
Writing Applications with the .NET Wrapper
This chapter covers the following topics:

Writing a Client Application

Writing a Server DLL

Deploying Wrapped .NET Servers

Creating ASP.NET Web Services

Using Internationalization with the .NET Wrapper

Writing a Client Application

Required Steps

Writing a client application with the EntireX .NET Wrapper typically requires the following steps:

Starting from an IDL file, generate a C# client stub using either the EntireX Workbench .NET
Wrapper GUI or the Software AG IDL Compiler (erxidl) and the csharp_client.tpl template from the
command line.

Build a .NET assembly from the generated C# client stub.

Create an application that uses the generated client stub assembly and the .NET Wrapper runtime
SoftwareAG.EntireX.NETWrapper.Runtime.dll.

The following description outlines as an example the steps required to build a .NET Wrapper client
application (solution) with the Microsoft Visual Studio.

Generating the .NET Wrapper Client Stub from a Software AG IDL File

The .NET Wrapper generates C# sources from an IDL file. If there is a related client-side mapping file
(Natural | COBOL), this is also used (internally).

We assume the IDL file has the name example.idl and there is an EntireX RPC service available that
implements the interface described in the IDL file.

1. Open the EntireX Workbench, select the example.idl file.

2. From the .NET menu, choose Generate client. This will generate a C# source file example.cs.

See also Using the .NET Wrapper.

1

Writing Applications with the .NET WrapperWriting Applications with the .NET Wrapper

Creating a Microsoft Visual Studio Solution

1. Start Microsoft Visual Studio.

2. From the File menu, choose New > Blank Solution.... and choose an appropriate name for the
solution.

Creating the .NET Wrapper Client Stub Library (Assembly)

1. Select the solution and choose Add, choose New Project.

2. In the New Project dialog, choose Visual C# Projects and Class Library. Choose an appropriate
name for the class library, e.g. "exampleClientStub".

3. Delete the default class file Class1.cs.

4. Select the new project and choose Add > Add Existing Item and add the example.cs file generated
previously.

5. Select References, choose Add Reference and add the .NET Wrapper runtime
SoftwareAG.EntireX.NETWrapper.Runtime.dll.

6. Build the class library.

Creating the .NET Wrapper Client Application

1. Add a new project to the solution: Choose the solution, Add, New Project..., Visual C# Projects,
Console Application. Choose an appropriate name for the project, for example, "exampleClient".

2. Rename the default class file Class1.cs as appropriate.

3. Choose References > Add Reference and add the .NET Wrapper runtime
SoftwareAG.EntireX.NETWrapper.Runtime.dll.

4. Choose References > Add Reference > Projects and add the .NET Wrapper client stub
exampleClientStub.

5. Now implement your client application. Add the following lines to the top of the class file:

using SoftwareAG.EntireX.NETWrapper.Runtime;
using SoftwareAG.EntireX.NETWrapper.Generated.example;

6. In a method of the application class implement the connection to an EntireX Broker, for example,

Broker broker = new Broker("localhost:1971", "ERX-USER");
broker.Logon("ERX-PASS");

and an EntireX RPC service, for example,

Service service = new Service(broker, "RPC/SRV1/CALLNAT", "EXAMPLE");
service.UserIDAndPassword("RPC-USER", "RPC-PASSWORD");

2

Creating a Microsoft Visual Studio SolutionWriting Applications with the .NET Wrapper

7. The example class can now be instantiated, for example,

Example e = new Example(service);

and the example methods called, for example,

int result = ex.Calculator("+", 10, 15);

Writing a Server DLL

Required Steps

Writing a server DLL with the EntireX .NET Wrapper typically requires the following steps:

Starting from a Software AG IDL file, generate a C# file using either the EntireX Workbench .NET
Wrapper GUI or the Software AG IDL Compiler (erxidl) and the csharp_server.tpl template from the
command line.

Insert your server-specific code at the required position for the programs (methods).

Build a .NET assembly (server DLL) from the generated C# file.

Building a .NET Wrapper server DLL with the Microsoft Visual Studio follows the rules for building a
client stub library.

Note:
The file name of the server DLL and the name of the library/class in the generated C# file must be
identical.

Deploying Wrapped .NET Servers
The easiest way to deploy and run a .NET server is the so-called XCOPY-deployment. This means that all
relevant files of the server are installed in one folder. No additional registration and configuration is
required. The only prerequisite is that the EntireX runtime is installed. The following files are typically
required:

the server wrapper and implementation assembly (or assemblies)

the .NET Wrapper runtime (SoftwareAG.EntireX.NETWrapper.Runtime.dll)

the .NET server user exit DLL (dotNetServer.dll)

the RPC server executable (rpcserver.exe)

a configuration file (.cfg) for the RPC server according to the rules described under Configuring the
EntireX RPC Server for use with the .NET Wrapper.

To make the .NET server available to EntireX clients, the .NET RPC server must be up and running and
able to locate the server implementation.

3

Writing Applications with the .NET WrapperWriting a Server DLL

The described XCOPY deployment method has the drawback that copies of the .NET Wrapper runtime
and the .NET RPC server have to be deployed with the application. It is possible to avoid this by making
use of the .NET Framework’s application configuration capabilities. Various parameters of a .NET
application, say myapp.exe, can be configured in a configuration file myapp.exe.config that must be
located in the executable’s folder. The configuration file defines in XML format several parameters of the
application, such as the dependent assemblies, version and location and others. Using this method, neither
the .NET Wrapper runtime nor the .NET RPC server needs to be deployed. However, the configuration
file for the .NET RPC server must be located in the same folder as the RPC server itself, which by default
is the bin folder of the EntireX installation. As a consequence, if there are multiple .NET servers deployed
on the system, they all need to be configured in the .NET RPC server’s configuration file.

Creating ASP.NET Web Services
The generated C# client stub can be used in an ASP.NET Web service to publish EntireX RPC services as
Web services. With Visual Studio you can easily create an ASP.NET Web service that publishes methods
of the EntireX RPC service (or your own methods that just use the EntireX RPC service).

Note:
The .NET Wrapper Runtime uses unmanaged DLLs. For this reason, ASP.NET applications have to run in
full-trust mode.

Example

You have built the .NET Wrapper example EntireX\examples\RPC\basic\example\dotNetClient as
described in the README file.

Then create a new "ASP.NET Web service" project with references to the generated client stub and the
.NET Wrapper runtime.

You can use the following example code (in the .asmx file) to implement a Web method add that exposes
the calc method of the example.

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;
using System.Text;
using SoftwareAG.EntireX.NETWrapper.Runtime;
using SoftwareAG.EntireX.NETWrapper.Generated.example;

namespace WebService1
{
/// <summary>
/// Summary description for Service1.
/// </summary>
public class Service1 : System.Web.Services.WebService
{
public Service1()
{
//CODEGEN: This call is required by the ASP.NET Web Services Designer
InitializeComponent();
}

4

Creating ASP.NET Web ServicesWriting Applications with the .NET Wrapper

#region Component Designer generated code

//Required by the Web Services Designer
private IContainer components = null;

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{
}

/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose(bool disposing)
{
if(disposing && components != null)
{
components.Dispose();
}
base.Dispose(disposing);
}

#endregion

// WEB SERVICE EXAMPLE
 [WebMethod]
public int add(int sum1, int sum2)
{
Example e = new Example();

int result = e.calc("+", sum1,sum2);
return result;
}
}
}

Using Internationalization with the .NET Wrapper
It is assumed that you have read the document Internationalization with EntireX and are familiar with the
various internationalization approaches described there.

The .NET Wrapper uses by default the "current locale" encoding set up on the Windows system for
converting UNICODE (UTF-16) representations of strings to single-byte or multibyte representations that
are sent to the Broker, and vice versa.

If you want to adapt the locale settings of your Windows system, use the Regional and Language Options
in the Windows Control Panel.

The Broker class of the .NET Wrapper Runtime makes use of the .NET Framework class
System.Text.Encoding for character conversion.

Refer also to the .NET Framework class library documentation for System.Text.Encoding.

5

Writing Applications with the .NET WrapperUsing Internationalization with the .NET Wrapper

The CharacterEncoding property of the Broker class, that guides the character conversion, is initialized
with System.Text.Encoding.GetEncoding(0) (current locale). The codepage that corresponds
to this encoding is automatically transferred to the Broker as part of the locale string, specifying the
encoding of the data, when communicating with a Broker version 7.2 and above.

The application programmer can also assign a custom encoding object to the Broker class’ character
encoding property for custom character conversions. If an encoding object is provided, the corresponding
codepage is transferred as part of the locale string to the Broker for all Broker versions.

If communicating with a Broker version 7.1 and below and if no encoding is provided by the .NET
Wrapper programmer, an EntireX administrator can force a codepage string to be sent to the Broker by
setting the environment variable ERX_CODEPAGE to the name of the respective codepage. See
ERX_CODEPAGE.

When setting the codepage with the environment variable ERX_CODEPAGE:

The ERX_CODEPAGE environment variable is ignored if the application programmer has already
provided a codepage.

The value of the ERX_CODEPAGE environment variable must be the name of the system’s default
codepage. Under Windows, simply apply the value "LOCAL" to specify the default Windows ANSI
codepage.

The codepage specified must be one that is supported by the Broker, depending on the Broker’s
internationalization approach. See Locale String Mapping for information on how the broker derives
the codepage from the locale string.

Before starting the application, set the locale string with the environment variable ERX_CODEPAGE.

Example:

ERX_CODEPAGE=LOCAL

6

Using Internationalization with the .NET WrapperWriting Applications with the .NET Wrapper

	Writing Applications with the .NET Wrapper
	Writing a Client Application
	Required Steps
	Generating the .NET Wrapper Client Stub from a Software AG IDL File
	Creating a Microsoft Visual Studio Solution
	Creating the .NET Wrapper Client Stub Library (Assembly)
	Creating the .NET Wrapper Client Application

	Writing a Server DLL
	Required Steps

	Deploying Wrapped .NET Servers
	Creating ASP.NET Web Services
	Example

	Using Internationalization with the .NET Wrapper

