
Introduction to the IDL Extractor for
COBOL

Introduction

Extractor Wizard

Mapping Editor

Supported COBOL Interface Types

Usage of Server Mapping Files

1

Introduction to the IDL Extractor for COBOLIntroduction to the IDL Extractor for COBOL

Introduction
The Software AG IDL Extractor for COBOL inspects a COBOL source and its copybooks for COBOL
data items to extract. It can also extract directly from copybooks. In a user-driven process supported by an
Extractor Wizard, the interface of a COBOL server is extracted and - with various features offered by a
Mapping Editor - modelled to a client interface.

Start the wizard, select your server program and make COBOL-specific settings.

Optional. This step is not always necessary: it is possible that parameters have already been selected,
for example as a result of the COBOL USING clause.

Optional. If necessary, you can modify the parameter selection from the Mapping Editor.

Fine-tune the COBOL to IDL mapping.

Generate an IDL file and a server mapping file. These two related files map the client interface to the
COBOL server program and are described below:

IDL File
The Software AG IDL file (interface definition language) contains the modelled interface of the
COBOL server. In a follow-up step the IDL file is the starting point for the RPC client-side wrapping
generation tools to generate client interface objects. See EntireX Wrappers.

Server Mapping File
A server mapping file to complete the mapping is generated only if it is required by the RPC server
during runtime to call the COBOL server. See Usage of Server Mapping Files.

2

IntroductionIntroduction to the IDL Extractor for COBOL

Extractor Wizard
The extractor wizard guides you through the extraction process. The wizard supports the following tasks:

Accessing COBOL source files, either in the local file system where the EntireX Workbench runs or
remotely from the host computer with the RPC server extractor service. The wizard supports the
following: z/OS partitioned data sets and CA Librarian data sets (including member archive levels) as
well as BS2000/OSD LMS libraries. See Extractor Service in the z/OS Batch | IMS |
BS2000/OSD Batch RPC Server documentation. For this purpose, define a local or remote COBOL
extractor environment. See IDL Extractor for COBOL Preferences.

Resolving of COBOL copybooks. If a relevant copybook from the COBOL DATA DIVISON is
missing, a browse dialog is offered where you can locate the copybook - either a folder (local
extractor environment) or data set (remote extractor environment) - interactively. Copybook folder or
data sets can also be predefined in the COBOL extractor environment. See IDL Extractor for COBOL
Preferences.

Resolving of COBOL copybooks with the REPLACE option.

CA Librarian (-INC) and CA Panvalet (++INCLUDE) control statements are supported. They are
handled in a similar way to copybooks.

Various COBOL server interface types, such as standard CICS DFHCOMMAREA, CICS with different
structures on input and output, CICS with a large buffer compatible to webMethods WMTLSRVR,
standard batch, Micro Focus standard calling conventions, and IMS BMP server with PCB pointers.
See Supported COBOL Interface Types.

Selecting the COBOL server interface manually within the COBOL Mapping Editor page. This
allows you to extract from a COBOL server where the interface definition is not completely given by
the parameters provided in the PROCEDURE DIVISION Mapping, making it impossible to detect
the parameters automatically.

Defining the default COBOL to IDL mapping in the IDL Extractor for COBOL Preferences for the
following fields:

COBOL pseudo-parameter FILLER fields. You can define whether they should be part of the
RPC client interface or not. By default, they are not contained in the IDL.

The name prefix for FILLER and anonymous groups used for IDL parameters.

COBOL alphanumeric fields (PICTURE X, A, G, N). They can be mapped either to
variable-length or fixed-length strings in the IDL. This option is provided for modern RPC
clients that support variable-length strings, and also for legacy RPC clients that support
fixed-length strings only.

The extractor wizard is described in a step-by-step tutorial; see Using the IDL Extractor for COBOL -
Overview.

3

Introduction to the IDL Extractor for COBOLExtractor Wizard

Mapping Editor

The COBOL Mapping Editor is the tool to select and map the COBOL server interface to IDL. This
section gives a short overview of the mapping features provided. These features are described in more
detail in the documentation section for the respective interface type.

Add and remove the parameters of the COBOL server in the top window of the COBOL Mapping
Editor page. The current selection is shown in the bottom window for fine tuning.

Provide IDL directions for parameters of the COBOL server. A COBOL server does not contain IDL
direction information, so you can add this information manually in the Mapping Editor.

Select REDEFINE paths used in the IDL. The Mapping Editor allows you to select a single
REDEFINE path for every REDEFINE unit (all redefine paths addressing the same storage location).

Suppress unneeded fields in the IDL. This keeps the IDL client interface lean and also minimizes the
amount of data transferred during runtime.

Define parameter constants as input for the COBOL server. Constant parameters are not contained in
the IDL file, which means they are invisible for RPC clients. This makes the IDL client interface
easier and safer to use, minimizing improper usage.

For one COBOL server program, you can create and model multiple interfaces. If the IDL is
processed further with a wrapper of the EntireX Workbench, the business functions are provided as

4

Mapping EditorIntroduction to the IDL Extractor for COBOL

Web service operations if exposed as a Web service instead of a Web service with a single
operation

methods if wrapped with the Java Wrapper or .NET Wrapper instead of a Java class with a
single method

etc.

See COBOL Mapping Editor for more information.

Supported COBOL Interface Types
The IDL Extractor for COBOL supports as input a COBOL server with various interface types. This
section covers the following topics:

Supported CICS COBOL Interface Types

Micro Focus with Standard Linkage Calling Convention

Batch with Standard Linkage Calling Convention

IMS MPP Message Interface (IMS Connect)

IMS BMP with Standard Linkage Calling Convention

What to do with other Interface Types?

Compatibility between COBOL Interface Types and RPC Server

The interface type you are mostly working with can be set in the preferences. See IDL Extractor for
COBOL Preferences.

Supported CICS COBOL Interface Types

Analyzing the technique used to access the interface with COBOL and CICS statements is the safest way
to determine the interface type. The following CICS COBOL interface types are supported:

CICS with DFHCOMMAREA Calling Convention

CICS with Channel Container Calling Convention

CICS with DFHCOMMAREA Large Buffer Interface

There is no clear and easy indication how to identify the interface type of a CICS COBOL server without
COBOL and CICS knowledge. Below are some criteria that might help to determine the interface type. If
you are unsure, consult a CICS COBOL specialist.

The payload size of the CICS COBOL server is greater than 32 KB:

In this case it is not a DFHCOMMAREA interface, because the DFHCOMMAREA is limited to
32 KB.

5

Introduction to the IDL Extractor for COBOLSupported COBOL Interface Types

It could be a large buffer or channel container interface, which are only limited by the storage
(memory) available to them.

The CICS COBOL server is located in a remote CICS region:

In this case it is not a large buffer interface (designed to assist with webMethods mainframe
migration), because large buffer programs must reside on the same CICS region as the caller,
that is, the CICS RPC Server (z/OS | z/VSE).

It could be a DFHCOMMAREA or channel container interface, which can reside in a remote
CICS region.

Note:
The most used interface type is the DFHCOMMAREA interface. Large buffer and channel container
interfaces are used much less frequently.

CICS with DFHCOMMAREA Calling Convention

The IDL Extractor for COBOL supports CICS programs using the standard DFHCOMMAREA calling
convention.

The following illustrates roughly how you can determine whether a COBOL server follows the
DFHCOMMAREA calling convention standard:

LINKAGE SECTION.
01 DFHCOMMAREA.
 02 OPERATION PIC X(1).
 02 OPERAND-1 PIC S9(9) BINARY.
 02 OPERAND-2 PIC S9(9) BINARY.
 02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION USING DFHCOMMAREA.
 . . .

Most DFHCOMMAREA programs have a DFHCOMMAREA data item in their LINKAGE SECTION and may
address this item in the PROCEDURE DIVISION header. If you find this in your COBOL source it’s a
clear indication it is a DFHCOMMAREA server program. But even if this is missing, it can be a
DFHCOMMAREA program, because there are alternative programming styles. If you are unsure, consult a
COBOL CICS specialist or see Supported CICS COBOL Interface Types for more information.

See Step 4: Define the Extraction Settings and Start Extraction for more information on extracting
COBOL servers with this interface type.

6

Supported CICS COBOL Interface TypesIntroduction to the IDL Extractor for COBOL

CICS with Channel Container Calling Convention

The IDL Extractor for COBOL supports CICS programs using the channel container calling convention.

The following illustrates roughly how you can determine whether a COBOL server follows the Channel
Container standard.

WORKING-STORAGE SECTION.
01 WS-CONTAINER-IN-NAME PIC X(16) VALUE "CALC-IN".
01 WS-CONTAINER-OUT-NAME PIC X(16) VALUE "CALC-OUT".
. . .
LINKAGE SECTION.
01 LS-CONTAINER-IN-LAYOUT.
 02 OPERATION PIC X(1).
 02 OPERAND1 PIC S9(9) BINARY.
 02 OPERAND2 PIC S9(9) BINARY.
01 LS-CONTAINER-OUT-LAYOUT.
 02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION.
 . . .
 EXEC CICS GET CONTAINER (WS-CONTAINER-IN-NAME) SET (ADDRESS OF LS-CONTAINER-IN-LAYOUT) ...
 . . .
 EXEC CICS PUT CONTAINER (WS-CONTAINER-OUT-NAME) FROM (ADDRESS OF LS-CONTAINER-OUT-LAYOUT) ...
 . . .

Channel Container programs use EXEC CICS GET CONTAINER in their program body (PROCEDURE
DIVISION) to read their input parameters. Output parameters are written using EXEC CICS PUT
CONTAINER. There is no clear indication in the linkage or working storage section to identify a channel
container program. If you are unsure, consult a COBOL CICS specialist for clarification.

See Step 4: Define the Extraction Settings and Start Extraction for more information on extracting
COBOL servers with this interface type.

CICS with DFHCOMMAREA Large Buffer Interface

This type of program has a defined DFHCOMMAREA interface to access more than 31 KB of data in CICS.
The interface is the same as the webMethods WMTLSRVR interface. This enables webMethods
customers to migrate to EntireX.

7

Introduction to the IDL Extractor for COBOLSupported CICS COBOL Interface Types

Technically,

the DFHCOMMAREA layout contains a structure with a length and a pointer to a large buffer. The
following illustrates this:

LINKAGE SECTION.
01 DFHCOMMAREA.
 10 WM-LCB-MARKER PIC X(4).
 10 WM-LCB-INPUT-BUFFER POINTER.
 10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
 10 WM-LCB-OUTPUT-BUFFER POINTER.
 10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
 10 WM-LCB-FLAGS PIC X(1).
 88 WM-LCB-FREE-OUTPUT-BUFFER VALUE ’F’.
 10 WM-LCB-RESERVED PIC X(3).
01 INOUT-BUFFER.
 02 OPERATION PIC X(1).
 02 OPERAND-1 PIC S9(9) BINARY.
 02 OPERAND-2 PIC S9(9) BINARY.
 02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION USING DFHCOMMAREA.
 . . .
 SET ADDRESS OF INOUT-BUFFER TO WM-LCB-INPUT-BUFFER.
 . . .
 SET ADDRESS OF INOUT-BUFFER TO WM-LCB-OUTPUT-BUFFER.

The fields subordinated under DFHCOMMAREA prefixed with WM-LCB describe this structure. The
field names themselves can be different, but the COBOL data types must match exactly.

data is described by separate structures, here INOUT-BUFFER in the linkage section.

If you find this in your COBOL source, it’s a clear indication it is a large buffer program. If you are
unsure, consult a COBOL CICS specialist for clarification.

See Step 4: Define the Extraction Settings and Start Extraction for more information on extracting
COBOL servers with this interface type.

8

Supported CICS COBOL Interface TypesIntroduction to the IDL Extractor for COBOL

Micro Focus with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter addresses a
fixed COBOL structure.

Technically, the generated COBOL server skeleton contains

a parameter list: PROCEDURE DIVISION USING PARM1 PARM2 ... PARM n

the parameters in the linkage section as COBOL data items on level 1

See Step 4: Define the Extraction Settings and Start Extraction and Micro Focus with Standard Linkage
Calling Convention for more information on extracting COBOL servers with this interface type.

9

Introduction to the IDL Extractor for COBOLMicro Focus with Standard Linkage Calling Convention

Batch with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter addresses a
fixed COBOL structure.

Technically, the COBOL server contains

a parameter list: PROCEDURE DIVISION USING PARM1 PARM2 ... PARM n

the parameters in the linkage section as COBOL data items on level 1

See Step 4: Define the Extraction Settings and Start Extraction and Batch with Standard Linkage Calling
Convention for more information on extracting COBOL servers with this interface type.

10

Batch with Standard Linkage Calling ConventionIntroduction to the IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

IMS message processing programs (MPP) get their parameters through an IMS message and return the
result by sending an output message to IMS. The IDL Extractor for COBOL enables extractions from such
programs.

The COBOL server contains:

a structure in the working storage section for the input and the output message.

an IOPCB in the linkage section used to read input messages and write output messages using an
IMS system call (i.e. CALL "CBLTDLI").

The message contains also technical fields specific to IMS (see fields LL , ZZ and TRANCODE in the
picture above).

See Step 4: Define the Extraction Settings and Start Extraction and IMS MPP Message Interface (IMS
Connect) for more information on extracting COBOL servers with this interface type.

11

Introduction to the IDL Extractor for COBOLIMS MPP Message Interface (IMS Connect)

IMS BMP with Standard Linkage Calling Convention

IMS batch message processing programs (BMP) with PCB parameters are directly supported. You have
the option to specify a PSB list as input to the extractor to locate PCB parameters.

Technically, the COBOL server contains

a parameter list: PROCEDURE DIVISION USING PARM1 PCB PARM2 ... PARM n

IMS-specific PCB pointers within the parameter list

the parameters in the linkage section as COBOL data items on level 1

See Step 4: Define the Extraction Settings and Start Extraction and IMS BMP with Standard Linkage
Calling Convention for more information on extracting COBOL servers with this interface type.

What to do with other Interface Types?

Other interface types, for example CICS with non-DPL-enabled DFHCOMMAREA, can be supported by
means of a custom wrapper. If you have to extract from such a COBOL server, proceed as follows:

1. Implement a custom wrapper, providing one of the supported interface types above.

2. Extract from this custom wrapper.

Compatibility between COBOL Interface Types and RPC Server

To call a server successfully, the RPC server used must support the interface type of the COBOL server.
The table below gives an overview of possible combinations of an interface type and a supporting RPC
server:

12

IMS BMP with Standard Linkage Calling ConventionIntroduction to the IDL Extractor for COBOL

Interface Type

Supported
by

EntireX
Adapter

Supported by RPC Server

z/OS UNIX/Windows BS2000/OSD z/VSE

CICS Batch IMS
CICS
ECI

Micro
Focus

IMS
Connect Batch CICS Batch

CICS with
DFHCOMMAREA
Calling
Convention
(Extractor |
Wrapper)

x x x x

CICS with
DFHCOMMAREA
Large Buffer
Interface
(Extractor |
Wrapper)

 x x

CICS with
Channel
Container
Calling
Convention
(Extractor |
Wrapper)

 x

Batch with
Standard
Linkage Calling
Convention
(Extractor |
Wrapper)

 x x x x

Micro Focus
with Standard
Linkage Calling
Convention
(Extractor |
Wrapper)

 x

IMS BMP with
Standard
Linkage Calling
Convention
(Extractor |
Wrapper)

 x

IMS MPP
Message
Interface (IMS
Connect)
(Extractor)

x x

13

Introduction to the IDL Extractor for COBOLCompatibility between COBOL Interface Types and RPC Server

Usage of Server Mapping Files
There are many situations where the RPC server requires a server mapping file to correctly support special
COBOL syntax such as REDEFINES, SIGN LEADING and OCCURS DEPENDING ON clauses,
LEVEL-88 fields, etc.

Server mapping files contain COBOL-specific mapping information that is not included in the IDL file,
but is needed to successfully call the COBOL server program.

The RPC server marshals the data in a two-step process: the RPC request coming from the RPC client
(Step 1) is completed with COBOL-specific mapping information taken from the server mapping file
(Step 2). In this way the COBOL server can be called as expected.

The server mapping files are retrieved as a result of the IDL Extractor for COBOL extraction process and
the COBOL Wrapper if a COBOL server is generated. See When is a Server Mapping File Required?.

There are server-side mapping files (EntireX Workbench files with extension .svm) and client-side
mapping files (Workbench files with extension .cvm). See Server Mapping Files for COBOL and How to
Set the Type of Server Mapping Files.

If you are using server-side mapping files, perform the following tasks:

Customize the server-side mapping container. See Server-side Mapping Files in the RPC Server in
the RPC server documentation for z/OS (CICS, Batch, IMS) | Micro Focus | CICS ECI | IMS
Connect | BS2000/OSD | z/VSE (CICS, Batch).

Deploy the files to the RPC server. See Deploying Server-side Mapping Files to the RPC Server in
the RPC server documentation for z/OS (CICS, Batch, IMS) | Micro Focus | CICS ECI | IMS
Connect | BS2000/OSD | z/VSE (CICS | Batch).

Note:
For IMS Connect and CICS ECI connections with the webMethods EntireX Adapter, server-side mapping
files are not deployed. They are wrapped into the Integration Server connection - the same as client-side
mapping files. For RPC connections, deployment to the target RPC server is mandatory. See the EntireX
Adapter documentation under http://documentation.softwareag.com > webMethods Product Line.

14

Usage of Server Mapping FilesIntroduction to the IDL Extractor for COBOL

http://documentation.softwareag.com/

	Introduction to the IDL Extractor for COBOL
	Introduction
	Extractor Wizard
	Mapping Editor
	Supported COBOL Interface Types
	Supported CICS COBOL Interface Types
	CICS with DFHCOMMAREA Calling Convention
	CICS with Channel Container Calling Convention
	CICS with DFHCOMMAREA Large Buffer Interface

	Micro Focus with Standard Linkage Calling Convention
	Batch with Standard Linkage Calling Convention
	IMS MPP Message Interface (IMS Connect)
	IMS BMP with Standard Linkage Calling Convention
	What to do with other Interface Types?
	Compatibility between COBOL Interface Types and RPC Server

	Usage of Server Mapping Files

