
Using the COBOL Wrapper for the Server
Side
The COBOL Wrapper provides access to RPC-based components from COBOL applications and enables
users to develop both clients and server. This section introduces the various possibilities for RPC-based
server applications written in COBOL and covers the following sections:

Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and
z/VSE)

Using the COBOL Wrapper for CICS with Channel Container Calling Convention (z/OS)

Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and
z/VSE)

Using the COBOL Wrapper for Batch (z/OS, BS2000/OSD, z/VSE and IBM i)

Using the COBOL Wrapper for IMS BMP (z/OS)

Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

1

Using the COBOL Wrapper for the Server SideUsing the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for CICS with
DFHCOMMAREA Calling Convention (z/OS and z/VSE)
This mode applies to z/OS and z/VSE. See also COBOL Scenarios under z/OS | z/VSE | CICS ECI in the
CICS RPC Server documentation.

(*) See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

In CICS, the RPC server sets up all of your server’s parameters dynamically in the format required. Your
server is called using EXEC CICS LINK .

Use the COBOL Wrapper for CICS with DFHCOMMAREA calling convention if

you want to have a standard EXEC CICS LINK DFHCOMMAREA interface to your server

you require a distributed program link (CICS DPL) to your server

the DFHCOMMAREA length restriction (31 KB) suits your needs, otherwise consider the following
interface types:

Using the COBOL Wrapper for CICS with Channel Container Calling Convention (z/OS)

Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and
z/VSE)

 To use the COBOL Wrapper for CICS with DFHCOMMAREA calling convention

1. Generate the server (skeleton) for the target operating system, for example "z/OS", and use interface
type "CICS with DFHCOMMAREA calling convention". See Generating COBOL Source Files from
Software AG IDL Files.

2

Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)Using the COBOL Wrapper for the Server Side

2. If a server mapping file is required, it has to be provided. A server mapping file is an EntireX
Workbench file with extension .svm or .cvm. See Server Mapping Files for COBOL.

Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files to the RPC Server (z/OS | z/VSE | CICS ECI) in the RPC server documentation,
except for CICS ECI connections with the webMethods EntireX Adapter, where you need to
update your Adapter connection. See Step 3: Select the Connection Type in the Integration
Server Wrapper documentation.

Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with the
RPC request. You need to rebuild all RPC clients communicating with this RPC server program.
Select the appropriate wrapper (see EntireX Wrappers in the EntireX Workbench
documentation) and re-generate the client interface objects. For connections with the
webMethods EntireX Adapter you need to update your Adapter connection. See Step 3: Select
the Connection Type in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-side
mapping.

3. If necessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write your
server.

4. Use the generated server (skeleton(s)) and complete it by applying your application logic. Note the
information given in Software AG IDL to COBOL Mapping and Aborting RPC Server Customer
Code and Returning Error to RPC Client (z/OS | z/VSE) in the CICS RPC Server documentation.

5. Using the CICS translator for COBOL provided with your CICS installation and a COBOL compiler
supported by the COBOL Wrapper, translate and compile your server.

6. Link (bind) the server to an executable program, using the standard linker (binder) of the target
platform. Give your server a CICS program name that is the same as the program-name in the
IDL file. See program-definition under Software AG IDL Grammar.

7. Provide your server(s) to the CICS RPC server, EntireX Adapter, or CICS ECI RPC server:

Install your server(s) as separate CICS program(s).

If you are using a server-side mapping file, a concatenation of the program-name and the
library-name given in the IDL is used to locate the server mapping file. See
program-definition and library-definition under Software AG IDL Grammar.
Example: If a client performs an RPC request that is based on the IDL program name CALC and
the IDL library EXAMPLE, the RPC server will dynamically try to locate logically the server
mapping file EXAMPLECALC and execute the program with the COBOL name defined in the
server mapping. See Customize Automatically Generated Server Names. If no corresponding
program can be found, the access will fail.
If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, see Customize
Automatically Generated Server Names) is executed. If no corresponding program can be found,
the access will fail.

3

Using the COBOL Wrapper for the Server SideUsing the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)

If neither a server-side nor client-side mapping file is used - for example it is not required or the
server is generated with a previous version of EntireX without support for server mapping - the library
name (see library-definition) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name CALC,
the RPC server will dynamically try to execute a program CALC. If no corresponding program can be
found, the access will fail.

4

Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for CICS with Channel
Container Calling Convention (z/OS)
This section covers the following topics:

Introduction

CICS Channel Container IDL Rules

Restrictions

Example 1: Same Container for Direction In and Out

Example 2: Different Container for Direction In and Out

Example 3: Multiple Containers

Example 4: Variable Number of Containers (Direction Out Only)

Steps

Introduction

This mode applies to z/OS. See also COBOL Scenarios in the CICS RPC Server documentation.

(*) See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

In CICS, the RPC server sets up all of your server’s parameters dynamically in the format required. Your
server is called using EXEC CICS LINK passing the container(s) in the defined channel to your server.
See Channel Name.

5

Using the COBOL Wrapper for the Server SideUsing the COBOL Wrapper for CICS with Channel Container Calling Convention (z/OS)

Use the COBOL Wrapper for CICS with channel container calling convention if

you require more than 31 KB of data to transfer to your server

your IDL complies with CICS channel container IDL rules (see below). If your IDL does not match
these rules, consider the interface type Using the COBOL Wrapper for CICS with DFHCOMMAREA
Large Buffer Interface (z/OS and z/VSE) to implement your server.

you want to have a standard CICS channel container interface to your server

you require a distributed program link (CICS DPL) to your server.

CICS Channel Container IDL Rules

The following rules apply to CICS channel container IDL:

A container is described with an IDL structure. See structure-definition .

The container name is the name of the IDL structure. A maximum of 16 characters are allowed by
CICS for container names.

IDL programs reference IDL structures only. No other parameters may be referenced.

Multiple containers can be defined, see Example 3: Multiple Containers.

A variable number of containers can be defined using one-dimensional IDL unbounded arrays with
maximum (see array-definition under Software AG IDL Grammar in the IDL Editor
documentation). See also Example 4: Variable Number of Containers (Direction Out Only).

Restrictions

IDL unbounded arrays (i.e. variable containers) for direction In and INOUT are not supported.

Two and three-dimensional IDL unbounded arrays are not supported.

Example 1: Same Container for Direction In and Out

This example uses the same container for input and output. The container name is "CALC".

Library ’EXAMPLE’ Is
 Program ’CONCALC’ Is
 Define Data Parameter
 1 Container (’CALC’) InOut
 End-Define

 Struct ’CALC’ Is
 Define Data Parameter
 1 Operation (A1)
 1 Operand_1 (I4)
 1 Operand_2 (I4)
 1 Function_Result (I4)
 End-Define

6

CICS Channel Container IDL RulesUsing the COBOL Wrapper for the Server Side

Example 2: Different Container for Direction In and Out

This example uses separate containers for input and output.

Library ’DFHCON’ Is
 Program ’TWOC’ Is /* Two Container - Separate for Input and Output
 Define Data Parameter
 1 ContainerIn (’CONTAINER1’) In
 1 ContainerOut (’CONTAINER2’) Out
 End-Define
Struct ’CONTAINER1’ Is
 Define Data Parameter
 1 Just-Occupied-Space (A39000) /* 39K
 1 Request (A1000/5) /* 5K
 End-Define
Struct ’CONTAINER2’ Is
 Define Data Parameter
 1 Just-Occupied-Space (A49000) /* 49K
 1 Reply (A250)
 End-Define

See IDL program TWOC under Advanced CICS Channel Container RPC Server Example - DFHCON.

Example 3: Multiple Containers

This example shows how more than one container is used per direction. Each container has its own
structure layout.

Library ’DFHCON’ Is
 Program ’MULTIC’ Is
 Define Data Parameter
 1 InContainer1 (’INCONTAINER1’) In
 1 InContainer2 (’INCONTAINER2’) In
 1 InContainer3 (’INCONTAINER3’) In
 ...

 1 OutContainer1 (’OUTCONTAINER1’) Out
 1 OutContainer2 (’OUTCONTAINER2’) Out
 1 OutContainer3 (’OUTCONTAINER3’) Out
 ...

 End-Define

 Struct ’INCONTAINER1’ Is ...
 Struct ’INCONTAINER2’ Is ...
 Struct ’INCONTAINER3’ Is ...
 ...

 Struct ’OUTCONTAINER1’ Is ...
 Struct ’OUTCONTAINER1’ Is ...
 Struct ’OUTCONTAINER1’ Is ...
 ...

Example 4: Variable Number of Containers (Direction Out Only)

This example shows how to specify a range of containers. At runtime, the called RPC server creates a
variable number of containers from this range. Each container created has the same structure layout and a
container name that is formed from the structure name as prefix and the structure index as suffix. In this
example:

7

Using the COBOL Wrapper for the Server SideExample 2: Different Container for Direction In and Out

MULTIPLE container names are MULTIPLE0001 thru MULTIPLE9999 .

OPTIONAL container name is OPTIONAL1.

Note:
Make sure IDL observes the 16-character length restriction for container names given by CICS.

Library ’DFHCON’ Is
 Program ’VARC’ Is
 Define Data Parameter
 1 Input (’INPUT’) In
 1 Multiple (’MULTIPLE’/V9999) Out /* 0 thru 9999 times
 1 Optional (’OPTIONAL’/V1) Out /* 0 or 1 times
 End-Define

 Struct ’INPUT’ Is ...
 Struct ’MULTIPLE’ Is ...
 Struct ’OPTIONAL’ Is ...

Steps

 To use the COBOL Wrapper for CICS with channel container calling convention

1. Generate the server (skeleton(s)) for the target operating system, for example "z/OS", and use
interface type "CICS with channel container calling convention". See Generating COBOL Source
Files from Software AG IDL Files.

2. The generated server mapping file has to be provided. A server mapping file is an EntireX
Workbench file with extension .svm or .cvm. See Server Mapping Files for COBOL.

Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files to the RPC Server (z/OS | z/VSE) in the CICS RPC Server documentation.

Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with the
RPC request. You need to rebuild all RPC clients communicating with this RPC server program.
Select the appropriate wrapper (see EntireX Wrappers in the EntireX Workbench
documentation) and re-generate the client interface objects. For connections with the
webMethods EntireX Adapter you need to update your Adapter connection. See Step 3: Select
the Connection Type in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-side
mapping.

3. If necessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write your
server.

4. Use the generated server (skeleton(s)) and complete it by applying your application logic. Note the
information given in Software AG IDL to COBOL Mapping and Aborting RPC Server Customer
Code and Returning Error to RPC Client in the CICS RPC Server documentation.

5. Using the CICS translator for COBOL provided with your CICS installation and a COBOL compiler
supported by the COBOL Wrapper, translate and compile your server.

8

StepsUsing the COBOL Wrapper for the Server Side

6. Link (bind) the server to an executable program, using the standard linker (binder) of the target
platform. Give your server a CICS program name that is the same as the program-name in the
IDL file (see program-definition).

7. Provide your server(s) to the CICS RPC server.

Install your server(s) as separate CICS program(s).

If you are using a server-side mapping file, a concatenation of the program-name and the
library-name given in the IDL is used to locate the server mapping file. See
program-definition and library-definition under Software AG IDL Grammar.
Example: If a client performs an RPC request that is based on the IDL program name CALC and
the IDL library EXAMPLE, the RPC server will dynamically try to locate logically the server
mapping file EXAMPLECALC and execute the program with the COBOL name defined in the
server mapping. See Customize Automatically Generated Server Names. If no corresponding
program can be found, the access will fail.
If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, see Customize
Automatically Generated Server Names) is executed. If no corresponding program can be found,
the access will fail.

9

Using the COBOL Wrapper for the Server SideSteps

Using the COBOL Wrapper for CICS with
DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE)
This mode applies to z/OS and z/VSE. See also COBOL Scenarios under z/OS | z/VSE | CICS ECI in the
CICS RPC Server documentation.

(*) See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

In CICS, the RPC server sets up all your server’s parameters dynamically in the format required. Your
server is called by EXEC CICS LINK . Within the DFHCOMMAREA, pointers are passed to a large
input/output buffer.

Use the COBOL Wrapper for CICS with DFHCOMMAREA large buffer interface in the following
situations:

You need to migrate COBOL programs implemented with webMethods WMTLSRVR interface to
the CICS RPC server.

You require more than 31 KB of data to transfer to your server.

You cannot use the channel container calling convention because your IDL does not match the
applicable rules; see CICS Channel Container IDL Rules under Using the COBOL Wrapper for CICS
with Channel Container Calling Convention (z/OS). There are no IDL restrictions for this interface
type - every IDL can be used.

You prefer this interface type rather than the channel container interface type.

You do not require a distributed program link (CICS DPL) to your server.

10

Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE)Using the COBOL Wrapper for the Server Side

 To use the COBOL Wrapper for CICS with large buffer interface

1. Generate the server (skeleton(s)) for the target operating system, for example "z/OS", and use
interface type "CICS with DFHCOMMAREA large buffer interface". See Generating COBOL
Source Files from Software AG IDL Files.

2. The generated server mapping file has to be provided. A server mapping file is an EntireX
Workbench file with extension .svm or .cvm. See Server Mapping Files for COBOL.

Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files to the RPC Server (z/OS | z/VSE) in the CICS RPC Server documentation.

Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with the
RPC request. You need to rebuild all RPC clients communicating with this RPC server program.
Select the appropriate wrapper (see EntireX Wrappers in the EntireX Workbench
documentation) and re-generate the client interface objects. For connections with the
webMethods EntireX Adapter you need to update your Adapter connection. See Step 3: Select
the Connection Type in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-side
mapping.

3. If necessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write your
server.

4. Use the generated server (skeleton(s)) and complete it by applying your application logic. Note the
information given in Software AG IDL to COBOL Mapping and Aborting RPC Server Customer
Code and Returning Error to RPC Client in the CICS RPC Server documentation.

5. Using the CICS translator for COBOL provided with your CICS installation and a COBOL compiler
supported by the COBOL Wrapper, translate and compile your server.

6. Link (bind) the server to an executable program, using the standard linker (binder) of the target
platform. Give your server a CICS program name that is the same as the program-name in the
IDL file (see program-definition).

7. Provide your server(s) to the CICS RPC server.

Install your server(s) as separate CICS program(s).

If you are using a server-side mapping file, a concatenation of the program-name and the
library-name given in the IDL is used to locate the server mapping file. See
program-definition and library-definition under Software AG IDL Grammar.
Example: If a client performs an RPC request that is based on the IDL program name CALC and
the IDL library EXAMPLE, the RPC server will dynamically try to locate logically the server
mapping file EXAMPLECALC and execute the program with the COBOL name defined in the
server mapping. See Customize Automatically Generated Server Names. If no corresponding
program can be found, the access will fail.
If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, see Customize
Automatically Generated Server Names) is executed. If no corresponding program can be found,
the access will fail.

11

Using the COBOL Wrapper for the Server SideUsing the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE)

Using the COBOL Wrapper for Batch (z/OS, BS2000/OSD,
z/VSE and IBM i)
This mode applies to z/OS, BS2000/OSD, z/VSE and IBM i. See also COBOL Scenarios (z/OS |
BS2000/OSD | z/VSE) in the Batch RPC Server documentation.

(*) See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

In batch mode, the RPC server sets up all of your server’s parameters dynamically in the format required.
Your server is called dynamically using standard call interfaces.

Use the COBOL Wrapper for batch to build servers for the Batch RPC server.

 To use the COBOL Wrapper for batch

1. Generate a server (skeleton(s)) for the target operating system, for example "z/OS", and use interface
type "Batch with standard linkage calling convention". See Generating COBOL Source Files from
Software AG IDL Files for details.

2. If a server mapping file is required, it has to be provided. A server mapping file is an EntireX
Workbench file with extension .svm or .cvm. See Server Mapping Files for COBOL.

Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files to the RPC Server for z/OS (Batch, IMS) | BS2000/OSD | z/VSE in the RPC
server documentation.

Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with the
RPC request. You need to rebuild all RPC clients communicating with this RPC server program.
Select the appropriate wrapper (see EntireX Wrappers in the EntireX Workbench
documentation) and re-generate the client interface objects. For connections with the
webMethods EntireX Adapter you need to update your Adapter connection. See Step 3: Select

12

Using the COBOL Wrapper for Batch (z/OS, BS2000/OSD, z/VSE and IBM i)Using the COBOL Wrapper for the Server Side

the Connection Type in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-side
mapping.

3. If necessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write your
server.

4. Use the generated server (skeleton(s)) and complete it by applying your application logic. Note the
information given in Software AG IDL to COBOL Mapping.

Under z/OS

See Aborting RPC Server Customer Code and Returning Error to RPC Client in the Batch RPC
Server documentation.

Under IBM i , consider multithreading issues:

Your server has to be implemented as an ILE COBOL program of type *PGM.

The RPC server is running in a multithreaded environment. Therefore your server must be
thread-safe. This implies that all commands and subprograms accessed in your servers must
allow multithreads.

Please note that some COBOL statements do not support multithreads. Using statements that are
not thread-safe (e.g. STOP RUN) can result in the RPC server ending abnormally. Therefore the
server programs have to be terminated with a thread-safe statement, for example EXIT
PROGRAM. For details, see the IBM documentation Language Restrictions under THREAD and
Preparing ILE COBOL Programs for Multithreading.

5. Use a COBOL compiler supported by the COBOL Wrapper to compile your server.

Under BS2000/OSD,

the IDL types U or UV require a compiler that supports COBOL data type NATIONAL. See
BS2000/OSD Prerequisites for more information on supported compilers.

compile them as OM or LLM modules.

Under IBM i,

use the IBM i command CRTCBLMOD (create bound COBOL module).

as an alternative, you can compile and bind in one step, see the next step below.

On all other platforms,

use the standard COBOL compiler of the target platform.

6. Link (bind) your server to an executable program. Give the resulting server program the same name
as the program-name in the IDL file. See program-definition under Software AG IDL
Grammar.

13

Using the COBOL Wrapper for the Server SideUsing the COBOL Wrapper for Batch (z/OS, BS2000/OSD, z/VSE and IBM i)

Under BS2000/OSD:

There is no need to link the server modules with the BS2000/OSD Common Runtime
Environment (CRTE). The CRTE is included in the server’s BLSLIB chain and loaded
dynamically. If this is needed for any reason, the CRTE must be linked as a subsystem. All
entries must be hidden to prevent duplicates. Linking the CRTE statically will consume
resources and slow down the load time of the server modules.

Under IBM i :

Bind it as a dynamically callable program of type *PGM using the command CRTPGM.

As an alternative to compiling with CRTCBLMOD (see step above) and binding with CRTPGM
separately, you can compile and bind in one step with the command CRTBNDCBL.

When linking/binding servers, the CRTPGM parameter ACTGRP (*CALLER) must be
specified. This guarantees that the server application runs in the same activation group as the
calling RPC server.

On all other platforms

Use the standard linker (binder) of the target platform.

7. Provide your server to the Batch RPC Server.

Under IBM i

Put the server into a library whose name corresponds to the library name in the IDL file (see
library-definition).

If you put the server program into a library other than the library name given in the IDL (e.g.
MyLib), you must tell this to the RPC server, using the server parameter
Library=Fix(MyLib) . In this case, the library name sent with the client request is ignored.

Example: If a client performs an RPC request that is based on the IDL program name CALC in
the IDL library EXAMPLE, the remote RPC server will dynamically try to execute the ILE
program CALC in the IBM i library EXAMPLE. If no corresponding program can be found, the
access will fail.

On all other platforms

Add the server to the Batch RPC Server STEPLIB chain.

If you are using a server-side mapping file, a concatenation of the program-name and the
library-name given in the IDL is used to locate the server mapping file. See
program-definition and library-definition under Software AG IDL Grammar.
Example: If a client performs an RPC request that is based on the IDL program name CALC and
the IDL library EXAMPLE, the RPC server will dynamically try to locate logically the server
mapping file EXAMPLECALC and execute the program with the COBOL name defined in the
server mapping. See Customize Automatically Generated Server Names. If no corresponding
program can be found, the access will fail.
If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, see Customize

14

Using the COBOL Wrapper for Batch (z/OS, BS2000/OSD, z/VSE and IBM i)Using the COBOL Wrapper for the Server Side

Automatically Generated Server Names) is executed. If no corresponding program can be found,
the access will fail.

If neither a server-side nor client-side mapping file is used - for example it is not required or the
server is generated with a previous version of EntireX without support for server mapping - the library
name (see library-definition) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name CALC,
the RPC server will dynamically try to execute a program CALC. If no corresponding program can be
found, the access will fail.

Using the COBOL Wrapper for IMS BMP (z/OS)
This mode applies to z/OS IMS mode BMP. See also COBOL Scenarios in the IMS RPC Server
documentation.

(*) See Target Operating System and Server Interface Types under Generating COBOL Source Files from
Software AG IDL Files.

In IMS BMP, the IMS RPC server sets up all of your server’s parameters dynamically in the format
required. Your server is called dynamically using standard call interfaces. IMS-specific PCB pointers can
be provided as parameters in the linkage section.

Use the COBOL Wrapper for IMS BMP if you need to

access IMS BMP programs with standard linkage calling convention

access IMS databases through IMS PCB pointers and to pass them via parameters in the linkage
section

access the IMS PCB pointer IOPCB, for example to print data or to start an asynchronous transaction

15

Using the COBOL Wrapper for the Server SideUsing the COBOL Wrapper for IMS BMP (z/OS)

use the COBOL/ DLI interface module "CBLTDLI" which requires PCB pointers in its interface.

If PCB pointers have to be provided as parameters in the COBOL linkage section of your server, your IDL
must comply with the IMS PCB Pointer IDL rules listed below. If no PCB pointers are required, the rules
can be skipped.

IMS PCB Pointer IDL Rules

An IMS PSB list contains the PCB pointers of your environment:

The IMS PSB list is a text file and can be created with any text editor.

Only one PCB pointer is listed per line.

The PCB pointer IOPCB is always the first pointer in the IMS PSB list.

The PCB pointers (except IOPCB) match the related PSB generation for your server.

The PCB pointers listed match the PCB pointers provided at runtime to the IMS RPC server
(including IOPCB) in number and sequence.

The IMS PSB list is assigned in the IDL properties, see Generating COBOL Source Files from
Software AG IDL Files or IDL Generation Settings - Preferences. Example:

IOPCB
DBPCB

PCB pointers are described in the IDL as parameters. Thus they can be accessed in your server as any
other parameter. Additionally, the following is required:

IDL parameters that are PCB pointers are marked with the attribute IMS (see
attribute-list under Software AG IDL Grammar).

IDL parameters that are PCB pointers must match a PCB pointer listed in the IMS PSB list,
otherwise the IMS RPC server does not pass them as PCB pointers at runtime. This results in
unexpected behavior. Example:

Library ’IMSDB’ Is
 Program ’ IMSDB’ Is
 Define Data Parameter
 1 IN-COMMAND (A3) IN /* ADD, DEL, DIS
 1 IO-DATA IN OUT
 2 IO-LAST-NAME (A10)
 2 IO-FIRST-NAME (A10)
 2 IO-EXTENSION (A10)
 2 IO-ZIP-CODE (A07)
 1 DBPCB IN IMS /* this is a PCB pointer
 2 DBNAME (A8)
 2 SEG-LEVEL-NO (A2)
 2 DBSTATUS (A2)
 2 FILLER1 (A20)
 1 OUT-MESSAGE (A40) OUT
 End-Define

16

Using the COBOL Wrapper for IMS BMP (z/OS)Using the COBOL Wrapper for the Server Side

 To use the COBOL Wrapper for IMS BMP

1. Generate the server (skeleton(s)) for the target operating system "z/OS", use interface type "IMS
BMP with standard linkage calling convention". If PCB pointers should be provided as COBOL
linkage section parameters for your server, set the IMS PSB list; otherwise omit the IMS PSB list.
See Generating COBOL Source Files from Software AG IDL Files.

2. If a server mapping file is required, it has to be provided. A server mapping file is an EntireX
Workbench file with extension .svm or .cvm. See Server Mapping Files for COBOL.

Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files to the RPC Server.

Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with the
RPC request. You need to rebuild all RPC clients communicating with this RPC server program.
Select the appropriate wrapper (see EntireX Wrappers in the EntireX Workbench
documentation) and re-generate the client interface objects. For connections with the
webMethods EntireX Adapter you need to update your Adapter connection. See Step 3: Select
the Connection Type in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-side
mapping.

3. If necessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write your
server.

4. Use the generated server (skeleton(s)) and complete it by applying your application logic. You can
use the IMS-specific PCB pointers in your server as usual. Note the information given in Software
AG IDL to COBOL Mapping and Aborting RPC Server Customer Code and Returning Error to RPC
Client in the IMS RPC Server documentation.

5. Using a COBOL compiler supported by the COBOL Wrapper, compile your server.

6. Link (bind) the server to an executable program, using the standard linker (binder) of the target
program.

Give the resulting server program the same name as the program in the IDL file (see
program-definition under Software AG IDL Grammar).

7. Provide the server to the IMS RPC server.

Add the server to the IMS RPC server STEPLIB chain.

If you are using a server-side mapping file, a concatenation of the program-name and the
library-name given in the IDL is used to locate the server mapping file. See
program-definition and library-definition under Software AG IDL Grammar.
Example: If a client performs an RPC request that is based on the IDL program name CALC and
the IDL library EXAMPLE, the RPC server will dynamically try to locate logically the server
mapping file EXAMPLECALC and execute the program with the COBOL name defined in the
server mapping. See Customize Automatically Generated Server Names. If no corresponding
program can be found, the access will fail.
If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, see Customize

17

Using the COBOL Wrapper for the Server SideUsing the COBOL Wrapper for IMS BMP (z/OS)

Automatically Generated Server Names) is executed. If no corresponding program can be found,
the access will fail.

If neither a server-side nor client-side mapping file is used - for example it is not required or the
server is generated with a previous version of EntireX without support for server mapping - the library
name (see library-definition) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name CALC,
the RPC server will dynamically try to execute a program CALC. If no corresponding program can be
found, the access will fail.

Using the COBOL Wrapper for Micro Focus (UNIX and
Windows)
This mode applies to UNIX and Windows. See also Scenarios and Programmer Information in the Micro
Focus RPC Server documentation.

(*) See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

The Micro Focus RPC server sets up all of your server’s parameters dynamically in the format required.
Your server is called dynamically using standard call interfaces.

Use the COBOL Wrapperfor Micro Focus to build servers for the Micro Focus RPC server.

 To use the COBOL Wrapper for Micro Focus

1. Generate a server (skeleton(s)) for the target operating system, for example "Windows", and use
interface type "Micro Focus with standard linkage calling convention". See Generating COBOL
Source Files from Software AG IDL Files for details.

18

Using the COBOL Wrapper for Micro Focus (UNIX and Windows)Using the COBOL Wrapper for the Server Side

2. If a server mapping file is required, it has to be provided. A server mapping file is an EntireX
Workbench file with extension .svm or .cvm. See Server Mapping Files for COBOL.

Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files to the RPC Server.

Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with the
RPC request. You need to rebuild all RPC clients communicating with this RPC server program.
Select the appropriate wrapper (see EntireX Wrappers in the EntireX Workbench
documentation) and re-generate the client interface objects. For connections with the
webMethods EntireX Adapter you need to update your Adapter connection. See Step 3: Select
the Connection Type in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-side
mapping.

3. If necessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write your
server.

4. Import the modules into your Micro Focus IDE.

5. Use the generated server (skeleton(s)) and complete it by applying your application logic. Note the
information given in Software AG IDL to COBOL Mapping.

6. Compile and - if the format requires it - link (bind) and package your server(s) to one of the
following formats:

Micro Focus intermediate code (int) or generated code (gnt). These formats can also be
packaged into a Micro Focus library file (lbr). In this case the program-name (see
program-definition under Software AG IDL Grammar) given in the IDL file must match
the library file name. The library-name (library-definition) given in the IDL file
is ignored and not used.

Under Windows to a DLL, and under UNIX to a shared library (so/sl). The library-name
(library-definition) given in the IDL file must match the executables file name, and the
program-name (see program-definition) given in the IDL file must match an entry
point.

7. Provide your server to the Micro Focus RPC server.

Make sure your server(s) are accessible by the Micro Focus RPC server:

under UNIX, for example with the LD_LIBRARY_PATH environment variable

under Windows, for example with the PATH environment variable.

If you are using a server-side mapping file, a concatenation of the program-name and the
library-name given in the IDL is used to locate the server mapping file. See
program-definition and library-definition under Software AG IDL Grammar.
Example: If a client performs an RPC request that is based on the IDL program name CALC and
the IDL library EXAMPLE, the RPC server will dynamically try to locate logically the server
mapping file EXAMPLECALC and execute the program with the COBOL name defined in the
server mapping. See Customize Automatically Generated Server Names. If no corresponding

19

Using the COBOL Wrapper for the Server SideUsing the COBOL Wrapper for Micro Focus (UNIX and Windows)

program can be found, the access will fail.
If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, see Customize
Automatically Generated Server Names) is executed. If no corresponding program can be found,
the access will fail.

If neither a server-side nor client-side mapping file is used - for example it is not required or the
server is generated with a previous version of EntireX without support for server mapping - the library
name (see library-definition) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name CALC,
the RPC server will dynamically try to execute a program CALC. If no corresponding program can be
found, the access will fail.

20

Using the COBOL Wrapper for Micro Focus (UNIX and Windows)Using the COBOL Wrapper for the Server Side

	Using the COBOL Wrapper for the Server Side
	Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
	Using the COBOL Wrapper for CICS with Channel Container Calling Convention (z/OS)
	Introduction
	CICS Channel Container IDL Rules
	Restrictions
	Example€1: Same Container for Direction In and Out
	Example€2: Different Container for Direction In and Out
	Example€3: Multiple Containers
	Example€4: Variable Number of Containers (Direction Out Only)
	Steps

	Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE)
	Using the COBOL Wrapper for Batch (z/OS, BS2000/OSD, z/VSE and IBM€i)
	Using the COBOL Wrapper for IMS BMP (z/OS)
	
	IMS PCB Pointer IDL Rules

	Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

