Batch with Standard Linkage Calling Convention Batch with Standard Linkage Calling Convention

Batch with Standard Linkage Calling
Convention

This chapter describes using the COBOL Mapping Editor to extract from a COBOL server with a standard
COBOL call interface.

Farameter 1

Farameter 2 A101 14 | A100000 |12 |FP5

: INOUT COoBOL
' 12| A15| 14| 14| A100 | 14 - > Server

Farameter n

|4 | A100000 | P2

® |Introduction

e Extracting from a Standard Call Interface

e Mapping Editor User Interface

e Mapping Editor IDL Interface Mapping Functions

® Programming Techniques

Introduction

Because COBOL servers with a standard call interface always coi&O@@EDURE DIVISION

header (sePROCEDURE DI VI SI ON Mapping with all parameters, the COBOL data items of the
interface can be evaluated by the IDL Extractor for COBOL and are already offered by the wizard. In
most cases the offered COBOL data items will be correct, but you should always check them manually.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL to IDL
mapping, continue witMapping Editor User Interface

Extracting from a Standard Call Interface

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type Batch with standard linkage calling conventidbxtifaetor
Settingsdialog appears (see alStep 4: Define the Extraction Settings and Start Extrattion

Batch with Standard Linkage Calling Convention Mapping Editor User Interface

Make sure the interface type is correct.

COBOL Source
File Narme: batipc.chl

Operating System: z/0S

Interface Type: | BATCH with standard linkage calling convention

Input Message same as Output Message

PresdNext to open the COBOL Mapping Editor.
To select the COBOL interface data items of your COBOL server

1. Add the COBOL data items to t@®BOL Interface, using the context menu or toolbar available in
the COBOL Source ViewndCOBOL InterfaceSeeNotes

2. Continue withfCOBOL to IDL Mapping

Notes:

1. If there is #ROCEDURE DIVISIONheader available, the parameters listed define exactly the
COBOL interface. These COBOL data items are withinLihiKAGE SECTION and are already
selected to the COBOL interface in initial state when you enter the COBOL Mapping Editor. The
PROCEDURE DIVISIONheader might not be available if you are extracting from a copybook or
part of the COBOL source.

2. Itis very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

3. If your COBOL server contaREDEFINEs, the firstREDEFINEpath is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select anR&D&FINE

path.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas of the
COBOL Mapping Editor user interface are described here:

e COBOL Program Selection
e COBOL Source View

e COBOL to IDL Mapping

For COBOL server programs with standard call interface types, the user interface of the COBOL Mapping
Editor looks like this:

COBOL Program Selection

Batch with Standard Linkage Calling Convention

= COBROL Program BATIPC -

Interface Type BATCH with standand lirkiag e n:allmq comwanisam

batipc.chl

003218 4] (CRICID

LINKAGE SECTION.

T a2 ic.ouT

07 IC=IN.
03 CELLAR PIC K{91). .
BATIPC T h X i
COBOL IMerface = DL linterisce
|4 : mmln s | a ':F FCALCIO T Onat
o T2 TC-N Sy o SN
e 03 CELLAR PIC %1 Mapto Cut-» | &' CELLAR [av1)
8% 03 COVER-DETADLS PIC 3 & & COVER-DETARS (AVE]
% 03 USED-AREA FIC 5301 4 USED-AREA (M12.3)
¥ 03 COD-PAYMENT-MANMER & COD-PAVMENT-MANNER (£
T 03 RISK-ID BIC W) R o RESK-ID (ALY

&5 lc.ouT

COBOL Program Selection

~ COBOL Program | BATIPC

-

Interface Type BATCH with standard linkage calling convention

COBOL
Program
Selection
Currently
selected
program
with
interface
type@‘»
More info

COBOL
Source
View.
Contains
all related
sources
for the
currently
selected
COBOL
program

More info

COBOL
to IDL
Mapping.
Tree view
of your
selected
COBOL
data items
and
mapping
buttons
with
which you
can map
these
items to
your IDL
interface
2y

More info

Batch with Standard Linkage Calling Convention COBOL Source View

The COBOL Program Selection displays the current selected COBOL program with its interface type. If
you have extracted more than one COBOL program within associated IDL file, you can switch to another
COBOL program with its mapping by selecting the name in the combo box.

COBOL Source View

batipc.chl ih R N A

#* -

31 LINKAGE SECTION.

32 003210 01 ICALCIO.

33 02 IC-IHN.
34 03 CELLAR PIC X (01). -

All COBOL data items contained in théNKAGE andWORKING-STORAGE SECTIO#re offered in a

text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original COBOL
sources. The light green bar indicates that the data item is already contained in the COBOL Interface; a
dark green bar indicates the data item is selectable and can be added to the COBOL Interface. This section
can be collapsed. If you open the Editor withdify Interface it is collapsed by default. The toolbar

provides the following actions:

iF Add selected COBOL data item to COBOL Interface.

if Remove selected COBOL data item from COBOL Interface.
“% Remove all COBOL data items from COBOL Interface.
A

Reset COBOL Interface to initial state.

+" Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

® COBOL Interface
® Mapping Buttons
® |DL Interface

COBOL Interface

TheCOBOL Interface shows a tree view of your selected COBOL data items describing the interface of
the COBOL server. A context menu is available for the COBOL data items, which provides mapping and
other functions. On some COBOL data items, decision icons indicate where particular attention is needed,
including mapping icons to visualize the COBOL data type and your current mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted. If
your COBOL interface contains parameters without a name, that is, the kesMlubER is used, those
COBOL data items are shown[&3LLER] . SeeFl LLER Pseudo-Parameter

COBOL to IDL Mapping Batch with Standard Linkage Calling Convention

a'h 4| i)
IDL Interface
Map 1o 1n -5 a <FICALCIO In Out
: _ _ a <FICN

%03 CELLAR PIC ¥(01)) M.ip to Qut -= CELLAR {4V1)

% 03 COVER-DETAILS PIC 3| ; COVER-DETAILS (AVS)

O 03 USED-AREA PIC sgai USED-AREA (N12.2)

% 03 COD-PAYMENT-MANNEF] COD-PAYMENT-MANMER (£

%% 03 RISK-ID PIC ¥(08) ' T ' f RISK-ID [AVE/15)

X 021C-0uT & 1c-ouT

] T | b —]

You can maodify the COBOL interface using context menu or toolbar; decision and mapping icons provide
additional information.

Context Menu

The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail uhtigping Editor IDL Interface Mapping

Functions

Map to In | Out | InOut A suppressed COBOL data item becomes visible in the IDL
interface. Used also to select anotREIDEFINEpath.

Suppress Suppress unneeded COBOL data items.

Set Constant Set COBOL data items to constant.

Remove from COBOL Interface Remove the data item from the COBOL interface. This also
removes the mapped IDL parameter from all IDL interfaces for
the current COBOL program. SE©BOL Program Selection

Toolbar

The toolbar offers the following actions:

5~ Create IDL Interface. Creates a new IDL interface based on the current COBOL interface: all
IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for COBOL
REDEFINE the firstREDEFINEpath is mapped to IDIEILLER s are suppressed according
to your selection, segtep 4: Define the Extraction Settings and Start Extraction

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifications
such as IDL directions, suppress, selectioRBDEFINEpaths etc. are kept.

Remove current IDL Interface.
.f-'ﬂ Rename current IDL Interface.
+| Expand the full tree.

-] Collapse the full tree.

Batch with Standard Linkage Calling Convention COBOL to IDL Mapping

See alsiMap to Multiple IDL Interfaces

Decision Icons

The decision icons in the first column are set on COBOL data items where particular attention is
needed:

B+ This icon visualizes a COBOREDEFINE It is essential that you map the correct redefine
path for your mapping to In, Out or InOut using the context menu. If you R&D&FINE
path, all other siblinREDEFINEpaths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

EL Scalar parameter, mapped to In.

=%

= Scalar parameter, mapped to InOut.

= Scalar parameter, mapped to Out.

e+ Group parameter, here mapped to InOut.
—p

=+ REDEFINEparameter, here mapped to InOut.

*%- Parameter set to Constant.

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping
BATIPC 2 S
COBOL Interface ~ | IDL Interface
4 LDLICALCIO | Maptoln-> 4 <" ICALCIO In Out
s B02IC-IN 4 <EB1CaN
E5 03 CELLAR PIC X{01) | Map to Out -> | CELLAR (AV1)
= 03 COVER-DETAILS PIC ———— COVER-DETAILS (AVE)
&5 03 USED-AREA PIC 541 i 8t USED-AREA (N12.2)
5 03 COD-PAYMENT-MANNEF COD-PAYMENT-MANNER (£
'E5 03 RISK-ID PIC X{D8) | e | f RISK-ID [AVE/15)
YAy T a3l €
3 02IC-0UT ————— 1C-0UT
b Set Constant.., Al S

Map to In | Out | InOut ->

SeeMap to In, Out, INOutA suppressed COBOL data item becomes visible in the IDL interface.
Used also to select anotfiREDEFINEpath.

Suppress

Mapping Editor IDL Interface Mapping Functions Batch with Standard Linkage Calling Convention

SeeSuppress Unneeded COBOL Data Items
Set Constant...

SeeSet COBOL Data Items to Constants

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by choosing
the tabs. In théDL Interface tree view, a context menu is also available with the following possibilities:

® Rename

e Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL
interfaces for the current COBOL program. $£2BOL Program Selectioabove.

walite a 10 [[
LoD UL Mapping

BATIPC a4 ==
COBOL Interface “ |1DL Interface
4 TSDTICALGE Map to In -> s 4 ICALCIO Tn Out
s EZ021CIN . _ a4 48I1CIN
Er 03 CELLAR PIC X(01) Map to Out -> 4 CELLAR [AV1)
25 03 COVER-DETAILS PIC » ; 4" COVER-DETAILS (4VE)

5 03 USED-AREA PIC 5801 47 USED-AREA (N12.2)

03 COD-PAYMENT-MAMKER 47 COD-PAYMENT-MANNER (£
&5 03 RISK-ID PIC X(08) ' T P RISK-ID (AVS/15)

= JUPPTESSs &

A 02 1C-0UT &7 1C-0UT

. - 0 I | b

Mapping Editor IDL Interface Mapping Functions
This section covers the following topics:

e Map to In, Out, InOut

® Suppress Unneeded COBOL Data Items

Set COBOL Data Items to Constants

Map to Multiple IDL Interfaces

Select REDEFINE Paths

Map to In, Out, InOut

With theMap to In, Out, InOut functions you make a COBOL data item visible as an IDL parameter in
the IDL interface. With correct IDL directions you design the IDL interface by defining input and output
parameters. COBOL programs have no parameter directions, so you need to set IDL directions manually.

To provide IDL directions

Batch with Standard Linkage Calling Convention Suppress Unneeded COBOL Data Items

® Gostep-hy-stephrough alltop-level COBOL data items in the COBOL interface and useMhbp to
In, Out andInOut functions available in the context menu and as mapping buttons to make the
COBOL data items visible and provide IDL directions in the IDL interface.

Notes:

1. If atop-levelCOBOL groupis mapped, the IDL direction is inherited by all subsequent child
COBOL data items and thus to the related IDL parameters in the IDL interface.

2. Subsequent child COBOL data items can only be mapped to the same IDL directiontag-thed
COBOL groupdata item.

3. With the inverse functioBuppress Unneeded COBOL Data Itemésee below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.

4. |DL directions are described in the direction-attributaetinbute-list underSoftware AG
IDL Grammar

If you are using an RPC server such as the zZ(@S§| Batch), z/VSE CICS| Batch, Micro Focusor
BS2000/OSCRPC server, the amount of data to be transferred to/from the RPC client is reduced with
correct IDL directions.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface. The IDL
interface is simplified — it becomes shorter and tidier. This is useful, for example

e for FILLER data items
e if the RPC client or Adapter Service does not need an Out parameter
e if the RPC server or Adapter Service does not need an In parameter and a low value can be provided

If you are using an RPC server such as the z@SS| Batch, z/VSE CICS| Batch, Micro Focusor
BS2000/OSDRPC server, the amount of data to be transferred to/from the RPC client is also reduced.

To suppress unneeded COBOL data items

® Use theSuppressfunction available in the context menu and as mapping button to make the COBOL
data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with low
value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as well.

4. With the inverse functioklap to In, Out or InOut (see above) available in the context menu and as
mapping button, a COBOL data item is made visible in the IDL interface again.

Set COBOL Data Items to Constants Batch with Standard Linkage Calling Convention

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program can
be made invisible in the IDL interface and initialized with the required constant values. This is useful for
keeping the IDL interface short and tidy. RPC clients or Adapter Services are not bothered with IDL
parameters that always contain constants, sSUBE&ORD-TYPESThis function is often used in

conjunction withMap to Multiple IDL Interfaces (see below).

To map COBOL data items to constants

® Use theSet Constantfunction available in the context menu and as mapping button to define a
constant value for a COBOL data item. You are prompted with a window to enter the constant value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to your
COBOL server.

3. With the functiorMap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following example
ADD SUBRACTMULTIPLY. Some dispatcher front-end code executes the correct function, for example,
depending on &unction-codeor operation-codgarameter:

DISPATCHER

5 I

) U

B L
A T T [N
D
D R I

A P

C L

T Y

This example is described in more detail urigleaimple 1: COBOL Server with Multiple Functions

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

e |f your target endpoint is a web service: instead having a Web service with a single operation, you
get a web service with multiple operation, one operation for each COBOL function.

Batch with Standard Linkage Calling Convention Map to Multiple IDL Interfaces

e |[f your target endpoint is Java or .NET: instead having a class with a single method, you get a class
with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1. Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface with
the toolbar function " or

2. Give the IDL interfaces meaningful names with the toolbar funr‘ﬁan

3. Define the required constant values toftimetion-codeor operation-codgparameter, seget
COBOL Data Items to Constardabove.

For the delivered Example 1: COBOL Server with Multiple Functions:
e First, for step 1 above: Extract and define 3 separate IDL progk®QsSUBTRACTMULTIPLY.
® Second, for step 2 above: Rename them to suitabable name&Pdg: SUBTRACT MULTIPLY

e Third, for step 3 above: Define the constants '+', -’ and "* to the paran@RERATION
respectively.

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, resulting
in multiple IDL interfaces (IDL programs).

Icon | Function | Description

=~ |Create IDL| Creates a new IDL interface based on the current COBOL
Interface |interface. All IDL parameters are of IDL direction InOut; no ID
parameters are set to constant; for COBREDEFINE the first
REDEFINEpath is mapped to IDIEILLER s are suppressed
according to your selection, s8&ep 4: Define the Extraction
Settings and Start Extraction

—

Copy Creates a duplicate of current IDL interface. All modifications
current such as IDL directions, suppress, selectioRBEDEFINEpaths
IDL etc. are kept.

Interface

.‘ﬁ Rename | The default name for the IDL interface is based on the COBO[L
current program name plus appended number. With this function you|can
IDL give the IDL interface a suitable name.
Interface

Remove |Deletes the current IDL interface.
current
IDL

Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation of
EntireX version 9.6 and earlier.

10

Programming Techniques Batch with Standard Linkage Calling Convention

Select REDEFINE Paths

For COBOL server programs containing COBREDEFINEs, the corredREDEFINEpath needs to be
chosen for the IDL interface.

To select redefine paths

® Use theMap to In, Out or InOut function available in the context menu and as mapping button to
make the COBOIREDEFINEpath available in the IDL interface.

Begin with the COBOIREDEFINEdefined at the highest level first. Work through all inner
COBOL REDEFINEdata items, going from higher levels to lower levels.

Notes:

1. Only oneREDEFINEpath of a COBOIREDEFINEcan be mapped to the IDL interface. All
COBOL REDEFINEsiblings are suppressed.

2. If aREDEFINEpath is actively mapped to the IDL interface, all COBREDEFINESsiblings are
suppressed.

3. You can suppress &REDEFINEpaths of a COBOIREDEFINE Simply suppress the active
REDEFINEpath, se&uppress Unneeded COBOL Data Items above.

Programming Techniques

Example 1. COBOL Server with Multiple Functions

Assume a COBOL server program had8UNCTIONor OPERATIONcode COBOL data item in its

COBOL interface. The COBOL server program behaves differently depending on field values of this data
item. See the following example where a COBOL programs implements a calculator with the functions
ADD SUBTRACTMULTIPLY, etc. The execution of the different functions is controlled by the COBOL
data itemOPERATION

01 OPERATION PIC X(1).

01 OPERAND1 PIC S9(9) BINARY.

01 OPERAND2 PIC S9(9) BINARY.

01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT
WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT
WHEN . ..

END-EVALUATE.

11

Batch with Standard Linkage Calling Convention Example 1: COBOL Server with Multiple Functions

You can expose each COBOL server program function separately. The advantages or reasons for wanting
this depend on the target endpoint. For example:

® Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

® Javaor .NET
Instead having a class with a single method, you want a class with multiple methods, one method for
each COBOL function.

® efc.

To do this you need to extract the COBOL server program as describedMapdty Multiple IDL
Interfaces

12

	Batch with Standard Linkage Calling Convention
	Introduction
	Extracting from a Standard Call Interface
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths

	Programming Techniques
	Example€1: COBOL Server with Multiple Functions

