
Software AG IDL to EJB Mapping
This chapter covers the following topics:

Mapping IDL Data Types to Java Data Types

Mapping Library Name and Alias

Mapping Program Name and Alias

Mapping Parameter Names

Mapping Fixed and Unbounded Arrays

Mapping Groups and Periodic Groups

Mapping Structures

Mapping the Direction Attributes In, Out, InOut

1

Software AG IDL to EJB MappingSoftware AG IDL to EJB Mapping

Mapping IDL Data Types to Java Data Types
In the table below, the following metasymbols and informal terms are used for the IDL.

The metasymbols [and] surround optional lexical entities.

The informal term number (or number1[. number2]) is a sequence of numeric characters, for
example 123.

2

Mapping IDL Data Types to Java Data TypesSoftware AG IDL to EJB Mapping

Software AG IDL Description Java Data Types Note

Anumber Alphanumeric String 1, 3

AV Alphanumeric variable length String

AV[number] Alphanumeric variable length with
maximum length

String 1

Bnumber Binary byte[] 1, 6

BV Binary variable length byte[]

BV[number] Binary variable length with
maximum length

byte[] 1

D Date java.util.Date 5

F4 Floating point (small) float 2

F8 Floating point (large) double 2

I1 Integer (small) byte

I2 Integer (medium) short

I4 Integer (large) int

Knumber Kanji String 1

KV Kanji variable length String

KV[number] Kanji variable length with
maximum length

String 1

L Logical boolean

Nnumber1[. number2] Unpacked decimal java.math.BigDecimal 4

NUnumber1[. number2] Unpacked decimal unsigned java.math.BigDecimal 4

Pnumber1[. number2] Packed decimal java.math.BigDecimal 4

PUnumber1[. number2] Packed decimal unsigned java.math.BigDecimal 4

T Time java.util.Date 5

Unumber Unicode String 7

UV Unicode variable length String 7

UVnumber Unicode variable length with
maximum length

String 7

Notes:

1. The field length is given in bytes.
2. If floating-point data types are used, rounding errors can occur. Therefore, the values of sender and

receiver might differ slightly.
3. If you use the value null (null pointer) as an input parameter (for IN and INOUT parameters) for type

A, a blank string will be used.
4. For Java, the total number of digits (number1+number2) is 99, which is the maximum that

3

Software AG IDL to EJB MappingMapping IDL Data Types to Java Data Types

EntireX supports. See IDL Data Types.

If you connect two endpoints, the total number of digits used must be lower or equal than the maxima
of both endpoints. For the supported total number of digits for endpoints, see the notes under data types N,
NU, P and PU in section Mapping IDL Data Types to target language environment C | CL | COBOL |
DCOM | .NET | Java | Natural | PL/I | RPG | XML .

If you use the value null (null pointer) for direction IN (for IN and INOUT parameters), the value 0
(or 0.0) will be sent. See Mapping the Direction Attributes In, Out, InOut in the Java Wrapper
documentation.

5. If you use the value null (null pointer) as an input parameter (for IN and INOUT parameters) for
types D/T, the current date/time will be used. You change this with the property
entirex.marshal.date . Setting entirex.marshal.date=null will map the value null
to the invalid date 0000-01-01 of the RPC marshalling. This is the invalid date value in Natural, too. With
this setting the invalid date as an output parameter will be mapped to null. The default is to map the
invalid date to 0001-01-01.

6. If you use the value null (null pointer) as an input parameter (for IN and INOUT parameters) for type
B, all binary values will be set to zero.

7. The length is given in 2-byte Unicode code units following the Unicode standard UTF-16. The
maximum length is 805306367 code units.

Please note also hints and restrictions on the Software AG IDL data types valid for all programming
language bindings. See IDL Data Types.

Mapping Library Name and Alias
The library name in the IDL file is mapped to the class name of the generated bean. See
library-definition under Software AG IDL Grammar. For the bean, the names of the classes have
the format library-nameBean.

The special characters ’#’ and ’-’ in the library name are replaced by the character ’_’.

If there is an alias for the library name in the library-definition , this alias is used "as is" to form
the bean class name. Therefore, this alias must be a valid Java class name.

Example:

library name Hu#G-O is converted to EJBHu_g_oBean.class

The library name is sent - without changes - to the server. The library alias is never sent to the server.

In the RPC server the library name sent may be used to locate the target server.

Mapping Program Name and Alias
The program name in the IDL file is mapped to method names within the generated Enterprise JavaBeans.
See program-definition under Software AG IDL Grammar. To adhere to Java naming conventions,
the program name is converted to lowercase.

4

Mapping Library Name and AliasSoftware AG IDL to EJB Mapping

The special characters ’#’ and ’-’ in the program name are replaced by the character ’_’.

If there is an alias for the program name in the program-definition , this alias is used "as is" for the
method name. Therefore, this alias must be a valid Java method name.

The program name is converted to uppercase before it is sent to the server. The program alias is never sent
to the server.

The program name sent to the RPC server is used to locate the target server.

Mapping Parameter Names
The parameter names are mapped to fields inside the serializable input and output classes (see Mapping
the Direction Attribute In, Out, InOut). The name of the input class is made up of the library name and the
program name <library-name><program-name>Input and for the output class is
<library-name><program-name>Output .

Example:

public class LibPgmInput implements Serializable {
 public String myInputString;
 public String myOutInString;
}

or

public class LibPgmOutput implements Serializable {
 public String myOutputString;
 public String myOutInString;
}

Mapping Fixed and Unbounded Arrays
Arrays in the IDL file are mapped to Java arrays. If an array value does not have the correct number of
dimensions or elements, this will result in a NullPointerException or an
ArrayIndexOutOfBoundsException . If you use the value null (null pointer) as an input parameter
(for IN and INOUT parameters), an array will be instantiated.

Mapping Groups and Periodic Groups
Groups are mapped to serializable classes. The class name is the <library name><program name>
<parameter name>,

For example, the following Software AG IDL

Library ’Lib1130’ Is
 Program ’X201G0’ Is
 Define Data Parameter
 1 MyGroup
 2 MyLong (I4)
 2 MyFloat (F4)
 1 MyGroupAsString (A253)
 1 function_result (I4) Out
 End-Define

5

Software AG IDL to EJB MappingMapping Parameter Names

is mapped to the class

public class Lib1130X201g0MyGroup implements Serializable {
 public int mylong;
 public float myfloat;
}

Mapping Structures
Structures are mapped to serializable classes. The class name is the <library name><struct name>.

Mapping the Direction Attributes In, Out, InOut
IDL syntax allows you to define parameters as IN parameters, OUT parameters, or INOUT parameters (the
default). This specification of the direction is reflected in the generated Enterprise JavaBeans as follows:

IN parameters are sent from the RPC client to the RPC server. IN parameters are collected in the
serializable input class (see Mapping Parameter Names).

OUT parameters are sent from the RPC server to the RPC client. OUT parameters are collected in the
serializable output class (see Mapping Parameter Names).

INOUT parameters are sent from the RPC client to the RPC server and then back to the RPC client.
INOUT are collected into both classes the serializable input class as well as into the serializable
output class. (see Mapping Parameter Names).

Note:
Only the direction information of the top-level fields (level 1) is relevant. Group fields always inherit the
specification from their parent. Any different specification is ignored.

See the attribute-list under Software AG IDL Grammar for the syntax on how to describe
attributes in the Software AG IDL file and refer to the direction attribute.

6

Mapping StructuresSoftware AG IDL to EJB Mapping

	Software AG IDL to EJB Mapping
	Mapping IDL Data Types to Java Data Types
	Mapping Library Name and Alias
	Mapping Program Name and Alias
	Mapping Parameter Names
	Mapping Fixed and Unbounded Arrays
	Mapping Groups and Periodic Groups
	Mapping Structures
	Mapping the Direction Attributes In, Out, InOut

