
Writing Advanced Applications - Java
Wrapper
Each generated Java Wrapper class inherits methods from the EntireX Java ACI.

This section describes what can be performed with the methods inherited from the class RPCService.

Natural Logon or Changing the Library Name

Customizing the Generated Java Classes

Using RPC Compression

Using Conversational RPC

Using Natural Security

Support of DVIPA

Natural Logon or Changing the Library Name
The library name sent with the RPC request to the EntireX RPC or the Natural RPC Server is specified in
the Software AG IDL file (see library-definition under Software AG IDL Grammar). When the
RPC is executed, this library name can be overwritten.

 To overwrite the library, a C Wrapper client must

Call the setLibraryName method of the generated Java Wrapper class with the new library name
as a parameter.

 To force the library to be considered by Natural RPC Server

Call the setNaturalLogon method of the generated Java Wrapper class with the parameter set to
True.

Warning:
Natural and EntireX RPC servers behave differently regarding the
library name.

See Natural Logon or Changing the Library Name.

Customizing the Generated Java Classes
You can extend the generated Java Wrapper Class of the client. By default, the generated client class is a
subclass of com.softwareag.entirex.aci.RPCService . The customization component allows
you to specify a class used as the superclass of the generated client class. This user-defined class
(customization class) must be a subclass of com.softwareag.entirex.aci.RPCService .

1

Writing Advanced Applications - Java WrapperWriting Advanced Applications - Java Wrapper

When a customization class is specified, the calls to the user-exit methods onEnter , onLeave ,
onException and onRetry are generated.

 To generate a customized Java Wrapper client

1. Implement your customization class. If you use a package for your customization class, specify
package and class in the following step. Place the source for the customization class in the package
folder, using the folder of the IDL file as package-root. The customization class needs a default
constructor and one additional constructor with 4 arguments. See the example below.

2. Specify the name of your customization class in the EntireX Workbench, under Tools, Options,
Java. This name is stored in the entirex.properties file (which is in your home directory) using the
key entirex.wrapper.custom.class .

3. Generate the wrapper client classes

 To use the customized Java Wrapper client

Add (public) arbitrary methods and fields to your customization class. These methods and fields are
inherited by the generated client class. Add your own processing instructions to these methods.

 To perform all Broker-related processing in the generated Java Wrapper client

1. Overwrite the constructors of RPCService . You can instantiate wrapper classes without specifying
a Broker object and server address as a parameter. Use the method setbroker() to set or change
the reference to the Broker object, and the method setServerAddress() to set or change the
server address.

2. Use the four user exit methods onEnter , onLeave , onException and onRetry . These
methods have default implementations in RPCService and can be overwritten in your
customization class. These exits are called at the beginning and the end of each generated method of
the Java Wrapper class and when a broker exception is thrown. See RPCService .

Example of a Customization Class
package ExamplePackage;

import com.softwareag.entirex.aci.Broker;
import com.softwareag.entirex.aci.BrokerException;
import com.softwareag.entirex.aci.RPCService;

public class ExampleCustomization extends RPCService {
 public ExampleCustomization ()
 {
 super();
 }
 public ExampleCustomization (Broker broker, String serverAddr, String
libName, boolean compress)
 {
 super(broker, serverAddr, libName, compress);
 }
 protected void onEnter(String progname) throws BrokerException {
 // insert your implementation here.
 }

 protected void onLeave(String progname, int sendLen, int receiveLen) throws
BrokerException {

2

Example of a Customization ClassWriting Advanced Applications - Java Wrapper

 // insert your implementation here.
 }

 protected void onException(String progname, BrokerException exception) throws
BrokerException {
 // insert your implementation here.
 }

 protected boolean onRetry(String progname, BrokerException exception) throws
BrokerException {
 // insert your implementation here.
 return false;
 }
}

Using RPC Compression
EntireX and Natural RPC support a feature called RPC compression to reduce network traffic. The default
for compression is on. See RPC Compression.

 To switch compression on and off

Use the setCompression method of the class RPCService .

 To check the current compression setting

Use the getCompression method of the class RPCService .

Using Conversational RPC
It is assumed that you are familiar with the concepts of conversational and non-conversational RPC. See
Conversational RPC.

 To enable conversational RPC

1. Create a Conversation object and set this with setConversation on the wrapper object.

2. Different wrapper objects can participate in the same conversation if they use the same instance of a
conversation object.

 To abort a conversational RPC communication

Abort an RPC conversation by calling the closeConversation method

 To close and commit a conversational RPC communication

Commit the RPC conversation by calling the closeConversationCommit method.

Warning:
Natural RPC Servers and EntireX RPC Servers behave differently
when ending an RPC conversation.

3

Writing Advanced Applications - Java WrapperUsing RPC Compression

See Conversational RPC.

Using Natural Security
A Natural RPC Server may run under Natural Security to protect RPC requests. See Natural Security
under Common Features of Wrappers and RPC-based Components.

 To authenticate a Java Wrapper client against Natural Security

Specify a user ID and password in the logon method of class Broker .

If different user IDs and/or passwords are used for EntireX Security and Natural Security, use the
methods setRPCUserId or setRPCPassword to set the user IDs and/or passwords for Natural
Security.

 To force a Java Wrapper client to log on to a specific Natural library

1. Call the setLibraryName method of the generated wrapper objects with the new library name as
a parameter.

2. Call the setNaturalLogon method of the generated wrapper objects with the parameter set to
true.

See also Natural Logon or Changing the Library Name.

Example:

Assume that library is a wrapper object that is generated from an IDL library. This object extends
com.softwareag.entirex.aci.RPCService . For this object, call the methods as shown:

library.setRPCUserId("testuser");
library.setRPCPassword("password");
library.setLibraryName("NATLIB"); // this is necessary only if the Natural Library
 // name is different from the library name in the IDL.
library.setNaturalLogon(true);

The order of the four methods is arbitrary.

Support of DVIPA
A TCP/IP connection established between stub and broker is not exclusively assigned to a particular
thread. With multi-threaded applications, two or more threads may use the same connection. On the other
hand, if a connection is busy, another new one is created to exchange data.

In order to access the same z/OS broker instance in a DVIPA-controlled environment, an affinity between
application thread and TCP/IP connection is needed to always use the same connection within an
application thread. Therefore, an environment variable is evaluated to control the handling of TCP/IP
connections.

If broker ID contains the parameter "poolsize=0 " (e.g. ETB001?poolsize=0), an affinity between
threads and TCP/IP connections is established. All requests to one particular broker will use the same
TCP/IP connection.

4

Using Natural SecurityWriting Advanced Applications - Java Wrapper

See also Support of Clustering in a High Availability Scenario under z/OS | UNIX | Windows.

5

Writing Advanced Applications - Java WrapperSupport of DVIPA

	Writing Advanced Applications - Java Wrapper
	Natural Logon or Changing the Library Name
	Customizing the Generated Java Classes
	Example of a Customization Class

	Using RPC Compression
	Using Conversational RPC
	Using Natural Security
	Support of DVIPA

