
Writing Template Files for Software AG IDL
Compiler
An IDL template file contains the rules that the Software AG IDL Compiler uses - together with the IDL
file - to generate interface objects, skeletons and wrappers for a programming language. The Developer’s
Kit provides several templates for various programming languages.

Warning:
The information in this section is intended for users who wish to write
their own template files. Do not change the delivered template files.

This document provides an introduction on how to write template files. The syntax for IDL Template Files
in a formal notation is presented in the document Grammar for IDL Template Files.

This chapter covers the following topics:

Coding Tempate Files

Using Output Statements in the Template File

Inserting Comments in the Template File

Using Verbatim Mode

Using Options

Specifying the Name of the Output File

Redirecting the Output to Standard Out

Using Template #if Preprocessing Statements

Using Template #include Preprocessing Statements

Using Template #trace Statement

Coding Tempate Files
It is the combination of control and output statements (see control_statement,
output_statement and Using Output Statements in the Template File) that provides the full
definition of the target programming-language source code.

Usually a template file has definition-statement grouped together at the beginning; these are
followed by loop_statements:

; type definitions
%using A "char %name%index"
....
; loop libraries
%library

1

Writing Template Files for Software AG IDL CompilerWriting Template Files for Software AG IDL Compiler

{

 ; loop programs
 %program
 {

 ; loop parameters
 %name
 {

 }
 }
}

Using Output Statements in the Template File
Output statements (see output_statement) provide the actual templates of the target-language source
code. Output statements are text strings enclosed in double quotes.

These text strings may contain output_substitution_sequence,
output_formatting_sequence, output_escape_sequence and output_of_variable.

Substitution Sequences

Substitution sequences are identified by a preceding % and are substituted by their actual contents during
generation.

Example: "This is a text string. The library name is %library. \n"

The IDL Compiler provides substitution sequences for the current library name, program name, parameter
name, type, etc. Some substitution sequences can only be accessed in their corresponding loop statement.
For example a %program substitution sequence is only valid within an active program loop (see
loop_over_programs). See output_substitution_sequence for a list of valid substitution
sequences and description.

Formatting Sequences

Formatting sequences are identified by a preceding \

Example: "\n is a Formatting sequence"

See output_formatting_sequence for a list of valid formatting sequences

Escape Sequences

Escape sequences are identified by a preceding \\

The escape character is used to change the meaning of special characters (&, ? and # etc.) back to their
normal meaning. Special characters are used to access variables (see output_of_variable).

Example:"\\&" .

2

Using Output Statements in the Template FileWriting Template Files for Software AG IDL Compiler

See also output_escape_sequence and Using Verbatim Mode.

Variables

The output of variables is forced when the special characters &, ? or # occur before the variable name (see
variable_name) in output statements (see Using Output Statements in the Template File)

Example: "?A is the output of a variable"

See also output_of_variable

Generating Programming-language-specific Type Definitions

The substitution sequence %type is usually used in a parameter loop (loop_over_parameters) to generate
programming-language-specific type definitions. Before the parameter loop all IDL data types (with
definition-of-base-type-template statements) and the dimension information (with
definition-of-index-template statements) must be specified.

Example

IDL data type I2 can be specified as follows in a C program:

%using %index "" "[%1_index]" "[%1_index][%2_index]"
"[%1_index][%2_index][%3_index]"
%using I2 "short %name%index;"

%using %index is the control_statement for the dimension information
(definition-of-index-template). How the following strings are used depends on the dimension
of the parameter. The first empty string is used for scalar parameters, the second for 1-dimensional
parameters, the third for 2-dimensional parameters and the fourth for 3-dimensional parameters.

%using I2 is the control_statement for the IDL data type I2 (see
definition-of-base-type-template), "short %name%index" is the output_statement for this
data type. %name and %index are substitution sequences. %name will be replaced by the variable name
and %index will be replaced by any dimension information.

If an input IDL file contained the following parameter definitions:

1 Field-1 (I2)
1 Field-2 (I2/1:8)
1 Field-3 (I2/1:4,4:7)

then, based on the above template specifications, all references to the %type substitution sequences in
any output_statement would be replaced by

short Field_1;
short Field_2[8];
short Field_3[4][4];

Generating Programming-language-specific Names

Special characters within some substitution sequences e.g. %library , %program and %name can be
changed during generation to provide valid names for the target programming language. The IDL
Compiler supports generation of names for the programming languages C, C# and COBOL (see

3

Writing Template Files for Software AG IDL CompilerVariables

output_control_lower_upper and output_control_sanitize).

Target
Programming
Language

Class Names Function
Names

Variable or Parameter
Names

C not applicable %UpperCase-
%LowerCase+
%Sanitize+

%UpperCase-
%LowerCase+
%Sanitize+

C# %UpperCase-
%LowerCase-
%SanitizePascalCased+

 %UpperCase-
%LowerCase-
%SanitizeCamelCased+

COBOL not applicable %SanitizeCobol+
%UpperCase+
%LowerCase-

The default programming language when you do not code any output_control_lower_upper and
output_control_sanitize statements in your template is C.

Inserting Comments in the Template File
Comments

are identified by a ";" in a line and

are terminated by the end of line.

For example:

; This is a comment
 ; So is this.
"output text followed by a comment" ; here is the comment

Whereas this is an output statement:

"an output text with a semicolon ;"

Using Verbatim Mode
If your output is going to contain many special characters, you may enter verbatim mode. Then all
characters are written to the output as typed. The only sequences recognized in this mode are the escape
sequences (see output_escape_sequence).

 To enter verbatim mode

Use the command %verbose+ (see output_control_verbose).

Example: In verbatim mode, you enter "&" to insert an ampersand.

4

Inserting Comments in the Template FileWriting Template Files for Software AG IDL Compiler

Using Options
The IDL Compiler supports options within templates.

You can pass them with the parameter -D to the IDL Compiler (see Starting the IDL Compiler).

Options

can be used in output statements (see output_of_variable)

can be used in logical condition criteria (see compare_strings) in %if (see if_statement)
and %while (see loop_of_while) statements

are case-sensitive, i.e. hugo and HUGO are distinct options

Specifying the Name of the Output File
The name of the output file is controlled by the %file statement.

If the %Format substitution sequence in a file (%file) statement is used, the base name can be provided
with the IDL Compiler parameter -F (see Starting the IDL Compiler).

If no base name is provided with the -F IDL Compiler parameter, the base name of the IDL file without
path and extension is used as the default of the substitution sequence %Format .

See the following excerpt from a template file:

 %file "C%F.c"

When the IDL Compiler is called with

erxidl -t client.tpl .. \MyDirectory\example.idl

an output file with the default base name Cexample.c of the IDL file is created

erxidl -t client.tpl -Ftest example.idl

an output file with the name Ctest.c is created

See also the IDL Compiler option -o (see Starting the IDL Compiler) on how to specify the directory for
the output file.

Redirecting the Output to Standard Out
The output can be redirected to standard out with an environment variable (see Using Options), e.g.
NOOPEN. This is optional.

5

Writing Template Files for Software AG IDL CompilerUsing Options

See the following excerpt from a template file:

 %if "$(NOOPEN)" <> "1" %file "C%library.c" ;

When the IDL Compiler is called with

erxidl -t client.tpl -D NOOPEN=1 example.idl

the output is redirected to standard out

erxidl -t client.tpl example.idl

the output is directed to the file Cexample.c as specified in the template.

6

Redirecting the Output to Standard OutWriting Template Files for Software AG IDL Compiler

Using Template #if Preprocessing Statements
The IDL Compiler supports #ifdef , #elif , #else and #endif preprocessing statements similar to
the C compiler preprocessor.

You can use preprocessor variables with the option -D (see Starting the IDL Compiler).

Additional rules for #if preprocessing statements are:

If #elif is used, it must follow #ifdef .

If #else is used it must follow either #ifdef of #elif .

#endif must always close the #ifdef statement.

Embedded preprocessor statements or logical concatenation of definitions are not allowed.

See the following excerpt from a template file:

 #ifdef Definition_1
 "/* codes of -PDefinition_1 */\n"
 %name
 {
 :
 }
 #elif Definition_2
 "/* codes of -PDefinition_2 */\n"
 %name
 {
 :
 }
 #else
 "/* codes of neither Definition_1 nor Definition_2 */\n"
 %name
 {
 :
 }
 #endif

When the IDL Compiler is called with

erxidl -t template_file -PDefinition_1

the template statements "/* codes of -PDefinition_1 */\n " between the #ifdef and
first #elif statement are interpreted.

erxidl -t template_file -PDefinition_2

the template statements "/* codes of -PDefinition_2 */\n " between the first #elif
and second #elif statement are interpreted.

7

Writing Template Files for Software AG IDL CompilerUsing Template #if Preprocessing Statements

erxidl -t template_file

the template statements "/* codes of neither Definition_1 nor Definition_2
*/\n " between the #else and #endif statement are interpreted.

See the following preprocessing statements with invalid syntax:

..
#ifdef (MY_VERSION) ; brackets are not allowed
#endif
#ifdef MY_VERSION || HIS_VERSION ; logical OR is not allowed
..
#endif
#ifdef (MY_VERSION)
..
#ifdef (MY_NEW_VERSION) ; embedded #ifdef is not allowed

8

Using Template #if Preprocessing StatementsWriting Template Files for Software AG IDL Compiler

Using Template #include Preprocessing Statements
The IDL Compiler supports #include preprocessing statements similar to the C compiler preprocessor.
All statements in the included template file are simply embedded.

To find included template files, use the IDL Compiler option -I and add a list of directories that form a
search path (see Starting the IDL Compiler).

First the IDL Compiler searches for templates in the directory of the initial template.

When no template is found in the directory of the initial template, all directories specified with -I
are searched in the order of occurrence

Additional rules for #include preprocessing statements are:

A maximum of 32 templates can be included in a generation process.

An included template file can include further template files.

Recursive inclusion of template files is not permitted.

All variables can be accessed in all included template files as well as in the starting (root) template.

The compiler searches for included templates.

See the following excerpt from a template file:

#include "template.tpl"

Using Template #trace Statement
The IDL Compiler supports the #trace tracelevel statement to enable and disable template tracing
within a certain block of the template. The usage of tracelevel is the same as the command-line
option "-T ".

See also compiler option "-T " under Starting the IDL Compiler for trace level values.

Example

#trace 2 ; enable tracing on trace level 2
%compute i "0"
%while "&i" < "10"
{
 %compute i "&i + 1"
}
#trace 0 ; disable

9

Writing Template Files for Software AG IDL CompilerUsing Template #include Preprocessing Statements

	Writing Template Files for Software AG IDL Compiler
	Coding Tempate Files
	Using Output Statements in the Template File
	Substitution Sequences
	Formatting Sequences
	Escape Sequences
	Variables
	Generating Programming-language-specific Type Definitions
	Example
	Generating Programming-language-specific Names

	Inserting Comments in the Template File
	Using Verbatim Mode
	Using Options
	Specifying the Name of the Output File
	Redirecting the Output to Standard Out
	Using Template #if Preprocessing Statements
	Using Template #include Preprocessing Statements
	Using Template #trace Statement
	
	Example

