
Writing a Single-threaded C RPC Client
Application
This chapter describes in six steps how to write your first C client program.

Step 1: Base Declarations Required by the C Wrapper

Step 2: Required Settings for the C Wrapper

Step 3: Register with the RPC Runtime

Step 4: Issue the RPC Request

Step 5: Examine the Error Code

Step 6: Deregister with the RPC Runtime

The example given here demonstrates how to write a single-threaded C RPC client application. It
demonstrates an implicit broker logon (because no broker logon/logoff calls are implemented), where it is
required to switch on the AUTOLOGON feature in the broker attribute file.

The following steps describe how to write a single-threaded C client program. We recommend reading
them first before writing your first RPC client program and following them where appropriate.

Step 1: Base Declarations Required by the C Wrapper

Step 1a: Include the Generated Header File

Define the generated client header file. This header file includes the RPC runtime header file erx.h and
defines structures and prototypes for your RPC requests.

/* include generated header file */
#include "example.h"

Step 1b: Define Global Variables to Communicate with the Client Interface
Objects

For single-threaded clients you have to declare in your main program the following global variables, used
for communication with the interface objects:

/* Needed global variables for the CLIENT interface object */
ERXCallId ERXCallId;
ERXeReturnCode ERXrc;
ERX_ERROR_INFO ERXErrorInfo;
ERX_Server_ADRESS ERXServer;
ERX_CLIENT_IDENTIFICATION ERXClient;

1

Writing a Single-threaded C RPC Client ApplicationWriting a Single-threaded C RPC Client Application

Step 2: Required Settings for the C Wrapper

Step 2a: Identify the User with a Broker User ID

For implicit broker logon, if required in your environment, the client password can be given here. It is
provided then through the interface object call.

/* set client identification */
memset(&ERXClient, 0, sizeof(ERXClient));
strcpy((char*) ERXClient.szUserId, "ERX-USER");
strcpy((char*) ERXClient.szPassword, "ERX_PASS");

Step 2b: Set the Broker and Service to be Called

Your application will wait a maximum of 55 seconds for a server response. If the server does not answer
within this period, the broker gives your program control again with an error code 00740074.

ERXServer.Medium = ERX_TM_BROKER;
ERXServer.ulTimeOut = 55;

/* set Broker-Id, server-name, class-name and service-name */
strcpy((char*) ERXServer.Address.BROKER.szEtbidName, "ETB001");
strcpy((char*) ERXServer.Address.BROKER.szServerName, "SRV1");
strcpy((char*) ERXServer.Address.BROKER.szClassName, "RPC");
strcpy((char*) ERXServer.Address.BROKER.szServiceName, "CALLNAT");

Step 3: Register with the RPC Runtime
As a general rule, before using the RPC runtime you have to register it. After registration, the RPC
runtime holds information on a per-thread basis. See Using the RPC Runtime for more information.

/* register to the RPC runtime */
ERXrc = ERXRegister(ERX_V81);
If (ERX_FAILED(ERXrc))
{
/* code for error handling */
}

Step 4: Issue the RPC Request
The RPC interface object CALC is called as C function (see Calling Servers as Procedures or Functions).

/* do the remote procedure call */
result = CALC(’+’, 123456, 78910);

Step 5: Examine the Error Code
When a return from the RPC request has been received, check whether the call was successful with the
macro ERX_FAILED.

if(ERX_FAILED(ERXrc))
{
/* code for error handling */
}

2

Step 2: Required Settings for the C WrapperWriting a Single-threaded C RPC Client Application

Detailed information about an error can be retrieved with the function ERXGetLastError . For the
error messages returned, see Error Messages and Codes.

Step 6: Deregister with the RPC Runtime
As a general rule, after using the RPC runtime you should unregister from it. This will free all resources
held by the RPC runtime for the caller. See Using the RPC Runtime for more information.

/* unregister to the RPC runtime */
ERXUnregister();

3

Writing a Single-threaded C RPC Client ApplicationStep 6: Deregister with the RPC Runtime

	Writing a Single-threaded C RPC Client Application
	Step€1: Base Declarations Required by the C Wrapper
	Step€1a: Include the Generated Header File
	Step€1b: Define Global Variables to Communicate with the Client Interface Objects

	Step€2: Required Settings for the C Wrapper
	Step€2a: Identify the User with a Broker User ID
	Step€2b: Set the Broker and Service to be Called

	Step€3: Register with the RPC Runtime
	Step€4: Issue the RPC Request
	Step€5: Examine the Error Code
	Step€6: Deregister with the RPC Runtime

