CICS with Channel Container Calling Convention CICS with Channel Container Calling Convention

CICS with Channel Container Calling
Convention

This chapter describes using the COBOL Mapping Editor to extract from a CICS channel container
program.

Input container

14 | Azs la1ts |14 >

COBOL

Output container b

EOlEEEE <«
® |Introduction

e Extracting from a CICS Channel Container Program
® Mapping Editor User Interface

® Mapping Editor IDL Interface Mapping Functions

® Programming Techniques

Introduction

Modern CICS programs may use the CICS channels and containers model. During extraction, containers
are mapped to IDL structures. Sstricture-parameter-definition (IDL).

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL to IDL

mapping, continue witMapping Editor User Interface

Extracting from a CICS Channel Container Program

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type CICS with channel container calling conventidbxtifaetor
Settingsdialog appears (see alStep 4: Define the Extraction Settings and Start Extraxtion

Make sure the interface type is correct and, if required, that the channel name (max. 16 characters) is
provided. If you do not provide a channel name, "EntireXChannel" is used as the default value.



CICS with Channel Container Calling Convention Extracting from a CICS Channel Container Program

COBOL Source
File Mame: ChanCon

Operating System:  z/08

Interface Type: |§CICSwith Channel Centainer calling convention P w

Input Message same as Output Message

PresdNext to open the COBOL Mapping Editor.
To select the COBOL interface data items of your COBOL server

1. Define all the CICS input containers, one after another: iSdbece View use the toolbar icon

Find text in Source# and enterEXEC CICS" to find aGETcall containind'EXEC CICS
GET", function"CONTAINER" etc. Example:

EXEC CICS GET
CONTAINER(<container name constant>)
CHANNEL (<channel>)
INTO (<container>)
NOHANDLE
END-EXEC

The COBOL data itergcontainer> s the item you are looking for. Add the COBOL data item
<container>  toInput Messageby using the context menu or toolbar available inGEBOL
Source VievandCOBOL Interfaceln thelnput Messagepane, select the corresponding COBOL
data item<container> . Enter the container name, found in the valuecaintainer name
constant> . You can select multiple CICS input containers. Se&es

2. Define all the CICS output containers using the steps as above, but [4eKEE CICS PUT" .
Example:

EXEC CICS PUT
CONTAINER(<container name constant>)
CHANNEL (<channel>)
FROM (<container>)
FLENGTH (LENGTH OF <container>)
NOHANDLE

END-EXEC

Add the corresponding COBOL data iterwontainer>  to Output Message In theOutput
Messagepane, select the corresponding COBOL data #eontainer> . Enter the container

name, found in the value gtontainer name constant> . TheEXEC CICS PUT statement

can be executed multiple times (for example in a loop) for the same container definition, creating an
array of container. If this is true, set the column Array in the wizard to "Yes" and enter the maximum
number of occurrences for the container inNtex column. You can select multiple CICS output
containers. Selotes

3. Continue withfCOBOL to IDL Mapping
Notes:

1. Itis very important to select the right COBOL data items describing the interface of the COBOL
server correctly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

2. If your COBOL server contaREDEFINES, the firstREDEFINEpath is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select anjR&EDEFINE



Mapping Editor User Interface CICS with Channel Container Calling Convention

path.
3. The container name length is restricted to 16 characters.

4. Container arrays will enlarge the container name, because the number of occuvtarazsymn)
will be added to the name (max. 16 characters). Example:
For MYCONTAINERS the container name and 99999 as the number of occurrences, the container
names arélYCONTAINEROOOOEX MYCONTAINER99999

The user interface of the COBOL Mapping Editor is described below.

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas of the
COBOL Mapping Editor user interface are described here:

e COBOL Program Selection
® COBOL Source View
e COBOL to IDL Mapping

For COBOL server programs with CICS channel container interface, the user interface of the COBOL
Mapping Editor looks like this:



CICS with Channel Container Calling Convention COBOL Program Selection

COBOL
Program
Selection
Currently
selected
program
with
interface
type ®

More info

COBOL
Source
View.
Contains
all related
- sources
for the
currently
selected
COBOL
program

e

More info

COBOL
to IDL
Mapping.
Tree view

w COROL Program CCEXAMPLE - Imterfoce Type  CICS with Channel Container calling comventman

ChanCen ¥ R P
9% | HEMF. -
05 SORNAHE.
QTR
05 ADDRESS.
05 PHOME.

COBOL to DL Mapping
COENAMPLE 5 h X | H =
COBOL Interface I interface

4 9° INPUT (inputhesssge’) In

Irspiit Message
9 & HAME

4 5 0L meuT
T o5 NAnE
T 05 SURMAME
Contmnes Mame

ching ceierted

Output Message
75 05 ADDRESS
T 05 PHONE

Combmner Mame Artay

Dutputhlessage ¥es

Suppresa

&% SURBAME

4 2 OUTRUT (OuputMessage /¥5) Ot

&* ADDRESS
&& PHONE

[ bnsh

of your
selected
COBOL
data items
and
mapping
buttons
with
which you
can map
these
items to
your IDL
interface
@

More info

COBOL Program Selection

~ COBOL Program | CCEXAMPLE - Interface Type CICS with Channel Centainer calling convention

The COBOL Program Selection displays the current selected COBOL program with its interface type. If
you have extracted more than one COBOL program within associated IDL file, you can switch to another
COBOL program with its mapping by selecting the name in the combo box.



COBOL Source View CICS with Channel Container Calling Convention

COBOL Source View

-+ COBOL Program | CCEXAMPLE - Interface Type CICS with Channel Container calling convention

ChanCon I i R <:QJ| ¥

m

All COBOL data items contained in théNKAGE andWORKING-STORAGE SECTIO#te offered in a

text view. The text view contains all related sources (including copybooks) for the currently selected
COBOL program. It is used for selecting data items and retrieving information from the original COBOL
sources. The light green bar indicates that the data item is already contained in the COBOL Interface; a
dark green bar indicates the data item is selectable and can be added to the COBOL Interface. This section
can be collapsed. If you open the Editor withdify Interface it is collapsed by default. The toolbar

provides the following actions:

¥ Add selected COBOL data item to COBOL Interface as Input Message.
& Add selected COBOL data item to COBOL Interface as Output Message.
i#, Remove selected COBOL data item from COBOL Interface.

“% Remove all COBOL data items from COBOL Interface.
4

Reset COBOL Interface to initial state.

#" Show dialog to find text in Source.

The same functionality is also available from the context menu.

COBOL to IDL Mapping

This section covers the following topics:

® COBOL Interface
® Mapping Buttons
® |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface of
the COBOL server. A context menu is available for the COBOL data items, which provides mapping and
other functions. On some COBOL data items, decision icons indicate where particular attention is needed,
including mapping icons to visualize the COBOL data type and your current mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted. If
your COBOL interface contains parameters without a name, that is, the kesMvbER is used, those
COBOL data items are shown[#3LLER] . SeeFl LLER Pseudo-Parameter



CICS with Channel Container Calling Convention

COBOL to IDL Mapping

COBOL to IDL Mapping
CCEXAMPLE | ap =
COBOL Interface E m E M Interface
5 - ST
Input Message 4 Ir LF"JT {'inputiessage’) In
o MAME
4 B o1eut - | & SURNAME
o . SURNAN
205 NAME . | Suppress « P OUTPUT (OutputMessage'/V5) Ot
= 05 SURNAME o - G ADDRESS
Container Name ‘ & pPHONE
nothing selected
Output Message
a ' 2
£, 05 ADDRESS L
=
= 05 PHONE - |
Container Mame Array Max ‘
OutputMessage Yes 5 |

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons provide

additional information.

Context Menu

The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

These functions are described in more detail uNgping Editor IDL Interface Mapping

Functions

Map to

Suppress
Set Constant

Set Array Mapping

Remove from COBOL Interface

Toolbar

A suppressed COBOL data item becomes visible in the IDL
interface. Used also to select anotREDEFINEpath.

Suppress unneeded COBOL data items.
Set COBOL data items to constant.

Map an array to a fixed sized or unbounded array.

Note:

This option should be used carefully and requires knowledge of
the COBOL server program. Be aware that an incorrect
mapping could result in runtime errors.

Remove the data item from the COBOL interface. This also
removes the mapped IDL parameter from all IDL interfaces for
the current COBOL program. SE©OBOL Program Selection

The toolbar offers the following actions:



COBOL to IDL Mapping CICS with Channel Container Calling Convention

57 Create IDL Interface. Creates a new IDL interface based on the current COBOL interface: all
IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for COBOL
REDEFINE the firstREDEFINEpath is mapped to IDIEILLER s are suppressed according
to your selection, sestep 4: Define the Extraction Settings and Start Extraction

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifications
such as IDL directions, suppress, selectioRBDEFINEpaths etc. are kept.

# Remove current IDL Interface.
.‘ﬂ Rename current IDL Interface.
+/ Expand the full tree.

—| Collapse the full tree.

See alsdMap to Multiple IDL Interfaces
Decision Icons

The decision icons in the first column are set on COBOL data items where particular attention is
needed:

R+ This icon visualizes a COBOREDEFINE It is essential that you map the correct redefine
path for your mapping to In, Out or InOut using the context menu. If you R&D&EFINE
path, all other siblinREDEFINEpaths are automatically set to "Suppress".

Mapping Icons

The following mapping icons on the COBOL data items indicate your current IDL mapping:

|5 Scalar parameter, mapped to In.
= Scalar parameter, mapped to Out.

c= Group parameter, here mapped to In.

="

= REDEFINEparameter, here mapped to Out.

""@ Parameter set to Constant.

Mapping Buttons

The following buttons are available:



CICS with Channel Container Calling Convention COBOL to IDL Mapping

COBOL to IDL Mapping

CCEXAMPLE I “h s

OB erface | IDL interface
[ 5 {"inputhlessage”
Input Message Map ta -> a It LF'UT ('inputMessage’) In
o NAME
4 7501 INPUT S oURMNAME
.-'":,'_ Ty pu e Suppress s <" OUTPUT [OutputMessage /V5) Out
= 05 SURNAME ¥ G ADDRESS
Container Mame set Constant. & pYONE

Qutput Message

a 01 OUTRUT

%2, 05 ADDRESS

= 05 PHONE ¥
Container Mame Array Max
OutputMessage Yes 5

Map to ->

A suppressed COBOL data item becomes visible in the IDL interface. Used also to select another
REDEFINEpath.

Suppress

SeeSuppress Unneeded COBOL Data Items
Set Constant...

SeeSet COBOL Data Items to Constants
IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by choosing
the tabs. In théDL Interface tree view, a context menu is also available with the following possibilities:

® Rename

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL
interfaces for the current COBOL program. $£2BOL Program Selectioabove.



Mapping Editor IDL Interface Mapping Functions CICS with Channel Container Calling Convention

COBOL to IDL Mapping

CCEXAMPLE I i e il
COBOL Interface ] IDL Interface
Input Message . & TGP:;JL"F“ME“EQE'] In
a T 0LINPUT .; IR
B 5 Saos : s
Container Name ,.;G PHONE

Qutput Message
4 =0T ouTelT
5 05 ADDRESS
= 05 PHONE -
Container Mame Array Max

OutputMessage Yes 5

Mapping Editor IDL Interface Mapping Functions
This section covers the following topics:

® Mapto

® Suppress Unneeded COBOL Data Items

® Set COBOL Data Items to Constants

® Map to Multiple IDL Interfaces

® Select REDEFINE Paths

® Set Arrays (Fixed <-> Unbounded)

Map to

With theMap to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

To map a COBOL data item to IDL interface

1. Gostep-hy-stephrough alltop-level COBOL data items in the COBOL interface and useMhp to
function available in the context menu and as mapping button to make a COBOL data item visible as
an IDL parameter in the input message of the IDL interface.

2. Do the same for the output message of the IDL interface.
Notes:

1. If a COBOL group is mapped, all subsequent child COBOL data items are also made visible in the
IDL interface.

2. With the inverse functioBuppress Unneeded COBOL Data Itemésee below) available in the
context menu and as mapping button, a COBOL data item can be removed from the IDL interface.



CICS with Channel Container Calling Convention Suppress Unneeded COBOL Data Items

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface. The IDL
interface is simplified — it becomes shorter and tidier. This is useful, for example

e for FILLER data items
e if the RPC client or Adapter Service does not need an Out parameter
e if the RPC server or Adapter Service does not need an In parameter and a low value can be provided

If you are using an RPC server such as the z@S§| Batch), z/VSE CICS| Batch), Micro Focusor
BS2000/OSDRPC server, the amount of data to be transferred to/from the RPC client is also reduced.

To suppress unneeded COBOL data items

® Use theSuppressfunction available in the context menu and as mapping button to make the COBOL
data item invisible in the IDL interface.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the COBOL data item to your COBOL server with low

value, managing the offset to the next COBOL data item.

If a COBOL group is suppressed, all subsequent child COBOL data items are suppressed as well.

4. With the inverse functioklap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

w

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL server program can
be made invisible in the IDL interface and initialized with the required constant values. This is useful for
keeping the IDL interface short and tidy. RPC clients or Adapter Services are not bothered with IDL
parameters that always contain constants, SUBE&ORD-TYPESThis function is often used in

conjunction withMap to Multiple IDL Interfaces (see below).

To map COBOL data items to constants

e Use theSet Constantfunction available in the context menu and as mapping button to define a
constant value for a COBOL data item. You are prompted with a window to enter the constant value.

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for RPC clients or Adapter
Services.

2. The RPC server or Adapter Service provides the defined constant in the COBOL data item to your
COBOL server.

3. With the functiorMap to (see above) available in the context menu and as mapping button, a
COBOL data item can be made visible in the IDL interface again.

10



Map to Multiple IDL Interfaces CICS with Channel Container Calling Convention

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following example
ADD SUBRACTMULTIPLY. Some dispatcher front-end code executes the correct function, for example,
depending on &unction-codeor operation-codgarameter:

DISPATCHER

= M

) U

B L
P" T T L B ]
D
D R I

A B

cC L

T Y

This example is described in more detail urigleaimple 1: COBOL Server with Multiple Functions

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing of the IDL and COBOL
mapping files (SVM and CVM). For example:

e |f your target endpoint is a web service: instead having a Web service with a single operation, you
get a web service with multiple operation, one operation for each COBOL function.

e |f your target endpoint is Java or .NET: instead having a class with a single method, you get a class
with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1. Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface with
the toolbar function & or

2. Give the IDL interfaces meaningful names with the toolbar fun=hon

3. Define the required constant values toftimetion-codeor operation-codgparameter, seset
COBOL Data Items to Constardabove.

For the delivered Example 1: COBOL Server with Multiple Functions:
e First, for step 1 above: Extract and define 3 separate IDL progk®QsSUBTRACTMULTIPLY.
® Second, for step 2 above: Rename them to suitabable name&Pdg: SUBTRACT MULTIPLY

e Third, for step 3 above: Define the constants '+', -’ and "™’ to the paran@RERATION
respectively.

11



CICS with Channel Container Calling Convention Select REDEFINE Paths

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, resulting
in multiple IDL interfaces (IDL programs).

Icon | Function | Description

=~ |Create IDL| Creates a new IDL interface based on the current COBOL
Interface |interface. All IDL parameters are of IDL direction InOut; no ID
parameters are set to constant; for COBREDEFINE the first
REDEFINEpath is mapped to IDIEILLER s are suppressed
according to your selection, s8&ep 4: Define the Extraction
Settings and Start Extraction

—

Copy Creates a duplicate of current IDL interface. All modifications
current such as IDL directions, suppress, selectioRBEDEFINEpaths
IDL etc. are kept.

Interface

.‘ﬁ Rename | The default name for the IDL interface is based on the COBO[L
current program name plus appended number. With this function you|can
IDL give the IDL interface a suitable name.
Interface

# Remove |Deletes the current IDL interface.
current
IDL

Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation of
EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBREDEFINES, the correcREDEFINEpath needs to be
chosen for the IDL interface.

To select redefine paths

e Use theMap to function available in the context menu and as mapping button to make the COBOL
REDEFINEpath available in the IDL interface.

Begin with the COBOLREDEFINEdefined at the highest level first. Work through all inner
COBOL REDEFINEdata items, going from higher levels to lower levels.

Notes:

1. Only oneREDEFINEpath of a COBOIREDEFINEcan be mapped to the IDL interface. All
COBOL REDEFINEsiblings are suppressed.

2. If aREDEFINEpath is actively mapped to the IDL interface, all COBREDEFINESsiblings are
suppressed.

3. You can suppress &EDEFINEpaths of a COBOIREDEFINE Simply suppress the active
REDEFINEpath, se&uppress Unneeded COBOL Data Items above.

12



Programming Techniques CICS with Channel Container Calling Convention

Set Arrays (Fixed <-> Unbounded)

For COBOL server programs using the message length to transfer a variable number of elements in a
COBOL table with a fixed size (sdables with Fixed Sizén a variable manner (sdables with
Variable Size DPEPENDI NG ON Clausé you need to set the mapping to unbounded array.

For details of such a COBOL server programBeample 2: COBOL Server Using Data Length to
Process a Variable Number of Array Elements

To set arrays from fixed to unbounded or vice versa

® Select the COBOL table and use the functen Arrays (Fixed<->Unbounded)available in the
context menu. A modal window is displayed. Selégbounded array. The IDL array parameter
will be changed from fixed arrapéinber to an unbounded arrayrunber , see
array-definition underSoftware AG IDL Gramman the IDL Editor documentation.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL server program. Be
aware that an incorrect mapping results in runtime errors.

2. The COBOL Table with a fixed size (SE&bles with Fixed Sizeised in this manner must be the last
parameter of the COBOL interface; it must not be a subparameter of any other COBOL table and
must not contain anPEPENDING ONclause (se@ables with Variable SizeDEPENDI NG ON
Clauss.

Programming Techniques
This section covers the following topics:
e Example 1: COBOL Server with Multiple Functions

® Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

Example 1. COBOL Server with Multiple Functions

Assume a COBOL server program hda WNCTIONor OPERATIONcode COBOL data item in its

COBOL interface. The COBOL server program behaves differently depending on field values of this data
item. See the following example where a COBOL programs implements a calculator with the functions
ADD SUBTRACTMULTIPLY, etc. The execution of the different functions is controlled by the COBOL
data itemOPERATION

01 OPERATION PIC X(1).

01 OPERAND1 PIC S9(9) BINARY.

01 OPERAND2 PIC S9(9) BINARY.

01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"

13



CICS with Channel Container Calling Convention Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements

SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . ..

END-EVALUATE.

You can expose each COBOL server program function separately. The advantages or reasons for wanting
this depend on the target endpoint. For example:

® Web Service
Instead having a Web service with a single operation, you want a web service with multiple
operations, one operation for each COBOL function.

® Javaor .NET
Instead having a class with a single method, you want a class with multiple methods, one method for
each COBOL function.

® efc.

To do this you need to extract the COBOL server program as describedMapltr Multiple IDL
Interfaces

Example 2: COBOL Server Using Data Length to Process a Variable Number
of Array Elements

Assume a COBOL CICS channel container server program has a fixed-length COBOL table as its last
parameter, similar to COBOL data it«b®BOL-TABLE-FIX in the example below; each table element

is 100 bytes; the length &FOBOL-FIELD1 + COBOL-FIELD2 + COBOL-FIELD3; the length of the

data preceding the COBOL table is describe€®BOL-GROURts length is 1000 bytes.

WORKING-STORAGE SECTION.

01 LS-CONTAINER-NAME PIC X(16) VALUE "VAR-INPUT".

01 WS-CONTAINER-NAME PIC X(16) VALUE "VAR-OUTPUT".
01 NUMBER-OF-INCOMING-ELEMENTS PIC S9(8) BINARY.

01 NUMBER-OF-OUTGOMING-ELEMENTS  PIC S9(8) BINARY.

01 WS-CONTAINER-LAYOUT.
10 COBOL-GROUPL1.

20 COBOL-TABLE-PREFIX PIC X(1000).
10 COBOL-TABLE-FIX OCCURS 20.
20 COBOL-GROUP2.
25 COBOL-FIELD1 PIC X(4).
25 COBOL-FIELD2 PIC X(3).
25 COBOL-FIELD3 PIC X(50).

LINKAGE SECTION.
01 LS-CONTAINER-LAYOUT.
10 COBOL-GROUPL1.

20 COBOL-TABLE-PREFIX PIC X(1000).
10 COBOL-TABLE-FIX OCCURS 20.
20 COBOL-GROUP2.
25 COBOL-FIELD1 PIC X(30).
25 COBOL-FIELD2 PIC X(20).
25 COBOL-FIELD3 PIC X(50).

14



Example 2: COBOL Server Using Data Length to Process a Variable Number of Array Elements CICS with Channel Container Calling Convention

PROCEDURE DIVISION.
EXEC CICS GET
CONTAINER (LS-CONTAINER-NAME
SET  (ADDRESS OF LS-CONTAINER-LAYOUT)
FLENGTH (WS-CONTAINER-LENGTH)
RESP  (WS-RESP)
RESP2 (WS-RESP2)
END-EXEC.
COMPUTE NUMBER-OF-INCOMING-ELEMENTS = (WS-CONTAINER-LENGTH
- LENGTH OF COBOL-GROUP1 IN AREA LS-CONTAINER-LAYOUT)
/ LENGTH OF COBOL-GROUP2 IN AREA LS-CONTAINER-LAYOUT.

COMPUTE WS-CONTAINER-LENGTH = LENGTH OF COBOL-GROUP2 IN AREA WS-CONTAINER-LAYOUT
+ (NUMBER-OF-OUTGOING-ELEMENTS
* LENGTH OF COBOL-GROUP2 IN AREA WS-CONTAINER-LAYOUT).

EXEC CICS PUT
CONTAINER (WS-CONTAINER-NAME)
FROM  (WS-CONTAINER-LAYOUT)
FLENGTH (WS-CONTAINER-LENGTH)
RESP  (WS-RESP)
RESP2 (WS-RESP2)

END-EXEC.
EXEC CICS RETURN END-EXEC.

During input the COBOL channel container server program uses the container length
WS-CONTAINER-LENGTIHb evaluate thelUMBER-OF-INCOMING-ELEMENT®uring output the
WS-CONTAINER-LENGTI$ determined according to theJMBER-OF-OUTGOING-ELEMENTB&d
set in theEXEC CICS PUT CONTAINER statement.

Although the COBOL table is defined as a table with a fixed sizel@ales with Fixed Sizét is used in
a variable manner, similar to tables with variable size Taddes with Variable SizeDEPENDI NG ON
Clausg. In this case you need to map the COBOL table to an IDL unbounded arr&etSaeays (Fixed
<-> Unbounded)

15



	CICS with Channel Container Calling Convention
	Introduction
	Extracting from a CICS Channel Container Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface


	Mapping Editor IDL Interface Mapping Functions
	Map to
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Set Arrays (Fixed <-> Unbounded)

	Programming Techniques
	Example€1: COBOL Server with Multiple Functions
	Example€2: COBOL Server Using Data Length to Process a Variable Number of Array Elements



