Writing Advanced Applications with the C Wrapper Writing Advanced Applications with the C Wrapper

Writing Advanced Applicationswith the C
Wrapper

This chapter covers the following topics:
e Using the RPC Runtime
e Examine the RPC Runtime and Interface Object Version
® Tracing
® Programming Multithreaded RPC Clients
® Natural Logon or Changing the Library Name
e Using Variable-length Data Types AV, BV, KV and UV
e Using Unbounded Arrays
e Using Conversational RPC
® Using RPC Compression
e Using EntireX Security
® Using Natural Security
e Using SSL
e Using Compression

e Using Internationalization with the C Wrapper

Using the RPC Runtime

As a general rule, before using the EntireX RPC runtime, a program/thread must be registered with it
using theERXRegister function. Henc&ERXRegister must be the first call to the EntireX RPC
runtime ancERXUnregister the last. The number of registrations and unregistrations should be
symmetric for every thread, otherwise the thread’s resources that are held by the EntireX RPC runtime
will not be freed. However, successful unregistration of the last thread within a process will free all
EntireX RPC runtime resources.

Each thread of a process has to register separately with the EntireX RPC runtime. After registration the
EntireX RPC runtime maintains on a per-thread basis

® codepage settings, sE&XSetCodepage andUsing Internationalization with the C Wrapper

® broker security settings, se®RXSetBrokerSecurity , ERXSetSecurityToken andUsing
EntireX Security

Writing Advanced Applications with the C Wrapper Examine the RPC Runtime and Interface Object Version

e the RPC conversation context, if any RPC conversation is ongoingRs€éonnect andUsing
Conversational RPC

e the last error, which can be retrieved udiRXGetLastError
The following limitations and restrictions also apply:
® Up to 256 threads can be registered in parallel within a process.
® Multiple registration up to 32,767 per thread before unregistration is possible but not recommended.

All functions provided by the EntireX RPC runtime to handle the variable-length data types and
unbounded arrays can be used without registration.

e Functions to handle variable-length data types are defined in the headenfilata.hand are
prefixed with "erxvVData".

e [unctions to handle unbounded arrays are defined in the headgkditeay.hand are prefixed with
"erxArray".

Examine the RPC Runtime and I nterface Object Version

The EntireX C Wrapper API provides an interface to examine the version of the RPC Runtime, see
ERXGetVersion

Examinethe I nterface Object Version

If you generate interface objects according to the instructions givesirig the C Wrapper for the Client
Side a function to examine the interface object version on a per-library basis is also generated:

int ERX_CALL_DECLARATION GetVersionEXAMPLEStub(

char *pMessage,
size_t uMessagelLength

);

Calling this function will provide you with the version and patch level under which the interface object
was generated.

Example

EntireX C Wrapper Version=9.0.0, Patch Level=0

Tracing

There are several possibilities to trace the EntireX C Wrappenf raemg webMethods Entiredhder
UNIX | Windows| BS2000/0S0O z/VSE

Programming Multithreaded RPC Clients

The EntireX C Wrapper runtime supports RPC clients in multithreaded environments. Every thread can
establish its own RPC and broker context for communication, which is separate from every other thread’s
context, see alsdsing the RPC Runtime

Natural Logon or Changing the Library Name Writing Advanced Applications with the C Wrapper

The functionEERXSetContext andERXGetContext together with client interface objects generated
using the instructions given losing the C Wrapper in Multithreaded Environments (UNIX, Windows)
assist in programming multithreaded RPC clients.

TheERXSetContext function can be executed prior to any business logic to provide the RPC and
broker context individually on a per-thread baBRXSetContext saves the context information in a
structureERX_CONTEXT_BLOCKNhe client interface object picks up the context from the calling thread
using the reverse functidiRXGetContext . Hence legacy applications may not be changed to transport
this information.

Additional Notes:

® To use th&ERXSetContext andERXGetContext functions, client interface objects must be
generated with the check bbkultithreaded Client switch. Se&enerate C Source Files from
Software AG IDL Files

® A maximum of 256 threads are supported in parallel.

® TheERXSetContext function can be called multiple times (within the same thread). This also
makes it possible to change RPC and broker context with each RPC request.

® Nothing needs to be considered for servers. EntireX RPC servers support multithreading without any
further activities.

Natural Logon or Changingthe Library Name

The library name sent with the RPC request to the EntireX RPC or the Natural RPC Server is specified in
the IDL file (sedibrary-definition). When the RPC is executed, this library name can be
overwritten.

Tooverwritethelibrary, an EntireX C Wrapper client must do the following:

1. Set the mediufBRX_TM_BROKER_LIBRARN¥ theERX_SERVER_ADDRESS8ucture (see
ERX_SERVER_ADDRES@derAPI| Data Descriptiors

2. Specify the correct library in tlERX_SA_BROKER_LIBRARStructure in thazLibraryName
parameter.

Toforcethelibrary to be considered by Natural RPC Server

® Set the parameteNaturalLogon to "ERX_NATURAL LOGON_YE$ the
ERX_SA_BROKER_LIBRARStructure.

A Warning:

Natural and EntireX RPC servers behave differently regarding the
library name.

SeeNatural Logon or Changing the Library Name

Writing Advanced Applications with the C Wrapper Using Variable-length Data Types AV, BV, KV and UV

Using Variable-length Data Types AV, BV, KV and UV

The following functions are used to send and receive the variable-length data types (IDL data types AV,
BV, KV and UV). All variable-length data is controlled by so-caNddata instances. A/Data instance
is a handle (pointer) to a memory location encapsulated erxvbata... functions in the EntireX

RPC runtime.

A VData instance has the following type definition:

typedef void * ERX_HVDATA; /* Handle of VData instance */

See the following overview dfData functions.

Task Function

Allocate a new/Data instance erxVDataAllocBytes
erxVDataAllocString
erxVDataAllocWideString

Remove &/Data instance erxVDataFree

Get the contents held byMata instance | erxVDataGetByteAddress
erxVDataGetLength
erxVDataGetString
erxVDataGetWideString

Assign new contents to théData instance| erxVDataCopy
erxVDataReAllocBytes
erxVDataReAllocString
erxVDataReAllocWideString
erxVDataReset

Usage with EntireX RPC Client

Before issuing the RPC request, allocaté&/8lata instances including the instances for direction out

(which is returned by the RPC server only), aggbute-list
To allocate and create VDat a instances

1. For the directions in and inout, weseVDataAllocBytes (IDL data type BV and KV),

erxVDataAllocString (IDL data type AV) orerxVDataAllocWideString (IDL data

type UV) with the appropriate parameters to allocaté/ibata instances.

2. For the direction out usgxVDataAllocBytes(NULL,0) (IDL data type BV and KV),
erxVDataAllocString(NULL) (IDL data type AV) or

erxVDataAllocWideString(L™) (IDL data type UV)to create an empffpata instance,

which will contain the data returned by the server.
Following the RPC request, you can examine the server reply.

To examinethe server reply

Using Unbounded Arrays Writing Advanced Applications with the C Wrapper

® Use the functionserxVDataGetString (IDL data type AV)erxVDataGetWideString
(IDL data type UV) ane@rxVDataGetLength, erxVDataGetByteAddress (IDL data type
BV and KV).

Toremove VDat a instances

® Use the functiorrxVDataFree if they are no longer needed.

Usage with EntireX RPC Server

When your implemented server is called \dllata instances are allocated by the RPC C runtime and

RPC Server. The data sent by the client can be examined in the server program (in the same way the client
does upon server reply). The RPC Server and the RPC C runtime will rema&i@atze instances if they

are no longer needed. Do not remove ¥Bata instances in server programs yourself!

To examinetheclient data

® Use the functionsrxVDataGetString (IDL data type AV)erxVDataGetWideString
(IDL data type UV) anerxVDataGetLength |, erxVDataGetByteAddress (IDL data type
BV and KV).

To assign data to bereturned

e Use the functionerxVDataReAllocBytes (IDL data type BV and KV),
erxVDataReAllocWideString (IDL data type UV) anérxVDataReAllocString (IDL
data type AV).

Using Unbounded Arrays

The following functions are used to send and receive unbounded array data types of EntireX RPC (data
types defined with V in the indices). All unbounded arrays are controlled by so-called arrays instances. An
arrays instance is a handle (pointer) to a memory location encapsulated by the EntireX RPC Runtime.

An array instance has the following type definition:

typedef void * ERX_HARRAY; /* Handle of Array instance */

See the following overview of functions for use with unbounded arrays.

Writing Advanced Applications with the C Wrapper Usage with EntireX RPC Client

Task Function
Allocate a new array instance erxArrayAlloc
Remove an array instance erxArrayFree

Get the contents of an array instance erxArrayGetElement

Assign new contents to an array instance erxArrayCopy
erxArrayReset
erxArraySetElement

Get the characteristics of an array instan¢ erxArrayGetAttributes
erxArrayGetBounds
erxArrayGetDimension
erxArrayGetElementLength
erxArrayGetTypeCode

Change upper bounds of an array instan¢ erxArrayRedimAll
erxArrayRedimVector

Usage with EntireX RPC Client

Before calling the client interface object (that is, before issuing the remote procedure call) allocate all
array instances and create instances for out data. You cannot change any type, attribute, length or
dimension. When the instances are created, only the upper bounds can be changed.

For the directions in and inout, useArrayAlloc with appropriate parameters to allocate an array
instance. For the direction out, create an array instance of correct type, attributes, length and dimension
with all upper bounds set to 0. This is an empty array instance with no elements. Upon return it will
contain the elements assigned by the server.

EntireX RPC supports unbounded arrays which must not necessarily be a square (when 2-dimensional) or
a cube (when 3-dimensional). Any vector within any dimension could have different upper bound settings.
Such an array could be created in two ways:

e Start with an empty array and set the upper bounds of the first dimension with
erxArrayRedimVector . Subsegeuently loop through this dimension and set any vector of the
second dimension using alsoxArrayRedimVector . Ifitis a 3-dimensional array, do the same
with the third dimension.

e Create a square (2-dimensional) or cube (3-dimensionalewitkrrayAlloc or
erxArrayRedimAll and subsequently deform the array veitRArrayRedimVector

Data to be sent can be assigned using the funetigkrraySetElement as long as the index is

within the current upper bounds. Otherwise an error will occur. Because any vector of any dimension
could have different upper bound settings, the upper bounds must be examined separately for every
vector. See the following code fragment:

int ij,K;

ERX_HARRAY hArray;

ERX_ARRAY_INDEX uArraylndex[3];

for (i=0;i<erxArrayGetBounds(hArray,(unsigned int)1,NULL);i++)

{
uArraylndex[0] = i;

Usage with EntireX RPC Server Writing Advanced Applications with the C Wrapper

for (j=0;j<erxArrayGetBounds(hArray,(unsigned int)2,uArraylndex);j++)

{
uArraylndex[1] = j;
for (k=0;k<erxArrayGetBounds(hArray,(unsigned int)3,uArrayindex);k++)
{
Data = ...;
uArraylndex[2] = k;
rc = erxArraySetElement(
hArray,
uArraylndex,
&Data
);
}
}

}
To examine the data received from the server the same scheme can be used:

int ij.k;
ERX_HARRAY hArray;
ERX_ARRAY_INDEX uArrayIndex[3];

for (i=0;i<erxArrayGetBounds(hArray,(unsigned int)1,NULL);i++)

{
uArraylndex[0] = i;
for (j=0;j<erxArrayGetBounds(hArray,(unsigned int)2,uArraylndex);j++)
{
uArraylndex[1] = j;
for (k=0;k<erxArrayGetBounds(hArray,(unsigned int)3,uArrayindex);k++)
{
uArraylndex[2] = k;
rc = erxArrayGetElement(
hArray,
uArraylndex,
&Data
);
... = Data;
}
}
}

Remove previously created array instances (if they are no longer needed) with the function
erxArrayFree

Usage with EntireX RPC Server

When the server is called, all array instances are allocated by the EntireX RPC Runtime and EntireX RPC

Server.

The data sent by the client can be examined in the server program the same way the client examines data

upon server reply.

The upper bounds of the array instance can be changed wéhkreayRedimAll or
erxArrayRedimVector function before setting any return data:

Writing Advanced Applications with the C Wrapper Using Conversational RPC

e When you use therxArrayRedimAll function, the result will be an array in the form of a vector
(1-dimensional), a square (2-dimensional) or a cube (3-dimensional). Thus all vectors of a dimension
have the same upper bounds. Subsequently witbrfarayRedimVector the square or cube
can be deformed.

® You can also remove all elements of the unbounded array. This results in an unbounded array with no
elements when setting the bounds parametendfrrayRedimAll to "0". Afterwards you can
set the upper bounds of the first dimension witkArrayRedimVector . Subsegeuently loop
through this dimension and set any vector of the second dimension also using
erxArrayRedimVector . Ifitis a 3-dimensional array, do the same with the third dimension.
You cannot change any type, attribute, length or dimension. Only upper bounds can be changed.

Data to be returned can be assigned using the furetidrraySetElement the same way the client
does before send.

Important:
Do not remove any array instances in server programs.

Using Conversational RPC

It is assumed that you are familiar with the concepts of conversational and non-conversational RPC. See
Common Features of Wrappers and RPC-based Components

To use conversational RPC

1. Open a conversation with tB&RXConnect function call (se&RXConnect). Save the server
addres€£RX_SERVER_ADDRES®d reuse it for the complete RPC conversation.

2. Issue your RPC requests as within non-conversational mode using the generated interface objects.
Different interface objects can participate in the same RPC conversation.

To abort a conver sational RPC communication
® Abort an RPC conversation unsuccessfully with the functioreda{Disconnect
To close and commit a conver sational RPC communication

® Close the RPC conversation successfully with the functiore@¥DisconnectCommit
Warning:

Natural and EntireX RPC server s behave differently when ending an
RPC conversation.

SeeConversational RPC

Using RPC Compression

EntireX and Natural RPC support a feature called RPC compression to reduce network data sizes. We
recommend switching RPC compression on. @€ Compression

Using EntireX Security Writing Advanced Applications with the C Wrapper

To switch compression on

1. Set the mediulBRX_TM_BROKER_LIBRARN theERX SERVER_ADDRESS8ucture (see
ERX_SERVER_ADDRE%@derAPI Data Descriptions

2. Set theCompression field within theERX_SA_BROKER_LIBRARStructure to
"ERX_COMPRESSION_YES"

To switch compression off

1. When using the mediuBRX_TM_BROKER_LIBRARM theERX_SERVER_ADDRESS8ucture,
set thecCompression field within theERX_SA BROKER_LIBRARStructure to
"ERX_COMPRESSION_NO"

2. When using the mediuBRX_TM_BROKER theERX_SERVER_ADDRES8ucture, compression
is off.

Using EntireX Security

EntireX C Wrapper Applications which require security can use the security services offered by EntireX
Security. Se&ecurity Solutions in Entirefor a general overview.

Touse EntirexX Security

1. Specify a user ID and password in the paramsgtfserld andszPassword of the
ERX_CLIENT_IDENTIFICATION structure.

2. Set security with the functideRXSetBrokerSecurity to force a secure call to a broker running
with EntireX Security. You can use the same values as for broker ACKERNELSECURITY
SeeKERNELSECURITYunderBroker ACI Fields The function works together with any broker
kernel version that supports EntireX Security, regardless of the ACI version used.

Note:
The broker’s security token is maintained inside the EntireX RPC Runtime on a per-thread basis, see

Using the RPC Runtimé you are communicating with more than one broker in a single thread:

® you have to save the broker’s security token provided iER¥ CLIENT IDENTIFICATION
structure after aBRXLogon function call

® you have to provide the correct previously saved Broker’'s security token with the
ERXSetSecurityToken function to the RPC Runtime before calling one of the following
functions:

O ERXCall
O ERXConnect

ERXDisconnect

O

ERXDisconnectCommit

O

Writing Advanced Applications with the C Wrapper Using Natural Security

O

ERXLogon
O ERXLogoff

ERXTerminateServer

o

O ERXIsServing

O ERXWait

Other functions are executed locally and do not communicate with the Broker, the Broker’s security
token is not required.

Using Natural Security

A Natural RPC Server may run under Natural Security to protect RPC requestat@ed Security

Toauthenticate an EntireX C Wrapper client against Natural Security

1. Specify a user ID and password in the parameters szUserld and szPassword of the
ERX_CLIENT_IDENTIFICATION structure.

2. If different user IDs and/or passwords are used for EntireX Security and Natural Security, use the
parameterszRpcUserld orszRpcPassword to provide the user IDs and/or passwords for
Natural Security.

Toforcean EntireX C Wrapper Client to log on to a specific Natural library
1. Set the mediurBRX_TM_BROKER_LIBRAR theERX_SERVER_ADDRESS8ucture.

2. Specify the correct Natural library in tB®X _SA BROKER_LIBRARStructure in the
szLibraryName parameter.

3. Set the parameteNaturalLogon to"ERX_NATURAL LOGON_YESIin the
ERX_SA BROKER_LIBRARStructure. See alddatural Logon or Changing the Library Narire
this document.

Using SSL
For an introduction to SSL and TLS, 8L or TLS and Certificates with EntireX
TouseSSL or TLS

1. SeeRunning Broker with SSL or TLS Transpanderz/OS|UNIX | Windowsfor information on
how to set up your environment.

2. Provide the SSL or TLS parameters ongB8LParameter parameter in the
ERX_CLIENT_IDENTIFICATION structure.

10

Using Compression Writing Advanced Applications with the C Wrapper

Using Compression
EntireX C Wrapper Applications may compress the messages sent to and received from the broker.
To use compression

® Specify a compression level in tB&RX_CLIENT_IDENTIFICATION structure. Possible
compression levels are identical to the broker ACI fe@MPRESSIONSeeCOMPRESSLEVEL

Using Internationalization with the C Wrapper

It is assumed that you have read the docunm@tnationalization with EntireXand are familiar with the
various internationalization approaches described there.

The RPC runtime does not convert your application data (in RPC IDL type A, K, AV and KV fields)
before it is sent to the Broker. The application’s data is shipped as given by the application.

The EntireX RPC runtime running under the Windows operating system

® assumes by default that the data is given in the encoding of the Windows ANSI codepage configured
for your system and

® sends the Windows ANSI codepage configured for your system as part of the locale string to tell the
Broker the encoding of the data if communicating with a Broker versiomaha. above. If you want
to adapt the Windows ANSI codepage, refer to the Regional Settings in the Windows Control Panel
and your Windows documentation.

The EntireX RPC runtime running under the UNIX operating system
® does not send a codepage to the Broker as part of the locale string but

® assumes that the Broker’s locale string defaults match. If they do not match, you will have to provide
the codepage explicitly with the functi@RXSetCodepage .

The C Wrapper programmer is responsible for providing suitable locale stringsR&stCodepage
underAPI Function DescriptionsWith the functiorERXSetCodepage :

e override or provide a codepage in the locale string sent to the broker. If a codepage is provided it
must also be a codepage supported by the broker, depending on the internationalization approach,
and it must follow the rules described untecale String Mapping

e force a locale string to be sent if communicating with Broker version 7.1.x and below. Under the
Windows operating system, use the valuBCAL" to send the default Windows ANSI codepage as
the locale string to the broker.

Note:

The codepage setting is maintained inside the EntireX RPC Runtime on a per-thread basisigSte

RPC Runtimelf you are using more than one codepage in a single thread, you have to provide the correct
codepage before calling one of the following EntireX RPC Runtime functions:

11

Writing Advanced Applications with the C Wrapper Using Internationalization with the C Wrapper

ERXCall

ERXConnect
ERXDisconnect
ERXDisconnectCommit
ERXTerminateServer
ERXIsServing

ERXWait

Other functions do not require a codepage.

If no locale string is provided by the C Wrapper programmer, an administrator can also force a locale
string to be sent with the environment variabRX CODEPAGE

When setting the codepage with the environment varieéR CODEPAGE

TheERX_CODEPAGE&hvironment variable is ignored if the application programmer has already
provided a codepage.

The value of th&RX_CODEPAGEnvironment variable must be the name of the system’s default
codepage. Under Windows, simply apply the valL@CAL" to specify the default Windows ANSI
codepage.

The codepage specified must be one that is supported by the Broker, depending on the Broker’s
internationalization approach. Skeecale String Mappindor information on how the broker derives
the codepage from the locale string.

Before starting the application, set the locale string with the environment vaERKIeECODEPAGE

Example:

ERX_CODEPAGE=LOCAL

12

	Writing Advanced Applications with the C Wrapper
	Using the RPC Runtime
	Examine the RPC Runtime and Interface Object Version
	Examine the Interface Object Version
	Example

	Tracing
	Programming Multithreaded RPC Clients
	Natural Logon or Changing the Library Name
	Using Variable-length Data Types AV, BV, KV and UV
	Usage with EntireX RPC Client
	Usage with EntireX RPC Server

	Using Unbounded Arrays
	Usage with EntireX RPC Client
	Usage with EntireX RPC Server

	Using Conversational RPC
	Using RPC Compression
	Using EntireX Security
	Using Natural Security
	Using SSL
	Using Compression
	Using Internationalization with the C Wrapper

