
Writing Callable RPC Servers with the C
Wrapper
The callable RPC server interface enables you to write your own RPC Server. This offers the possibility to
integrate RPC servers into third-party systems, as well as to call target servers in programming languages
other than C by wrapping them. The programming language for writing a callable RPC Server is C.

This chapter covers the following topics:

Introduction to Callable RPC Servers

Writing a Callable RPC Server

Writing the Callback

Break/Stop the RPC Execution Loop

Scalable Number of Worker Threads

Introduction to Callable RPC Servers
The callable RPC server consists of a function containing a loop for recurring RPC execution using a
callback technique for user interaction. The function performs all of the necessary communication with
the broker such as logon and logoff, service registration, receive and send. The behavior of the callable
RPC server can be configured with a server configuration file.

Writing a Callable RPC Server
The main part of the callable RPC server is the C Wrapper runtime function ERXServingCallback .
This function manages Broker communication as well as the marshalling and unmarshalling of RPC
requests using callbacks. The function consists of a loop for RPC execution using callback technique for
user interaction. The behavior of ERXServingCallback is driven by a configuration file where you
set the necessary broker parameters etc. See Configuring the RPC Server under UNIX | Windows. In the
example below, the name of the configuration file is passed as a parameter to the callable RPC server and
given to the ERXServingCallback function.

The callback function ERX_Callback_SERVER_CALL is called when an RPC request has to be
executed. Implement a call to your target server within this callback event. See Writing the Callback. The
interface of the unmarshalled data given to the callback is compatible with the generated server interface
objects for the programming language C. See Software AG IDL to C Mapping. Upon return from the
callback function, the same applies to parameters replied to the client.

ERXServingCallback requires registration of the events before getting control of them. Use
ERXRegisterEvent with the Event ID ERX_EVENT_SERVER_CALL to register the callback
function ERX_Callback_SERVER_CALL for this purpose.

1

Writing Callable RPC Servers with the C WrapperWriting Callable RPC Servers with the C Wrapper

The criteria to break/stop the RPC execution loop and give control back to the caller can be configured
with the configuration file parameter endworkers . See Configuring the RPC Server under UNIX |
Windows. The example below implements a single RPC worker thread within the main function which is
ended by a shutdown from outside. Hence use endworkers=never as the setting for the configuration
file parameter endworkers for the example below. This ensures the RPC execution loop is not stopped
by broker timeouts or after an RPC request is executed, etc. Use one of the usual ways to stop RPC servers
on your platform to stop the callable RPC server. See Break/Stop the RPC Execution Loop for more
information.

As a general rule before using the RPC C runtime at all, every worker thread must be registered with it
using the ERXRegister function. ERXRegister is therefore the first call to the RPC C runtime and
ERXUnregister the last. See Using the RPC Runtime.

Example
void main(int argc, char *argv[])
{
 int bRuntimeRegistered = 0;
 char myConfigurationFile[512] = "..\\server\\server.cfg";
 void * myParms = NULL;
 ERXeReturnCode rc = ERX_S_SUCCESS;
 ERX_ERROR_INFO ErrorInfo;
 memset(&ErrorInfo,’\0’,sizeof(ErrorInfo));

 /* Treat the input Parameter */
 if(argc == 2)
 {
 strncpy(myConfigurationFile, argv[1], 512);
 }
 printf("\nEntireX callable RPC server is running:\n"
 " Configuration File: %s\n",
 myConfigurationFile);

 /* Register to EntireX RPC Runtime */
 rc = ERXRegister(ERX_CURRENT_VERSION);
 if (ERX_FAILED(rc))
 {
 PrintReturnCode(rc,&ErrorInfo);
 goto done; /* ===> */
 }
 bRuntimeRegistered = 1;

 /* Register the Callback Event */
 rc = ERXRegisterEvent(ERX_EVENT_SERVER_CALL,
 myERX_Callback_SERVER_CALL);
 if (ERX_FAILED(rc))
 {
 PrintReturnCode(rc,&ErrorInfo);
 goto done; /* ===> */
 }

 /* Execute the Callable RPC Server */
 rc = ERXServingCallback(myConfigurationFile,
 myParms,
 (ERX_CF_NOTHING)
);
 PrintReturnCode(rc,&ErrorInfo);

done:

2

ExampleWriting Callable RPC Servers with the C Wrapper

 if (bRuntimeRegistered == 1)
 {
 ERXUnregister();
 }
 return;
}

Refer to Delivered Examples for the C Wrapper to locate the example within your installation.

Writing the Callback
This very simple example of a callback implementation uses the szLibraryName and
szProgramName from the ERX_CALL_INFORMATION_BLOCK to select requests for the library
named EXAMPLE and the programs named CALC and SQUARE in a hard-wired fashion. Other RPC
requests are rejected with appropriate error messages. The library and program names correspond to the
names given in the IDL file of the calling client.

The focus here is not to show how functions can be called dynamically. Dynamic calling depends on the
possibilities of your implementation platform and support by the programming languages in use.

The interface of the unmarshalled data given to the callback is compatible with the generated server
interface objects for the programming language C. See Software AG IDL to C Mapping. Upon return from
the callback function, the same applies to parameters expected by and replied to the client.

For the IDL data type A, null terminated strings are supplied and expected (corresponding to
DATA_CONV_A=1).

For the IDL data types N and P, double is supplied and expected (corresponding to
DATA_CONV_NP=1).

Returning Errors

With the structure ERX_ERROR_INFORMATION either success or failure must always be returned.

User-specific Data

The callable RPC server supports a concept of user-specific data. With this feature it is possible to pass a
pointer through the ERXServingCallback function directly into the callback. The pointer myParms,
second parameter of the ERXServingCallback in the example above, is available "as is" in the
callback here in the first parameter as pointer pUserInfo . It can be used, for example, to provide a
pointer to a memory location with user-specific data.

Example
void myERX_Callback_SERVER_CALL
(
 void * pUserInfo,
 ERX_CLIENT_IDENTIFICATION * pClientInformation,
 ERX_CALL_INFORMATION_BLOCK * pCallInformation,
 void * pParameterArea,
 ERX_ERROR_INFO * pReturnInfo
)
{
 ERXeReturnCode rc = ERX_S_SUCCESS;
 printf("\nThis is Callback_SERVER_CALL, serving for %s,%s \n",

3

Writing Callable RPC Servers with the C WrapperWriting the Callback

 pCallInformation->Callee.szLibraryName,
 pCallInformation->Callee.szProgramName);

 if (strcmp(pCallInformation->Callee.szLibraryName,"EXAMPLE") == 0)
 {
 if (strcmp(pCallInformation->Callee.szProgramName,"CALC") == 0)
 {
 S_CALC *pParm = (S_CALC *) pParameterArea;
 /* Execute Function */
 pParm->function_result = CALC(pParm->operation,
 pParm->operand_1,
 pParm->operand_2);
 }
 else if (strcmp(pCallInformation->Callee.szProgramName,"SQUARE")== 0)
 {
 S_SQUARE *pParm = (S_SQUARE *) pParameterArea;

 /* Execute Function */
 SQUARE(pParm->operand, &(pParm->result));

 }
 else
 {
 rc = ERX_E_RPC_CALLEE_NOT_FOUND;
 }
 }
 else
 {
 rc = ERX_E_RPC_LIBRARY_NOT_FOUND;
 }
 pReturnInfo->rc = rc;
 return;
}

See Delivered Examples for the C Wrapper to locate the example within your installation.

Break/Stop the RPC Execution Loop
The RPC execution loop should normally run continuously until the RPC server is shut down from
outside. With the setting of the configuration file parameter endworkers you can configure when the
RPC execution loop is stopped and control is given back to the caller. See Configuring the RPC Server
under UNIX | Windows.

The following table explains the endworkers parameter.

4

Break/Stop the RPC Execution LoopWriting Callable RPC Servers with the C Wrapper

Value Explanation

N Never
The callable RPC server’s function ERXServingCallback breaks/stops the RPC
execution loop only if a normal shut down of the RPC server takes place. This setting makes
sense with a simple callable RPC server (see Writing a Callable RPC Server).

T Timeout
The callable RPC server’s function ERXServingCallback breaks/stops the RPC
execution loop if

a normal shutdown of the RPC server takes place.

the time specified by the timeout server parameter has elapsed and no further new RPC
request or RPC conversation was active. See Configuring the RPC Server under UNIX |
Windows.

This setting makes sense when working with a scalable number of worker threads. See
Scalable Number of Worker Threads.

I Immediately
The callable RPC server’s function ERXServingCallback breaks/stops the RPC
execution loop if

a normal shut down of the RPC server takes place.

immediately after execution of an RPC request or complete RPC conversation.

With this setting you receive control in your callable RPC server after every RPC request or
RPC conversation. See Writing a Callable RPC Server. You can, for example, use this setting
for logging purposes and put a repeat loop around the ERXServingCallback function.

Scalable Number of Worker Threads
This section provides some hints on how to implement a callable RPC server with a scalable number of
worker threads. This is a more complex server with the ability to clone worker threads to satisfy a high
load of client requests.

Implement a main function registering as an attach server by the broker using REGISTER,
OPTION=ATTACH. When this server receives attach service requests for clients waiting to be served,
start a suitable number of worker threads. See Implementing an Attach Server.

Implement a callable RPC server and its callback to be attached in a thread as described under
Writing a Callable RPC Server and Writing the Callback.

Use endworkers=timeout for the configuration file parameter endworkers , if you wish to

implement a server that does not exit after the first conversation

reduce the number of servers when they are no longer needed

5

Writing Callable RPC Servers with the C WrapperScalable Number of Worker Threads

Use endworkers=immed if you wish to

implement a server that handles only one client for one conversation

See Implementing Servers started by an Attach Server for more details.

6

Scalable Number of Worker ThreadsWriting Callable RPC Servers with the C Wrapper

	Writing Callable RPC Servers with the C Wrapper
	Introduction to Callable RPC Servers
	Writing a Callable RPC Server
	Example

	Writing the Callback
	Returning Errors
	User-specific Data
	Example

	Break/Stop the RPC Execution Loop
	Scalable Number of Worker Threads

