
Scenarios and Programmer Information
This chapter covers the following topics:

COBOL Scenarios

PL/I Scenarios

C Scenarios

Assembler Scenarios

Aborting RPC Server Customer Code and Returning Error to RPC Client

COBOL Scenarios

Scenario I: Calling an Existing COBOL Server

 To call an existing COBOL server

1. Use the IDL Extractor for COBOL to extract the Software AG IDL and, depending on the
complexity, also a server mapping file. See When is a Server Mapping File Required? in the EntireX
Workbench documentation.

2. Build an EntireX RPC client using any EntireX wrapper. See EntireX Wrappers. For a quick test you
can:

use the IDL Tester; see EntireX IDL Tester in the EntireX Workbench documentation

generate an XML mapping file (XMM) and use the XML Tester for verification; see EntireX
XML Tester in the XML/SOAP Wrapper documentation

See Client and Server Examples for z/OS Batch in the COBOL Wrapper documentation for COBOL RPC
Server examples.

Scenario II: Writing a New COBOL Server

 To write a new COBOL server

1. Use the COBOL Wrapper to generate a COBOL server skeleton and, depending on the complexity,
also a server mapping file. See When is a Server Mapping File Required? in the EntireX Workbench
documentation. Write your COBOL server and proceed as described under Using the COBOL
Wrapper for the Server Side.

2. Build an EntireX RPC client using any EntireX wrapper. See EntireX Wrappers. For a quick test you
can:

use the IDL Tester; see EntireX IDL Tester in the EntireX Workbench documentation

1

Scenarios and Programmer InformationScenarios and Programmer Information

generate an XML mapping file (XMM) and use the XML Tester for verification; see EntireX
XML Tester in the XML/SOAP Wrapper documentation

See Client and Server Examples for z/OS Batch in the COBOL Wrapper documentation for COBOL RPC
Server examples.

PL/I Scenarios

Scenario III: Calling an Existing PL/I Server

 To call an existing PL/I server

1. Use the IDL Extractor for PL/I to extract the Software AG IDL.

2. Build an EntireX RPC client using any EntireX wrapper. See EntireX Wrappers. For a quick test you
can:

use the IDL Tester; see EntireX IDL Tester in the EntireX Workbench documentation

generate an XML mapping file (XMM) and use the XML Tester for verification; see EntireX
XML Tester in the XML/SOAP Wrapper documentation

See Client and Server Examples for z/OS Batch for PL/I RPC Server examples.

Scenario IV: Writing a New PL/I Server

 To write a new PL/I server

1. Use the PL/I Wrapper to generate a PL/I server skeleton. Write your PL/I server and proceed as
described under Using the PL/I Wrapper for the Server Side.

2. Build an EntireX RPC client using any EntireX wrapper. See EntireX Wrappers. For a quick test you
can:

use the IDL Tester; see EntireX IDL Tester in the EntireX Workbench documentation

generate an XML mapping file (XMM) and use the XML Tester for verification; see EntireX
XML Tester in the XML/SOAP Wrapper documentation

See Client and Server Examples for z/OS Batch in the PL/I Wrapper documentation for PL/I RPC Server
examples.

C Scenarios

Scenario V: Writing a New C Server

 To write a new C server

1. Use the C Wrapper to generate a C server skeleton and a C server interface object. Write your C
server and proceed as described under Using the C Wrapper for the Server Side (z/OS, UNIX,
Windows, BS2000/OSD, IBM i).

2

PL/I ScenariosScenarios and Programmer Information

2. Build an EntireX RPC client using any EntireX wrapper. See EntireX Wrappers. For a quick test you
can:

use the IDL Tester; see EntireX IDL Tester in the EntireX Workbench documentation

generate an XML mapping file (XMM) and use the XML Tester for verification; see EntireX
XML Tester in the XML/SOAP Wrapper documentation

Assembler Scenarios

Scenario VI: Writing a New Assembler Server

 To write a new Assembler (IBM 370) server

1. Build an RPC server in Assembler. Here are some hints:

The RPC server is dynamically callable (no pre-initialization required).

The parameter interface is either compatible with the COBOL or PL/I calling convention (IDL
level parameter will be passed in the address list). Configure the parameter marshalling
accordingly for COBOL or PL/I.

The alignment of integer or float data types is considered. The HASM Assembler aligns integer
or float data types to appropriate boundaries. For example:

...
 MyLabel DSECT
 MyField1 DS H I2
 MyField2 DS F I4
 MyField3 DS E F4
 MyField4 DS L F8

The Batch RPC Server will not align these data types by default.

To force alignment by definition in your IDL file (see the aligned attribute within the
attribute-list) before generating your RPC client. For information on whether your
client supports the aligned attribute, see Mapping the aligned Attribute to C | COBOL |
DCOM | .NET | Java | Natural | PL/I.

2. Build an EntireX RPC client using any EntireX wrapper. See EntireX Wrappers. For a quick test you
can:

use the IDL Tester; see EntireX IDL Tester in the EntireX Workbench documentation

generate an XML mapping file (XMM) and use the XML Tester for verification; see EntireX
XML Tester in the XML/SOAP Wrapper documentation

Aborting RPC Server Customer Code and Returning Error
to RPC Client

3

Scenarios and Programmer InformationAssembler Scenarios

Using RETURN-CODE Special Register (COBOL only)

The RETURN-CODE special register (an IBM extension to the COBOL programming language) is used by
your RPC server to report an error.

Upon return, the value contained in the RETURN-CODE special register is detected by the Batch RPC
Server and sent back to the RPC client instead of the application’s data.

For IBM compilers the RETURN-CODE special register has the implicit definition:

RETURN-CODE GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO

Special registers are reserved words that name storage areas generated by the compiler. Their primary use
is to store information produced through specific COBOL features. Each such storage area has a fixed
name, and must not be defined within the program. See your compiler documentation for more
information.

The following rules apply to application error codes:

The value range for application errors is 1-9999. No other values are allowed.

On the RPC client side, the error is prefixed with the error class 1002 "Application User Error" and
presented as error 1002nnnn.

No application data is sent back to the RPC client in case of an error.

It is not possible to return an error text to the RPC client.

Example

. . .
 IF error occurred THEN
 MOVE <error-number> TO RETURN-CODE
 GO TO MAIN-EXIT
 END-IF.
 . . .

 MAIN-EXIT.
 EXIT PROGRAM.
END PROGRAM RETCODE.

Note:
To enable this feature, configure the Batch RPC Server with return_code=yes .

4

Using RETURN-CODE Special Register (COBOL only)Scenarios and Programmer Information

	Scenarios and Programmer Information
	COBOL Scenarios
	Scenario I: Calling an Existing COBOL Server
	Scenario II: Writing a New COBOL Server

	PL/I Scenarios
	Scenario III: Calling an Existing PL/I Server
	Scenario IV: Writing a New PL/I Server

	C Scenarios
	Scenario V: Writing a New C Server

	Assembler Scenarios
	Scenario VI: Writing a New Assembler Server

	Aborting RPC Server Customer Code and Returning Error to RPC Client
	Using RETURN-CODE Special Register (COBOL only)

