Software AG IDL to .NET Mapping Software AG IDL to .NET Mapping

Software AG IDL to .NET Mapping

This chapter covers the following topics:
e Mapping IDL Data Types to .NET Data Types
e Mapping Library Name and Alias
® Mapping Program Name and Alias
® Mapping Parameter Names
® Mapping Fixed and Unbounded Arrays
® Mapping Groups and Periodic Groups
® Mapping Structures
® Mapping the Direction Attributes In, Out, InOut
® Mapping the ALIGNED Attribute

® (Calling Servers as Procedures or Functions

Software AG IDL to .NET Mapping Mapping IDL Data Types to .NET Data Types

Mapping IDL Data Typesto .NET Data Types
The table below lists the metasymbols and informal terms that are used for the Software AG IDL.
e The metasymbols [and] surround optional lexical entities.

® The informal terrmumber (or in some casasunber 1.nunber 2) is a sequence of numeric
characters, for example 123.

Mapping IDL Data Types to .NET Data Types

Software AG IDL to .NET Mapping

Software AG IDL Description NET Data Types Note
Al Alphanumeric char or 1,5
String/StringBuilder
Anunber Alphanumeric String/StringBuilder 1
AV Alphanumeric variable length| String/StringBuilder 1
AV[nunber] Alphanumeric variable length| String/StringBuilder 1
with maximum length
Bl Binary byte orbyte[] 6
Bnunber Binary byte[]
BV Binary variable length byte[] 2
BV[nunber] Binary variable length with | byte[]
maximum length
D Date DateTime 3,7
F4 Floating point (small) float
F8 Floating point (large) double
11 Integer (small) sbyte
12 Integer (medium) short
14 Integer (large) int
Knunber Kanji String/StringBuilder 1
KV Kaniji variable length String/StringBuilder 1
KV[nunber] Kaniji variable length with String/StringBuilder 1
maximum length
L Logical bool
Nnunber 1[. nurmber 2] |Unpacked decimal BigNumeric 9,10
decimal 8,10
Nlhunber 1[. nunber 2] |Unpacked decimal unsigned | BigNumeric 9,10
decimal 8,10
Pnunber 1[. nunber 2] |Packed decimal BigNumeric 9,10
decimal 8,10
PUnunber 1[. nunber 2] |Packed decimal unsigned BigNumeric 9,10
decimal 8,10
T Time DateTime 4,7

Notes:

Software AG IDL to .NET Mapping Mapping IDL Data Types to .NET Data Types

10.

. System.String for directionin , otherwiseSystem.Text.StringBuilder if Default is

used for paramet&TOSTRING If String is used foATOSTRING System.String is used
everywhere, and BtringBuilder is used foATOSTRING
System.Text.StringBuilder is used everywhere. Seaing the NET Wrapper.

Unsigned integer ranging from 0 to 255.

Count of days AD (anno domini, after the birth of Christ). The valid range is from 1.1.0001 up to
28.11.2737 (only the date partateTime is used).

Count of tenths of a second AD (Anno Domini, after the birth of Christ). The valid range is from
1.1.0001 00:00:00.0 up to 16.11.3168 09:46:39 plus 0.9 seconds.

If -D AITTOCHAR=1is defined in theerxidl call, Al is mapped tahar , otherwise to
String/StringBuilder

If-D BATOBYTE=1 is defined in theerxidl call, B1 is mapped tdyte , otherwise tdyte[]

. The NaturaDATEtype allows for the value 01.01.0000 to denote an undefined date. In order to

avoid the .NET runtime throwing an exception when attempting to assign the invalid date value
01.01.0000 to a .NEDateTime variable, the .NET runtime converts an incoming neutral date/time
value 01.01.0000 00:00:00.0 into the special .NlE&feTime valueDateTime.MaxValue -1

tick (that is 31.12.9999:23:59:59.9999998). When this value is passed to the EntireX runtime to be
sent to an EntireX RPC service, it is converted back into the neutral RPC date/time value 01.01.0000
00:00:00.0.

If the total number of digitsmber 1+nunber 2) is equal to or lower than 28, mapping is to the
.NET data type decimal.

If the total number of digit:ignrber 1+nunber 2) is greater than 28, mapping is to the .NET class
BigNumeric . SeeBi gNuner i ¢ under.NET Wrapper Reference.

If you connect two endpoints, the total number of digits used must be lower or equal than the maxima
of both endpoints. For the supported total number of digits for endpoints, see the notes under data
types N, NU, P and PU in sectidapping IDL Data Types to target language environmeD{ CL |

COBOL |DCOM | .NET | Java] Natural| PL/I | RPG| XML .

Please also note the hints and restrictions on the IDL data types valid for all programming language
bindings as described und&L Data Types.

Mapping Library Name and Alias Software AG IDL to .NET Mapping

Mapping Library Name and Alias

The library name as specified in the IDL file is sent from a client to the server. Special characters are not
replaced. The library alias is not sent to the server.

In the RPC server, the IDL library name sent may be used to locate the target servecatBagand
Calling the Target Server under z/OSCICS, Batch IMS) |UNIX | Windows| Micro Focus|
BS2000/0S0O z/VSE CICS, Batch | IBMi.

The name of the .NET server assembly must match the library name.

The library name as given in the IDL file is used to compose the names of the generated output files. See
library-definition underSoftware AG IDL Grammar. Therefore the allowed characters are

restricted by the underlying file system. The name is composeddroror ar y- nanme>.idl to

<li brary-nanme>.cs as default. The name of the client stub file can be changed by usitig the

option of theerxidl command. Sedsing the .NET Wrapper in IDL Compiler Command-line Mode.

In accordance with the C# conventions, the class name is built as follows with the default setting
-PSANITIZE :

e The initial character and characters following one of the special characters '#, '$’, '&’, '+', -, ',
M and '@’ are converted to uppercase.

® All other characters are converted to lowercase.
® The special characters '#,'$",'&’, '+, -, " ', ., '"and '@’ are removed.

Other special characters used in the library name are not changed and may lead to problems with your
underlying file system and to compile errors.

If there is an alias for the library name in titeary-definition , this alias is used "as is" to form
the class name. Therefore, this alias must be a valid C# class hame. To fully control the output, use alias
names and do not uSANITIZE .

Examples:
MY-CLASSto MyClass (class)

MY-CLASS alias YOUR_CLASS to YOUR_CLASS(class)

M apping Program Name and Alias

The program name is sent from a client to the server. Special characters are not replaced. The program
alias is not sent to the server.

In the RPC server, the IDL program name sent is used to locate the target servecatagpand
Calling the Target Server under z/OSCICS, Batch IMS) |UNIX | Windows| Micro Focus|
BS2000/0SDO z/VSE CICS, Batch | IBMi.

The program names as given in the IDL file are mapped to methods within the generated C# sources. See
program-definition underSoftware AG IDL Grammar.

Software AG IDL to .NET Mapping Mapping Parameter Names

In accordance with the C# conventions method names are built as follows with the default setting
-PSANITIZE :

e Characters are converted to lowercase with the following exceptions
O The special characters '#,'$’,'&', '+, '-", ", ", 'l and '@’ are removed
O The character following one of the special characters is converted to uppercase.
Other special characters used in the program name are not changed and may lead to compile errors.

If there is an alias for the program name inghegram-definition , this alias is used "as is" for the
method name. Therefore, this alias must be a valid C# method name. To fully control the output, use alias
names and do not uSANITIZE .

Examples:
MY-PROGRAM MyProgram (method)

MY-PROGRAM alias YOUR_PROGRANb YOUR_PROGRAM(method)

M apping Parameter Names

The parameter names as given ingheameter-data-definition of the IDL file are mapped to
parameters of the generated C# methods.

In accordance with the C# conventions the parameter names are built as follows with the default setting
-PSANITIZE :

® Characters are converted to lowercase except
O The special characters '#,'$’,'&', '+, ', ', ", '/ and '@’ are removed
O The character following one of those special characters is converted to uppercase.

IDL files that use C# keywords (egfring orfloat) as parameter names are not supported. Do not
use C# keywords such ssing orfloat as parameter names. Modify your IDL file accordingly.

To fully control the output do not uSANITIZE .
Example:

MY-PARAMo myParam (parameter)

M apping Fixed and Unbounded Arrays

Arrays in the IDL file are mapped to C# arrays. If an array value does not have the correct number of
dimensions or elements, this will result in an exception. If the vallle (null pointer) is used as an
input parameter (faN andINOUT parameters), an array will be instantiated by the runtime.

Mapping Groups and Periodic Groups Software AG IDL to .NET Mapping

Mapping Groups and Periodic Groups
Groups in the IDL file are mapped to C# classes.

The namespace for group classes is

SoftwareAG.EntireX.NETWrapper.Generated. fil ename.Groups on the client side, and
SoftwareAG.EntireX.NETWrapper.Server. I'i braryname.Groups on the server side.
Mapping Structures

Structures in the IDL file are mapped to C# classes.

The namespace for structure classes is
SoftwareAG.EntireX.NETWrapper.Generated. fil ename.Structs on the client side, and
SoftwareAG.EntireX.NETWrapper.Server. I'i braryname.Structs on the server side.

SeeMapping Groups and Periodic Groups.

Mapping the Direction AttributesIn, Out, InOut
® [N parameters are implemented as normal parameters of the generated C# class method.
e QOUTparameters are implemented as out parameters of the generated C# class method.
e |INOUT parameters are implemented as ref parameters of the generated method.

Note that only the direction information of the top-level fields (level 1) is relevant. Group fields always
inherit the specification from their parent. A different specification is ignored.

Seeattribute-list underSoftware AG IDL Grammar for the syntax on how to describe attributes
within the IDL file and refer to thdirection attribute.

Mapping the ALIGNED Attribute

Not supported.

Calling Serversas Proceduresor Functions

The IDL syntax allows definitions of procedures only. It does not have the concept of a function. A
function is a procedure which, in addition to the parameters, returns a value. Procedures and functions are
transparent between clients and server, i.e. a client using a function can call a server implemented as a
procedure and vice versa.

In C# a procedure corresponds to a method with result type void, a function returns a value of some type.

It is possible to treat a@UTparameter of a procedure as the return value of a function. The .NET
Wrapper generates a method with a non-void result type when the following two conditions are met:

Software AG IDL to .NET Mapping Calling Servers as Procedures or Functions

® The last parameter of the procedure definition is of Qp&;
e This last parameter of the procedure definition has the Frametion_Result
In this case no function parameter is generated foQbiSparameter.

See the .NET Wrapper example that comes with EntireX.

	Software AG IDL to .NET Mapping
	Mapping IDL Data Types to .NET Data Types
	Mapping Library Name and Alias
	Mapping Program Name and Alias
	Mapping Parameter Names
	Mapping Fixed and Unbounded Arrays
	Mapping Groups and Periodic Groups
	Mapping Structures
	Mapping the Direction Attributes In, Out, InOut
	Mapping the ALIGNED Attribute
	Calling Servers as Procedures or Functions

