical to the structure to be created, all references
will point to the existing structure and a new one will not be created. Two groups are identical if each
group has the same number and order of parameters, and each parameter in one group has the same name
and the same type as the corresponding parameter in the other group. IDL refactoring can be performed on
single or multiple IDL files.

This chapter covers the following topics:

Refactoring a Single IDL File

Merging and Refactoring Multiple IDL Files

Notes on Merging

Command-line Mode

Refactoring a Single IDL File
In the case of a single IDL file, all programs and structures in every single library are checked if they
contain identical groups. You will be asked for the name of the new IDL file.

To illustrate refactoring, create an example IDL file Example.idl:

library ’EXAMPLE’ is
 program ’SUM’ is
 define data parameter
 1 Operands
 2 Operand1 (I4) In
 2 Operand2 (I4) In
 1 Function_Result (I4) Out
 end-define

 program ’SUBTRACTION’ is
 define data parameter
 1 Ops
 2 Operand1 (I4) In
 2 Operand2 (I4) In
 1 Function_Result (I4) Out
 end-define

 program ’MULTIPLICATION’ is
 define data parameter
 1 Operands
 2 Operand (I4) In
 2 Multiplier (I4) In
 1 Function_Result (I4) Out
 end-define

1

Merging and Refactoring Software AG IDLMerging and Refactoring Software AG IDL

By selecting this file in the workbench, the Refactor Software AG IDL... command in the context menu
is enabled.

Executing the command and entering the target IDL file will result in a file Example.refactored.idl:

library ’EXAMPLE’ is
 struct ’Operands’ is
 define data parameter
 1 Operand1 (I4)
 1 Operand2 (I4)
 end-define

 program ’SUM’ is
 define data parameter
 1 Operands (’Operands’) In Out
 1 Function_Result (I4) Out
 end-define

 program ’SUBTRACTION’ is

2

Refactoring a Single IDL FileMerging and Refactoring Software AG IDL

 define data parameter
 1 Ops (’Operands’) In Out
 1 Function_Result (I4) Out
 end-define

 program ’MULTIPLICATION’ is
 define data parameter
 1 Operands In Out
 2 Operand (I4)
 2 Multiplier (I4)
 1 Function_Result (I4) Out
 end-define

As can be seen from above, the common group with parameters

Operand1 (I4)
Operand2 (I4)

is extracted as a single structure and the former groups are transformed to structure references. However,
the group Operands from the MULTIPLICATION program is not replaced, because its members have
different names, although parameters are equal in quantity and type.

Now, let us assume the example.idl file already contains a structure such as:

struct ’strct’ is
 define data parameter
 1 Operand1 (I4)
 1 Operand2 (I4)
 end-define

Although its name differs, the structure’s signature (number of parameters, parameter names and types) is
the same as the one to be created. In this case, a new structure will not be created, but all references will
point to the existing one - strct .

Merging and Refactoring Multiple IDL Files
If there is more than one IDL file, all files are first merged and then refactoring is run on the assembled
file. You will be asked for the new IDL file’s name.

To illustrate IDL merging, create two IDL files Example1.idl and Example2.idl with the following
content:

Example1.idl

library ’EXAMPLE’ is
 program ’SUM’ is
 define data parameter
 1 Operands
 2 Operand1 (I4) In
 2 Operand2 (I4) In
 1 Function_Result (I4) Out
 end-define

 program ’MULTIPLICATION’ is
 define data parameter
 1 Operands

3

Merging and Refactoring Software AG IDLMerging and Refactoring Multiple IDL Files

 2 Number (I4) In
 2 Multiplier (I4) In
 1 Function_Result (I4) Out
 end-define

Example2.idl

library ’EXAMPLE’ is
 program ’SUBTRACTION’ is
 define data parameter
 1 Ops
 2 Operand1 (I4) In
 2 Operand2 (I4) In
 1 Function_Result (I4) Out
 end-define

Selecting these two files in the workbench will enable the Merge and Refactor Software AG IDL...
command in the context menu.

Executing this command and entering the target IDL name will result in exactly the same file content as
Example.refactored.idl. As the two source IDL files have libraries with one and the same name, an
attempt to merge their programs is made. If successful, the result is a single EXAMPLE library containing
all programs from the both libraries. This resulting library is then refactored as described above.

4

Merging and Refactoring Multiple IDL FilesMerging and Refactoring Software AG IDL

Notes on Merging
Two libraries with different names will be simply copied into the target IDL file.

For libraries with same names, an attempt to merge their programs and structures will be made. For a
merge operation to be successful, the name of each program and structure must be unique. The only
exception are pairs of programs or structures that are exactly the same. For example, if Example2.idl
above contains the MULTIPLICATION program from Example1.idl, merging will be successfully
completed.

Command-line Mode
See Using the EntireX Workbench in Command-line Mode for the general command-line syntax. There
are no specific command-line options for IDL Refactoring. If a single IDL file is passed, it will be
refactored. If more than one IDL file is passed, they will be merged into one IDL file and it will be
refactored. Example:

<workbench> -idl:refactor C:/Demo/example1.idl C:/Demo/example2.idl

where <workbench> is a placeholder for the actual Workbench starter as described under Using the
EntireX Workbench in Command-line Mode.

5

Merging and Refactoring Software AG IDLNotes on Merging

	Merging and Refactoring Software AG IDL
	Refactoring a Single IDL File
	Merging and Refactoring Multiple IDL Files
	Notes on Merging
	Command-line Mode

