IMS MPP Message Interface (IMS Connect) IMS MPP Message Interface (IMS Connect)

IMS MPP Message Interface (IMS Connect)

This chapter describes using the COBOL Mapping Editor to extract from a COBOL IMS MPP message
interface (IMS Connect) server where the interface definition is within the working storage section and
not given by the parameters provided in BROCEDURE DIVISIONheader.

IMS Message

LL|zz | TCODE 14 | A25 A5 | 14 > ORI
LLizz A10] 4 | a100000 | P5 | 4 < Server

® Introduction

e Extracting from an IMS MPP Message Interface Program
® Mapping Editor User Interface

e Mapping Editor IDL Interface Mapping Functions

® Programming Techniques

Introduction

Depending on the programming style used in the IMS processing program (MPP) and the various
techniques for accessing the IMS input and output messages, finding the relevant COBOL data structures
can be a complex and time-consuming task that may require IMS programming knowledge.

IMS Message Processing Programs (MPPs) work as follows:

® |IMS message processing programs (MPP) are invoked using an IMS transaction code. Transaction
codes are linked to programs by the IMS system definition.

® An IMS message processing program (MPP) gets its parameters through an IMS message and returns

the result by sending an output message to IMS. The structure of both messages is defined in the
COBOL source program during the application design phase. Sender and receiver of the message
must use the same data structure to interpret the message content.

® The server program accesses input and output messages using the IMS sy§téin call
'CBLTDLI" USING <function> IOPCB <message> . The parameters are as follows:

IMS MPP Message Interface (IMS Connect) Extracting from an IMS MPP Message Interface Program

Parameter |Description

GU Flag indicating that an input message is to be read. In thisoessage>
describes the input message.

ISRT Flag indicating that an output message is to be written. In thiskcasssage>
describes the output message.

IOPCB The 10 PCB pointer. An IMS-specific section defined in the linkage section ¢f the
program to access the IMS input and output message queue.

<message> | The layout of the message. FaUit is the structure of the input message, for
ISRT it is the structure of the output message. The first two fields in every
message (input as well as output),andZZ, are technical fields, each two bytes
long.LL contains the length of the message. The third field in an input message

contains the transaction code and has a variable length (commonly 8 or 9 bytes).
IMS can link one program to various different transaction codes. For each
transaction, the program can apply a separate logic, or even accept a separate
message layout.

Notes:

1. Instead of the IOPCB point&@ALL 'CBLTDLI' statements are also used with database PCB
pointers to access IMS databases.

2. IOPCB, GUandISRT are defined in the COBOL source (often in a copybook) using COBOL
data items. Names can differ in your program. The value of the COBQUEclauses with
'GU and 'ISRT’ is fixed. In the example below, the IMS system call wouldCihe¢. L
'CBLTDLI' USING FCT-GU IO-PCB <message> to read the input message:

WORKING-STORAGE SECTION.

* DLI Function Codes
77 FCT-GU PIC X(4) VALUE 'GU .
77 FCT-ISRT PIC X(4) VALUE 'ISRT".
LINKAGE SECTION.

110-PCB.

3 LTERM-NAME PIC X(8).
3 FILLER PIC X(2).

3 10-STATUS PIC X(2).

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL to IDL
mapping, continue witMapping Editor User Interface

Extracting from an IMS MPP Message Interface Program

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type IMS MPP message interface (IMS ConnedEjxtthetor Settings
dialog appears (see alStep 4: Define the Extraction Settings and Start Extragtion

Make sure the interface type is correct and specify how you want the transaction name to be determined.

Extracting from an IMS MPP Message Interface Program IMS MPP Message Interface (IMS Connect)

COBOL Source
File Name: CALC

Operating System: z/05

Interface Type: |IMS MPP message interface (IMS Connect) -

Input Message same as Qutput Message

There are two ways of definingransaction Name

® Fixed Value
CheckTransaction Nameand specify a fixed value for the transaction name in extractor settings.
Your IDL interface is free of this technical parameter, and RPC clients do not have to specify it at
runtime.

IM5 MPP message interface (IMS Connect)
Transaction field length in COBOL source: ¥ 10 =

@ Transaction Mame: e A MPLE

Create IDL parameter for Transaction Mame - specification at runtime

Specify the length of the transaction field, which is usually the third physical field starting from
offset 5 (bytes) declared in the input message layout within the server program. Example:

1 INPUT-MESSAGE.
2 INPUT-IMS-META.

3 INPUT-LL PIC S9(3) BINARY.

3 INPUT-Z2Z PIC S9(3) BINARY.

3 INPUT-TRANSACTION PIC X(10).

2 INPUT-DATA.

3 OPERATION PIC X(1).

3 OPERAND1 PIC S9(9) BINARY.
3 OPERAND2 PIC S9(9) BINARY.

In this example, the length to specify is "10".

e Dynamically at Runtime
CheckCreate IDL parameter for Transaction Name... Your IDL Interfacewill contain an IDL
parameter for the transaction name. RPC clients are responsible for setting the correct transaction
name dynamically at runtime.

IMS MPP message interface (IMS Connect)
Transaction field length in COBOL source: ¥ 10 =

E +
Transaction Mame:

@ Create IDL parameter for Transaction Name - specification at runtime

To select the COBOL interface data items of your COBOL server

IMS MPP Message Interface (IMS Connect) Mapping Editor User Interface

1. Define the IMS MPP (IMS Connect) input message. With toolbardowhtext in Source v , enter
"CBLTDLI" to look for an IMS system call containin@BLTDLI' , functionGUand thdOPCB
pointer, example:

CALL 'CBLTDLI’ USING GU IOPCB i nput _nessage

Add the relevant COBOL data itemsiafiput _nmessage to Input Messageby using the context
menu or toolbar available in ti@OBOL Source ViewndCOBOL InterfaceThe relevant COBOL
data items are contained in fields after the technical fldld8ength of messageZ and the

COBOL data item containing the transaction code which is mostly the third physical field starting
from offset 5 (bytes) in thenput _nessage. Do not select the fieldsL, ZZ and the transaction
code. Sedlotes

2. Similar to step 1, define the IMS MPP (IMS Connect) output message. Enter "CBLTDLI" in toolbar

icon Find text in Source“# to look for an IMS system call containinGBLTDLI", functionISRT
and the OPCB pointer, example:

CALL 'CBLTDLI' USING ISRT IOPCB < out put - message>
Select the correspondimgt put _nessage in COBOL Interface. SeeNotes

Select the relevant COBOL data itemsat put _nmessage to Output Messageby using the
context menu or toolbar. The relevant COBOL data items are the fields after the technichLfields
(length of message) ax¥. Also, do not seledtL andZZ here.

3. Continue withfCOBOL to IDL Mapping
Notes:

1. Itis very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

2. If your COBOL server contaREDEFINEs, the firstREDEFINEpath is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select anR&D&rINE
path.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas of the
COBOL Mapping Editor user interface are described here:

e COBOL Program Selection
e COBOL Source View
e COBOL to IDL Mapping

For COBOL server programs with IMS MPP message interface (IMS Connect), the user interface of the
COBOL Mapping Editor looks like this:

COBOL Program Selection

IMS MPP Message Interface (IMS Connect)

= DOBOL Program CALT -

Interface Type IM5S MPP miEsAge interface (M5 Connact)

CALL

i THFUT=DATA.
5 31 CGPERATICH
44 3 CPERANDI
I CFERANDZ

PEC X1} .
PEC 33(9)
PIC 53(%)

BINARY .
BINARY.

COBOL to IDL Magping
MYTA
CDBOL Enterface

It Message

=} 01 TRANCODE [MYTA

o B 2NPUT-DATA E

(st
Ll

B 3 OperANm BIC S Bl
m L]

i
Output Message
4 T3 1 OUTPUT-DATA

T4 3 FUNCTION-RESULT PIC S(9} E

IO Interface

[& #F outPUT-DATA Out
& FUNCTION-RESULT (W)
4 45 INBUT-DATA In
& DPERATION (V1)
| & OPERANDU (M)
&' OPERAND2 (B}

T T Boish | |

Cancel

COBOL Program Selection

COBOL
Program
Selection
Currently
selected
program
with
interface
type@
More info

COBOL
Source
View.
Contains
all related
sources
for the
currently
selected
COBOL
program
@

More info

COBOL
to IDL
Mapping.
Tree view
of your
selected
COBOL
data items
and
mapping
buttons
with
which you
can map
these
items to
your IDL
interface
@

More info

= COBOL Program | CALC - Interface Type IM5 MPP message interface (IM5 Connect)

The COBOL Program Selection displays the current selected COBOL program with its interface type. If
you have extracted more than one COBOL program within associated IDL file, you can switch to another
COBOL program with its mapping by selecting the name in the combo box.

IMS MPP Message Interface (IMS Connect) COBOL Source View

COBOL Source View

~ COBOL Program | CALC - Interface Type IMS MPP message interface (IMS Connect)

CALC Tk Q|

42 # IDL Interface - IN parameters (IMS input message)

2 INPUT-DATL.

3 OPERANDZ PIC 59(9) BINARY.

46 3 OPERRND1 FIC 59 (%) BINARY.

All COBOL data items contained in théNKAGE andWORKING-STORAGE SECTIO#re offered in a

text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original COBOL
sources. The light green bar indicates that the data item is already contained in the COBOL Interface; a
dark green bar indicates the data item is selectable and can be added to the COBOL Interface. This section
can be collapsed. If you open the Editor withdify Interface it is collapsed by default. The toolbar

provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.
Add selected COBOL data item to COBOL Interface as Output Message.

Remove selected COBOL data item from COBOL Interface.
Remove all COBOL data items from COBOL Interface.

il e

Reset COBOL Interface to initial state.

{F-'\..

Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

® COBOL Interface
® Mapping Buttons
e |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface of
the COBOL server. A context menu is available for the COBOL data items, which provides mapping and
other functions. On some COBOL data items, decision icons indicate where particular attention is needed,
including mapping icons to visualize the COBOL data type and your current mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted. If
your COBOL interface contains parameters without a name, that is, the kedyMvbER is used, those
COBOL data items are shown[&LLER] . SeeFl LLER Pseudo-Parameter

COBOL to IDL Mapping IMS MPP Message Interface (IMS Connect)

The appearance of tli@OBOL Interface depends on how the transaction name is specified in the
Extractor Settings:

If Transaction Nameis checked, a hidden parameter with this fixed value appears:

COBOL to IDL Mapping
MYTA + AR [EE
| coBOL Interface HIDE IDL Interface
npast Mg | 4 <% OUTPUT-DATA Out
= , = FUNCTION-RESULT (1)
%, 01 TRANCODE [MYTA] - it
o = = :
4] 2INPUT-DATA = i _ OPERATION (AV1)
Olr'j;_ 3 OPFRAMMD PIC S99 RT ™ [g OPERANDL. ()
i S s S0 foniinte) OPERANDZ (4)
Output Message
4 B2 OUTPUT-DATA
% 3 FUNCTION-RESULT PIC 53(9) E
4 a i1} | [

e |[f Create IDL parameter for Transaction Name...is checked, the IDL parametefRANCODE
sets the transaction name dynamically at runtime.

COBOL to IDL Mapping
C'.'_.LC :U. J-.ﬁ + =
COBOL Interface HOM IDL Interface
' TRANCODE (A10) In
s <5 INPUT-DATA In
_ OPERATION (AV1)
Suppress | OPERAMNDL (14)
OPERAND2 (1)
2 <5 QUTPUT-DATA Out
FUNCTION-RESULT (14)

Input Message

%7 01 TRANCODE

a B 2INPUT-DATA
] 3 OPERATION
2 3 OPERAND?

PIC X(1)

C 53{9) Bl Set Constant...
PIC 58(9) BINA

4| 1 ik

Output Message

4 5 2 OUTPUT-DATA
%} 3 FUNCTION-RESULT PIC 59(9) E

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons provide
additional information.

Context Menu

The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail uNdgping Editor IDL Interface Mapping
Functions

IMS MPP Message Interface (IMS Connect) COBOL to IDL Mapping

Map to A suppressed COBOL data item becomes visible in the IDL
interface. Used also to select anotREDEFINEpath.
Suppress Suppress unneeded COBOL data items.
Set Constant Set COBOL data items to constant.
Set Array Mapping Map an array to a fixed sized or unbounded array.
Note:

This option should be used carefully and requires knowledge of
the COBOL server program. Be aware that an incorrect
mapping could result in runtime errors.

Remove from COBOL Interface Remove the data item from the COBOL interface. This also
removes the mapped IDL parameter from all IDL interfaces for
the current COBOL program. SE©BOL Program Selection

Toolbar

The toolbar offers the following actions:

=~ Create IDL Interface. Creates a new IDL interface based on the current COBOL interface: all
IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for COBOL
REDEFINE the firstREDEFINEpath is mapped to IDIEILLER s are suppressed according
to your selection, segtep 4: Define the Extraction Settings and Start Extraction

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifications
such as IDL directions, suppress, selectioRBEDEFINEpaths etc. are kept.

Remove current IDL Interface.
.‘ﬁ Rename current IDL Interface.
+ Expand the full tree.

—| Collapse the full tree.
See alsdMap to Multiple IDL Interfaces

Decision Icons

The decision icons in the first column are set on COBOL data items where particular attention is
needed:

B+ This icon visualizes a COBOREDEFINE It is essential that you map the correct redefine
path for your mapping to In, Out or InOut using the context menu. If you R&bD&FINE
path, all other siblinREDEFINEpaths are automatically set to "Suppress".

Mapping Icons

The following mapping icons on the COBOL data items indicate your current IDL mapping:

COBOL to IDL Mapping IMS MPP Message Interface (IMS Connect)

5 Scalar parameter, mapped to In.
= Scalar parameter, mapped to Out.
e+ Group parameter, here mapped to In.

—

= REDEFINEparameter, here mapped to Out.

*@ Parameter set to Constant.

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

COBOL Interface |] IDL Interface

4 % OUTPUT-DATA OQut
FUNCTIGN-RESULT (1)

Input Message Map to-=

g Sy MEA 4 B INPUT-DATA In
2 = I_'.‘[_F'J!-|_|I—D:—'-T:—< - | Suppress | OPERATION (AVL)
"] 3 DPERATION PICX(1) OPERANDL (14}
=3 [IPERANDY PIC. S9(9) AT | set Lonstant.. ‘ OPERANDZ2 ..'.i.

Output Message
2 B 2 OUTPUT-DATA
T 3 FUNCTION-RESULT PIC 59(3) E

Note:
In this example, a fixed value for transaction name was specified Extractor Settings.

Map to ->

A suppressed COBOL data item becomes visible in the IDL interface. Used also to select another
REDEFINEpath.

Suppress

SeeSuppress Unneeded COBOL Data Items
Set Constant...

SeeSet COBOL Data Items to Constants
IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by choosing
the tabs. In théDL Interface tree view, a context menu is also available with the following possibilities:

® Rename

IMS MPP Message Interface (IMS Connect)

Mapping Editor IDL Interface Mapping Functions

e Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL
interfaces for the current COBOL program. £€2BOL Program Selectioabove.

The appearance of thBL Interface depends on how the transaction name is specified Exinactor
Settings SeeExtracting from an IMS MPP Message Interface Program

o Fixed Value

In theCOBOL Interface pane the first parameter shows the value for your transaction name in
square brackets. There is no IDL parameter contained iDthinterfacefor it. Your IDL interface
is free of this technical parameter, and RPC clients do not have to specify it at runtime.

IDL Mapping

DL Interface

Input Message
5 o Toa -
2 B 2INPUT-DATA
7213 OPERATION
27 3 OPFRANRI

Output Message

s T2 OUTPUT-DATA
%4 3 FUNCTION-RESULT

® Dynamically at Runtime

Suppress
PIC %1}
PIC S9r9 AT T Set Constant..,
]
PIC S9{9) E

IDL Interface

4 4% OUTPUT-DATA Out

#” FUNCTION-RESULT (14)
4 % INPUT-DATA In

4F OPERATION (AV1)

<" OPERANDL ()

4" OPERANDZ (4)

Your IDL Interfacecontains an IDL parameter for the transaction nafRANCODE RPC clients
set the name dynamically at runtime.

Input Message

% 01 TRANCODE
[Sl

i PUT-DATA

3 OPERATION

3 OPERANDL

Z] 3 OPERAND2

Output Message
+ T3 2 OUTPUT-DATA
5 3 FUNCTION-RESULT

Suppress
PIC X1}
PICS3(T) BINA Set Constant...
PIC 53(9) BINA
]
PIC 59(9) E

IDL Interface

4" TRANCODE (A10) In
4 ¢S INPUT-DATA In
4" OPERATION (AV1)
4" OPERANDL ()
«F OPERANDZ ()
4 5 OUTPUT-DATA Out
4P FUNCTION-RESULT (1)

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

10

Map to IMS MPP Message Interface (IMS Connect)

® Mapto

® Suppress Unneeded COBOL Data Items
® Set COBOL Data Items to Constants

® Map to Multiple IDL Interfaces

® Select REDEFINE Paths

® Set Arrays (Fixed <-> Unbounded)

Map to

With theMap to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

To map a COBOL data item to IDL interface

1. Gostep-by-stephrough alttop-level COBOL data items in the COBOL interface and useMbp to
function available in the context menu and as mapping button to make a COBOL data item visible as
an IDL parameter in the input message of the IDL interface.

2. Do the same for the output message of the IDL interface.
Notes:

1. If a COBOL group is mapped, all subsequent child COBOL data items are also made visible in the
IDL interface.

2. With the inverse functioBuppress Unneeded COBOL Data Itemésee below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface. The IDL
interface is simplified — it becomes shorter and tidier. This is useful, for example

e for FILLER data items
e if the RPC client or Adapter Service does not need an Out parameter
e if the RPC server or Adapter Service does not need an In parameter and a low value can be provided

If you are using an RPC server such as the z@Sg| Batch, z/VSE CICS| Batch, Micro Focusor
BS2000/0OSDRPC server, the amount of data to be transferred to/from the RPC client is also reduced.

To suppress unneeded COBOL data items

® Use theSuppressfunction available in the context menu and as mapping button to make the COBOL
data item invisible in the IDL interface.

11

IMS MPP Message Interface (IMS Connect) Set COBOL Data Items to Constants

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with low
value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as well.

4. With the inverse functioklap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program can
be made invisible in the IDL interface and initialized with the required constant values. This is useful for
keeping the IDL interface short and tidy. RPC clients or Adapter Services are not bothered with IDL
parameters that always contain constants, SUBE&ORD-TYPESThis function is often used in

conjunction withMap to Multiple IDL Interfaces (see below).

To map COBOL data items to constants

® Use theSet Constantfunction available in the context menu and as mapping button to define a
constant value for a COBOL data item. You are prompted with a window to enter the constant value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to your
COBOL server.

3. With the functiorMap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following example
ADD SUBRACTMULTIPLY. Some dispatcher front-end code executes the correct function, for example,
depending on &unction-codeor operation-codgarameter:

DISPATCHER

= M

) U

B L
P" T T L B]
D
D R I

A B

cC L

T Y

12

Map to Multiple IDL Interfaces IMS MPP Message Interface (IMS Connect)

This example is described in more detail urigeeample 1: COBOL Server with Multiple Functions

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

e |f your target endpoint is a web service: instead having a Web service with a single operation, you
get a web service with multiple operation, one operation for each COBOL function.

e |f your target endpoint is Java or .NET: instead having a class with a single method, you get a class
with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1. Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface with
the toolbar function“ or

2. Give the IDL interfaces meaningful names with the toolbar funabon

3. Define the required constant values toftimetion-codeor operation-codgparameter, seget
COBOL Data Items to Constardabove.

For the delivered Example 1: COBOL Server with Multiple Functions:
e First, for step 1 above: Extract and define 3 separate IDL progk@®sSUBTRACTMULTIPLY.
® Second, for step 2 above: Rename them to suitabable name&Dig: SUBTRACT MULTIPLY

e Third, for step 3 above: Define the constants '+', -’ and "™’ to the paran@RERATION
respectively.

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, resulting
in multiple IDL interfaces (IDL programs).

13

IMS MPP Message Interface (IMS Connect) Select REDEFINE Paths

Icon | Function | Description

5 |Create IDL| Creates a new IDL interface based on the current COBOL
Interface |interface. All IDL parameters are of IDL direction InOut; no 1D
parameters are set to constant; for COBREDEFINE, the first
REDEFINEpath is mapped to IDIEILLER s are suppressed
according to your selection, s8&ep 4: Define the Extraction
Settings and Start Extraction

—

Copy Creates a duplicate of current IDL interface. All modifications
current such as IDL directions, suppress, selectioRBEDEFINEpaths
IDL etc. are kept.

Interface

.ﬁﬂ Rename | The default name for the IDL interface is based on the COBOL
current program name plus appended number. With this function you[can
IDL give the IDL interface a suitable name.
Interface

Remove |Deletes the current IDL interface.
current
IDL

Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation of
EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBREDEFINEs, the corredREDEFINEpath needs to be
chosen for the IDL interface.

To select redefine paths

® Use theMap to function available in the context menu and as mapping button to make the COBOL
REDEFINEpath available in the IDL interface.

Begin with the COBOLREDEFINEdefined at the highest level first. Work through all inner
COBOL REDEFINEdata items, going from higher levels to lower levels.

Notes:

1. Only oneREDEFINEpath of a COBOIREDEFINEcan be mapped to the IDL interface. All
COBOL REDEFINEsiblings are suppressed.

2. If aREDEFINEpath is actively mapped to the IDL interface, all COBREDEFINESsiblings are
suppressed.

3. You can suppress &EDEFINEpaths of a COBOIREDEFINE Simply suppress the active
REDEFINEpath, se&uppress Unneeded COBOL Data Items above.

14

Programming Techniques IMS MPP Message Interface (IMS Connect)

Set Arrays (Fixed <-> Unbounded)

For COBOL server programs using the message length to transfer a variable number of elements in a
COBOL table with a fixed size (sdables with Fixed Sizén a variable manner (sdables with
Variable Size DPEPENDI NG ON Clausé you need to set the mapping to unbounded array.

For details of such a COBOL server programBeample 2: COBOL Server Using Data Length to
Process a Variable Number of Array Elements

To set arrays from fixed to unbounded or vice versa

® Select the COBOL table and use the functen Arrays (Fixed<->Unbounded)available in the
context menu. A modal window is displayed. Selégbounded array. The IDL array parameter
will be changed from fixed arrapéinber to an unbounded arrayrunber , see
array-definition underSoftware AG IDL Gramman the IDL Editor documentation.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL server program. Be
aware that an incorrect mapping results in runtime errors.

2. The COBOL Table with a fixed size (SE&bles with Fixed Sizeised in this manner must be the last
parameter of the COBOL interface; it must not be a subparameter of any other COBOL table and
must not contain anPEPENDING ONclause (se@ables with Variable SizeDEPENDI NG ON
Clauss.

Programming Techniques
This section covers the following topics:
e Example 1: COBOL Server with Multiple Functions

® Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Example 1. COBOL Server with Multiple Functions

Assume a COBOL server program hda WNCTIONor OPERATIONcode COBOL data item in its

COBOL interface. The COBOL server program behaves differently depending on field values of this data
item. See the following example where a COBOL programs implements a calculator with the functions
ADD SUBTRACTMULTIPLY, etc. The execution of the different functions is controlled by the COBOL
data itemOPERATION

01 OPERATION PIC X(1).

01 OPERAND1 PIC S9(9) BINARY.

01 OPERAND2 PIC S9(9) BINARY.

01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"

15

IMS MPP Message Interface (IMS Connect) Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . ..

END-EVALUATE.

You can expose each COBOL server program function separately. The advantages or reasons for wanting
this depend on the target endpoint. For example:

® Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

® Javaor .NET
Instead having a class with a single method, you want a class with multiple methods, one method for
each COBOL function.

® efc.

To do this you need to extract the COBOL server program as describedMapltr Multiple IDL
Interfaces

Example 2: COBOL Server Using Data Length to Process a Variable Number
of Array Elements

Assume a COBOL IMS MPP (IMS Connect) server program has a fixed-sized COBOL table as its last
parameter, similar to COBOL data it«b®BOL-TABLE-FIX in the example below; each table element

is 100 bytes; the length &FOBOL-FIELD1 + COBOL-FIELD2 + COBOL-FIELD3; the length of the

data preceding the COBOL table is describe€®BOL-GROURts length is 1000 bytes.

WORKING-STORAGE SECTION.
01 NUMBER-OF-INCOMING-ELEMENTS PIC S9(8) BINARY.
01 NUMBER-OF-OUTGOMING-ELEMENTS PIC S9(8) BINARY.

01 INPUT-MESSAGE.
05 INPUT-IMS-META.

10 INPUT-LL PIC S9(3) BINARY.
10 INPUT-ZZ PIC S9(3) BINARY.
10 INPUT-TRANSACTION PIC X(10).

05 INPUT-DATA.
10 COBOL-GROUP1.

20 COBOL-TABLE-PREFIX PIC X(1000).
10 COBOL-TABLE-FIX OCCURS 20.
20 COBOL-GROUP2.
25 COBOL-FIELD1 PIC X(4).
25 COBOL-FIELD2 PIC X(3).
25 COBOL-FIELD3 PIC X(50).

01 OUTPUT-MESSAGE.
05 OUTPUT-IMS-META.
10 OUTPUT-LL PIC S9(3) BINARY.
10 OUTPUT-ZZ PIC S9(3) BINARY.
05 OUTPUT-DATA.
10 COBOL-GROUP1.

16

Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements IMS MPP Message Interface (IMS Connect)

20 COBOL-TABLE-PREFIX PIC X(1000).
10 COBOL-TABLE-FIX OCCURS 20.
20 COBOL-GROUP2.
25 COBOL-FIELD1 PIC X(30).
25 COBOL-FIELD2 PIC X(20).
25 COBOL-FIELD3 PIC X(50).

LINKAGE SECTION.

PROCEDURE DIVISION USING IO-PCB.
CALL "CBLTDLI" USING GU, 10-PCB, INPUT-MESSAGE.

COMPUTE NUMBER-OF-INCOMING-ELEMENTS = (INPUT-LL
- LENGTH OF COBOL-GROUP1 IN AREA INPUT-MESSAGE)
/ LENGTH OF COBOL-GROUP2 IN AREA INPUT-MESSAGE.

COMPUTE OUTPUT-LL = LENGTH OF COBOL-GROUP2 IN AREA OUTPUT-MESSAGE
+ (NUMBER-OF-OUTGOING-ELEMENTS
* LENGTH OF COBOL-GROUP2 IN AREA OUTPUT-MESSAGE).

CALL "CBLTDLI" USING ISRT, I0-PCB, OUTPUT-MESSAGE.

GOBACK.

During input the COBOL IMS MPP (IMS Connect) server program uses the IMS input message length
INPUT-LL to evaluate thllUMBER-OF-INCOMING-ELEMENT®uring output the IMS output
message length is determined accordingly toNUMBER-OF-OUTGOING-ELEMENB&d set in

OUTPUT-LL

Although the COBOL table is defined as a table with a fixed sizel(@ales with Fixed Si}et is used in
a variable manner, similar to tables with variable size Taddes with Variable SizeDEPENDI NG ON
Clause) In this case you need to map the COBOL table to an IDL unbounded arr&etSgeays (Fixed
<-> Unbounded)

17

	IMS MPP Message Interface (IMS Connect)
	Introduction
	Extracting from an IMS MPP Message Interface Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Set Arrays (Fixed <-> Unbounded)

	Programming Techniques
	Example€1: COBOL Server with Multiple Functions
	Example€2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

