
Using the RPC Communication Area
This chapter explains how clients use the RPC communication area and covers the following topics:

Purpose of the RPC Communication Area

Using the RPC Communication Area with a Standard Call Interface

Using the RPC Communication Area with EXEC CICS LINK

The RPC communication area is not relevant for servers.

Purpose of the RPC Communication Area
The RPC communication area is mainly used to specify parameters that are needed to communicate with
the broker and are not specific to client interface objects. In this way it defines a context for PRC clients.
Its purpose, among others, is

to assign the COMM-ETB-BROKER-ID and server name, see COMM-ETB-SERVER-CLASS,
COMM-ETB-SERVER-NAME and COMM-ETB-SERVICE-NAME

to assign the broker’s COMM-ETB-USER-ID and COMM-ETB-TOKEN

for use with conversational RPC (see Using Conversational RPC) to hold, for example, the
conversation ID, see COMM-ETB-CONV-ID

for use with EntireX Security to hold the broker’s COMM-ETB-PASSWORD,
COMM-ETB-SECURITY-TOKEN and others

to keep the results of the last RPC request, for example the error code

The RPC communication area is also the API to the generic RPC services, for example:

Log on to broker and log off from broker. See Using Broker Logon and Logoff.

Open conversation, close conversation and close conversation with commit. See Using
Conversational RPC.

When using reliable RPC function calls, do reliable RPC commit, do reliable RPC rollback, get
reliable status. See Reliable RPC for COBOL Wrapper.

Create a Natural Security token. See Using the COBOL Wrapper with Natural Security and
Impersonation.

From a COBOL point of view, the RPC communication area is the copybook ERXCOMM. It is generated in
the folder include for RPC client generation, see Generating COBOL Source Files from Software AG IDL
Files.

The layout of the RPC communication area is described in section The RPC Communication Area
(Reference).

1

Using the RPC Communication AreaUsing the RPC Communication Area

Using the RPC Communication Area with a Standard Call
Interface
The COBOL Wrapper allows the RPC communication to be used in the following ways:

Option External Clause

Option Linkage Section

Option Copybook

Option External Clause

With the RPC communication area option External Clause under RPC Communication Area, the
RPC communication area is passed using the COBOL External clause to the client interface objects. Note
that this is an extension to COBOL 85 standards, which might not be supported by every compiler.

The RPC communication area is allocated (declared) in the COBOL client application. The client
interface objects are statically linked (it is not possible to call them dynamically) to the COBOL client
application.

This kind of RPC communication area usage applies to the scenarios Micro Focus | Batch | CICS | IMS.

Examples

For examples on how the option External Clause is used, see Step 1: Declare and Initialize the RPC
Communication Area and Step 5: Issue the RPC Request in Writing Standard Call Interface Clients.

Option Linkage Section

With the RPC communication area option Linkage Section under RPC Communication Area, the
client interface objects are generated to pass the RPC communication area with an additional parameter to
the client interface objects.

The RPC communication area is allocated (declared) in the COBOL client application in the working
storage section. The client interface objects can be statically linked or called dynamically. For IBM
compilers, refer to documentation on the DYNAM compiler option; for other compilers, to your compiler
documentation.

This kind of RPC communication area usage applies to the scenarios Micro Focus | Batch | CICS | IMS.

Example

The example given below will pass the RPC communication area via the COBOL Linkage section to the
client interface objects. It differs in two steps from the example in Writing Standard Call Interface Clients
(which uses option External Clause):

Step 1 has no EXTERNAL attribute.

2

Using the RPC Communication Area with a Standard Call InterfaceUsing the RPC Communication Area

 01 ERX-COMMUNICATION-AREA.
 COPY ERXCOMM.
* Initialize RPC communication area
 INITIALIZE ERX-COMMUNICATION-AREA.
 MOVE "2000" TO COMM-VERSION.

Step 5 will include the RPC communication area as an extra parameter.

 CALL "CALC" USING OPERATOR
 OPERAND1
 OPERAND2
 FUNCTION-RESULT
 ERX-COMMUNICATION-AREA
 ON EXCEPTION
* Perform error-handling
 NOT ON EXCEPTION
 IF RETURN-CODE = ZERO
* Perform success-handling
 ELSE
* Perform error-handling
 END-IF
 END-CALL.

With this example the client interface objects are generated, for example for target platform "z/OS", client
interface type "Batch with standard linkage calling convention" and RPC communication area "Linkage
Section". See Generating COBOL Source Files from Software AG IDL Files.

Option Copybook

With the RPC communication area option Copybook under RPC Communication Area, the client
interface objects are generated with an RPC communication area in their working storage section.

The RPC communication area is not visible in the client application – it is local to the client interface
objects. The client interface objects can be statically linked or called dynamically. For IBM compilers,
refer to documentation on the DYNAM compiler option and for other compilers to your compiler
documentation.

This kind of RPC communication area usage is available in z/OS operating system and Micro Focus
environments. Refer to the scenarios Micro Focus | Batch | CICS | IMS.

Example

The example given below defines the RPC communication area inside of the client interface objects. Two
steps are different from the example in Writing Standard Call Interface Clients (which uses option
External Clause):

Step 1: Declare and Initialize the RPC Communication Area: Declare and initialize the RPC
communication area

This step is obsolete in the client application and is omitted there. Default values for the RPC
communication area are retrieved from EntireX workbench preferences or IDL-specific properties. If
required, those default values can be overwritten in the COBINIT Copybook.

Step 6: Examine the Error Code: Examine the error code

3

Using the RPC Communication AreaOption Copybook

Because the RPC communication area is not used for data exchange between the client application and the
client interface objects, the COMM-RETURN-CODE field in the RPC communication area cannot be
checked directly upon return from RPC calls. Therefore, the COBOL mechanism RETURN-CODE special
register is used to provide errors from client interface objects to the client application. For IBM compilers,
errors can be adapted in the copybook COBEXIT (see folder include).

After the RPC reply has been received, you can check if the call was successful using the RETURN-CODE
special register:

 IF RETURN-CODE IS = ZERO
* Perform success-handling
 ELSE
* Perform error-handling
 END-IF.

Using the RPC Communication Area with EXEC CICS
LINK
The RPC communication area is allocated (declared) in the COBOL client application and passed via a
parameter in the DFHCOMMAREA to the client interface objects.

This kind of RPC communication area usage applies to the scenario Using the COBOL Wrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

Example

Two steps are different from the example in Writing a COBOL RPC Client Application See Writing
Standard Call Interface Clients.

Step 1 contains the application interface as well as the RPC communication area within one area:

01 CALC-AREA.
 05 OPERATOR PIC X.
 05 OPERAND1 PIC S9(8) COMP.
 05 OPERAND2 PIC S9(8) COMP.
 05 RESULT PIC S9(8) COMP.
 05 ERX-COMMUNICATION-AREA.
 COPY ERXCOMM.
* Initialize RPC communication area
 INITIALIZE ERX-COMMUNICATION-AREA.
 MOVE "2000" TO COMM-VERSION.

Step 5 uses EXEC CICS LINK interface:

 MOVE LENGTH OF CALC-AREA TO COMLEN.
 EXEC CICS LINK PROGRAM("CALC") COMMAREA(CALC-AREA)
 LENGTH(COMLEN) RESP(WORKRESP)
 END-EXEC.
 IF WORKRESP = DFHRESP(NORMAL)
 IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling
 ELSE
* Perform error-handling

4

Using the RPC Communication Area with EXEC CICS LINKUsing the RPC Communication Area

 END-IF
 ELSE
* Perform error-handling
 END-IF.

With this example, the client interface objects are generated e.g. for target platform "z/OS", client
interface type "CICS with DFHCOMMAREA Calling Convention", and RPC communication area
"Linkage Section". See Generating COBOL Source Files from Software AG IDL Files.

5

Using the RPC Communication AreaExample

	Using the RPC Communication Area
	Purpose of the RPC Communication Area
	Using the RPC Communication Area with a Standard Call Interface
	Option External Clause
	Examples

	Option Linkage Section
	Example

	Option Copybook
	Example

	Using the RPC Communication Area with EXEC CICS LINK
	Example

