
Introduction to High Availability
This chapter covers the following topics:

Purpose of Clustering

Why is High Availability Important

Clustering for High Availability, Load Balancing and Fault Tolerance

Advantages of Network-based Clustering

Virtual IP Adressing

Client Considerations

Purpose of Clustering
When determining how to increase availability and to decrease downtime for important applications, there
are many different clustering solutions to consider. It is important to start any availability improvement
discussion however, with a preemptive understanding of what it is you want to improve. Begin by looking
at the history of your application failures, downtime scenarios, and the underlying causes of availability
issues. Map out your application topology and network infrastructure such that you can ascertain potential
weak spots or single points of failure and prioritize component redundancy based on exposed risk to the
overall system availability. Ask yourself the following questions:

What is it that I want to accomplish from clustering?

Who are the stakeholders?

How will I measure availability improvement?

Once you have a prioritized list of availability improvement objectives, look for solutions that address
these points of failure and look to provision an implementation plan that ensures a prearranged level of
operational performance will be met during a contractual measurement period. Improvement must be
measurable in both the technical and business perspectives.

Why is High Availability Important
Many of the world’s largest organizations including financial institutions, manufacturing, transportation,
and communication companies along with large government agencies, rely on the availability and
reliability of applications to deliver their most important business transactions and data. These large-scale
information systems consist of several hardware and software components, each of which performs a
particular function and is a critical-path to successful daily operations. If any of these components fail
however, the outcome could vary drastically - from a single user experiencing a slow-down in their order
response time, to thousands of retail bank customers not being able to access any of their cash assets.
Creating a highly available system topology removes any single points of failure from a large system,
enabling another redundant component to effectively take over the workload of the failed component.
Improving availability ultimately leads to a reduction in downtime, improved business performance, and a
better user experience.

1

Introduction to High AvailabilityIntroduction to High Availability

Another IT concern is how to apply maintenance and upgrades to these important systems without
affecting users. In a highly available world, a system in need of maintenance can be taken out of the
workload pool and updated while the rest of the system continues to process service requests.

Clustering for High Availability, Load Balancing and Fault
Tolerance
As previously mentioned, there is a wide variety of clustering techniques that are designed to accomplish
specific improvement in application availability based on planned or unplanned events. Planned events are
typically scheduled maintenance activities associated with specific fixes or general upgrades. In this case,
clustering can be utilized to maintain processing workloads while certain instances or services of the
cluster are brought down, updated, and rejoined to the cluster.

Unplanned events require a means of automated failover whereby work is picked up by a pooled resource.
Cluster architectures vary in how they handle fault tolerance, recovery, and guarantee delivery. Each high
availability solution has a different architecture or technique in which work is redirected to or picked up
by an available process. There are shared memory solutions (e.g. Terracotta Server Array), shared data
store (e.g. Integration Server cluster), shared message queue (e.g. Universal Messaging), and shared
virtual IP (e.g. EntireX Broker) among the list of possible solutions. Each technique provisions a group or
cluster of common processes working on in-flight data or messages that may or may not be persisted and
coordinated by the state of the application endpoints.

Advantages of Network-based Clustering
While a loosely coupled system such as network clustering cannot recover or coordinate distributed work,
it does protect against a wide range of failures up and down the stack including hardware, OS, and
application failures. Network-based HA solutions are relatively easy to configure and work transparently
with stateless applications.

Another advantage is to address system availability during planned events such as applying maintenance
patches or upgrades. For example, when a major or minor update is required to be performed to a broker,
it is important that the system remains operational during this planned event. In this case, individual
broker instances are taken out of the cluster without impacting the overall operation of the system. As
updates are completed, Brokers can individually be added back into the cluster independent of their
version.

Virtual IP Adressing
Traditionally, an IP address is associated with each end of a physical link (or each point of access to a
shared-medium LAN), and the IP addresses are unique across the entire visible network, which can be the
Internet or a closed intranet. The majority of IP hosts have a single point of attachment to the network, but
some hosts (particularly large server hosts) have more than one link into the network.

A TCP/IP host with multiple points of attachment also has multiple IP addresses, one for each link. Within
the IP routing network, failure of any intermediate link or adapter disrupts end user service only if there is
not an alternate path through the routing network. Routers can route IP traffic around failures of
intermediate links in such a way that the failures are not visible to the end applications or IP hosts.
However, because an IP packet is routed based on ultimate destination IP address, if the adapter or link
associated with the destination IP address fails, there is no way for the IP routing network to provide an

2

Clustering for High Availability, Load Balancing and Fault ToleranceIntroduction to High Availability

alternate path to the stack and application.

Endpoint (source or destination) IP adapters and links thus constitute single points of failure. While this
might be acceptable for a client host, where only a single user will be cut off from service, a server IP link
might serve hundreds or thousands of clients, all of whose services would be disrupted by a failure of the
server link.

The virtual IP address (VIPA) removes the adapter as a single point of failure by providing an IP address
that is associated with a stack without associating it with a specific physical network attachment. Because
the virtual device exists only in software, it is always active and never experiences a physical failure. A
VIPA has no single physical network attachment associated with it.

Client Considerations
Only synchronous, non-conversational application scenarios are supported. Additional prerequisites apply
to client applications:

No Persistent Sockets (Socket Pooling)

Socket Reconnect

Security Handling

Matrix of Supported Features

No Persistent Sockets (Socket Pooling)

Socket pooling needs to be explicitly disabled for all EntireX clients, except webMethods EntireX
Adapter for Integration Server. See Matrix of Supported Features.

Socket Reconnect

Client applications connected to a broker instance may need to react when this broker instance becomes
unavailable and the cluster system establishes connection to a different broker instance.

Most EntireX clients support some reconnect logic on socket disconnect if the cluster system routes the
connection to a different broker instance. However, the Java RPC, EJB and XML/SOAP client Java APIs
do not support automatic reconnect. This needs to be handled by the client application logic. The
XML/SOAP Listener does not support socket reconnect.

Security Handling

If the Brokers in the cluster have security enabled, client applications need to re-authenticate with a new
Broker instance on reconnect.

For Java RPC, EJB and XML/SOAP client Java API, re-authentication has to be completely handled by
the client application. The XML/SOAP Listener does not support automatic re-authentication.

3

Introduction to High AvailabilityClient Considerations

Matrix of Supported Features

In the table below, "yes" means the feature is handled automatically and no user action or configuration is
required; "no" means the feature is not supported; and "application" means that the client application must
be adapted accordingly.

Note:
This table assumes you are using the latest version of the components listed.

RPC Client No Persistent Sockets
Socket
Reconnect

Security
Handling

EntireX Adapter for IS yes yes yes

RPC-ACI Bridge Specify socketpoolsize=0 as part of the
broker ID. See Socket Parameters for TCP and
SSL Communication under Writing Advanced
Applications - EntireX Java ACI.

yes yes

WebSphere MQ
Listener

Specify socketpoolsize=0. yes yes

SAP XI Adapter Specify socketpoolsize=0. yes yes

Java RPC Specify socketpoolsize=0. application application

EJB Specify socketpoolsize=0. application application

XML/SOAP client API Specify socketpoolsize=0. application application

XML/SOAP Listener Specify socketpoolsize=0. no no

Natural RPC Specify ETB_SOCKETPOOL=OFF. See Support
of Clustering in a High Availability Scenario
under z/OS | UNIX | Windows.

yes application

C RPC Specify ETB_SOCKETPOOL=OFF. yes application

COBOL RPC Specify ETB_SOCKETPOOL=OFF. yes application

PL/I RPC Specify ETB_SOCKETPOOL=OFF. yes application

.NET Wrapper Specify ETB_SOCKETPOOL=OFF. yes application

DCOM Wrapper Specify ETB_SOCKETPOOL=OFF. yes application

4

Matrix of Supported FeaturesIntroduction to High Availability

	Introduction to High Availability
	Purpose of Clustering
	Why is High Availability Important
	Clustering for High Availability, Load Balancing and Fault Tolerance
	Advantages of Network-based Clustering
	Virtual IP Adressing
	Client Considerations
	No Persistent Sockets (Socket Pooling)
	Socket Reconnect
	Security Handling
	Matrix of Supported Features

