
IMS MPP Message Interface (IMS Connect)
This chapter describes using the COBOL Mapping Editor to extract from a COBOL IMS MPP message
interface (IMS Connect) server where the interface definition is within the working storage section and
not given by the parameters provided in the PROCEDURE DIVISION header.

Introduction

Extracting from an IMS MPP Message Interface Program

Mapping Editor User Interface

Mapping Editor IDL Interface Mapping Functions

Programming Techniques

Introduction
Depending on the programming style used in the IMS processing program (MPP) and the various
techniques for accessing the IMS input and output messages, finding the relevant COBOL data structures
can be a complex and time-consuming task that may require IMS programming knowledge.

IMS Message Processing Programs (MPPs) work as follows:

IMS message processing programs (MPP) are invoked using an IMS transaction code. Transaction
codes are linked to programs by the IMS system definition.

An IMS message processing program (MPP) gets its parameters through an IMS message and returns
the result by sending an output message to IMS. The structure of both messages is defined in the
COBOL source program during the application design phase. Sender and receiver of the message
must use the same data structure to interpret the message content.

The server program accesses input and output messages using the IMS system call CALL
’CBLTDLI’ USING <function> IOPCB <message> . The parameters are as follows:

1

IMS MPP Message Interface (IMS Connect)IMS MPP Message Interface (IMS Connect)

Parameter Description

GU Flag indicating that an input message is to be read. In this case <message>
describes the input message.

ISRT Flag indicating that an output message is to be written. In this case <message>
describes the output message.

IOPCB The IO PCB pointer. An IMS-specific section defined in the linkage section of the
program to access the IMS input and output message queue.

<message> The layout of the message. For GU it is the structure of the input message, for
ISRT it is the structure of the output message. The first two fields in every
message (input as well as output), LL and ZZ, are technical fields, each two bytes
long. LL contains the length of the message. The third field in an input message
contains the transaction code and has a variable length (commonly 8 or 9 bytes).
IMS can link one program to various different transaction codes. For each
transaction, the program can apply a separate logic, or even accept a separate
message layout.

Notes:

1. Instead of the IOPCB pointer, CALL ’CBLTDLI’ statements are also used with database PCB
pointers to access IMS databases.

2. IOPCB, GU and ISRT are defined in the COBOL source (often in a copybook) using COBOL
data items. Names can differ in your program. The value of the COBOL VALUE clauses with
’GU’ and ’ISRT ’ is fixed. In the example below, the IMS system call would be CALL
’CBLTDLI’ USING FCT-GU IO-PCB <message> to read the input message:

WORKING-STORAGE SECTION.
 . . .
 * DLI Function Codes
 77 FCT-GU PIC X(4) VALUE ’GU ’.
 77 FCT-ISRT PIC X(4) VALUE ’ISRT’.
 . . .
 LINKAGE SECTION.
 . . .
 1 IO-PCB.
 3 LTERM-NAME PIC X(8).
 3 FILLER PIC X(2).
 3 IO-STATUS PIC X(2).
 . . .

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL to IDL
mapping, continue with Mapping Editor User Interface.

Extracting from an IMS MPP Message Interface Program
If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type IMS MPP message interface (IMS Connect), the Extractor Settings
dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and specify how you want the transaction name to be determined.

2

Extracting from an IMS MPP Message Interface ProgramIMS MPP Message Interface (IMS Connect)

There are two ways of defining Transaction Name:

Fixed Value
Check Transaction Name and specify a fixed value for the transaction name in extractor settings.
Your IDL interface is free of this technical parameter, and RPC clients do not have to specify it at
runtime.

Specify the length of the transaction field, which is usually the third physical field starting from
offset 5 (bytes) declared in the input message layout within the server program. Example:

1 INPUT-MESSAGE.
 2 INPUT-IMS-META.
 3 INPUT-LL PIC S9(3) BINARY.
 3 INPUT-ZZ PIC S9(3) BINARY.
 3 INPUT-TRANSACTION PIC X(10).
 2 INPUT-DATA.
 3 OPERATION PIC X(1).
 3 OPERAND1 PIC S9(9) BINARY.
 3 OPERAND2 PIC S9(9) BINARY.

In this example, the length to specify is "10".

Dynamically at Runtime
Check Create IDL parameter for Transaction Name.... Your IDL Interface will contain an IDL
parameter for the transaction name. RPC clients are responsible for setting the correct transaction
name dynamically at runtime.

 To select the COBOL interface data items of your COBOL server

3

IMS MPP Message Interface (IMS Connect)Extracting from an IMS MPP Message Interface Program

1. Define the IMS MPP (IMS Connect) input message. With toolbar icon Find text in Source , enter
"CBLTDLI" to look for an IMS system call containing ’CBLTDLI’ , function GU and the IOPCB
pointer, example:

CALL ’CBLTDLI’ USING GU IOPCB input_message

Add the relevant COBOL data items of input_message to Input Message by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. The relevant COBOL
data items are contained in fields after the technical fields LL (length of message), ZZ and the
COBOL data item containing the transaction code which is mostly the third physical field starting
from offset 5 (bytes) in the input_message. Do not select the fields LL , ZZ and the transaction
code. See Notes.

2. Similar to step 1, define the IMS MPP (IMS Connect) output message. Enter "CBLTDLI" in toolbar

icon Find text in Source to look for an IMS system call containing "CBLTDLI", function ISRT
and the IOPCB pointer, example:

CALL ’CBLTDLI’ USING ISRT IOPCB < output-message>

Select the corresponding output_message in COBOL Interface. See Notes.

Select the relevant COBOL data items of output_message to Output Message by using the
context menu or toolbar. The relevant COBOL data items are the fields after the technical fields LL
(length of message) and ZZ. Also, do not select LL and ZZ here.

3. Continue with COBOL to IDL Mapping.

Notes:

1. It is very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

2. If your COBOL server contain REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface
This section assumes you have set the extraction settings as described above. The following areas of the
COBOL Mapping Editor user interface are described here:

COBOL Program Selection

COBOL Source View

COBOL to IDL Mapping

For COBOL server programs with IMS MPP message interface (IMS Connect), the user interface of the
COBOL Mapping Editor looks like this:

4

Mapping Editor User InterfaceIMS MPP Message Interface (IMS Connect)

COBOL
Program
Selection.
Currently
selected
program
with
interface

type
 More info

COBOL
Source
View.
Contains
all related
sources
for the
currently
selected
COBOL
program

 More info

COBOL
to IDL
Mapping.
Tree view
of your
selected
COBOL
data items
and
mapping
buttons
with
which you
can map
these
items to
your IDL
interface

 More info

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface type. If
you have extracted more than one COBOL program within associated IDL file, you can switch to another
COBOL program with its mapping by selecting the name in the combo box.

5

IMS MPP Message Interface (IMS Connect)COBOL Program Selection

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original COBOL
sources. The light green bar indicates that the data item is already contained in the COBOL Interface; a
dark green bar indicates the data item is selectable and can be added to the COBOL Interface. This section
can be collapsed. If you open the Editor with Modify Interface it is collapsed by default. The toolbar
provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.

Add selected COBOL data item to COBOL Interface as Output Message.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

COBOL Interface
Mapping Buttons
IDL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface of
the COBOL server. A context menu is available for the COBOL data items, which provides mapping and
other functions. On some COBOL data items, decision icons indicate where particular attention is needed,
including mapping icons to visualize the COBOL data type and your current mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted. If
your COBOL interface contains parameters without a name, that is, the keyword FILLER is used, those
COBOL data items are shown as [FILLER] . See FILLER Pseudo-Parameter.

6

COBOL Source ViewIMS MPP Message Interface (IMS Connect)

The appearance of the COBOL Interface depends on how the transaction name is specified in the
Extractor Settings:

If Transaction Name is checked, a hidden parameter with this fixed value appears:

If Create IDL parameter for Transaction Name... is checked, the IDL parameter "TRANCODE"
sets the transaction name dynamically at runtime.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons provide
additional information.

Context Menu

The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail under Mapping Editor IDL Interface Mapping
Functions.

7

IMS MPP Message Interface (IMS Connect)COBOL to IDL Mapping

Map to A suppressed COBOL data item becomes visible in the IDL
interface. Used also to select another REDEFINE path.

Suppress Suppress unneeded COBOL data items.

Set Constant Set COBOL data items to constant.

Set Array Mapping Map an array to a fixed sized or unbounded array.

Note:
This option should be used carefully and requires knowledge of
the COBOL server program. Be aware that an incorrect
mapping could result in runtime errors.

Remove from COBOL Interface Remove the data item from the COBOL interface. This also
removes the mapped IDL parameter from all IDL interfaces for
the current COBOL program. See COBOL Program Selection.

Toolbar

The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface: all
IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for COBOL
REDEFINE, the first REDEFINE path is mapped to IDL; FILLER s are suppressed according
to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifications
such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces

Decision Icons

The decision icons in the first column are set on COBOL data items where particular attention is
needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons

The following mapping icons on the COBOL data items indicate your current IDL mapping:

8

COBOL to IDL MappingIMS MPP Message Interface (IMS Connect)

Scalar parameter, mapped to In.

Scalar parameter, mapped to Out.

Group parameter, here mapped to In.

REDEFINE parameter, here mapped to Out.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Note:
In this example, a fixed value for transaction name was specified in the Extractor Settings.

Map to ->

A suppressed COBOL data item becomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress

See Suppress Unneeded COBOL Data Items.

Set Constant...

See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by choosing
the tabs. In the IDL Interface tree view, a context menu is also available with the following possibilities:

Rename

9

IMS MPP Message Interface (IMS Connect)COBOL to IDL Mapping

Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL
interfaces for the current COBOL program. See COBOL Program Selection above.

The appearance of the IDL Interface depends on how the transaction name is specified in the Extractor
Settings. See Extracting from an IMS MPP Message Interface Program.

Fixed Value
In the COBOL Interface pane the first parameter shows the value for your transaction name in
square brackets. There is no IDL parameter contained in the IDL Interface for it. Your IDL interface
is free of this technical parameter, and RPC clients do not have to specify it at runtime.

Dynamically at Runtime
Your IDL Interface contains an IDL parameter for the transaction name ("TRANCODE"). RPC clients
set the name dynamically at runtime.

Mapping Editor IDL Interface Mapping Functions
This section covers the following topics:

10

Mapping Editor IDL Interface Mapping FunctionsIMS MPP Message Interface (IMS Connect)

Map to

Suppress Unneeded COBOL Data Items

Set COBOL Data Items to Constants

Map to Multiple IDL Interfaces

Select REDEFINE Paths

Set Arrays (Fixed <-> Unbounded)

Map to

With the Map to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

 To map a COBOL data item to IDL interface

1. Go step-by-step through all top-level COBOL data items in the COBOL interface and use the Map to
function available in the context menu and as mapping button to make a COBOL data item visible as
an IDL parameter in the input message of the IDL interface.

2. Do the same for the output message of the IDL interface.

Notes:

1. If a COBOL group is mapped, all subsequent child COBOL data items are also made visible in the
IDL interface.

2. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface. The IDL
interface is simplified – it becomes shorter and tidier. This is useful, for example

for FILLER data items

if the RPC client or Adapter Service does not need an Out parameter

if the RPC server or Adapter Service does not need an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch), z/VSE (CICS | Batch), Micro Focus or
BS2000/OSD RPC server, the amount of data to be transferred to/from the RPC client is also reduced.

 To suppress unneeded COBOL data items

Use the Suppress function available in the context menu and as mapping button to make the COBOL
data item invisible in the IDL interface.

11

IMS MPP Message Interface (IMS Connect)Map to

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with low
value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as well.
4. With the inverse function Map to (see above) available in the context menu and as mapping button, a

COBOL data item can be made visible in the IDL interface again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program can
be made invisible in the IDL interface and initialized with the required constant values. This is useful for
keeping the IDL interface short and tidy. RPC clients or Adapter Services are not bothered with IDL
parameters that always contain constants, such as RECORD-TYPES. This function is often used in
conjunction with Map to Multiple IDL Interfaces (see below).

 To map COBOL data items to constants

Use the Set Constant function available in the context menu and as mapping button to define a
constant value for a COBOL data item. You are prompted with a window to enter the constant value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to your
COBOL server.

3. With the function Map to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following example
ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function, for example,
depending on a function-code or operation-code parameter:

12

Set COBOL Data Items to ConstantsIMS MPP Message Interface (IMS Connect)

This example is described in more detail under Example 1: COBOL Server with Multiple Functions.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

If your target endpoint is a web service: instead having a Web service with a single operation, you
get a web service with multiple operation, one operation for each COBOL function.

If your target endpoint is Java or .NET: instead having a class with a single method, you get a class
with multiple methods, one method for each COBOL function.

 To map a COBOL interface to multiple IDL interfaces

1. Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface with

the toolbar functions or .

2. Give the IDL interfaces meaningful names with the toolbar function .

3. Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above.

For the delivered Example 1: COBOL Server with Multiple Functions:

First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.

Second, for step 2 above: Rename them to suitabable names, e.g. ’ADD’, ’ SUBTRACT’, MULTIPLY’

Third, for step 3 above: Define the constants ’+’, ’-’ and ’*’ to the parameter OPERATION
respectively.

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, resulting
in multiple IDL interfaces (IDL programs).

13

IMS MPP Message Interface (IMS Connect)Map to Multiple IDL Interfaces

Icon Function Description

Create IDL
Interface

Creates a new IDL interface based on the current COBOL
interface. All IDL parameters are of IDL direction InOut; no IDL
parameters are set to constant; for COBOL REDEFINE, the first
REDEFINE path is mapped to IDL; FILLER s are suppressed
according to your selection, see Step 4: Define the Extraction
Settings and Start Extraction.

Copy
current
IDL
Interface

Creates a duplicate of current IDL interface. All modifications
such as IDL directions, suppress, selection of REDEFINE paths
etc. are kept.

Rename
current
IDL
Interface

The default name for the IDL interface is based on the COBOL
program name plus appended number. With this function you can
give the IDL interface a suitable name.

Remove
current
IDL
Interface

Deletes the current IDL interface.

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation of
EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to be
chosen for the IDL interface.

 To select redefine paths

Use the Map to function available in the context menu and as mapping button to make the COBOL
REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All
COBOL REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active
REDEFINE path, see Suppress Unneeded COBOL Data Items above.

14

Select REDEFINE PathsIMS MPP Message Interface (IMS Connect)

Set Arrays (Fixed <-> Unbounded)

For COBOL server programs using the message length to transfer a variable number of elements in a
COBOL table with a fixed size (see Tables with Fixed Size) in a variable manner (see Tables with
Variable Size - DEPENDING ON Clause) you need to set the mapping to unbounded array.

For details of such a COBOL server program see Example 2: COBOL Server Using Data Length to
Process a Variable Number of Array Elements.

 To set arrays from fixed to unbounded or vice versa

Select the COBOL table and use the function Set Arrays (Fixed<->Unbounded) available in the
context menu. A modal window is displayed. Select Unbounded array. The IDL array parameter
will be changed from fixed array /number to an unbounded array /Vnumber, see
array-definition under Software AG IDL Grammar in the IDL Editor documentation.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL server program. Be
aware that an incorrect mapping results in runtime errors.

2. The COBOL Table with a fixed size (see Tables with Fixed Size) used in this manner must be the last
parameter of the COBOL interface; it must not be a subparameter of any other COBOL table and
must not contain any DEPENDING ON clause (see Tables with Variable Size - DEPENDING ON
Clause).

Programming Techniques
This section covers the following topics:

Example 1: COBOL Server with Multiple Functions

Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Example 1: COBOL Server with Multiple Functions

Assume a COBOL server program has a FUNCTION or OPERATION code COBOL data item in its
COBOL interface. The COBOL server program behaves differently depending on field values of this data
item. See the following example where a COBOL programs implements a calculator with the functions
ADD, SUBTRACT, MULTIPLY, etc. The execution of the different functions is controlled by the COBOL
data item OPERATION:

. . .

 01 OPERATION PIC X(1).
 01 OPERAND1 PIC S9(9) BINARY.
 01 OPERAND2 PIC S9(9) BINARY.
 01 FUNCTION-RESULT PIC S9(9) BINARY.
 . . .
 MOVE 0 TO FUNCTION-RESULT.
 EVALUATE OPERATION
 WHEN "+"
 ADD OPERAND1 OPERAND2
 GIVING FUNCTION-RESULT
 WHEN "-"

15

IMS MPP Message Interface (IMS Connect)Programming Techniques

 SUBTRACT OPERAND2 FROM OPERAND1
 GIVING FUNCTION-RESULT
 WHEN "*"
 MULTIPLY OPERAND1 BY OPERAND2
 GIVING FUNCTION-RESULT
 WHEN . . .

 END-EVALUATE.
. . .

You can expose each COBOL server program function separately. The advantages or reasons for wanting
this depend on the target endpoint. For example:

Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

Java or .NET
Instead having a class with a single method, you want a class with multiple methods, one method for
each COBOL function.

etc.

To do this you need to extract the COBOL server program as described under Map to Multiple IDL
Interfaces.

Example 2: COBOL Server Using Data Length to Process a Variable Number
of Array Elements

Assume a COBOL IMS MPP (IMS Connect) server program has a fixed-sized COBOL table as its last
parameter, similar to COBOL data item COBOL-TABLE-FIX in the example below; each table element
is 100 bytes; the length of COBOL-FIELD1 + COBOL-FIELD2 + COBOL-FIELD3; the length of the
data preceding the COBOL table is described by COBOL-GROUP1; its length is 1000 bytes.

 WORKING-STORAGE SECTION.
 01 NUMBER-OF-INCOMING-ELEMENTS PIC S9(8) BINARY.
 01 NUMBER-OF-OUTGOMING-ELEMENTS PIC S9(8) BINARY.
 . . .

 01 INPUT-MESSAGE.
 05 INPUT-IMS-META.
 10 INPUT-LL PIC S9(3) BINARY.
 10 INPUT-ZZ PIC S9(3) BINARY.
 10 INPUT-TRANSACTION PIC X(10).
 05 INPUT-DATA.
 10 COBOL-GROUP1.
 20 COBOL-TABLE-PREFIX PIC X(1000).
 10 COBOL-TABLE-FIX OCCURS 20.
 20 COBOL-GROUP2.
 25 COBOL-FIELD1 PIC X(4).
 25 COBOL-FIELD2 PIC X(3).
 25 COBOL-FIELD3 PIC X(50).
 01 OUTPUT-MESSAGE.
 05 OUTPUT-IMS-META.
 10 OUTPUT-LL PIC S9(3) BINARY.
 10 OUTPUT-ZZ PIC S9(3) BINARY.
 05 OUTPUT-DATA.
 10 COBOL-GROUP1.

16

Example 2: COBOL Server Using Data Length to Process a Variable Number of Array ElementsIMS MPP Message Interface (IMS Connect)

 20 COBOL-TABLE-PREFIX PIC X(1000).
 10 COBOL-TABLE-FIX OCCURS 20.
 20 COBOL-GROUP2.
 25 COBOL-FIELD1 PIC X(30).
 25 COBOL-FIELD2 PIC X(20).
 25 COBOL-FIELD3 PIC X(50).
 LINKAGE SECTION.
 . . .
 PROCEDURE DIVISION USING IO-PCB.
 CALL "CBLTDLI" USING GU, IO-PCB, INPUT-MESSAGE.
 . . .
 COMPUTE NUMBER-OF-INCOMING-ELEMENTS = (INPUT-LL
 - LENGTH OF COBOL-GROUP1 IN AREA INPUT-MESSAGE)
 / LENGTH OF COBOL-GROUP2 IN AREA INPUT-MESSAGE.
 . . .
 COMPUTE OUTPUT-LL = LENGTH OF COBOL-GROUP2 IN AREA OUTPUT-MESSAGE
 + (NUMBER-OF-OUTGOING-ELEMENTS
 * LENGTH OF COBOL-GROUP2 IN AREA OUTPUT-MESSAGE).

 CALL "CBLTDLI" USING ISRT, IO-PCB, OUTPUT-MESSAGE.
 . . .

 GOBACK.

During input the COBOL IMS MPP (IMS Connect) server program uses the IMS input message length
INPUT-LL to evaluate the NUMBER-OF-INCOMING-ELEMENTS. During output the IMS output
message length is determined accordingly to the NUMBER-OF-OUTGOING-ELEMENTS and set in
OUTPUT-LL.

Although the COBOL table is defined as a table with a fixed size (see Tables with Fixed Size) it is used in
a variable manner, similar to tables with variable size (see Tables with Variable Size - DEPENDING ON
Clause.) In this case you need to map the COBOL table to an IDL unbounded array. See Set Arrays (Fixed
<-> Unbounded).

17

IMS MPP Message Interface (IMS Connect)Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

	IMS MPP Message Interface (IMS Connect)
	Introduction
	Extracting from an IMS MPP Message Interface Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Set Arrays (Fixed <-> Unbounded)

	Programming Techniques
	Example€1: COBOL Server with Multiple Functions
	Example€2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

