
Writing Advanced Applications with the C
Wrapper
This chapter covers the following topics:

Using the RPC Runtime

Examine the RPC Runtime and Interface Object Version

Tracing

Programming Multithreaded RPC Clients

Natural Logon or Changing the Library Name

Using Variable-length Data Types AV, BV, KV and UV

Using Unbounded Arrays

Using Conversational RPC

Using RPC Compression

Using EntireX Security

Using Natural Security

Using SSL

Using Compression

Using Internationalization with the C Wrapper

Using the RPC Runtime
As a general rule, before using the EntireX RPC runtime, a program/thread must be registered with it
using the ERXRegister function. Hence ERXRegister must be the first call to the EntireX RPC
runtime and ERXUnregister the last. The number of registrations and unregistrations should be
symmetric for every thread, otherwise the thread’s resources that are held by the EntireX RPC runtime
will not be freed. However, successful unregistration of the last thread within a process will free all
EntireX RPC runtime resources.

Each thread of a process has to register separately with the EntireX RPC runtime. After registration the
EntireX RPC runtime maintains on a per-thread basis

codepage settings, see ERXSetCodepage and Using Internationalization with the C Wrapper.

broker security settings, see ERXSetBrokerSecurity , ERXSetSecurityToken and Using
EntireX Security

1

Writing Advanced Applications with the C WrapperWriting Advanced Applications with the C Wrapper

the RPC conversation context, if any RPC conversation is ongoing, see ERXConnect and Using
Conversational RPC

the last error, which can be retrieved using ERXGetLastError

The following limitations and restrictions also apply:

Up to 256 threads can be registered in parallel within a process.

Multiple registration up to 32,767 per thread before unregistration is possible but not recommended.

All functions provided by the EntireX RPC runtime to handle the variable-length data types and
unbounded arrays can be used without registration.

Functions to handle variable-length data types are defined in the header file erxvdata.h and are
prefixed with "erxVData".

Functions to handle unbounded arrays are defined in the header file erxarray.h and are prefixed with
"erxArray".

Examine the RPC Runtime and Interface Object Version
The EntireX C Wrapper API provides an interface to examine the version of the RPC Runtime, see
ERXGetVersion .

Examine the Interface Object Version

If you generate interface objects according to the instructions given in Using the C Wrapper for the Client
Side, a function to examine the interface object version on a per-library basis is also generated:

int ERX_CALL_DECLARATION GetVersionEXAMPLEStub(
 char *pMessage,
 size_t uMessageLength
);

Calling this function will provide you with the version and patch level under which the interface object
was generated.

Example

EntireX C Wrapper Version=9.0.0, Patch Level=0

Tracing
There are several possibilities to trace the EntireX C Wrapper. See Tracing webMethods EntireX under
UNIX | Windows | BS2000/OSD | z/VSE.

Programming Multithreaded RPC Clients
The EntireX C Wrapper runtime supports RPC clients in multithreaded environments. Every thread can
establish its own RPC and broker context for communication, which is separate from every other thread’s
context, see also Using the RPC Runtime.

2

Examine the RPC Runtime and Interface Object VersionWriting Advanced Applications with the C Wrapper

The functions ERXSetContext and ERXGetContext together with client interface objects generated
using the instructions given in Using the C Wrapper in Multithreaded Environments (UNIX, Windows)
assist in programming multithreaded RPC clients.

The ERXSetContext function can be executed prior to any business logic to provide the RPC and
broker context individually on a per-thread basis. ERXSetContext saves the context information in a
structure ERX_CONTEXT_BLOCK. The client interface object picks up the context from the calling thread
using the reverse function ERXGetContext . Hence legacy applications may not be changed to transport
this information.

Additional Notes:

To use the ERXSetContext and ERXGetContext functions, client interface objects must be
generated with the check box Multithreaded Client switch. See Generate C Source Files from
Software AG IDL Files.

A maximum of 256 threads are supported in parallel.

The ERXSetContext function can be called multiple times (within the same thread). This also
makes it possible to change RPC and broker context with each RPC request.

Nothing needs to be considered for servers. EntireX RPC servers support multithreading without any
further activities.

Natural Logon or Changing the Library Name
The library name sent with the RPC request to the EntireX RPC or the Natural RPC Server is specified in
the IDL file (see library-definition). When the RPC is executed, this library name can be
overwritten.

 To overwrite the library, an EntireX C Wrapper client must do the following:

1. Set the medium ERX_TM_BROKER_LIBRARY in the ERX_SERVER_ADDRESS structure (see
ERX_SERVER_ADDRESS under API Data Descriptions).

2. Specify the correct library in the ERX_SA_BROKER_LIBRARY structure in the szLibraryName
parameter.

 To force the library to be considered by Natural RPC Server

Set the parameter cNaturalLogon to "ERX_NATURAL LOGON_YES" in the
ERX_SA_BROKER_LIBRARY structure.

Warning:
Natural and EntireX RPC servers behave differently regarding the
library name.

See Natural Logon or Changing the Library Name.

3

Writing Advanced Applications with the C WrapperNatural Logon or Changing the Library Name

Using Variable-length Data Types AV, BV, KV and UV
The following functions are used to send and receive the variable-length data types (IDL data types AV,
BV, KV and UV). All variable-length data is controlled by so-called VData instances. A VData instance
is a handle (pointer) to a memory location encapsulated in the erxVData... functions in the EntireX
RPC runtime.

A VData instance has the following type definition:

typedef void * ERX_HVDATA; /* Handle of VData instance */

See the following overview of VData functions.

Task Function

Allocate a new VData instance erxVDataAllocBytes
erxVDataAllocString
erxVDataAllocWideString

Remove a VData instance erxVDataFree

Get the contents held by a VData instance erxVDataGetByteAddress
erxVDataGetLength
erxVDataGetString
erxVDataGetWideString

Assign new contents to the VData instance erxVDataCopy
erxVDataReAllocBytes
erxVDataReAllocString
erxVDataReAllocWideString
erxVDataReset

Usage with EntireX RPC Client

Before issuing the RPC request, allocate all VData instances including the instances for direction out
(which is returned by the RPC server only), see attribute-list .

 To allocate and create VData instances

1. For the directions in and inout, use erxVDataAllocBytes (IDL data type BV and KV),
erxVDataAllocString (IDL data type AV) or erxVDataAllocWideString (IDL data
type UV) with the appropriate parameters to allocate the VData instances.

2. For the direction out use erxVDataAllocBytes(NULL,0) (IDL data type BV and KV),
erxVDataAllocString(NULL) (IDL data type AV) or
erxVDataAllocWideString(L"") (IDL data type UV)to create an empty VData instance,
which will contain the data returned by the server.

Following the RPC request, you can examine the server reply.

 To examine the server reply

4

Using Variable-length Data Types AV, BV, KV and UVWriting Advanced Applications with the C Wrapper

Use the functions erxVDataGetString (IDL data type AV), erxVDataGetWideString
(IDL data type UV) and erxVDataGetLength, erxVDataGetByteAddress (IDL data type
BV and KV).

 To remove VData instances

Use the function erxVDataFree if they are no longer needed.

Usage with EntireX RPC Server

When your implemented server is called, all VData instances are allocated by the RPC C runtime and
RPC Server. The data sent by the client can be examined in the server program (in the same way the client
does upon server reply). The RPC Server and the RPC C runtime will remove the VData instances if they
are no longer needed. Do not remove any VData instances in server programs yourself!

 To examine the client data

Use the functions erxVDataGetString (IDL data type AV), erxVDataGetWideString
(IDL data type UV) and erxVDataGetLength , erxVDataGetByteAddress (IDL data type
BV and KV).

 To assign data to be returned

Use the functions erxVDataReAllocBytes (IDL data type BV and KV),
erxVDataReAllocWideString (IDL data type UV) and erxVDataReAllocString (IDL
data type AV).

Using Unbounded Arrays
The following functions are used to send and receive unbounded array data types of EntireX RPC (data
types defined with V in the indices). All unbounded arrays are controlled by so-called arrays instances. An
arrays instance is a handle (pointer) to a memory location encapsulated by the EntireX RPC Runtime.

An array instance has the following type definition:

typedef void * ERX_HARRAY; /* Handle of Array instance */

See the following overview of functions for use with unbounded arrays.

5

Writing Advanced Applications with the C WrapperUsing Unbounded Arrays

Task Function

Allocate a new array instance erxArrayAlloc

Remove an array instance erxArrayFree

Get the contents of an array instance erxArrayGetElement

Assign new contents to an array instance erxArrayCopy
erxArrayReset
erxArraySetElement

Get the characteristics of an array instanceerxArrayGetAttributes
erxArrayGetBounds
erxArrayGetDimension
erxArrayGetElementLength
erxArrayGetTypeCode

Change upper bounds of an array instanceerxArrayRedimAll
erxArrayRedimVector

Usage with EntireX RPC Client

Before calling the client interface object (that is, before issuing the remote procedure call) allocate all
array instances and create instances for out data. You cannot change any type, attribute, length or
dimension. When the instances are created, only the upper bounds can be changed.

For the directions in and inout, use erxArrayAlloc with appropriate parameters to allocate an array
instance. For the direction out, create an array instance of correct type, attributes, length and dimension
with all upper bounds set to 0. This is an empty array instance with no elements. Upon return it will
contain the elements assigned by the server.

EntireX RPC supports unbounded arrays which must not necessarily be a square (when 2-dimensional) or
a cube (when 3-dimensional). Any vector within any dimension could have different upper bound settings.
Such an array could be created in two ways:

Start with an empty array and set the upper bounds of the first dimension with
erxArrayRedimVector . Subseqeuently loop through this dimension and set any vector of the
second dimension using also erxArrayRedimVector . If it is a 3-dimensional array, do the same
with the third dimension.

Create a square (2-dimensional) or cube (3-dimensional) with erxArrayAlloc or
erxArrayRedimAll and subsequently deform the array with erxArrayRedimVector .

Data to be sent can be assigned using the function erxArraySetElement as long as the index is
within the current upper bounds. Otherwise an error will occur. Because any vector of any dimension
could have different upper bound settings, the upper bounds must be examined separately for every
vector. See the following code fragment:

int i,j,k;
ERX_HARRAY hArray;
ERX_ARRAY_INDEX uArrayIndex[3];
.....
for (i=0;i<erxArrayGetBounds(hArray,(unsigned int)1,NULL);i++)
{
 uArrayIndex[0] = i;

6

Usage with EntireX RPC ClientWriting Advanced Applications with the C Wrapper

 for (j=0;j<erxArrayGetBounds(hArray,(unsigned int)2,uArrayIndex);j++)
 {
 uArrayIndex[1] = j;
 for (k=0;k<erxArrayGetBounds(hArray,(unsigned int)3,uArrayIndex);k++)
 {
 Data = ...;

 uArrayIndex[2] = k;
 rc = erxArraySetElement(
 hArray,
 uArrayIndex,
 &Data
);
 }
 }
}

To examine the data received from the server the same scheme can be used:

int i,j,k;
ERX_HARRAY hArray;
ERX_ARRAY_INDEX uArrayIndex[3];
.....
for (i=0;i<erxArrayGetBounds(hArray,(unsigned int)1,NULL);i++)
{
 uArrayIndex[0] = i;
 for (j=0;j<erxArrayGetBounds(hArray,(unsigned int)2,uArrayIndex);j++)
 {
 uArrayIndex[1] = j;
 for (k=0;k<erxArrayGetBounds(hArray,(unsigned int)3,uArrayIndex);k++)
 {
 uArrayIndex[2] = k;
 rc = erxArrayGetElement(
 hArray,
 uArrayIndex,
 &Data
);

 ... = Data;
 }
 }
}

Remove previously created array instances (if they are no longer needed) with the function
erxArrayFree .

Usage with EntireX RPC Server

When the server is called, all array instances are allocated by the EntireX RPC Runtime and EntireX RPC
Server.

The data sent by the client can be examined in the server program the same way the client examines data
upon server reply.

The upper bounds of the array instance can be changed with the erxArrayRedimAll or
erxArrayRedimVector function before setting any return data:

7

Writing Advanced Applications with the C WrapperUsage with EntireX RPC Server

When you use the erxArrayRedimAll function, the result will be an array in the form of a vector
(1-dimensional), a square (2-dimensional) or a cube (3-dimensional). Thus all vectors of a dimension
have the same upper bounds. Subsequently with the erxArrayRedimVector the square or cube
can be deformed.

You can also remove all elements of the unbounded array. This results in an unbounded array with no
elements when setting the bounds parameter of erxArrayRedimAll to "0". Afterwards you can
set the upper bounds of the first dimension with erxArrayRedimVector . Subseqeuently loop
through this dimension and set any vector of the second dimension also using
erxArrayRedimVector . If it is a 3-dimensional array, do the same with the third dimension.
You cannot change any type, attribute, length or dimension. Only upper bounds can be changed.

Data to be returned can be assigned using the function erxArraySetElement the same way the client
does before send.

Important:
Do not remove any array instances in server programs.

Using Conversational RPC
It is assumed that you are familiar with the concepts of conversational and non-conversational RPC. See
Common Features of Wrappers and RPC-based Components.

 To use conversational RPC

1. Open a conversation with the ERXConnect function call (see ERXConnect). Save the server
address ERX_SERVER_ADDRESS and reuse it for the complete RPC conversation.

2. Issue your RPC requests as within non-conversational mode using the generated interface objects.
Different interface objects can participate in the same RPC conversation.

 To abort a conversational RPC communication

Abort an RPC conversation unsuccessfully with the function call ERXDisconnect .

 To close and commit a conversational RPC communication

Close the RPC conversation successfully with the function call ERXDisconnectCommit .

Warning:
Natural and EntireX RPC servers behave differently when ending an
RPC conversation.

See Conversational RPC.

Using RPC Compression
EntireX and Natural RPC support a feature called RPC compression to reduce network data sizes. We
recommend switching RPC compression on. See RPC Compression.

8

Using Conversational RPCWriting Advanced Applications with the C Wrapper

 To switch compression on

1. Set the medium ERX_TM_BROKER_LIBRARY in the ERX_SERVER_ADDRESS structure (see
ERX_SERVER_ADDRESS under API Data Descriptions).

2. Set the cCompression field within the ERX_SA_BROKER_LIBRARY structure to
"ERX_COMPRESSION_YES".

 To switch compression off

1. When using the medium ERX_TM_BROKER_LIBRARY in the ERX_SERVER_ADDRESS structure,
set the cCompression field within the ERX_SA_BROKER_LIBRARY structure to
"ERX_COMPRESSION_NO".

2. When using the medium ERX_TM_BROKER in the ERX_SERVER_ADDRESS structure, compression
is off.

Using EntireX Security
EntireX C Wrapper Applications which require security can use the security services offered by EntireX
Security. See Security Solutions in EntireX for a general overview.

 To use EntireX Security

1. Specify a user ID and password in the parameters szUserId and szPassword of the
ERX_CLIENT_IDENTIFICATION structure.

2. Set security with the function ERXSetBrokerSecurity to force a secure call to a broker running
with EntireX Security. You can use the same values as for broker ACI field KERNELSECURITY.
See KERNELSECURITY under Broker ACI Fields. The function works together with any broker
kernel version that supports EntireX Security, regardless of the ACI version used.

Note:
The broker’s security token is maintained inside the EntireX RPC Runtime on a per-thread basis, see
Using the RPC Runtime. If you are communicating with more than one broker in a single thread:

you have to save the broker’s security token provided in the ERX_CLIENT_IDENTIFICATION
structure after an ERXLogon function call

you have to provide the correct previously saved Broker’s security token with the
ERXSetSecurityToken function to the RPC Runtime before calling one of the following
functions:

ERXCall

ERXConnect

ERXDisconnect

ERXDisconnectCommit

9

Writing Advanced Applications with the C WrapperUsing EntireX Security

ERXLogon

ERXLogoff

ERXTerminateServer

ERXIsServing

ERXWait

Other functions are executed locally and do not communicate with the Broker, the Broker’s security
token is not required.

Using Natural Security
A Natural RPC Server may run under Natural Security to protect RPC requests. See Natural Security.

 To authenticate an EntireX C Wrapper client against Natural Security

1. Specify a user ID and password in the parameters szUserId and szPassword of the
ERX_CLIENT_IDENTIFICATION structure.

2. If different user IDs and/or passwords are used for EntireX Security and Natural Security, use the
parameters szRpcUserId or szRpcPassword to provide the user IDs and/or passwords for
Natural Security.

 To force an EntireX C Wrapper Client to log on to a specific Natural library

1. Set the medium ERX_TM_BROKER_LIBRARY in the ERX_SERVER_ADDRESS structure.

2. Specify the correct Natural library in the ERX_SA_BROKER_LIBRARY structure in the
szLibraryName parameter.

3. Set the parameter cNaturalLogon to "ERX_NATURAL LOGON_YES" in the
ERX_SA_BROKER_LIBRARY structure. See also Natural Logon or Changing the Library Name in
this document.

Using SSL
For an introduction to SSL and TLS, see SSL or TLS and Certificates with EntireX.

 To use SSL or TLS

1. See Running Broker with SSL or TLS Transport under z/OS | UNIX | Windows for information on
how to set up your environment.

2. Provide the SSL or TLS parameters on the pSSLParameter parameter in the
ERX_CLIENT_IDENTIFICATION structure.

10

Using Natural SecurityWriting Advanced Applications with the C Wrapper

Using Compression
EntireX C Wrapper Applications may compress the messages sent to and received from the broker.

 To use compression

Specify a compression level in the ERX_CLIENT_IDENTIFICATION structure. Possible
compression levels are identical to the broker ACI field COMPRESSION. See COMPRESSLEVEL.

Using Internationalization with the C Wrapper
It is assumed that you have read the document Internationalization with EntireX and are familiar with the
various internationalization approaches described there.

The RPC runtime does not convert your application data (in RPC IDL type A, K, AV and KV fields)
before it is sent to the Broker. The application’s data is shipped as given by the application.

The EntireX RPC runtime running under the Windows operating system

assumes by default that the data is given in the encoding of the Windows ANSI codepage configured
for your system and

sends the Windows ANSI codepage configured for your system as part of the locale string to tell the
Broker the encoding of the data if communicating with a Broker version 7.2.n and above. If you want
to adapt the Windows ANSI codepage, refer to the Regional Settings in the Windows Control Panel
and your Windows documentation.

The EntireX RPC runtime running under the UNIX operating system

does not send a codepage to the Broker as part of the locale string but

assumes that the Broker’s locale string defaults match. If they do not match, you will have to provide
the codepage explicitly with the function ERXSetCodepage .

The C Wrapper programmer is responsible for providing suitable locale strings. See ERXSetCodepage
under API Function Descriptions. With the function ERXSetCodepage :

override or provide a codepage in the locale string sent to the broker. If a codepage is provided it
must also be a codepage supported by the broker, depending on the internationalization approach,
and it must follow the rules described under Locale String Mapping.

force a locale string to be sent if communicating with Broker version 7.1.x and below. Under the
Windows operating system, use the value "LOCAL" to send the default Windows ANSI codepage as
the locale string to the broker.

Note:
The codepage setting is maintained inside the EntireX RPC Runtime on a per-thread basis. See Using the
RPC Runtime. If you are using more than one codepage in a single thread, you have to provide the correct
codepage before calling one of the following EntireX RPC Runtime functions:

11

Writing Advanced Applications with the C WrapperUsing Compression

ERXCall

ERXConnect

ERXDisconnect

ERXDisconnectCommit

ERXTerminateServer

ERXIsServing

ERXWait

Other functions do not require a codepage.

If no locale string is provided by the C Wrapper programmer, an administrator can also force a locale
string to be sent with the environment variable ERX_CODEPAGE.

When setting the codepage with the environment variable ERX_CODEPAGE:

The ERX_CODEPAGE environment variable is ignored if the application programmer has already
provided a codepage.

The value of the ERX_CODEPAGE environment variable must be the name of the system’s default
codepage. Under Windows, simply apply the value "LOCAL" to specify the default Windows ANSI
codepage.

The codepage specified must be one that is supported by the Broker, depending on the Broker’s
internationalization approach. See Locale String Mapping for information on how the broker derives
the codepage from the locale string.

Before starting the application, set the locale string with the environment variable ERX_CODEPAGE.

Example:

ERX_CODEPAGE=LOCAL

12

Using Internationalization with the C WrapperWriting Advanced Applications with the C Wrapper

	Writing Advanced Applications with the C Wrapper
	Using the RPC Runtime
	Examine the RPC Runtime and Interface Object Version
	Examine the Interface Object Version
	Example

	Tracing
	Programming Multithreaded RPC Clients
	Natural Logon or Changing the Library Name
	Using Variable-length Data Types AV, BV, KV and UV
	Usage with EntireX RPC Client
	Usage with EntireX RPC Server

	Using Unbounded Arrays
	Usage with EntireX RPC Client
	Usage with EntireX RPC Server

	Using Conversational RPC
	Using RPC Compression
	Using EntireX Security
	Using Natural Security
	Using SSL
	Using Compression
	Using Internationalization with the C Wrapper

