Using the Java Wrapper

Using the Java Wrapper

e Generating Java Sources

e Generating a Java Client Interface Object

Using the Java Wrapper

® Generating a Java Client Interface Object without inner Classes (Bean-compliant)

® Generating a Java Server Interface Object

® Using the IDL Tester

Generating Java Sources

Select an IDL File

To generate a Java source, select an IDL file and, using the context menu QtheoseGenerate Java

> RPC Client, RPC Client (Bean compliant) RPC Serveror RPC Tester.

= Examnple

(ET)
[

R
Ll

R T

IMPOIT.

Export...
Refresh

Yalidate

Show in Remote Systems view

Profile As
Debug As
Run As
Replace With

COBOL
Integration Server
Matural

Web Service
Other

Refactor Software AG IDL...

Software AG IDL Tester...

Compare With
Team

JPA Tools

Properties

Generate C
Generate DCOM
Generate ...
Generate EIB
Generate Java
Generate .Met
Generate PL/T

RPC Client
RPC Client (Bean compliant)
RPC Server
RPC Tester

In addition to the standard commands of Eclipse, the context menu of a Java file contains a group of
commands for the Java Wrapper.

Using the Java Wrapper Preferences

Command Description

RPC Client Generates a Java client class.

RPC Client (Bean |Generates Java (client) classes instead of inner classes. There is one cli¢nt class

compliant) generated for each library in the Software AG IDL file.

RPC Server Generates a Java server class and a server skeleton for your own
implementation.

RPC Tester Generates a client test program.

Important:

If the IDL file is in a Java project, the Java Wrapper uses the project to compile the Java files. If the IDL
file is in a simple project, the Java files are generated, but not compiled.

Preferences

 Preferences

tvpe filker text Java Wrapper b
7 Centradite The Java Wrapper preferences are used to generate the various Java code, e.g. for client, server or tesker,
+|- Connectivity
+ Help Faor general settings use Entires’
+- Install{Update
+- Java The visibility For generated classes, The package for the client is also used for the kester,

- Mylyn IF you want ko generate a tester, the RPC client class must be public,
+- Plug-in Developrment [#] Public package
+|- Report Design
#- Run/Debiig Ertire JAR:
=) Software AG Client
=I- Enkires Package nane:
C \Wrapper

COBOL Wrapper

Cuskorn \Wrapper
DO Wrapper Java customization class:

The optional superclass used for the client interface object,

Deployment Enviror
EJE ‘“Wrapper

IDL Extractor For C¢
IDL Extractor For Mz
IDL Extractor For PL Server
Installation Package name:
Jawa \Wrapper
PLII Wrapper
RPZ Enviranments
¥ML Mapping Editor
Product 1 Samole Prefe ™

The optional superclass for all Bean compliant classes generated, apart from the actual dient interface object,

Supetclass:

’Restnre Defauls l l Apply]

7 [a4 H Cancel]

In general, the preferences of the Java Wrapper are used to set the Customization Class and the package
name for the RPC client and the RPC server. The package for the client is also used for the tester. If you
want to generate a tester, the RPC client class must be publiSupbeclassfield is used to specify an
extension class for all Bean-compliant generated classes apart from the actual client interface object.

To set the broker ID and the server address for all new IDL files in the workspace, use the preference page
"EntireX".

Properties Using the Java Wrapper

& Preferences |:|E]

|type filker bext | EntireXx =l

= Software AG *!1 General Entirex T0L preferences to specify the Broker ID and the Service
Description (Class, Server, Service) that are used in the various Entirel Wrappers,
JMET W
FAPREr Broker 10 | localhost: 1971
C Wrapper
COBOL Wrapper Server Class: | RPC

Custom Wrapper
DCOM Wrapper
Deplovment Environments Service: | CALLMAT
EJE \Wrapper
10L Extractor For COBOL
10L Extractor For Matural
IDL Extractor For PLYT
Inskallation
Java Wrapper
PLIT W'rapper
RPC Environments -
Weh Service Wrapper
%ML Mapping Editor
Proxy Settings
UDDI Reqistries

Server Mame: | SRY1

[Restore Defaulks] [Apply]

|£

(7 [(0] 4 H Zancel]

Properties

For the settings of an individual IDL file, use the properties of this file. The property pages include the
same fields to set as the preference pages. In addition, the property page of the Java Wrapper includes the
project-specific setting of the source folder. This is the package root of the generated files.

Using the Java Wrapper Properties

M Properties for one.idl

[Evpe filter text | EntireX lava Wrapper 4 <
Res_ource The Java Wrapper properties are used to generate the various Java code, e.q. for client, server or tester, The defaulk
Entire: settings are provided by the Java Wrapper preferances.

Entires C Wrapper

Entirex COBOL Wrapper

Entire Custom Wrapper The visibility for generated classes. The package far the client is aIsp used for the tester,

) If vou want to generate a tester, the RPC client class must be public,
Entirex CICOM \Wrapper
Entirex EJE Wrapper Public package
Source Folder: | [ﬁrowse...]

Entires PLIT Wrapper .

RunjDebug Settings Client
Package name: | | [B[DWSB... l
The optional superclass used for the client interface object,
Java customization class: | | lBrgwse...]
The optional superclass For all Bean compliant: classes generated, apart from the actual client interface object,
Superclass: | | lBrnﬂse... l
Server
Package name: | | lBrnwsg... l

[Restnre Qefaults] [Apply l
'i':’:' [k.] [Cancel l

= Properties for example.idl IZIIEI@
|type filker kext | Entirex =T

RESDUCE General Entire IDL properties ko specify the Broker ID and the Service Description

Enitiress (Class, Server, Service) that are used in the various Entire Wrappers. The default

Entirel .MET \Wrapper settings are provided by the Entire preference page.
Entirex C Wrapper
Entires COBOL Wrapper Broker ID: | localhosk; 1971

Enktires DCOM Wrapper
Entirex EJB Wrapper
Entire Java Wrapper Setvice: | CALLMAT
Entirel PLIT Wrapper

Entirel Web Service Wrapper

FunjDebug Settings

Server Name: | SRyl

|
Entires Cuskor Wrapper Server Class: | RPC |
|
|

[Restu:ure Qefaults] ’ Apply]

() [(04 H Cancel]

Generating a Java Client Interface Object Using the Java Wrapper

Starting the IDL Tester
There are two alternatives for starting the EntireX IDL Tester:

® From the Context Menu
This is the preferred method. In the context menu of the IDL file, cieoffeare AG IDL
Tester... A dialog appears for choosing the program to test.

The IDL Tester is generated and launched as a separate Java Applicatiomtire®d DL Tester for
more details.

® From Generated Test Program
To start the IDL Tester, select the generated test program in the Navigator or Package Explorer and
chooseRun from the context menu or toolbar.

The IDL Tester is started as a separate applicationJSag the IDL Tester.

Generating a Java Client Interface Object
To generate a Java client interface object
1. In the Navigator view or in the Package Explorer, select the Software AG IDL file.
2. From the context menu, chodsenerate Java from Software AG IDL > RPC Client

This starts the generation of the Java source. The Java source files are written to the source folder of
the IDL file. The source folder is set in the properties of the IDL file.

This starts the generation and compiles the generated Java sources. The Java source files and the class
files are written to the directory of the IDL file.

File Description
<Library The Java source code of the generated client interface object. The library name
name>.java is used to build the file name and the class name. Do not change this file

If more than one library is defined in the IDL file, separate client interface object files will be generated
for each library.

Generating a Java Client Interface Object without inner
Classes (Bean-compliant)

When using the Java Wrapper to generate an RPC client (Bean-compliant), the resulting client interface
object contains no inner classes. Instead, there will be separate classes generated for each structure within
the IDL file.

Note:
A superclass to be extended by all the newly generated classes can be specified in the setup menus for
Preferences andProperties.

Using the Java Wrapper

Generating a Java Server Interface Object

To generate a Java client interface object (Bean-compliant)

1. Select an IDL file.

2. From the context menu, chodsenerate Java from Software AG IDL > RPC Client
(Bean-compliant).

As a result, the generation of the Java source is started. The Java source files are written to the source
folder of the IDL file and the generated Java sources are compiled.

Note:

The source folder can be specified in the setup merferaperties.

The Java source files and class files are written to the directory of the IDL file. The following table gives a

short description:

File Description

<Library The Java source code of the generated client interface object. The library name is
name>.java used to build the file name and the class name. Do not change this file.
<Structure A Java class is generated for each structure and group within the input IDL file(s).
name>.java

Note:

If more than one library is defined in the IDL file, separate client interface object files will be generated

for each library.

Generating a Java Server Interface Object

To generate a Java server interface object

1. In the Navigator view or the Package Explorer, select the Software AG IDL file.

2. From theContext menu, choos&enerate Java from Software AG IDL > RPC Server

The Java Wrapper produces the following files for the server interface object in the source folder of the

IDL file.

Using the IDL Tester Using the Java Wrapper

File Description

<Library name>Sub.java The Java source code of the generated server interface object.
The library name followed by Interface Object is used to build
the file name. Do not change this file.

<Library name> Server.java A Java source file that contains a server skeleton. This is a
complete Java class that can be compiled. It contains all
methods the server has to implement. Add your
application-specific coding in the places marked with/the
insert your application specific code here
comment. The library name followed by "Server" is used to
build the file name. If this file exists, it will not be generated.

Abstract<Library A Java source file that contains the generated part of the sgrver
name> Server.java as an abstract class. The server skeletabrary

name> Server .java extends this class and contains the
application-specific code. Separating the generated code and the

application-specific code simplifies re-generation of the RPC
server.

If more than one library is defined in the IDL file, separate server interface object files will be generated

for each library. The server package name is used as the package name in the generated server files. The
server package is part of the Java Wrapper properties of the IDL file. At runtime, configure the server
packages in the Java RPC Server configuration. The Java RPC Server uses the library name (which is part
of the RPC request from the client) to dynamically load a class nahibdary name>Sub.class. The

RPC server searches for this server interface object class as well as the server class using the actual
classpath.

Using the IDL Tester

The client test program is an easy-to-use utility to check whether the remote call works. The client test
program supports most of the data types and features of the IDL.

If there is no client interface object already defined, the IDL Tester will generate a Bean-compliant client
interface object. However, if there is a previously generated client interface object, it will not be
overwritten, regardless if it is Bean-compliant or not.

There are two alternatives for generating and running the standard client test program:

® From the context menu of an IDL file. This is the preferred methodeE@eaeX IDL Tester in the
EntireX Workbench documentation.

® UsingGenerate Java... > RPC TesterSee below.
This section covers the following topics:
e (Calling the IDL Tester using Generate Java ... > RPC Tester

e Using the IDL Tester in Batch Mode

Using the Java Wrapper Calling the IDL Tester using Generate Java ... > RPC Tester

Calling the IDL Tester using Generate Java ... > RPC Tester
1. In the Navigator view or in the Package Explorer, select the Software AG IDL file.

2. From the context menu, chodsenerate Java from Software AG IDL > RPC TesterFor each
program in the IDL file, one class with the nasig br ary nane>T<pr ogram nane>. j ava
is generated. The clas&i br ary name>T<pr ogr am name> can be started as a standalone

Java application.

Calling the IDL Tester using Generate Java ... > RPC Tester Using the Java Wrapper

5] Package Explorer &2 ‘Eg Hierarichy T = <“1'=={5 = =08
= L:‘;I- Cema
- 0
= EE‘ (default package)
m Example,java
Ol EampleTeals jav:
e L

Qpen F3
Cpen Wikh L
Cpen Tvpe Hierarchy F4

Show In AlE-+Shift+it

-

=| Copy kel

2| Paste Zkrl+Y
3 Delete Cielete

Build Path L4
Source alt+shift+3
Refactor alt+shift+T

v

fxg Import...
L7y Export...

References L
Declarakions L

" Refresh Fg
Assign Warking Sets, .,

Debug & #l ¥8 2 Java Application Al+shift+, 3
Profile &s 3

Yalidate ﬁ Open Run Dialog...

Team 2

Compare With L4

Replace With L4

Restore From Local Histary, ..

Web Services L4

Properties alt+Enter

3. In the Navigator view or the Package Explorer, select thelfilerary name>T<program
name>.java and choos®un As from the context menu &un... from the Run menu. This creates a
launch configuration and starts the tester. SeeRalsning the Delivered Examples.

SeeEntireX IDL Tester in the EntireX Workbench documentation for more information.

Using the Java Wrapper Using the IDL Tester in Batch Mode

Using the IDL Tester in Batch Mode
To start the Tester in Batch mode

® Enter the following command

java -classpath <your classpath> <library>T<prograne -batch

where <your classpath: contains the class of the RPC tester and thexftieex.jar.
<library> is the name of the library and

<program> is the name of the program.

For the deliveredxample.idl, the following RPC testers are providéctampleTcalc, ExampleThello,
ExampleTpower.

An RPC is executed with the default values.

If you add- bot h instead of bat ch, the GUI of the tester is opened, but the messages and parameter
values are written to SYSOUT, too.

To change the broker ID, usé <br oker i d>. To change the server address,-use
<cl ass/ server/ servi ce>, for example:

java Exampl eTcalc -b local host: 1971 -s RPC/ SRV1/ CALLNAT + 3 5
To modify the default values
® |n the command line add the parameters to the commands.

They will be assigned to the input values one after the other. Enter, for eampleExanpl eTcal ¢
+ 3 5 to calculate 8.

10

	Using the Java Wrapper
	Generating Java Sources
	Select an IDL File
	Preferences
	Properties
	Starting the IDL Tester

	Generating a Java Client Interface Object
	Generating a Java Client Interface Object without inner Classes (Bean-compliant)
	Generating a Java Server Interface Object
	Using the IDL Tester
	Calling the IDL Tester using Generate Java ... > RPC Tester
	Using the IDL Tester in Batch Mode

