
CICS with DFHCOMMAREA Large Buffer
Interface - In different to Out
This chapter describes using the COBOL Mapping Editor to extract from a CICS DFHCOMMAREA
large buffer program where COBOL output parameters are different to COBOL input parameters, that is,
the WM-LCB-INPUT-BUFFER and the WM-LCB-OUTPUT-BUFFER pointers are set to different
addresses (pointing to different COBOL data structures).

Introduction

Extracting from a CICS DFHCOMMAREA Large Buffer Program

Mapping Editor User Interface

Mapping Editor IDL Interface Mapping Functions

Programming Techniques

Introduction
A DFHCOMMAREA Large Buffer Interface has the structure given below in the linkage section. The field
subordinated under DFHCOMMAREA prefixed with WM-LCB describe this structure. The field names
themselves can be different, but the COBOL data types (usage clauses) must match exactly.

LINKAGE SECTION.
 01 DFHCOMMAREA.
 10 WM-LCB-MARKER PIC X(4).
 10 WM-LCB-INPUT-BUFFER POINTER.
 10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
 10 WM-LCB-OUTPUT-BUFFER POINTER.
 10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
 10 WM-LCB-FLAGS PIC X(1).
 88 WM-LCB-FREE-OUTPUT-BUFFER VALUE ’F’.
 10 WM-LCB-RESERVED PIC X(3).

1

CICS with DFHCOMMAREA Large Buffer Interface - In different to OutCICS with DFHCOMMAREA Large Buffer Interface - In different to Out

 01 IN-BUFFER.
 02 OPERATION PIC X(1).
 02 OPERAND-1 PIC S9(9) BINARY.
 02 OPERAND-2 PIC S9(9) BINARY.
 01 OUT-BUFFER.
 02 FUNCTION-RESULT PIC S9(9) BINARY.
 . . .
 PROCEDURE DIVISION USING DFHCOMMAREA.
 . . .
 SET ADDRESS OF IN-BUFFER TO WM-LCB-INPUT-BUFFER.
 SET ADDRESS OF OUT-BUFFER TO WM-LCB-OUTPUT-BUFFER.
* process the IN-BUFFER and provide result in OUT-BUFFER
 EXEC CICS RETURN.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL to IDL
mapping, continue with Mapping Editor User Interface.

Extracting from a CICS DFHCOMMAREA Large Buffer
Program
This section assumes Input Message same as Output Message is not checked. COBOL output and
COBOL input parameters are different, that is, the WM-LCB-OUTPUT-BUFFER (as in the large buffer
example above) is set to an address that is different to WM-LCB-INPUT-BUFFER.

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type CICS with DFHCOMMAREA large buffer, the Extractor Settings
dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and check box Input Message same as Output Message is
cleared.

Press Next to open the COBOL Mapping Editor.

 To select the COBOL interface data items of your COBOL server

1. Add the COBOL data items of the input large buffer to Input Message by using the context menu or
toolbar available in the COBOL Source View and COBOL Interface. To do this, locate in the
PROCEDURE DIVISION the SET ADDRESS OF <x> TO WM-LCB-INPUT-BUFFER
statement. The COBOL data item <x> is the input large buffer you are looking for. See Notes.

2. Add the COBOL data items of the output large buffer to Output Message by using the context menu
and toolbars available in the COBOL Interface and IDL Interface. To do this, locate in the
PROCEDURE DIVISION the SET ADDRESS OF <y> TO WM-LCB-OUTPUT-BUFFER
statement. The COBOL data item <y> is the output large buffer you are looking for. See Notes.

2

Extracting from a CICS DFHCOMMAREA Large Buffer ProgramCICS with DFHCOMMAREA Large Buffer Interface - In different to Out

3. Continue with COBOL to IDL Mapping.

Notes:

1. Do not select the pointers in the DFHCOMMAREA pointing to the large buffers, in the example above,
WM-LCB-INPUT-BUFFER and WM-LCB-OUTPUT-BUFFER.

2. It is very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

3. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface
This section assumes you have set the extraction settings as described above. The following areas of the
COBOL Mapping Editor user interface are described here:

COBOL Program Selection

COBOL Source View

COBOL to IDL Mapping

For COBOL interface types where COBOL input and COBOL output parameters are different, the user
interface of the COBOL Mapping Editor looks like this:

3

CICS with DFHCOMMAREA Large Buffer Interface - In different to OutMapping Editor User Interface

COBOL
Program
Selection.
Currently
selected
program
with
interface

type
 More info

COBOL
Source
View.
Contains
all related
sources
for the
currently
selected
COBOL
program

 More info

COBOL
to IDL
Mapping.
Tree view
of your
selected
COBOL
data items
and
mapping
buttons
with
which you
can map
these
items to
your IDL
interface

 More info

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface type. If
you have extracted more than one COBOL program within associated IDL file, you can switch to another
COBOL program with its mapping by selecting the name in the combo box.

4

COBOL Program SelectionCICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original COBOL
sources. The light green bar indicates that the data item is already contained in the COBOL Interface; a
dark green bar indicates the data item is selectable and can be added to the COBOL Interface. This section
can be collapsed. If you open the Editor with Modify Interface it is collapsed by default. The toolbar
provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.

Add selected COBOL data item to COBOL Interface as Output Message.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

COBOL Interface
Mapping Buttons
IDL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface of
the COBOL server. A context menu is available for the COBOL data items, which provides mapping and
other functions. On some COBOL data items, decision icons indicate where particular attention is needed,
including mapping icons to visualize the COBOL data type and your current mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted. If
your COBOL interface contains parameters without a name, that is, the keyword FILLER is used, those
COBOL data items are shown as [FILLER] . See FILLER Pseudo-Parameter.

5

CICS with DFHCOMMAREA Large Buffer Interface - In different to OutCOBOL Source View

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons provide
additional information.

Context Menu

The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail under Mapping Editor IDL Interface Mapping
Functions.

Map to A suppressed COBOL data item becomes visible in the IDL
interface. Used also to select another REDEFINE path.

Suppress Suppress unneeded COBOL data items.

Set Constant Set COBOL data items to constant.

Set Array Mapping Map an array to a fixed sized or unbounded array.

Note:
This option should be used carefully and requires knowledge of
the COBOL server program. Be aware that an incorrect
mapping could result in runtime errors.

Remove from COBOL Interface Remove the data item from the COBOL interface. This also
removes the mapped IDL parameter from all IDL interfaces for
the current COBOL program. See COBOL Program Selection.

Toolbar

The toolbar offers the following actions:

6

COBOL to IDL MappingCICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface: all
IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for COBOL
REDEFINE, the first REDEFINE path is mapped to IDL; FILLER s are suppressed according
to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifications
such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons

The decision icons in the first column are set on COBOL data items where particular attention is
needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons

The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to Out.

Group parameter, here mapped to In.

REDEFINE parameter, here mapped to Out.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

7

CICS with DFHCOMMAREA Large Buffer Interface - In different to OutCOBOL to IDL Mapping

Map to ->

A suppressed COBOL data item becomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress

See Suppress Unneeded COBOL Data Items.

Set Constant...

See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by choosing
the tabs. In the IDL Interface tree view, a context menu is also available with the following possibilities:

Rename

Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL
interfaces for the current COBOL program. See COBOL Program Selection above.

8

COBOL to IDL MappingCICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Mapping Editor IDL Interface Mapping Functions
This section covers the following topics:

Map to

Suppress Unneeded COBOL Data Items

Set COBOL Data Items to Constants

Map to Multiple IDL Interfaces

Select REDEFINE Paths

Set Arrays (Fixed <-> Unbounded)

Map to

With the Map to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

 To map a COBOL data item to IDL interface

1. Go step-by-step through all top-level COBOL data items in the COBOL interface and use the Map to
function available in the context menu and as mapping button to make a COBOL data item visible as
an IDL parameter in the input message of the IDL interface.

2. Do the same for the output message of the IDL interface.

Notes:

1. If a COBOL group is mapped, all subsequent child COBOL data items are also made visible in the
IDL interface.

2. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.

9

CICS with DFHCOMMAREA Large Buffer Interface - In different to OutMapping Editor IDL Interface Mapping Functions

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface. The IDL
interface is simplified – it becomes shorter and tidier. This is useful, for example

for FILLER data items

if the RPC client or Adapter Service does not need an Out parameter

if the RPC server or Adapter Service does not need an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus or
BS2000/OSD RPC server, the amount of data to be transferred to/from the RPC client is also reduced.

 To suppress unneeded COBOL data items

Use the Suppress function available in the context menu and as mapping button to make the COBOL
data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with low
value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as well.
4. With the inverse function Map to (see above) available in the context menu and as mapping button, a

COBOL data item can be made visible in the IDL interface again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program can
be made invisible in the IDL interface and initialized with the required constant values. This is useful for
keeping the IDL interface short and tidy. RPC clients or Adapter Services are not bothered with IDL
parameters that always contain constants, such as RECORD-TYPES. This function is often used in
conjunction with Map to Multiple IDL Interfaces (see below).

 To map COBOL data items to constants

Use the Set Constant function available in the context menu and as mapping button to define a
constant value for a COBOL data item. You are prompted with a window to enter the constant value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to your
COBOL server.

3. With the function Map to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

10

Suppress Unneeded COBOL Data ItemsCICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following example
ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function, for example,
depending on a function-code or operation-code parameter:

This example is described in more detail under Example 1: COBOL Server with Multiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

If your target endpoint is a web service: instead having a Web service with a single operation, you
get a web service with multiple operation, one operation for each COBOL function.

If your target endpoint is Java or .NET: instead having a class with a single method, you get a class
with multiple methods, one method for each COBOL function.

 To map a COBOL interface to multiple IDL interfaces

1. Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface with

the toolbar functions or .

2. Give the IDL interfaces meaningful names with the toolbar function .

3. Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.

Second, for step 2 above: Rename them to suitabable names, e.g. ’ADD’, ’ SUBTRACT’, MULTIPLY’

Third, for step 3 above: Define the constants ’+’, ’-’ and ’*’ to the parameter OPERATION
respectively.

11

CICS with DFHCOMMAREA Large Buffer Interface - In different to OutMap to Multiple IDL Interfaces

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, resulting
in multiple IDL interfaces (IDL programs).

Icon Function Description

Create IDL
Interface

Creates a new IDL interface based on the current COBOL
interface. All IDL parameters are of IDL direction InOut; no IDL
parameters are set to constant; for COBOL REDEFINE, the first
REDEFINE path is mapped to IDL; FILLER s are suppressed
according to your selection, see Step 4: Define the Extraction
Settings and Start Extraction.

Copy
current
IDL
Interface

Creates a duplicate of current IDL interface. All modifications
such as IDL directions, suppress, selection of REDEFINE paths
etc. are kept.

Rename
current
IDL
Interface

The default name for the IDL interface is based on the COBOL
program name plus appended number. With this function you can
give the IDL interface a suitable name.

Remove
current
IDL
Interface

Deletes the current IDL interface.

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation of
EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to be
chosen for the IDL interface.

 To select redefine paths

Use the Map to function available in the context menu and as mapping button to make the COBOL
REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All
COBOL REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active
REDEFINE path, see Suppress Unneeded COBOL Data Items above.

12

Select REDEFINE PathsCICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Set Arrays (Fixed <-> Unbounded)

For COBOL server programs using the message length to transfer a variable number of elements in a
COBOL table with a fixed size (see Tables with Fixed Size) in a variable manner (see Tables with
Variable Size - DEPENDING ON Clause) you need to set the mapping to unbounded array.

For details of such a COBOL server program see Example 2: COBOL Server Using Data Length to
Process a Variable Number of Array Elements.

 To set arrays from fixed to unbounded or vice versa

Select the COBOL table and use the function Set Arrays (Fixed<->Unbounded) available in the
context menu. A modal window is displayed. Select Unbounded array. The IDL array parameter
will be changed from fixed array /number to an unbounded array /Vnumber, see
array-definition under Software AG IDL Grammar in the IDL Editor documentation.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL server program. Be
aware that an incorrect mapping results in runtime errors.

2. The COBOL Table with a fixed size (see Tables with Fixed Size) used in this manner must be the last
parameter of the COBOL interface; it must not be a subparameter of any other COBOL table and
must not contain any DEPENDING ON clause (see Tables with Variable Size - DEPENDING ON
Clause).

Programming Techniques
This section covers the following topics:

Example 1: COBOL Server with Multiple Functions

Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of this data
item. See the following example where a COBOL programs implements a calculator with the functions
ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled by the COBOL
data item OPERATION:

. . .

 01 OPERATION PIC X(1).
 01 OPERAND1 PIC S9(9) BINARY.
 01 OPERAND2 PIC S9(9) BINARY.
 01 FUNCTION-RESULT PIC S9(9) BINARY.
 . . .
 MOVE 0 TO FUNCTION-RESULT.
 EVALUATE OPERATION
 WHEN "+"
 ADD OPERAND1 OPERAND2
 GIVING FUNCTION-RESULT
 WHEN "-"

13

CICS with DFHCOMMAREA Large Buffer Interface - In different to OutProgramming Techniques

 SUBTRACT OPERAND2 FROM OPERAND1
 GIVING FUNCTION-RESULT
 WHEN "*"
 MULTIPLY OPERAND1 BY OPERAND2
 GIVING FUNCTION-RESULT
 WHEN . . .

 END-EVALUATE.
. . .

You can expose each COBOL server program function separately. The advantages or reasons for wanting
this depend on the target endpoint. For example:

Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

Java or .NET
Instead having a class with a single method, you want a class with multiple methods, one method for
each COBOL function.

etc.

To do this you need to extract the COBOL server program as described under Map to Multiple IDL
Interfaces.

Example 2: COBOL Server Using Data Length to Process a Variable Number
of Array Elements

Assume a COBOL CICS large buffer server program has a fixed-sized COBOL table as its last parameter,
similar to COBOL data item COBOL-TABLE-FIX in the example below; each table element is 100
bytes; the length of COBOL-FIELD1 + COBOL-FIELD2 + COBOL-FIELD3; the length of the data
preceding the COBOL table is described by COBOL-GROUP1; its length is 1000 bytes.

 WORKING-STORAGE SECTION.
 01 NUMBER-OF-INCOMING-ELEMENTS PIC S9(8) BINARY.
 01 NUMBER-OF-OUTGOMING-ELEMENTS PIC S9(8) BINARY.

 . . .

 LINKAGE SECTION.
 01 DFHCOMMAREA.
 10 WM-LCB-MARKER PIC X(4).
 10 WM-LCB-INPUT-BUFFER POINTER.
 10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
 10 WM-LCB-OUTPUT-BUFFER POINTER.
 10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
 10 WM-LCB-FLAGS PIC X(1).
 88 WM-LCB-FREE-OUTPUT-BUFFER VALUE "F".
 10 WM-LCB-RESERVED PIC X(3).

 01 INOUT-BUFFER.
 10 COBOL-GROUP1.
 20 COBOL-TABLE-PREFIX PIC X(1000).
 10 COBOL-TABLE-FIX OCCURS 20.
 20 COBOL-GROUP2.
 25 COBOL-FIELD1 PIC X(30).
 25 COBOL-FIELD2 PIC X(20).

14

Example 2: COBOL Server Using Data Length to Process a Variable Number of Array ElementsCICS with DFHCOMMAREA Large Buffer Interface - In different to Out

 25 COBOL-FIELD3 PIC X(50).
 . . .
 PROCEDURE DIVISION USING DFHCOMMAREA.
 SET ADDRESS OF INOUT-BUFFER TO WM-LCB-INPUT-BUFFER.
 SET ADDRESS OF INOUT-BUFFER TO WM-LCB-OUTPUT-BUFFER.
 COMPUTE NUMBER-OF-INCOMING-ELEMENTS = (WM-LCB-INPUT-BUFFER-SIZE
 - LENGTH OF COBOL-GROUP1)
 / LENGTH OF COBOL-GROUP2.

 . . .
 COMPUTE WM-LCB-OUTPUT-BUFFER-SIZE = LENGTH OF COBOL-GROUP2
 + NUMBER-OF-OUTGOING-ELEMENTS * LENGTH OF COBOL-GROUP2

 EXEC CICS RETURN END-EXEC.

During input the COBOL CICS large buffer server program uses the large buffer input length
WM-LCB-INPUT-BUFFER-SIZE to evaluate the NUMBER-OF-INCOMING-ELEMENTS. During
output the large buffer output length is determined accordingly to the
NUMBER-OF-OUTGOING-ELEMENTS and set in WM-LCB-OUTPUT-BUFFER-SIZE.

Although the COBOL table is defined as a table with a fixed size (see Tables with Fixed Size) it is used in
a variable manner, similar to tables with variable Size (see Tables with Variable Size - DEPENDING ON
Clause). In this case it is required to map the COBOL table to an IDL unbounded array, see Set Arrays
(Fixed <-> Unbounded).

15

CICS with DFHCOMMAREA Large Buffer Interface - In different to OutExample 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

	CICS with DFHCOMMAREA Large Buffer Interface - In different to Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Large Buffer Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Set Arrays (Fixed <-> Unbounded)

	Programming Techniques
	Example€1: COBOL Server with Multiple Functions
	Example€2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

