
Using the Java Wrapper
Generating Java Sources

Generating a Java Client Interface Object

Generating a Java Client Interface Object without inner Classes (Bean-compliant)

Generating a Java Server Interface Object

Using the IDL Tester

Generating Java Sources

Select an IDL File

To generate a Java source, select an IDL file and, using the context menu, choose Other > Generate Java
> RPC Client, RPC Client (Bean compliant), RPC Server or RPC Tester.

In addition to the standard commands of Eclipse, the context menu of a Java file contains a group of
commands for the Java Wrapper.

1

Using the Java WrapperUsing the Java Wrapper

Command Description

RPC Client Generates a Java client class.

RPC Client (Bean
compliant)

Generates Java (client) classes instead of inner classes. There is one client class
generated for each library in the Software AG IDL file.

RPC Server Generates a Java server class and a server skeleton for your own
implementation.

RPC Tester Generates a client test program.

Important:
If the IDL file is in a Java project, the Java Wrapper uses the project to compile the Java files. If the IDL
file is in a simple project, the Java files are generated, but not compiled.

Preferences

In general, the preferences of the Java Wrapper are used to set the Customization Class and the package
name for the RPC client and the RPC server. The package for the client is also used for the tester. If you
want to generate a tester, the RPC client class must be public. The Superclass field is used to specify an
extension class for all Bean-compliant generated classes apart from the actual client interface object.

To set the broker ID and the server address for all new IDL files in the workspace, use the preference page
"EntireX".

2

PreferencesUsing the Java Wrapper

Properties

For the settings of an individual IDL file, use the properties of this file. The property pages include the
same fields to set as the preference pages. In addition, the property page of the Java Wrapper includes the
project-specific setting of the source folder. This is the package root of the generated files.

3

Using the Java WrapperProperties

4

PropertiesUsing the Java Wrapper

Starting the IDL Tester

There are two alternatives for starting the EntireX IDL Tester:

From the Context Menu
This is the preferred method. In the context menu of the IDL file, choose Software AG IDL
Tester.... A dialog appears for choosing the program to test.

The IDL Tester is generated and launched as a separate Java Application. See EntireX IDL Tester for
more details.

From Generated Test Program
To start the IDL Tester, select the generated test program in the Navigator or Package Explorer and
choose Run from the context menu or toolbar.

The IDL Tester is started as a separate application. See Using the IDL Tester.

Generating a Java Client Interface Object
 To generate a Java client interface object

1. In the Navigator view or in the Package Explorer, select the Software AG IDL file.

2. From the context menu, choose Generate Java from Software AG IDL > RPC Client.

This starts the generation of the Java source. The Java source files are written to the source folder of
the IDL file. The source folder is set in the properties of the IDL file.

This starts the generation and compiles the generated Java sources. The Java source files and the class
files are written to the directory of the IDL file.

File Description

<Library
name>.java

The Java source code of the generated client interface object. The library name
is used to build the file name and the class name. Do not change this file.

If more than one library is defined in the IDL file, separate client interface object files will be generated
for each library.

Generating a Java Client Interface Object without inner
Classes (Bean-compliant)
When using the Java Wrapper to generate an RPC client (Bean-compliant), the resulting client interface
object contains no inner classes. Instead, there will be separate classes generated for each structure within
the IDL file.

Note:
A superclass to be extended by all the newly generated classes can be specified in the setup menus for
Preferences and Properties.

5

Using the Java WrapperGenerating a Java Client Interface Object

 To generate a Java client interface object (Bean-compliant)

1. Select an IDL file.

2. From the context menu, choose Generate Java from Software AG IDL > RPC Client
(Bean-compliant).

As a result, the generation of the Java source is started. The Java source files are written to the source
folder of the IDL file and the generated Java sources are compiled.

Note:
The source folder can be specified in the setup menu for Properties.

The Java source files and class files are written to the directory of the IDL file. The following table gives a
short description:

File Description

<Library
name>.java

The Java source code of the generated client interface object. The library name is
used to build the file name and the class name. Do not change this file.

<Structure
name>.java

A Java class is generated for each structure and group within the input IDL file(s).

Note:
If more than one library is defined in the IDL file, separate client interface object files will be generated
for each library.

Generating a Java Server Interface Object
 To generate a Java server interface object

1. In the Navigator view or the Package Explorer, select the Software AG IDL file.

2. From the Context menu, choose Generate Java from Software AG IDL > RPC Server.

The Java Wrapper produces the following files for the server interface object in the source folder of the
IDL file.

6

Generating a Java Server Interface ObjectUsing the Java Wrapper

File Description

<Library name>Stub.java The Java source code of the generated server interface object.
The library name followed by Interface Object is used to build
the file name. Do not change this file.

<Library name>Server.java A Java source file that contains a server skeleton. This is a
complete Java class that can be compiled. It contains all
methods the server has to implement. Add your
application-specific coding in the places marked with the //
insert your application specific code here
comment. The library name followed by "Server" is used to
build the file name. If this file exists, it will not be generated.

Abstract<Library
name>Server.java

A Java source file that contains the generated part of the server
as an abstract class. The server skeleton <Library
name>Server.java extends this class and contains the
application-specific code. Separating the generated code and the
application-specific code simplifies re-generation of the RPC
server.

If more than one library is defined in the IDL file, separate server interface object files will be generated
for each library. The server package name is used as the package name in the generated server files. The
server package is part of the Java Wrapper properties of the IDL file. At runtime, configure the server
packages in the Java RPC Server configuration. The Java RPC Server uses the library name (which is part
of the RPC request from the client) to dynamically load a class named <Library name>Stub.class. The
RPC server searches for this server interface object class as well as the server class using the actual
classpath.

Using the IDL Tester
The client test program is an easy-to-use utility to check whether the remote call works. The client test
program supports most of the data types and features of the IDL.

If there is no client interface object already defined, the IDL Tester will generate a Bean-compliant client
interface object. However, if there is a previously generated client interface object, it will not be
overwritten, regardless if it is Bean-compliant or not.

There are two alternatives for generating and running the standard client test program:

From the context menu of an IDL file. This is the preferred method. See EntireX IDL Tester in the
EntireX Workbench documentation.

Using Generate Java... > RPC Tester. See below.

This section covers the following topics:

Calling the IDL Tester using Generate Java ... > RPC Tester

Using the IDL Tester in Batch Mode

7

Using the Java WrapperUsing the IDL Tester

Calling the IDL Tester using Generate Java ... > RPC Tester

1. In the Navigator view or in the Package Explorer, select the Software AG IDL file.

2. From the context menu, choose Generate Java from Software AG IDL > RPC Tester. For each
program in the IDL file, one class with the name <Library name>T<program name>.java
is generated. The class <Library name>T<program name> can be started as a standalone
Java application.

8

Calling the IDL Tester using Generate Java ... > RPC TesterUsing the Java Wrapper

3. In the Navigator view or the Package Explorer, select the file <Library name>T<program
name>.java and choose Run As from the context menu or Run... from the Run menu. This creates a
launch configuration and starts the tester. See also Running the Delivered Examples.

See EntireX IDL Tester in the EntireX Workbench documentation for more information.

9

Using the Java WrapperCalling the IDL Tester using Generate Java ... > RPC Tester

Using the IDL Tester in Batch Mode

 To start the Tester in Batch mode

Enter the following command

java -classpath <your classpath> <library>T<program> -batch

where <your classpath> contains the class of the RPC tester and the file entirex.jar.

<library> is the name of the library and

<program> is the name of the program.

For the delivered example.idl, the following RPC testers are provided: ExampleTcalc, ExampleThello,
ExampleTpower.

An RPC is executed with the default values.

If you add -both instead of -batch, the GUI of the tester is opened, but the messages and parameter
values are written to SYSOUT, too.

To change the broker ID, use -b <broker id>. To change the server address, use -s
<class/server/service>, for example:

java ExampleTcalc -b localhost:1971 -s RPC/SRV1/CALLNAT + 3 5

 To modify the default values

In the command line add the parameters to the commands.

They will be assigned to the input values one after the other. Enter, for example java ExampleTcalc
+ 3 5 to calculate 8.

10

Using the IDL Tester in Batch ModeUsing the Java Wrapper

	Using the Java Wrapper
	Generating Java Sources
	Select an IDL File
	Preferences
	Properties
	Starting the IDL Tester

	Generating a Java Client Interface Object
	Generating a Java Client Interface Object without inner Classes (Bean-compliant)
	Generating a Java Server Interface Object
	Using the IDL Tester
	Calling the IDL Tester using Generate Java ... > RPC Tester
	Using the IDL Tester in Batch Mode

