
Tips and Tricks for the DCOM Wrapper
This chapter provides the following tips and tricks for using EntireX DCOM Wrapper:

IDL Parameter Definitions

Groups in IDL Parameter Definition

Arrays in Groups

ActiveX Application Calling a DCOM Wrapper Method

Problem with the #import Clause of the Client Application

Syntax Errors

ActiveX Automation Server

Restrictions on Parameter Names

Language-dependent Restrictions on the Client Side

Using DCOM Wrapper Object with Microsoft Visual Studio .NET

Using N, NU, P, PU Data Types

See also Using DCOM Wrapper Objects with Web Scripting Languages.

IDL Parameter Definitions
The parameter definition in the IDL file must match exactly the parameter data area of the Natural
subprogram with respect to format, length, dimensions, direction, number and order of parameters.

Groups in IDL Parameter Definition
Because the number of required GUIDs may change if the parameter definition in the IDL file changes
with respect to groups, you must deregister the old object and delete the g<library>.h file before
(re-)generating the object.

Arrays in Groups
From EntireX 5.3.1.10 on, methods for better array support are available for arrays defined in groups.

set property
<object name>.<access to group>.<array name>_indexAccess(<index list>) = value

get property
<variable> = <object name>.<access to group>.<array name>_indexAccess(<index list>)

1

Tips and Tricks for the DCOM WrapperTips and Tricks for the DCOM Wrapper

ActiveX Application Calling a DCOM Wrapper Method
When the ActiveX application calls a DCOM Wrapper method, the parameters must match exactly:

the number of parameters

the parameter type (string, int etc.)

how these parameters are passed to the called method:

IN parameters should be passed by value;

OUT and INOUT parameters should be passed by reference.

If in doubt, look at the type library of the generated Wrapper object. Use the Microsoft C++ tool
OLE/COM Object Viewer (oleview.exe) to inspect the type library, or look at the generated IDL file in the
generated object directory.

Problem with the #import Clause of the Client Application
If the dll generated by EntireX DCOM Wrapper is imported by a client application, the compiler can exit
with error "error C2011:’IServiceProvider’ : ’struct’ type redefinition". If this happens, add the following
to the #import clause:

 rename("IServiceProvider","IServiceProviderX")

Example:

#import "<path>\DCOMWrapperObject.dll" no_namespace rename("IServiceProvider","IServiceProviderX")

If the dll generated by EntireX DCOM Wrapper is imported by a client application and this application is
an ATL application, it may be necessary to import the dll type library with the following statement:

#include <dispex.h>
#import "DCOMWrapperObject.tlb" no_namespace exclude("IDispatchEx")
exclude("IServiceProvider") rename ("IDispatch","IDispatchEx")

Syntax Errors
If syntax errors occur in the IDL file, the most likely cause is the use of reserved words as parameters. Not
only the keywords of IDL (library, program, etc.) are reserved, but also all valid format-length
combinations. For example, you cannot use "A1" as the name of a parameter.

If syntax errors occur during compilation of the generated C++ sources, a likely cause is the use of
reserved C++ words as parameter names in the IDL file, or a library that contains a program with the same
name.

2

ActiveX Application Calling a DCOM Wrapper MethodTips and Tricks for the DCOM Wrapper

ActiveX Automation Server
If you generate an ActiveX automation server a second time, the existing GUIDs will be reused. To
prevent this, delete the header file g<library>.h in the generated object directory.

Restrictions on Parameter Names
Parameter names used in the IDL file conflict with the Visual C++ MIDL compiler, so avoid keywords
used in the MIDL definition. The DCOM Wrapper uses the MIDL compiler from EntireX Version 6.1.1.8
on (only Windows platforms). The changes were necessary because of the internal change from the
IDispatch to the IDispatchEx interface to support scripting languages correctly.

Language-dependent Restrictions on the Client Side
On the client side, language-dependent restrictions may occur independent of the functionality offered by
the DCOM Wrapper object.

Using DCOM Wrapper Object with Microsoft Visual Studio
.NET
While using the Wrapper-generated objects, the .NET application throws an error message queryinterface
<interface name> failed. To prevent this, uncheck ASP scripting support in the Setting DCOM Wrapper
Properties.

If the Extended Interface was used, the client application has to make sure that the Wrapper-generated
object was called from an STA thread. In a ASP.NET application, the client application can use the
aspcompat attribute on your ASP.NET page or if the application, such as Web service, does not provide
an attribute such as aspcompat , use an STA thread in your application.

ASP.NET Example

Include the attribute aspcompat into the file WebForm.aspx.

<%@ Page aspcompat=true Language="vb".........

Web Service Example
 ’ Create new thread class
 Public Class STAThreadClass
 Dim Obj As EXXDCOMTypeLibrary.ProgClass
 Dim sUser As String

 Public Sub Run()
 ’ Set thread state to STA
 System.Threading.Thread.CurrentThread.ApartmentState = Threading.ApartmentState.STA
 Obj = New EXXDCOMTypeLibrary.ProgClass()

 Try
 Obj.ServerAddress = "localhost@RPC/SRV1/CALLNAT"
 Obj.TEST(sUser)
 ’ catch an error, if one thrown
 Catch ex As Exception
 ReturnValues.ErrorText = "Error: " + ex.ToString

3

Tips and Tricks for the DCOM WrapperActiveX Automation Server

 End Try
 Obj = Nothing
 End Sub
 End Class

 ’ main web service function
 <WebMethod()> Public Function DoCall()

 Dim STA As New STAThreadClass()

 ’ create the thread
 Dim InstanceCaller As New Thread(New ThreadStart(AddressOf STA.Run))

 ’ start the thread and wait for execution
 InstanceCaller.Start() ’start thread
 InstanceCaller.Join() ’wait for called STA thread

 End Function

Using N, NU, P, PU Data Types
When using N, NU, P or PU data types, the only valid decimal character is the decimal point.

Examples:

1234.34 OK
1234,34 not allowed
123,400.00 not allowed

Only the decimal point "." is allowed!

4

Using N, NU, P, PU Data TypesTips and Tricks for the DCOM Wrapper

	Tips and Tricks for the DCOM Wrapper
	IDL Parameter Definitions
	Groups in IDL Parameter Definition
	Arrays in Groups
	ActiveX Application Calling a DCOM Wrapper Method
	Problem with the #import Clause of the Client Application
	Syntax Errors
	ActiveX Automation Server
	Restrictions on Parameter Names
	Language-dependent Restrictions on the Client Side
	Using DCOM Wrapper Object with Microsoft Visual Studio .NET
	ASP.NET Example
	Web Service Example

	Using N, NU, P, PU Data Types

