
Using Sample Security Exits for Broker
Security
This page describes implementation issues and how to use sample security exits in EntireX Broker. It
assumes you are familiar with EntireX Broker from both an administrative and an application perspective,
and with the ACI programming interface in particular. See Introduction to ACI-based Programming.

This chapter covers the following topics:

Overview of Security Data Flow

Prerequisites for Running EntireX Broker in a Secure Environment

General Security Recommendations

Writing Security Exits

Security-Related Parameters

Programming Broker Stub Exits

Layout of Security Parameter Block ETB_SECPAR

Layouts of Type-dependent Security Parameter Blocks

Overview of Security Data Flow
The diagram shows a data flow for sample security exits, with Broker Kernel located, for example, on
z/OS. See also Description of Steps in Data Flow.

1

Using Sample Security Exits for Broker SecurityUsing Sample Security Exits for Broker Security

Prerequisites for Running EntireX Broker in a Secure
Environment
To run EntireX Broker in a secure environment, the following prerequisites must be met:

The security system in the EntireX Broker kernel must be activated by setting SECURITY=YES in
the broker attribute file.

The security routines must be accessible to the Broker. The method you use to achieve this depends
on the operating system where your user-written USRSEC is implemented.

Note:
EntireX Broker will not start if SECURITY=YES is specified but the security routines cannot be activated.

General Security Recommendations
If you run a secure environment, we recommend you performing an explicit LOGON with the
AUTOLOGON=NO definition in the attribute file. All security violations are logged to the EntireX Broker
log file.

Implementing the Kernel Security Exit under z/OS

2

Prerequisites for Running EntireX Broker in a Secure EnvironmentUsing Sample Security Exits for Broker Security

Implementing Security for Broker Stubs under z/OS

Implementing Security Exits for Broker Stubs on UNIX

Implementing Security Exits for Broker Stubs on Windows

Implementing the Kernel Security Exit under z/OS

 To implement the kernel security exit under z/OS

1. Write the exits USRSEC. The code must always be reentrant and reusable.

2. The kernel security exit USRSEC is loaded automatically during startup of Broker. Use module and
entry name USRSEC for this exit. A security module sample source is delivered with the ETB source
library.

3. Under z/OS, link the exit as reentrant and reusable.

4. Ensure that the security exit is accessible in the Broker STEPLIB .

Implementing Security for Broker Stubs under z/OS

 To implement security exits for Broker stubs under z/OS

1. Write the stub security exits ETBUPRE and ETBUEVA. The code must always be reentrant, except
for batch, where the code must be reusable.

2. Link these exits ETBUPRE and ETBUEVA to the stub of the target application. The stub contains
weak externals for both entries.

Implementing Security Exits for Broker Stubs on UNIX

 To implement security exits for Broker stubs under UNIX

1. Write your own usrsec.c and secuexit.c, based on the samples delivered with EntireX.

2. Build your own secuexit.s[o|l] and usrsec.s[o|l], using the provided makefiles. (A sample makefile,
makexa, is provided.)

3. Ensure that usrsec.s[o|l] is made available to the Broker kernel at execution time. The attribute file
parameter SECURITY-PATH must be used to specify the location of usrsec.s[o|l].

4. Ensure that secuexit.s[o|l] is made available to the application in the same directory as the Broker
stub.

Implementing Security Exits for Broker Stubs on Windows

 To implement security exits for Broker stubs under Windows

1. Write your own usrsec.c and secuexit.c, based on the samples delivered with EntireX.

3

Using Sample Security Exits for Broker SecurityImplementing the Kernel Security Exit under z/OS

2. Build your own secuexit.dll and usrsec.dll, using the provided makefiles.

Writing Security Exits
This section describes how to write your own security exits. It describes the interfaces, indicates what can
be modified and what has to be done within an exit. It also provides some helpful tips.

This section covers the following topics:

Requirements

Error Checking for Incomplete Security Installation

Requirements

You must provide the following functions:

The Preparation exit etbupre() and the Evaluation exit etbueva() for the Broker stub. These
two functions are linked statically to the Broker stub routines.

The Kernel exit usrsec() which is loaded by the kernel. This exit is more generic than the other
two. It is called with the function that has been performed and a function-dependent Broker ACI
control block that provides all the necessary information. This function is loaded dynamically by
EntireX Broker during startup. One parameter of the kernel exit is the function that is performed.

The functions map to the exit type is as follows:

Exit Type Function Function to perform

Authentication
exit

ETB_SEC_LOGON Checks authentication for the user.

 ETB_SEC_LOGOFF Release user-specific information if necessary.

 ETB_SEC_NEWPUIDApplication call with different physical USER ID.

 ETB_SEC_NEWST Application call with a different SECURITY TOKEN

Authorization exit ETB_SEC_SEND Check whether user is allowed to use the addressed
service.

 ETB_SEC_REGISTERCheck whether the user is allowed to offer that service.

Encryption exit ETB_SEC_ENCRYPTEncrypt the given data.

 ETB_SEC_DECRYPTDecrypt the given data.

In the following text, "encryption" or "authentication" exit refers to the functions listed above.

Error Checking for Incomplete Security Installation

With ACI_VERSION=4 or above, the security configuration of the caller’s stub is checked against the
security configuration of the broker kernel. The request will be rejected with the error message
00200379 - API: Inconsistent Security Installation , if security

4

Writing Security ExitsUsing Sample Security Exits for Broker Security

is present in the stub and it is not present in the kernel;

or

is not present in the stub and it is present in the kernel.

Note:
If you have written your own security - instead of using Security Solutions in EntireX - and it is
implemented only on the kernel, you will have to add a dummy security exit to the stub.

Security-Related Parameters
The following security-related parameters are provided. These are fields in the Broker ACI Fields:

USER-ID

PASSWORD

SECURITY-TOKEN

CLIENT-UID

ERROR-CODE

ERROR-TEXT

KERNELSECURITY

ENCRYPTION-LEVEL

USER-ID

The USER ID is defined by the application. It is available in all ACI exits as well as in the kernel exits,
except the encryption and decryption exits. Theoretically the preparation exit can be used to retrieve the
login name by an operating system specific mechanism. This would allow a user identification without the
application being involved. See the description of the USER-ID field in the Broker ACI control block.

PASSWORD

The PASSWORD is defined by the application. It is available in all ACI and kernel exits except the
encryption exit. The PASSWORD, if provided by the application in plain text, should be encrypted in the
Preparation exit before sending it across insecure network connections. If the PASSWORD is needed in the
application again, it must be decrypted after receipt in the Evaluation exit. The authentication exit must
ensure that the PASSWORD is properly decrypted if necessary before sending it to an external security
system.

The EntireX Broker provides minimal encryption of the PASSWORD field, that is, the field is not
transmitted in plain text. If your environment requires absolute security, however, you will need to
provide both Broker stub and EntireX Broker kernel exits to perform encryption and decryption. See the
description of the PASSWORD field in the Broker ACI control block.

5

Using Sample Security Exits for Broker SecuritySecurity-Related Parameters

SECURITY-TOKEN

The SECURITY TOKEN can be created by the application and sent to EntireX Broker. That allows for a
kind of credential algorithm. The security token is passed to all kernel exits and can therefore contain
security information which is also important for the authorization and encryption exits. The SECURITY
TOKEN can be altered in the authentication exit to provide a context token for that application and that
session. It is transmitted back to the application and can then be used in all subsequent calls. For each
subsequent call, the EntireX Broker checks whether the SECURITY TOKEN is identical to the one
returned from the last call to the authentication exit, which could be the ETB_SEC_LOGON, the
ETB_SEC_NEWPUI or the ETB_SEC_NEWST function. After an ETB_SEC_LOGOFF call, a subsequent
call is always a ETB_SEC_LOGON call. See the description of the SECURITY-TOKEN field in the
Broker ACI control block.

CLIENT-UID

CLIENT-UID is returned to a server application after a RECEIVE and contains the user ID of the sending
client. This allows for further security checks (logging, separate checks, etc.). See the description of the
CLIENT-UID field in the Broker ACI control block.

ERROR-CODE

All security-related ERROR CODEs start with the ERROR CLASS 0008. The following four digits in the
ERROR CODE can be assigned by any exit if a security violation occurs. These digits only reach the
application if the current operation is aborted by the security exit with a security violation, i.e. an
appropriate return code. See ERROR-CODE under Broker ACI Fields.

ERROR-TEXT

The security exits can also pass an error message back to the application. This error text must not be
longer than 40 bytes.

KERNELSECURITY

See KERNELSECURITY under Broker ACI Fields.

ENCRYPTION-LEVEL

See ENCRYPTION-LEVEL under Broker ACI Fields or Encryption under Writing Applications using
EntireX Security.

Programming Broker Stub Exits
The exits in the stub have the following interface:

Preparation Exit

Evaluation Exit

Programming the Kernel Exit Routine

6

Programming Broker Stub ExitsUsing Sample Security Exits for Broker Security

Preparation Exit

Synopsis

int etbupre (ETBCB *pEtbCb,
 void *pSendBuf,
 void *pReserved,
 char *pErrText)

Parameter Format Direction Description

Address of
ETBCB

Pointer to
ETBCB control
block.

I/O ETBCB’s user_id and password are used to generate the
credential which will be saved in field security_token
for function LOGON.

Address of
send buffer

void pointer I/O Send buffer supplied by caller, only available for
function SEND, length of send buffer is member of
ETBCB.

Reserved void pointer I Must be NULL.

Address of
error text

char pointer O The error text is an array of 40 characters containing the
error text that will be returned by the stub routine.

Return value

0 (okay) or non-zero (error)

The real error code must be written to the Broker control block as an 8-byte character array (without
trailing 0 byte!) . The error class 0008 (security / encryption error class) is reserved for all errors in
function etbupre . The error number is user-defined. Additionally, the error text can be returned to the
user in the error text array.

Required Actions in the Exit

If no data encryption is desired, no action is required.

Recommended Actions in the Exit

Generate a credential if function is LOGON and move it to the field security_token.

Encrypt the send buffer if function is SEND. The encryption process must not change the length of
the buffer.

The exit gets control for each function of ACI version 2 and above. The exit must exist.

Evaluation Exit

Synopsis

int etbueva (ETBCB *pEtbCb,
 void *pRecBufEncr,
 void *pReserved,
 char *pErrText)

7

Using Sample Security Exits for Broker SecurityPreparation Exit

Parameters

Parameter Format Direction Description

Address of
ETBCB

Pointer to
ETBCB control
block.

I/O ETBCB’s security token is used for data decryption.

Address of
receive buffer.

void pointer I/O Receive buffer provided by EntireX Broker.
Only available for functions RECEIVE and SEND
WAIT=x (implicit receive).
Length of receive buffer is member of ETBCB.

Reserved void pointer I Must be NULL.

Address of error
text

char pointer O The error text is an array of 40 characters containing
the error text which will be returned by the stub
routine.

Return Value

0 (okay) or non-zero (error)

The real error code must be written to the Broker control block as an 8-byte character string (without
trailing 0 bytes!). The error class 0008 (security / encryption error class) is reserved for all errors in
function etbueva . The error number is user-defined.

In addition, the error text can be returned to the user.

Required Actions in the Exit

If no data decryption is wanted, no action is required.

Recommended Actions in the Exit

Decrypt the receive buffer if functions are RECEIVE or SEND with WAIT. The decryption process
must not change the length of the buffer.

The exit gets control for each function of ACI Version 2 and above. The exit must exist.

Use of a Single Send/Receive Buffer

A single send/receive buffer is used to perform encryption in place. This means that encrypted data is
provided in the send buffer. After the completion of a send/nowait command, the application should
ignore the contents of the send buffer, i.e. the encrypted data.

Programming the Kernel Exit Routine

All authentication, authorization, encryption and decryption exits are combined within one exit module
named USRSEC. The various security checks are indicated by a type parameter in the CALL interface.
USRSEC is provided with EntireX Broker as the default security exit. It is invoked if SECURITY=YES is
set in the attribute file. Prior to EntireX, the USRSEC exit was available only with the SAF Gateway
security package.

8

Programming the Kernel Exit RoutineUsing Sample Security Exits for Broker Security

The general syntax of this user exit is defined as follows:

Synopsis

long usrsec (ETB_SECPAR *pParSec,
 void *pVarious,
 char *pErrText,
 char *pWorkArea,
 long lWorkArea)

Parameters

Parameter Format Direction Description

Address of security
parameter block

Pointer to structure
ETB_SECPAR

I Contains the security type flag.

Address of
type-dependent security
parameter block

void pointer I See control block structures
ETB_SECPAR_<type>.

Address of error text char pointer O The error text is an array of 40 characters
containing the error text which will be
returned to the user.

Address of work area char pointer O Volatile work area.

Length of work area long integer value I Size of the work area in number of bytes.

Return Value

0 (okay) or user-defined error number

Error class 0008 (security / encryption error class) and the error number will be returned to the user. In
addition, the error text can be returned to the user.

Layout of Security Parameter Block ETB_SECPAR
typedef struct _ETB_SECPAR
{
 unsigned long vers; /* I: interface version number */

#define ETB_SEC_VERSION_1 (1) /* ETBCB version1 (no stub exits)*/
#define ETB_SEC_VERSION_2 (2) /* ETBCB version2 (stub exits) */

 unsigned long type; /* I: security type */
#define ETB_SEC_LOGON (1) /* user authentication (LOGON) */
#define ETB_SEC_LOGOFF (2) /* destroy user env (LOGOFF) */
#define ETB_SEC_REGISTER (3) /* authorization for REGISTER */
#define ETB_SEC_SEND (4) /* authorization for SEND */
#define ETB_SEC_ENCRYPT (5) /* encrypt message (RECEIVE) */
#define ETB_SEC_DECRYPT (6) /* decrypt message (SEND) */

 char id[3]; /* I:ID e.g. W01 for worker task 1 */
 void *pNetAddr /* I: pointer to network address */
} ETB_SECPAR;

9

Using Sample Security Exits for Broker SecurityLayout of Security Parameter Block ETB_SECPAR

Parameter Direction Description

version I The interface version number.

type I Unsigned long type.

char id I Identifier for the task.

pNetAddr I Pointer to the network address. A TCP/IP address contains 0001 in the first
two bytes, followed by the actual address in the next four bytes. If the pointer
is 0000, there is no address.

Layouts of Type-dependent Security Parameter Blocks
This section describes the following security parameter blocks:

DECRYPT

LOGOFF

LOGON

NEWST

REG

SEND

typedef struct _ETB_SECPAR_

 /* decrypt message of sender */
{
 unsigned char *pSecTok; /* I: Security Token */
 unsigned char *pBufECry; /* I: Encrypted buffer */
 unsigned char *pBufDCry; /* O: Decrypted buffer */
 long *plBufECry; /* I: length of encrypted buffer*/
 long *plBufDCry; /* I/O: length of decrypted buffer*/
} ETB_SECPAR_DECRYPT;

typedef struct _ETB_SECPAR_

 /* encrypt message for receiver */
{
 unsigned char *pSecTok; /* I: Security Token */
 unsigned char *pBufDCry; /* I: Decrypted buffer */
 unsigned char *pBufECry; /* O: Encrypted buffer */
 long *plBufDCry; /* I: length of decrypted buffer*/
 long *plBufECry; /* I/O: length of encrypted buffer*/
} ETB_SECPAR_ENCRYPT;

typedef struct _ETB_SECPAR_

 /* destroy security environment */
{
 char *pUid; /* I: UserID */
 unsigned char *pSecTok; /* I: Security Token */
 unsigned long *pnSecHndl; /* I: Security handle */
} ETB_SECPAR_LOGOFF;

10

Layouts of Type-dependent Security Parameter BlocksUsing Sample Security Exits for Broker Security

typedef struct _ETB_SECPAR_

 /* user authentication */
{
 char *pUid; /* I: UserID */
 unsigned char *pPasswd; /* I: Password (encoded) */
 unsigned char *pNewPasswd; /* I: New Password (encoded) */
 unsigned char *pSecTok; /* I/O: Security Token */
 unsigned long *pnCode; /* I: Character set of user */
 unsigned long *pnSecHndl; /* O: Security handle */
} ETB_SECPAR_LOGON;

typedef struct _ETB_SECPAR_

 /* reauthentication due to new */
 /* physical user ID */
{
 char *pUid; /* I: UserID */
 unsigned char *pPasswd; /* I: Password (encoded) */
 unsigned char *pNewPasswd; /* I: New Password (encoded)
*/
 unsigned char *pSecTokOld; /* I: Previously used security token */
 unsigned char *pSecTokNew; /* I/O: New security token */
 unsigned long *pnCode; /* I: Character set of user */
 unsigned long *pnSecHndl; /* I/O: Security handle */
} ETB_SECPAR_LOGON;

typedef struct _ETB_SECPAR_

 /* reauthentication due to new */
 /* Sec. Tok. */
{
 char *pUid; /* I: UserID */
 unsigned char *pPasswd; /* I: Password (encoded) */
 unsigned char *pNewPasswd; /* I: New Password (encoded) */
 unsigned char *pSecTokOld; /* I: Previously used security token */
 unsigned char *pSecTokNew; /* I/O: New security token */
 unsigned long *pnCode; /* I: Character set of user */
 unsigned long *pnSecHndl; /* I/O: Security handle */
} ETB_SECPAR_LOGON;

typedef struct _ETB_SECPAR_

 /* REGISTER authorization */
{
 char *pUid; /* I: UserID */
 unsigned char *pSecTok; /* I: Security Token */
 char *pSrvCls; /* I: Server Class */
 char *pSrvName; /* I: Server Name */
 char *pService; /* I: Service */
 unsigned long *pnSecHndl; /* I: Security handle */
} ETB_SECPAR_REG;

typedef struct _ETB_SECPAR_

 /* SEND authorization */
{
 char *pUid; /* I: UserID */
 unsigned char *pSecTok; /* I: Security Token */
 char *pSrvCls; /* I: Server Class */

11

Using Sample Security Exits for Broker SecurityLayouts of Type-dependent Security Parameter Blocks

 char *pSrvName; /* I: Server Name */
 char *pService; /* I: Service */
 unsigned long *pnSecHndl; /* I: Security handle */
} ETB_SECPAR_SEND;

Required/ Recommended Actions in the Exit (depending on Security Type)

Security Type Required Action Recommended Action Note

ETB_SEC_ENCRYPTCopy decrypted to
encrypted buffer and set
the length of encrypted
buffer. This is necessary
because exit is called
whether the receive data
has to be encrypted or
not.

Encrypt receive data if needed. The size of
the buffer
cannot be
changed in
this exit.

ETB_SEC_DECRYPTCopy encrypted to
decrypted buffer and set
the length of decrypted
buffer. This is necessary
because exit is called
irrespective of whether
send data is encrypted or
not.

Decrypt receive data if needed. The size of
the buffer
cannot be
changed in
this exit.

ETB_SEC_LOGON Decrypt the password and check
combination of user ID and
password against the security
system. Generate a context token
according to the credentials of the
user and EntireX Broker. Create a
security handle for a user session
(e.g. ACEE on z/OS).

ETB_SEC_LOGOFF None Delete the security handle of the
user session.

ETB_SEC_NEWPUIDNone An application has changed the
physical user ID between two calls.
If necessary, a new security token
can be created.

ETB_SEC_NEWST None For some reason, the security token
of an application has changed and
no longer matches the original. The
security token should be
recalculated and approved or the
application should be rejected.

12

Required/ Recommended Actions in the Exit (depending on Security Type)Using Sample Security Exits for Broker Security

Security Type Required Action Recommended Action Note

ETB_SEC_REGISTERNone Check whether user_id is authorized
to offer the requested SERVICE
(check security_token data if
necessary).

ETB_SEC_SEND None Check whether user_id is authorized
to offer the requested SERVICE
(check security_token data if
necessary).

13

Using Sample Security Exits for Broker SecurityRequired/ Recommended Actions in the Exit (depending on Security Type)

	Using Sample Security Exits for Broker Security
	Overview of Security Data Flow
	Prerequisites for Running EntireX Broker in a Secure Environment
	General Security Recommendations
	Implementing the Kernel Security Exit under z/OS
	Implementing Security for Broker Stubs under z/OS
	Implementing Security Exits for Broker Stubs on UNIX
	Implementing Security Exits for Broker Stubs on Windows

	Writing Security Exits
	Requirements
	Error Checking for Incomplete Security Installation

	Security-Related Parameters
	USER-ID
	PASSWORD
	SECURITY-TOKEN
	CLIENT-UID
	ERROR-CODE
	ERROR-TEXT
	KERNELSECURITY
	ENCRYPTION-LEVEL

	Programming Broker Stub Exits
	Preparation Exit
	Synopsis
	Return value
	Required Actions in the Exit
	Recommended Actions in the Exit

	Evaluation Exit
	Synopsis
	Parameters
	Return Value
	Required Actions in the Exit
	Recommended Actions in the Exit
	Use of a Single Send/Receive Buffer

	Programming the Kernel Exit Routine
	Synopsis
	Parameters
	Return Value

	Layout of Security Parameter Block ETB_SECPAR
	Layouts of Type-dependent Security Parameter Blocks
	Required/ Recommended Actions in the Exit (depending on Security Type)

