
Generated DCOM Wrapper Objects
This chapter covers the following topics:

Supported Data Types

Code Generation Process

Location of DCOM Wrapper Objects

Standard Wrapper Properties

Handling Complex Data Types

Calling Remote Procedures as Functions

Standard Wrapper Methods

Shared C Runtime Environment

Registering a Wrapper Object

Deployment of Wrapper Objects

Using Wrapper Objects with DCOM

1

Generated DCOM Wrapper ObjectsGenerated DCOM Wrapper Objects

Supported Data Types
All the Software AG IDL data types are mapped to the COM data types as shown in the table below.

IDL Data
Type C++/COM Data Type

Visual Basic Data
Type Note

A BSTR String See note below.

AV BSTR String See note below.

B unsigned char Byte See note below.

BV SAFEARRAY(unsigned
char)

Byte See note below.

D DATE DATE

F4 float Single

F8 double Double

I1 short Integer Range is -128 to 127.

I2 short Integer

I4 long Long

K BSTR String See note below.

KV BSTR String See note below.

L VARIANT_BOOL Boolean

N BSTR/double String/Double Depending on code generation
option Code Type.

P BSTR/double String/Double Depending on code generation
option Code Type.

T DATE DATE

Note:
The maximum length you can specify depends on your hardware configuration and your software
environment apart from EntireX. There is, however, an absolute limit (1 GB) that cannot be exceeded.

Code Generation Process
The DCOM Wrapper is used to generate an ActiveX automation server from an IDL file. The DCOM
Wrapper Wizard generates a batch (script) file in the directory where the IDL file resides:

<idl-filename>.bat on Windows (see Platform Coverage)

This file uses the Software AG IDL Compiler and appropriate C++ development tools to generate the
ActiveX automation server code. See Software AG IDL File for IDL file specifications.

2

Supported Data TypesGenerated DCOM Wrapper Objects

Location of DCOM Wrapper Objects
The locations of generated Wrapper objects depend on the directory containing the corresponding IDL
file. The names of generated Wrapper objects depend on the names of the libraries defined in the IDL file.

Wrapper automation objects may be renamed using the Naming Options dialog, but the names of the
generated Wrapper files remain unaffected.

The automation object name is used to define the COM program and application ID (ProgID and AppID).
A separate Wrapper object is generated for each library defined in an IDL file. To avoid name clashes
because of different Wrapper objects having the same name, we recommend that you put all programs
contained in one library into one IDL file.

Example

For illustration we use the example calc, which can be found in subdirectory Examples\DCOM
Wrapper\calc of the EntireX installation. In the following we refer to this directory simply as calc. The
IDL file is named calc.idl. This IDL file defines a program calc in the library Example. The default
Wrapper automation object name is therefore EOL.Example.

The DCOM Wrapper Wizard first generates a batch file calc.bat in directory calc. The appropriate
subdirectories and GUID files are created as necessary. If you run the batch file calc.bat, a
platform-dependent subdirectory Example is created in directory calc as described below. For each library
defined in the IDL file, a subdirectory with the same name as the library is created in the
platform-dependent subdirectory.

The generated Wrapper object is located in directory calc\win32\Example and is named Example.dll. If the
Generate DCOM Proxy box has been checked, the directory will also contain the proxy object
pExample.dll.

Note:
Declaring long library names within the Software AG IDL file will also result in long folder names, which
in certain circumstances may cause problems.

Standard Wrapper Properties
In addition to the parameter descriptions of the remote procedures as specified in the IDL file, every
automation object supports EntireX Broker, EntireX RPC and Natural RPC related properties. Methods
are available to set and/or retrieve these properties. For more information, see API Data Descriptions for
the C Wrapper.

Property Name Description

BrokerSecurity Get/Set Broker Kernel Security. Corresponds to Broker ACI field
KERNELSECURITY. See KERNELSECURITY.

Codepage Get/Set the Codepage.

For sending locale strings to the broker, see Using
Internationalization with the DCOM Wrapper.

Compression Used to set and/or retrieve the compression value.

3

Generated DCOM Wrapper ObjectsLocation of DCOM Wrapper Objects

Property Name Description

CompressLevel Compression level. Valid values: N/Y/0-9.

Only the first character of the string will be used for the
compression. If you type YES, the character Y will be used and ES
will be cut off.

See also Data Compression in EntireX Broker.

EncryptionLevel Encryption level used by EntireX Security.

ErrorClass Used to retrieve the error class of last object call.

ErrorMessage Used to retrieve the error message of last object call.

ErrorNumber Used to retrieve the error number of last object call.

ForceLogon Determines whether explicit or auto-logon is used by the caller.

get_StatusOfMessage(messageID)Gets the status of the message identified by the message ID (valid
for reliable RPC). See Reliable RPC for DCOM Wrapper.

GetVersion Get the version of DCOM Wrapper generated object:

n Total number of subscribers.

0 for Template version

1 for Library version

2 for RPC runtime version

Library Used to set and/or retrieve the Natural library. The default for
Library is the library name used in the IDL file.

MessageID Gets the message ID (valid for reliable RPC). See Reliable RPC
for DCOM Wrapper.

NaturalLogon Used to set and/or retrieve the Natural logon value. The default is
no Natural logon. Valid parameters are Y or N. The parameter
must be a single character string. If the property has been set to Y,
the next call to the Natural server will cause a Natural Logon. The
properties RpcPassword and RpcUserID will be used to check the
user’s authentication.

NewPassword Used only for changing the user password. The user password
cannot be retrieved.

PassWord Used only for setting the user password. The user password cannot
be retrieved. The default is to use no password.

Reliable Used to set and/or retrieve the mode for reliable RPC. See Reliable
RPC for DCOM Wrapper.

ReliableCommit Commit a transaction (unit of work) for reliable RPC.

ReliableRollback Roll back a transaction (unit of work) for reliable RPC.

4

Standard Wrapper PropertiesGenerated DCOM Wrapper Objects

Property Name Description

RpcPassword Used only for setting the RPC user RPC password. The RPC user
RPC password cannot be retrieved. The default is the value of
property PassWord.

RpcUserID Used to specify RPC user ID. It can also be used to retrieve the
current RPC user ID. The default for RPC user ID is the value of
property userID.

SecurityToken Security token generated by EntireX Security and EntireX Broker
after successful security validation. Do not overwrite or change it.
Corresponds to the Broker ACI field SECURITY-TOKEN. See
SECURITY-TOKEN and also Overview of EntireX Security.

ServerAddress Used to set and retrieve the server address. The default is the value
entered in the DCOM Wrapper Options dialog.

SetInfo This method accepts named parameters. Clients can set all or any
of the above attributes using this method. See Examples for more
information.

SSLString Used for setting the SSL parameters.

TimeOut User can set and/or retrieve the timeout value. The default value is
50 seconds.

Token Used to set and/or retrieve the Token.

UserID Used to specify user ID. It can also be used to retrieve the current
User ID. The default for user ID is USER.

Handling Complex Data Types
ActiveX automation technology supports only a restricted set of data types.

The DCOM Wrapper supports the use of arrays with up to three dimensions. For all base types, the
DCOM Wrapper uses the so-called SAFEARRAY data type for the mapping of arrays to ActiveX data
types.

Note:
If the SAFEARRAY data type is used, the system expects the array to have the correct size. It is not
recommended that you leave any member of an array undefined.

This section covers the following topics:

A Complex Structure Example

[INOUT] Parameters

[OUT] Parameters

Notes on Visual Basic

5

Generated DCOM Wrapper ObjectsHandling Complex Data Types

A Complex Structure Example

IDL

...
Program ’CPROG’ is
 Define data parameter
 1 IVALUE (I4) IN
 1 IARRAY (A80/1:9) IN
 end-define

Visual Basic

...
dim arr()
redim arr(8)
...
for n = 0 to 8
 arr(n) = "ONLY IN " & (n+1)
 document.write arr(n)
next
WrapperObject.CPROG 123, arr

C/C++

...
long i4_single = 12345678;
SAFEARRAY *iarray;
SAFEARRAYBOUND rgsabound_dim1[] = {9, 0};

char temp [32];
OLECHAR wtemp[32];

iarray = SafeArrayCreate(VT_BSTR, 1, rgsabound_1);
for (i = 0; i <9; i++)
{
 sprintf (temp,"I%d",(i+1)*1);
 mbstowcs(wtemp, temp, 80);
 iarray[i] = SysAllocString(wtemp);
}

VARIANTARG args[2];
VariantInit(args);
VariantInit(args+1);

DISPPARAMS params;

V_ARRAYREF(args+1) = & iarray;
V_VT(args+1) = VT_ARRAY|VT_BSTR|VT_BYREF;
V_I4REF(args) = &i4_single;
V_VT(args) = VT_I4|VT_BYREF;

params.rgvarg = args;
params.rgdispidNamedArgs = cNames > 1 ? id+1 : 0;
params.cArgs = 2;
params.cNamedArgs = cNames-1 ;

EXCEPINFO pExcpInfo;

res = pDspObj->Invoke(id[0],
 IID_NULL,

6

A Complex Structure ExampleGenerated DCOM Wrapper Objects

 0,
 DISPATCH_METHOD,
 ¶ms,
 NULL,
 &pExcpInfo,
 0);
...

[INOUT] Parameters

IDL

...
Program ’APROG’ is
 Define data parameter
 1 IVALUE (I4) IN
 1 IOARRAY (A80/1:10) IN OUT
 end-define

Visual Basic

...
dim arr()
redim arr(9)
...
for n = 0 to 9
 arr(n) = "INOUT" & (n+1)
 document.write arr(n)
next
WrapperObject.APROG 123, arr
For each strval in arr
 Document.write strval
Next

C/C++

...
long i4_single = 12345678;
SAFEARRAY *ioarray;
SAFEARRAYBOUND rgsabound_dim1[] = {10, 0};

char temp [32];
OLECHAR wtemp[32];

ioarray = SafeArrayCreate(VT_BSTR, 1, rgsabound_1);
for (i = 0; i <10; i++)
{
 sprintf (temp,"I%d",(i+1)*1);
 mbstowcs(wtemp, temp, 80);
 ioarray[i] = SysAllocString(wtemp);
}

VARIANTARG args[2];
VariantInit(args);
VariantInit(args+1);

DISPPARAMS params;

V_ARRAYREF(args+1) = & ioarray;
V_VT(args+1) = VT_ARRAY|VT_BSTR|VT_BYREF;
V_I4REF(args) = &i4_single;

7

Generated DCOM Wrapper Objects[INOUT] Parameters

V_VT(args) = VT_I4|VT_BYREF;

params.rgvarg = args;
params.rgdispidNamedArgs = cNames > 1 ? id+1 : 0;
params.cArgs = 2;
params.cNamedArgs = cNames-1 ;

EXCEPINFO pExcpInfo;

res = pDspObj->Invoke(id[0],
 IID_NULL,
 0,
 DISPATCH_METHOD,
 ¶ms,
 NULL,
 &pExcpInfo,
 0);
...

[OUT] Parameters

IDL

...
Program ’BPROG’ is
 Define data parameter
 1 IVALUE (I4) IN
 1 IARRAY (A80/1:10) OUT
 end-define

Visual Basic

...
dim arr()

’redim arr(10)
...
WrapperObject.BPROG 123, arr
For each strval in arr
 Document.write strval
Next

See Notes on Visual Basic below.

C/C++

In the C/C++ language, the INOUT and OUT parameters behave in the same way. See C/C++ example
for INOUT parameters above.

Notes on Visual Basic

After the call that creates this array, you can check the array bounds with the Visual Basic functions
LBound and UBound.

Visual Basic arrays start with index 0. VBScript does not support the "dim myarray(... to ...)"
notation. Because array sizes are checked, you must dimension your array n -1 when it contains n
elements.

8

[OUT] ParametersGenerated DCOM Wrapper Objects

IN, OUT arrays must be defined like OUT arrays and then redimensioned to the required size.

EntireX DCOM Wrapper version 5.1 and above creates objects that support VARIANT references.
Scripting languages such as VBScript pass output parameters by VARIANT references and not by exactly
defined type. For example, when a method of a COM interface has an OUT parameter of type string,
Visual Basic passes a reference to a VARIANT to get the OUT parameter. DCOM Wrapper objects try to
convert these references into the required reference type.

VBScript supports VARIANT reference.

If you are using PERL for Win32 or JScript, refer to the appropriate documentation for information
whether the used version supports VARIANT reference.

Calling Remote Procedures as Functions
The IDL syntax allows you to define (remote) procedures only. This is similar to Natural, which knows
only procedures (referred to in Natural as subprograms). Neither IDL nor Natural have the concept of a
function. A function is a procedure which, in addition to the parameters, returns some value.

It is possible to treat the OUT parameter of a procedure as the return value of a function. Using this
technique, a procedure can be used as a function. The DCOM Wrapper generates a function rather than a
procedure when the following two conditions are met:

the last parameter of the procedure definition is of type OUT

this last parameter of the procedure definition has the name Function_Result .

As an example, see the calc.idl file in the subdirectory Examples\DCOM Wrapper\calc of the EntireX
installation.

 Program ’Calc’ Is
 Define Data Parameter
 1 Operator_ (A1) In
 1 Operand_1 (I4) In
 1 Operand_2 (I4) In
 1 Function_Result (I4) Out
 End-Define

From the above specification, the DCOM Wrapper generates an object that can be called from Visual
Basic as follows:

Dim result As Long
. . .
result = CALCOLEObj.calc ("+", 1234, 1234)

If the last parameter had a name other than Function_Result in the IDL file, the call in Visual Basic
would look as follows:

CALCOLEObj.calc "+", 1234, 1234, result

9

Generated DCOM Wrapper ObjectsCalling Remote Procedures as Functions

Standard Wrapper Methods

Standard Logon/Logoff Methods

For an explicit logon, each Wrapper object that is generated supports the methods Logon and Logoff .
During logon, user ID and password are validated by EntireX Broker and EntireX Security. Logoff frees
allocated resources in EntireX Broker and EntireX Security, which results in fewer bottlenecks.

Tips

Issue a logon once for every EntireX Broker you deal with, normally at the start of the application.
Do not issue separate logons for every Wrapper object when using multiple objects in an application.

Issue a logoff whenever an EntireX Broker is not needed for a longer period, and always issue a
logoff at the end of the application.

Issue a logon and a logoff for every token used.

Visual Basic Example using Logon/Logoff

Dim OLEObj as Object ’ Create the Object
OLEObj.UserID = "<User ID>" ’Set the User ID
OLEObj.Password = "<Password>" ’ Set the Password
OLEObj.Logon ’ Sign on
...
OLEObj.Logoff ’ Sign off

Using Wrapper Objects Conversationally

This section contains the following topics:

Programming Model
Wrapper Methods
Visual Basic Example using Conversations
Tips

Programming Model

The basic method of communication for both the EntireX and the Natural RPC is non-conversational (also
known as connectionless communication). Using this method, each RPC message is isolated and has no
relationship to any other RPC message.

The DCOM Wrapper also supports conversational communication (also known as connection-oriented
communication), where the two partners (client and server) retain a communication link over several
remote procedure calls.

Conversational communication facilitates a more object-oriented design approach. In addition, a context
can be maintained on the server side when a Natural RPC Server is in use. See the DEFINE DATA
CONTEXT statement in the appropriate Natural Documentation.

10

Standard Wrapper MethodsGenerated DCOM Wrapper Objects

Wrapper Methods

The conversation is handled by the following standard Wrapper methods:

Method Name Description

OpenConversation Used to open a conversation to the named server. Until one of the
CloseConversation methods is used, all subsequent RPC messages
belong to the opened conversation. A Wrapper object is either in
non-conversational or conversational mode. A mixture of the two modes
is not possible.

CloseConversation Used to close the previously opened conversation. When the partner is a
Natural RPC Server, it implicitly executes a database BACKOUT
TRANSACTION before closing the conversation. When the partner is an
EntireX RPC server, no database backout is executed. All other database
operations are the responsibility of the user.

CloseConversationCommitUsed to close the previously opened conversation. When the partner is a
Natural RPC Server, it implicitly executes a database END
TRANSACTION before closing the conversation. When the partner is an
EntireX RPC server, no database commit is executed. All other database
operations are the responsibility of the user.

Visual Basic Example using Conversations

On Error Goto ErrHandling
Dim OLEObj as Object ’ Create Object
Set OLEObj = CreateObject("ObjectName")
OLEObj.OpenConversation ’ Open the Conversation
OLEObj.<RPC Message 1> ’ first RPC Message
OLEObj.<RPC Message 2> ’ second RPC Message
..
OLEObj.<RPC Message n> ’ n th RPC Message
OLEObj.CloseConversationCommit ’ Close the Conversation with END TRANSACTION
ErrHandling:
OLEObj.CloseConversation ’ Close the Conversation with BACKOUT TRANSACTION

The OpenConversation call establishes the conversation with the previously specified server.
Assuming the RPC messages contain database update operations, the CloseConversationCommit
makes the database modifications active by implicitly executing the END TRANSACTION operation.
When an error occurs within the conversation, the database operations are backed out implicitly by the
CloseConversation call. See also the Conversation Example in the directory Examples\DCOM
Wrapper.

Tips

When an END TRANSACTION or BACKOUT is needed within the conversation (without closing
the conversation) simply define Backout and Commit in the IDL file as programs and implement
them on the server. Backout or Commit can then be invoked as OLEObj.Backout and
OLEObj.Commit.

If you need to have a second conversation in parallel, simply define a second object in your
application.

11

Generated DCOM Wrapper ObjectsUsing Wrapper Objects Conversationally

Dim OLEObj1 as Object ’ Create first object

Dim OLEObj2 as Object ’ Create second object

Try to keep the duration of the conversations to a minimum when the Natural RPC Server is in use.
Remember the server is blocked and in exclusive use by the calling client and cannot be used in
parallel by other clients. Prestarting enough server replicas could improve this performance problem;
using the EntireX Attach Manager would solve it. However, the EntireX RPC Server can be set up to
create a replica for each new conversation. Always remember to code a CloseConversation
call.

Method SetInfo

The method can be used to set more than one property at a time. Each property will be passed with named
variables. For an example see Setting up User ID and Timeout Value using Method SetInfo.

Setting Features

To fine tune the behavior of the DCOM Wrapper object, the following features are available. If you prefer
the defaults of EntireX versions up to 5.3, use put_Feature("EXX53", true) .

Feature Default Description Note on Versions
up to 5.3

StringTrimming ON Trim trailing space characters from the string for the
received string. The String (An,Kn,AV,KV,AVn,KVn)
will not be trimmed during transmission. Only the
received string will be trimmed

Default: OFF.
Strings not
trimmed on output.

StringCutting OFF While using An or Kn the string will cut at the given
fixed size. If this feature is switched off a string longer
than the given fixed size will cause an exception. This
feature does not touch the data types AVn and KVn. If
an AVn or KVn was longer than the given maximum
size an exception will be thrown.

Default: ON.
Strings that are too
long are cut.

ExactValue ON Check N,P,NU,PU data types after converting from a
double to the data type used for internal transmission,
if the value was still exactly the same. If the feature is
on, it will cause an exception if the value was not
exactly the same. The feature is only valid if the
"Numeric/Packed decimal to double" (see Setting
DCOM Wrapper Properties) switch was on while the
DCOM object was being generated. See also IDL Data
Types.

Default: OFF.
No verification of
any modification
during value
conversion
(string/number to
number).

Syntax

put_Feature("<feature>", <true|false>)
get_Feature("<feature>") return a Boolean value

12

Method SetInfoGenerated DCOM Wrapper Objects

where <feature> is one of the features in the table above.

VB6 Example

Dim STrim as Boolean
obj.put_Feature "StringTrimming", True
STrim = obj.get_Feature("StringTrimming")

Shared C Runtime Environment
During the generation process, the DCOM Wrapper object links the shared C Runtime library (CRT) of
the used C/C++ compiler environment. The version and the name of the C Runtime library depends on the
vendor and version of the C/C++ compiler used. The required shared C Runtime library must be
distributed together with the DCOM Wrapper object.

The requirement of the runtime environment for your C/C++ compiler is described in the product
documentation of your C/C++ compiler.

C Runtime Component of Microsoft Visual C++

The shared C Runtime (CRT) DLL was distributed by Microsoft in the past as a shared system
component. The C Runtime libraries of newer Microsoft Visual C++ compilers are no longer considered
system files; therefore, the C Runtime libraries have to be distributed with any application that relies on
them.

C++ Compiler C Runtime

Microsoft Visual C++ .NET 2002 Msvcr70.dll

Microsoft Visual C++ .NET 2003 Msvcr71.dll

Microsoft Visual C++ .NET 2005 Msvcr80.dll

Microsoft Visual C++ .NET 2008 Msvcr90.dll

Microsoft Visual C++ .NET 2010 Msvcr100.dll

For additional information, please see Microsoft Knowledge Base Article - 326922.

Registering a Wrapper Object
Each ActiveX automation server must be registered (in the Windows registry) so that it is recognized as
an ActiveX object. When you run the Wizard, the generated Wrapper object is registered automatically.
You can also register an automation object manually. This is necessary if you want to transfer the
Wrapper object to another machine, or when you move the generated object to another directory.

 To register the Wrapper object

1. Run the program Regsvr32.exe with the full name of the Wrapper object (generated DLL) as
parameter. Regsvr32.exe is part of Microsoft Visual C++. A copy is installed in the Windows system
directory.

13

Generated DCOM Wrapper ObjectsShared C Runtime Environment

2. Make sure the path includes the directory <drive>:\Program Files\Common Files\Software AG.
Otherwise Regsvr32 returns an error such as:
LoadLibrary ("xyz.dll") failed. GetLastError returns 0x0000007e. .

 To unregister the Wrapper object

Run Regsvr32 with the /u switch. This removes all registry entries for the Wrapper object. You
should do this before deleting the generated object, otherwise the system registry will contain
unwanted entries.

Deployment of Wrapper Objects
 To use a Wrapper object on a machine other than the machine on which you generated the

object

1. Make sure that EntireX Runtime is installed on the machine on which you want to use the Wrapper
object.

2. Copy the generated object and then register the Wrapper object as described under Registering a
Wrapper Object above.

Using Wrapper Objects with DCOM
You can use objects generated by the DCOM Wrapper with DCOM on Windows platforms. A Wrapper
object installed on one Windows machine that performs Remote Procedure Calls via EntireX Broker can
be accessed from other clients via DCOM.

 To enable use of DCOM

Check the Generate DCOM proxy box in the EntireX Workbench File > Properties > DCOM
Wrapper before generating the object.

The generated object (e.g. Example.dll) must be installed on the machine that will access the Broker (see
Deployment of Wrapper Objects). This object is ready to be used as a DCOM server. The security/identity
settings for this object can be changed with the DCOMCNFG.EXE utility.

The proxy object (e.g. pExample.dll) must be registered on every DCOM client machine. The purpose of
the proxy object is twofold:

To register and unregister the Wrapper object on the client machines (registration on a DCOM client
machine is different from registration on a DCOM server machine).

To provide the type library for applications running on the client side.

For more information, see Proxy Objects with the DCOM Wrapper.

14

Deployment of Wrapper ObjectsGenerated DCOM Wrapper Objects

	Generated DCOM Wrapper Objects
	Supported Data Types
	Code Generation Process
	Location of DCOM Wrapper Objects
	Example

	Standard Wrapper Properties
	Handling Complex Data Types
	A Complex Structure Example
	IDL
	Visual Basic
	C/C++

	[INOUT] Parameters
	IDL
	Visual Basic
	C/C++

	[OUT] Parameters
	IDL
	Visual Basic
	C/C++

	Notes on Visual Basic

	Calling Remote Procedures as Functions
	Standard Wrapper Methods
	Standard Logon/Logoff Methods
	Tips
	Visual Basic Example using Logon/Logoff

	Using Wrapper Objects Conversationally
	Programming Model
	Wrapper Methods
	Visual Basic Example using Conversations
	Tips

	Method SetInfo
	Setting Features
	Syntax
	VB6 Example

	Shared C Runtime Environment
	C Runtime Component of Microsoft Visual C++

	Registering a Wrapper Object
	Deployment of Wrapper Objects
	Using Wrapper Objects with DCOM

