
Reliable RPC for .NET Wrapper
Introduction to Reliable RPC

Writing a Client

Writing a Server

Broker Configuration

Introduction to Reliable RPC
In the architecture of modern e-business applications (such as SOA), loosely coupled systems are
becoming more and more important. Reliable messaging is one important technology for this type of
system.

Reliable RPC is the EntireX implementation of a reliable messaging system. It combines EntireX RPC
technology and persistence, which is implemented with units of work (UOWs).

Reliable RPC allows asynchronous calls ("fire and forget")

Reliable RPC is supported by most EntireX wrappers

Reliable RPC messages are stored in the Broker’s persistent store until a server is available

Reliable RPC clients are able to request the status of the messages they have sent

1

Reliable RPC for .NET WrapperReliable RPC for .NET Wrapper

Reliable RPC is used to send messages to a persisted Broker service. The messages are described by an
IDL program that contains only IN parameters. The client interface object and the server interface object
are generated from this IDL file, using the EntireX .NET Wrapper.

Reliable RPC is enabled at runtime. The client has to set one of two different modes before issuing a
reliable RPC request:

AUTO_COMMIT

CLIENT_COMMIT

While AUTO_COMMIT commits each RPC message implicitly after sending it, a series of RPC messages
sent in a unit of work (UOW) can be committed or rolled back explicitly using CLIENT_COMMIT mode.

The server is implemented and configured in the same way as for normal RPC.

Writing a Client
All methods for reliable RPC are available on the service class object. See description of class Service
for details. The methods are:

Service.SetReliableState

Service.getReliableState

Service.ReliableCommit

Service.ReliableRollback

Service.GetReliableId

Service.GetReliableStatus

Example (this example is included as source in folder examples\ReliableRPC\NetClient)

Create Broker object and interface object.

Mail mail = new Mail();
mail.service.broker.logon();

Enable reliable RPC with CLIENT_COMMIT:

mail.SetReliableState(Service.ReliableState.RELIABLE_AUTO_COMMIT);

The first RPC message.

mail.Sendmail("mail receiver", "subject 1", "Text 1");

Check the status: get the message ID first and use it to retrieve the status.

2

Writing a ClientReliable RPC for .NET Wrapper

StringBuilder reliableID = new StringBuilder();
StringBuilder reliableStatus = new StringBuilder();

mail.service.GetReliableID(ref reliableID);
mail.service.GetReliableStatus(reliableID, ref reliableStatus);
Console.Out.WriteLine("Reliable ID = " + reliableID.ToString());
Console.Out.WriteLine("Reliable Status = " + reliableStatus.ToString());

The second RPC message.

mail.Sendmail("mail receiver", "subject 2", "Text 2");

Commit the two messages.

mail.service.ReliableCommit();

Check the status again for the same message ID.

mail.service.GetReliableStatus(reliableID, ref reliableStatus);
Console.Out.WriteLine("Reliable ID = " + reliableID.ToString());
Console.Out.WriteLine("Reliable Status = " + reliableStatus.ToString());

The third RPC message.

mail.Sendmail("mail receiver", "subject 3", "Text 3");

Check the status: get the new message ID and use it to retrieve the status.

mail.service.GetReliableID(ref reliableID);
mail.service.GetReliableStatus(reliableID, ref reliableStatus);
Console.Out.WriteLine("Reliable ID = " + reliableID.ToString());
Console.Out.WriteLine("Reliable Status = " + reliableStatus.ToString());

Roll back the third message and check status.

mail.service.ReliableRollback();
mail.service.GetReliableStatus(reliableID, ref reliableStatus);

Console.Out.WriteLine("Reliable ID = " + reliableID.ToString());
Console.Out.WriteLine("Reliable Status = " + reliableStatus.ToString());

mail.service.broker.logoff();

Limitations

1. All program calls that are called in the same transaction (CLIENT_COMMIT) must be in the same
IDL library.

2. It is not allowed to switch from CLIENT_COMMIT to AUTO_COMMIT in a transaction.

3. Messages (IDL programs) must have IN parameters only.

Writing a Server
There are no server-side methods for reliable RPC. The server does not send back a message to the client.
The server can run deferred, thus client and server do not necessarily run at the same time. If the server
fails, it throws an exception. This causes the transaction (unit of work inside the broker) to be cancelled,

3

Reliable RPC for .NET WrapperWriting a Server

and the error code is written to the user status field of the unit of work.

Broker Configuration
A Broker configuration with PSTORE is recommended. This enables the Broker to store the messages for
more than one Broker session. These messages are still available after Broker restart. The attributes
STORE, PSTORE, and PSTORE-TYPE in the Broker attribute file can be used to configure this feature.
The lifetime of the messages and the status information can be configured with the attributes UWTIME and
UWSTAT-LIFETIME. Other attributes such as MAX-MESSAGES-IN-UOW, MAX-UOWS and
MAX-UOW-MESSAGE-LENGTH may be used in addition to configure the units of work. See Broker
Attributes.

The result of the function Service.GetReliableStatus depends on the configuration of the unit
of work status lifetime in the EntireX Broker configuration. If the status is not stored longer than the
message, the function returns the error code 00780305 (no matching UOW found).

4

Broker ConfigurationReliable RPC for .NET Wrapper

	Reliable RPC for .NET Wrapper
	Introduction to Reliable RPC
	Writing a Client
	
	Limitations

	Writing a Server
	Broker Configuration

