CICS with DFHCOMMAREA Calling Convention - In different to Out CICS with DFHCOMMAREA Calling Convention - In different to Out

CICS with DFHCOMMAREA Calling
Convention - In different to Out

This chapter describes using the COBOL Mapping Editor to extract from a CICS DFHCOMMAREA
program where COBOL output parameters are different to COBOL input parameters, that is, the
DFHCOMMAREA on output is overlaid with a data structure that is different to the data structure on
input.

CFHCOMMAREA

|4 | A25 AlR |4 b COBOL

a10] 14 | A100000 | P5 | 14 < Server
ouT

® [ntroduction

e Extracting from a CICS DFHCOMMAREA Program
® Mapping Editor User Interface

® Mapping Editor IDL Interface Mapping Functions

® Programming Techniques

Introduction

Depending on the programming style used in the CICS program and the various different techniques for
accessing the CICBFHCOMMARH#&erface, finding the relevant COBOL data structures can be a
complex and time-consuming task that may require CICS COBOL programming knowledge. Please note
also the following:

® A CICS program does not requir@OCEDURE DIVISIONheader, where parameters are
normally defined. SeBROCEDURE DI VI SI ON Mapping

e The DFHCOMMAEAN be omitted in the linkage section.

® |f there is ndDFHCOMMARHAthe linkage section or MROCEDURE DIVISIONheader present
in thePROCEDURE DIVISION the CICS preprocessor completes the interface of the COBOL
server and addsRFHCOMMAREAd aPROCEDURE DIVISONeader to the CICS program
before compilation.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL to IDL
mapping, continue witMapping Editor User Interface

CICS with DFHCOMMAREA Calling Convention - In different to Out Extracting from a CICS DFHCOMMAREA Program

Extracting from a CICS DFHCOMMAREA Program

This section assumésput Message same as Output Message not checked. COBOL output and
COBOL input parameters are different, that is, the DFHCOMMAREA on output is overlaid with a data
structure that is different to the data structure on input. See the examples providegéragadenming
Techniques

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type CICS with DFHCOMMAREA calling conventionEttteactor
Settingsdialog appears (see alStep 4: Define the Extraction Settings and Start Extrattion

Make sure the interface type is correct and checKitgmxt Message same as Output Message
cleared.

COBOL Source

File Wame: custinfo.chl

Operating System: z/05

Interface Type: |CICSwith DFHCOMMAREA calling convention -

Input Message same as Output Message:

PresdNext to open the COBOL Mapping Editor.
To select the COBOL interface data items of your COBOL server

1. Add the COBOL data items of the CICS input messaggtd Messageby using the context menu
or toolbar available in the OBOL Source Vie®@ndCOBOL InterfaceSeeNotes

2. Add the COBOL data items of the CICS output messa@eitjout Messageby using the context
menu and toolbars available in tB®BOL InterfaceandIDL Interface SeeNotes

3. Continue withCOBOL to IDL Mapping

Notes:

1. If aDFHCOMMARHEpresent, thBFHCOMMAREXOBOL data item itself cannot be selected. In
this case, select the COBOL data items directly subordinaEHECOMMAREAd map to IDL.
SeeMap ta

2. Itis very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

3. If your COBOL server contaREDEFINES, the firstREDEFINEpath is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select anjR&DEFINE
path.

4. See the examples provided unBesgramming Techniques

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface CICS with DFHCOMMAREA Calling Convention - In different to Out

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas of the
COBOL Mapping Editor user interface are described here:

e COBOL Program Selection
e COBOL Source View
e COBOL to IDL Mapping

For COBOL interface types where COBOL input and COBOL output parameters are different, the user
interface of the COBOL Mapping Editor looks like this:

CICS with DFHCOMMAREA Calling Convention - In different to Out

= COBOL Program | CUSTIMNFO

- Interface Vype CICS with DFHCORMARES calling conwertsan

| ustinfeuichl

JnITID 1 RE

FIC X(454).

15 CON-DATA.
04 CON-HRME PIC X {060).
04 CON-FIRSE PIC X(0ed) . -
i
COBOL o 1L Mapgping
leusTego S EAR|E
CORON. Interface m [I Interface
Input Message A -)I_ LSkl (AWE] Tn
5 = = & L5-KEY (NUE) In
VRS CMD AN o L5-DATA [AVA5d) Tn
1= 02 LS-KEY PIC (008} i = g
I ¥ e T |
T2 62 L5-DATA PIC Xja54) o A CON-DATA
& COM-MAME (AU80]
& CON-ARST (AVBD)
Cutput Message & COMCTITLE (AV1Z)
e @ 01 WS-iO-DATA P X7d - -ﬂ-:I(ON-FHL".INE AV
el 4 S5 U1 WS-CONTACT REDEFINES WS || o CON-HNR. Vo)
4 803 CON-DATA & CoM-MsE (a0
Fi, 04 CON-MAME i - |©
o :)
] < Back | [Einigh J Cancel

COBOL Program Selection

~ COBOL Program | CUSTINFO

= Interface Type CICS with DFHCOMMAREA calling convention

COBOL Program Selection

COBOL
Program
Selection
Currently
selected
program
with
interface
type@‘f
More info

COBOL
Source
View.
Contains
all related
sources
for the
currently
selected
COBOL
program

@

More info

COBOL
to IDL
Mapping.
Tree view
of your
selected
COBOL
data items
and
mapping
buttons
with
which you
can map
these
items to
your IDL
interface

@

More info

COBOL Source View CICS with DFHCOMMAREA Calling Convention - In different to Out

The COBOL Program Selection displays the current selected COBOL program with its interface type. If
you have extracted more than one COBOL program within associated IDL file, you can switch to another
COBOL program with its mapping by selecting the name in the combo box.

COBOL Source View

custinfo.chl I5 ik % R
36 # MODULE I/0 DATR -
01 W5-IC-DATR PIC X (454).
WS—CONTLZCT REDEFINES WS-IO-DATA.
=] 03 CON-DATA.

04 CON-MN&ME PIC X (0&80).
41 04 CON-FIRST PIC X (0&0). 7

QJ.

All COBOL data items contained in théNKAGE andWORKING-STORAGE SECTIO#te offered in a

text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original COBOL
sources. The light green bar indicates that the data item is already contained in the COBOL Interface; a
dark green bar indicates the data item is selectable and can be added to the COBOL Interface. This section
can be collapsed. If you open the Editor withdify Interface it is collapsed by default. The toolbar

provides the following actions:

¥ Add selected COBOL data item to COBOL Interface as Input Message.
¥ Add selected COBOL data item to COBOL Interface as Output Message.
#, Remove selected COBOL data item from COBOL Interface.

“% Remove all COBOL data items from COBOL Interface.
4

Reset COBOL Interface to initial state.

% Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

® COBOL Interface
® Mapping Buttons
® |DL Interface

COBOL Interface

TheCOBOL Interface shows a tree view of your selected COBOL data items describing the interface of
the COBOL server. A context menu is available for the COBOL data items, which provides mapping and
other functions. On some COBOL data items, decision icons indicate where particular attention is needed,
including mapping icons to visualize the COBOL data type and your current mapping.

CICS with DFHCOMMAREA Calling Convention - In different to Out COBOL to IDL Mapping

The COBOL data item names are derived from the COBOL source from which they were extracted. If
your COBOL interface contains parameters without a name, that is, the keéyMvbER is used, those
COBOL data items are shown[&LLER] . SeeFl LLER Pseudo-Parameter

COBOL to IDL Mapping
| CUSTIMNFC =h =
COBOL Interface H !]] !12; DL Inter fa
Input Message LS-CMD (A1) In
T LS-KEY (NUS) In
=] 02 L5-CMD PIC X{001) (e RATA VAR i
T 5 (AV454)
- sty diid o Suppress 4 SWWS-CONTACT Out
% 02 L5-DATA PIC X(454) : - ;

4 4% CON-DATA
CON-MAME (AVED)

COMN-FIRST (AVE0)

Output Message CON-TITLE {AV1Z2)
| @ 01 W5-I0-DATA PIC X4, = COR-FHONE (Av30)
= o (- COMN-MAIL (AVAD)
#2| 4 5 01 WS-CONTACT REDEFINES WSl || 2 LON [-1 L)
) CON-MSG (AV4D
4 % 03 CON-DATA COBENISG (AVAD)
%, 04 CON-NAME pIC ~ |7

4 i P

You can maodify the COBOL interface using context menu or toolbar; decision and mapping icons provide
additional information.

Context Menu

The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail uhtdping Editor IDL Interface Mapping

Functions

Map to A suppressed COBOL data item becomes visible in the IDL
interface. Used also to select anotREXDEFINEpath.

Suppress Suppress unneeded COBOL data items.

Set Constant Set COBOL data items to constant.

Remove from COBOL Interface Remove the data item from the COBOL interface. This also

removes the mapped IDL parameter from all IDL interfaces for
the current COBOL program. SE©BOL Program Selection

Toolbar

The toolbar offers the following actions:

COBOL to IDL Mapping CICS with DFHCOMMAREA Calling Convention - In different to Out

57 Create IDL Interface. Creates a new IDL interface based on the current COBOL interface: all
IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for COBOL
REDEFINE the firstREDEFINEpath is mapped to IDIEILLER s are suppressed according
to your selection, sestep 4: Define the Extraction Settings and Start Extraction

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifications
such as IDL directions, suppress, selectioRBDEFINEpaths etc. are kept.

Remove current IDL Interface.
.‘ﬂ Rename current IDL Interface.
+/ Expand the full tree.

—| Collapse the full tree.

See alsdMap to Multiple IDL Interfaces
Decision Icons

The decision icons in the first column are set on COBOL data items where particular attention is
needed:

R+ This icon visualizes a COBOREDEFINE It is essential that you map the correct redefine
path for your mapping to In, Out or InOut using the context menu. If you R&D&EFINE
path, all other siblinREDEFINEpaths are automatically set to "Suppress".

Mapping Icons

The following mapping icons on the COBOL data items indicate your current IDL mapping:

|5 Scalar parameter, mapped to In.
= Scalar parameter, mapped to Out.

c= Group parameter, here mapped to In.

="

= REDEFINEparameter, here mapped to Out.

""@ Parameter set to Constant.

Mapping Buttons

The following buttons are available:

CICS with DFHCOMMAREA Calling Convention - In different to Out COBOL to IDL Mapping

COBOL to IDL Mapping

CUSTINFG £ A
COBOL Interfa DL Interfa
Input Message Map to -3 L5-CMD (A1) In
T e LS-KEY (NUB) In
. n:‘ L:—-,._Ll1D P,L'_I 'q_liju'l LS-DATA (AV454) In
go L;—P.E. PIC 9(008) Suppress , Gl
2 02 15-DATA (454 -
i=] 02 L5-DATA PIC X{454) — 4 <5 CON-DATA
it T bk COMN-MAME (AVED)
COM-FIRST (AVE0)
Output Message COM-TITLE {AV12)
e ; COM-PHONE (AV30)
#E) 01 WS-10-DATA BIC X{4 = L
- P s _ QOM-MAIL (AVED
B4 4 @ 01 WS-CONTACT REDEFINES WS CON-MAR. Javes)
4 T2 03 CON-DATA COM-MSG (AV40)
B 04 CON-NAME PIC~ |
[} (]
Map to ->

A suppressed COBOL data item becomes visible in the IDL interface. Used also to select another
REDEFINEpath.

Suppress

SeeSuppress Unneeded COBOL Data Items
Set Constant...

SeeSet COBOL Data Items to Constants
IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by choosing
the tabs. In théDL Interface tree view, a context menu is also available with the following possibilities:

® Rename

e Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL
interfaces for the current COBOL program. £€2BOL Program Selectioabove.

Mapping Editor IDL Interface Mapping Functions CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL to IDL Mapping

CUSTINFG =h e i o=
COBOL Interface IDL Interface

4P LS-CMD (A1) In
47 LS-KEY (NU8) In
4" LS-DATA (AV454) In

Input Message

2] 02 LS-CMD PIC X(001)
=] 02 L5-KEY PIC 9{D08)
5] 02 LS-DATA PIC X{d54)

Suppress a &
- 4 4% CON-DATA
47 CON-MNAME (AVBO)
47 COM-FIRST (AVS0)
Output Message 4" CON-TITLE (av12)
4 CON-PHONE (AV30)

: =l U1 Wo-I0-DATA I i 45 i
54| a & 01 WS-CONTACT REDEFINES WS #/CONMA [Yey)
: 4 CON-MSG (AV40)

4 503 CON-DATA
SEY 04 CON-NAME pIC -

]

Mapping Editor IDL Interface Mapping Functions
This section covers the following topics:
® Mapto

® Suppress Unneeded COBOL Data Items

Set COBOL Data Items to Constants

Map to Multiple IDL Interfaces

Select REDEFINE Paths

Map to

With theMap to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

To map a COBOL data item to IDL interface

1. Gostep-by-stephrough altop-level COBOL data items in the COBOL interface and useMbp to
function available in the context menu and as mapping button to make a COBOL data item visible as
an IDL parameter in the input message of the IDL interface.

2. Do the same for the output message of the IDL interface.
Notes:

1. If a COBOL group is mapped, all subsequent child COBOL data items are also made visible in the
IDL interface.

2. With the inverse functioBuppress Unneeded COBOL Data Itemésee below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.

CICS with DFHCOMMAREA Calling Convention - In different to Out Suppress Unneeded COBOL Data Items

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface. The IDL
interface is simplified — it becomes shorter and tidier. This is useful, for example

e for FILLER data items
e if the RPC client or Adapter Service does not need an Out parameter
e if the RPC server or Adapter Service does not need an In parameter and a low value can be provided

If you are using an RPC server such as the z@S§| Batch), z/VSE CICS| Batch), Micro Focusor
BS2000/OSDRPC server, the amount of data to be transferred to/from the RPC client is also reduced.

To suppress unneeded COBOL data items

® Use theSuppressfunction available in the context menu and as mapping button to make the COBOL
data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with low

value, managing the offset to the next COBOL data item.

If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as well.

4. With the inverse functioklap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

w

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program can
be made invisible in the IDL interface and initialized with the required constant values. This is useful for
keeping the IDL interface short and tidy. RPC clients or Adapter Services are not bothered with IDL
parameters that always contain constants, SUBE&ORD-TYPESThis function is often used in

conjunction withMap to Multiple IDL Interfaces (see below).

To map COBOL data items to constants

e Use theSet Constantfunction available in the context menu and as mapping button to define a
constant value for a COBOL data item. You are prompted with a window to enter the constant value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to your
COBOL server.

3. With the functiorMap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

10

Map to Multiple IDL Interfaces CICS with DFHCOMMAREA Calling Convention - In different to Out

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following example
ADD SUBRACTMULTIPLY. Some dispatcher front-end code executes the correct function, for example,
depending on &unction-codeor operation-codgarameter:

DISPATCHER

= M

) U

B L
P" T T L B]
D
D R I

A B

cC L

T Y

This example is described in more detail urigleaimple 1: COBOL Server with Multiple Functions

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

e |f your target endpoint is a web service: instead having a Web service with a single operation, you
get a web service with multiple operation, one operation for each COBOL function.

e |f your target endpoint is Java or .NET: instead having a class with a single method, you get a class
with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1. Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface with
the toolbar function & or

2. Give the IDL interfaces meaningful names with the toolbar fun=hon

3. Define the required constant values toftimetion-codeor operation-codgparameter, seset
COBOL Data Items to Constardabove.

For the delivered Example 1: COBOL Server with Multiple Functions:
e First, for step 1 above: Extract and define 3 separate IDL progk®QsSUBTRACTMULTIPLY.
® Second, for step 2 above: Rename them to suitabable name&Pdg: SUBTRACT MULTIPLY

e Third, for step 3 above: Define the constants '+', -’ and "™’ to the paran@RERATION
respectively.

11

CICS with DFHCOMMAREA Calling Convention - In different to Out Select REDEFINE Paths

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, resulting
in multiple IDL interfaces (IDL programs).

Icon | Function | Description

=~ |Create IDL| Creates a new IDL interface based on the current COBOL
Interface |interface. All IDL parameters are of IDL direction InOut; no ID
parameters are set to constant; for COBREDEFINE the first
REDEFINEpath is mapped to IDIEILLER s are suppressed
according to your selection, s8&ep 4: Define the Extraction
Settings and Start Extraction

—

Copy Creates a duplicate of current IDL interface. All modifications
current such as IDL directions, suppress, selectioRBEDEFINEpaths
IDL etc. are kept.

Interface

.‘ﬁ Rename | The default name for the IDL interface is based on the COBO[L
current program name plus appended number. With this function you|can
IDL give the IDL interface a suitable name.
Interface

Remove |Deletes the current IDL interface.
current
IDL

Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation of
EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBREDEFINES, the correcREDEFINEpath needs to be
chosen for the IDL interface.

To select redefine paths

e Use theMap to function available in the context menu and as mapping button to make the COBOL
REDEFINEpath available in the IDL interface.

Begin with the COBOLREDEFINEdefined at the highest level first. Work through all inner
COBOL REDEFINEdata items, going from higher levels to lower levels.

Notes:

1. Only oneREDEFINEpath of a COBOIREDEFINEcan be mapped to the IDL interface. All
COBOL REDEFINEsiblings are suppressed.

2. If aREDEFINEpath is actively mapped to the IDL interface, all COBREDEFINESsiblings are
suppressed.

3. You can suppress &EDEFINEpaths of a COBOIREDEFINE Simply suppress the active
REDEFINEpath, se&uppress Unneeded COBOL Data Items above.

12

Programming Techniques CICS with DFHCOMMAREA Calling Convention - In different to Out

Programming Techniques

This section covers the following topics:
e Example 1: COBOL Server with Multiple Functions
® Example 2: Redefines
e Example 3: Buffer Technique

® Example 4: COBOL SET ADDRESS Statements

Example 1. COBOL Server with Multiple Functions

Assume a COBOL server program had8UNCTIONor OPERATIONcode COBOL data item in its

COBOL interface. The COBOL server program behaves differently depending on field values of this data
item. See the following example where a COBOL programs implements a calculator with the functions
ADD SUBTRACTMULTIPLY, etc. The execution of the different functions is controlled by the COBOL
data itemOPERATION

01 OPERATION PIC X(1).

01 OPERAND1 PIC S9(9) BINARY.

01 OPERAND2 PIC S9(9) BINARY.

01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT
WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT
WHEN . ..

END-EVALUATE.

You can expose each COBOL server program function separately. The advantages or reasons for wanting
this depend on the target endpoint. For example:

® Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

® Javaor .NET

Instead having a class with a single method, you want a class with multiple methods, one method for
each COBOL function.

13

CICS with DFHCOMMAREA Calling Convention - In different to Out Example 2: Redefines

® efc.

To do this you need to extract the COBOL server program as describedMaptr Multiple IDL
Interfaces

Example 2: Redefines

The output data is described witiREDEFINEthat overlays the input data as in the following example.
In this case you need to selddtBUFFER for the input message a@UT-BUFFERfor the output
message of the COBOL interface.

LINKAGE SECTION.
01 DFHCOMMAREA.

02 IN-BUFFER.
03 OPERATION PIC X(1).
03 OPERAND-1 PIC S9(9) BINARY.
03 OPERAND-2 PIC S9(9) BINARY.
02 OUT-BUFFER REDEFINES IN-BUFFER.
03 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION USING DFHCOMMAREA.
* process the IN-BUFFER and provide result in OUT-BUFFER
EXEC CICS RETURN.

Example 3: Buffer Technique

On entry, the server moves linkage section field(s) - often an entire buffer - into the working storage and
processes the input data inside the working storage field(s). Before return, it moves the working storage
field(s) - often an entire buffer - back to the linkage section. In this case, the relevant COBOL data items
are described within the working storage section. You need to B¢{8tiFFER for the input message
andOUT-BUFFERfor the output message of the COBOL interface.

WORKING STORAGE SECTION

01 IN-BUFFER.
02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
01 OUT-BUFFER.
02 FUNCTION-RESULT PIC S9(9) BINARY.

LINKAGE SECTION
01 DFHCOMMAREA.
02 IO-BUFFER PIC X(9).

PROCEDURE DIVISION USING DFHCOMMAREA.
MOVE IO-BUFFER TO IN-BUFFER.

* process the IN-BUFFER and provide result in OUT-BUFFER
MOVE OUT-BUFFER TO I0-BUFFER.
EXEC CICS RETURN.

Example 4. COBOL SET ADDRESS Statements

COBOL SET ADDRESSstatements are used to manipulate the interface of the CICS server. On entry, the
server addresses the input data with a (dummy) strudeB&JFFER defined in the linkage section.

Upon return, the server addresses the output data again with a different (dummy) sSDUGHWBEFFER

defined in the linkage section. You need to sddadBUFFER for the input message aUT-BUFFER

for the output message of the COBOL interface.

14

Example 4: COBOL SET ADDRESS Statements CICS with DFHCOMMAREA Calling Convention - In different to Out

LINKAGE SECTION.

01 IN-BUFFER.
02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
01 OUT-BUFFER.
02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION.
SET ADDRESS OF IN-BUFFER TO DFHCOMMAREA.

* process the IN-BUFFER and provide result in OUT-BUFFER
SET ADDRESS OF OUT-BUFFER TO DFHCOMMAREA.
EXEC CICS RETURN.

15

	CICS with DFHCOMMAREA Calling Convention - In different to Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths

	Programming Techniques
	Example€1: COBOL Server with Multiple Functions
	Example€2: Redefines
	Example€3: Buffer Technique
	Example€4: COBOL SET ADDRESS Statements

