
Administration of the EntireX Java RPC
Server
The EntireX Java RPC Server is an RPC server which runs Java server interface objects generated from
your IDL files. This server can register an Attach Service to start several services with the same server
address on demand.

Each of these services can process one call at a time. The Java RPC Server is started by a script, which
you may customize. Parameters for the server are configured in a Java properties file.

This chapter covers the following topics:

Customizing the Java RPC Server

Using Package Names with the Java RPC Server

Using Internationalization with Java RPC Server

Starting the Java RPC Server

Stopping the Java RPC Server

Application Identification

Customizing the Java RPC Server
Introduction

The Properties File

Example

Properties and Command-line Options

Introduction

The script files that start the Java RPC Server allow command-line options as described in the table below.
Alternatively, you can use System properties or a property file. The command-line option has the highest
priority; the System property has second priority, and the entries of a property file have third priority.

The Java RPC Server can adjust the number of worker threads to the number of parallel requests. Use the
properties entirex.server.fixedservers , entirex.server.maxservers and
entirex.server.minservers to configure this scalability. If
entirex.server.fixedservers=yes , the number of servers specified in
entirex.server.minservers is started and the server can process this number of parallel requests.
If entirex.server.fixedservers=no , the number of worker threads balances between what is
specified in entirex.server.minservers and what is specified in
entirex.server.maxservers . This is done by a so-called attach server thread. At startup, the
number of worker threads is the number specified in entirex.server.minservers . A new worker
thread starts if the Broker has more requests than there are worker threads waiting. If more than the

1

Administration of the EntireX Java RPC ServerAdministration of the EntireX Java RPC Server

number specified in entirex.server.minservers are waiting for requests, a worker thread stops
if its receive call times out. The timeout period is configured with entirex.server.waitserver .

The Properties File

The default name of the properties file is entirex.server.properties . It can be changed by
assigning an arbitrary file name with a path to a Java system property with the name
entirex.server.properties . The file is searched for in the directory of the start script.

An example for the properties file is in subfolder config of the installation folder.

Example

Under UNIX:

java -Dentirex.server.properties=rpcserver.properties -classpath <entirex.jar with path>: <path to your server
stubs> com.softwareag.entirex.aci.RPCServer

Properties and Command-line Options

Name
Command-line
Option Default Value Explanation

entirex.rpcserver.packagename.entirex.
rpcserver.packagename.<libraryname>=packagename<libraryname>=packagename

 See Using Package Names with the Java RPC
Server.

entirex.server.brokerid -broker localhost Broker ID

entirex.server.codepage -codepage The codepage the server uses. Permitted values are
the name of the codepages the JVM supports. See
Customizing the Java RPC Server for details.

entirex.server.compresslevel -compresslevel 0 (no compression) Permitted values (you can enter the text or the
numeric value):

BEST_COMPRESSION 9

BEST_SPEED 1

DEFAULT_COMPRESSION -1, mapped to 6

DEFLATED 8

NO_COMPRESSION 0

N 0

Y 8

entirex.server.customclass -customclass This class is used for custom initialization and
shutdown of the server. In addition, this class allows
handling when closing a conversation and handling
the termination of a worker thread. See
ServerImplementation for more information.

entirex.server.encryptionlevel -encryption 0 Encryption level (if Broker is version 6.1.1 or
higher. Valid values: 0,1,2).

entirex.server.environment Can be used in a user-written translation exit of the
Broker. See BrokerService ,
setEnvironment(java.lang.String)
(EntireX Java ACI).

entirex.server.fixedservers no If no, use attach server to manage worker threads,
otherwise run minimum number of server threads.

entirex.server.logfile -logfile Path and name of the trace output file. Environment
variables in the name are resolved only if used as
command-line option.

entirex.server.maxservers 32 Maximum number of worker threads.

entirex.server.minservers 1 Minimum number of server threads.

entirex.server.monitorport -smhport 0 The port where the server listens for commands
from the System Management Hub (SMH). If this
port is 0, no port is used and management by the
SMH is disabled.

entirex.server.name The name of the server.

2

The Properties FileAdministration of the EntireX Java RPC Server

Name
Command-line
Option Default Value Explanation

entirex.server.password -password The password for secured access to the Broker. The
password is encrypted and written to the property
entirex.server.password.e .
To change the password, set the new password in the
properties file (default is entirex.server.properties).
To disable password encryption, set
entirex.server.passwordencrypt=no .
Default for this property is yes.

entirex.server.properties -propertyfile entirex.server.propertiesThe file name of the property file.

entirex.server.restartcycles -restartcycles 15 Number of restart attempts if the Broker is not
available. This can be used to keep the Java RPC
Server running while the Broker is down for a short
time.

entirex.server.security -security no no/yes/auto/Name of BrokerSecurity object.

entirex.server.serveraddress -server RPC/SRV1/CALLNAT Server address

entirex.server.serverlog -serverlog Name of the file where start and stop of worker
threads is logged. Used by the Windows RPC
Service.

entirex.server.userid -user JavaServer The user ID for the Broker for RPC. See
entirex.server.password .

entirex.server.verbose -verbose no Verbose output to standard output yes/no.

entirex.server.waitattach 600S Wait timeout for the attach server thread.

entirex.server.waitserver 300S Wait timeout for the worker threads.

entirex.timeout 20 TCP/IP transport timeout. See Setting the Transport
Timeout under Writing Advanced Applications -
EntireX Java ACI.

entirex.trace -trace 0 Trace level (1,2,3).

Using Package Names with the Java RPC Server
A package name can be specified when the server is generated.

The Java RPC Server can handle server programs with package names if the package name of each library
is configured in the properties of the server. For each library the property
entirex.rpcserver.packagename.<library> has the value of the package.

Example for the library Example (as in example.idl):

entirex.rpcserver.packagename.example=my.package

The library name must be lowercase.

Using Internationalization with Java RPC Server
It is assumed that you have read the document Internationalization with EntireX and are familiar with the
various internationalization approaches described there.

With the parameter codepage for the Java RPC Server you can

override the encoding used for the payload sent to / received from the broker. Instead of using the
default encoding of the JVM, the given encoding is used. Using this method does not change the
default encoding of your JVM.

force a locale string to be sent if communicating with broker version 7.1.x and below. You can use
the abstract codepage name LOCAL to send the default encoding of the JVM to the broker. See
Using the Abstract Codepage Name LOCAL.

3

Administration of the EntireX Java RPC ServerUsing Package Names with the Java RPC Server

EntireX Java components use the codepage configured for the Java virtual machine (JVM) to convert the
Unicode (UTF-16) representation within Java to the multibyte or single-byte encoding sent to or received
from the broker by default. This codepage is also transferred as part of the locale string to tell the broker
the encoding of the data if communicating with a broker version 7.2.x and above.

To change the default, see your JVM documentation. On some JVM implementations, it can be changed
with the file.encoding property. On some UNIX implementations, it can be changed with the LANG
environment variable.

Which encodings are valid depends on the version of your JVM. For a list of valid encodings, see
Supported Encodings in your Java documentation. The encoding must also be a supported codepage of the
broker, depending on the internationalization approach.

4

Using Internationalization with Java RPC ServerAdministration of the EntireX Java RPC Server

Starting the Java RPC Server
 To start the Java RPC Server

Use a shell script in the subfolder bin of the installation directory.

On UNIX, the shell script is named jrpcserver.bsh.

If the Java interpreter is not called "java", change the call to "java".

You can set the environment variable JAVA_HOME for the location of the Java interpreter.

Set the classpath to "entirex.jar" and the path to the generated proxies.

The Java RPC Server accepts parameters. See column Command-line options in table above.

Stopping the Java RPC Server
 To stop the Java RPC Server

Use the function Deregister a Service or Deregister a Server of the System Management Hub. This
method ensures that the deregistration from the Broker is correct.

Application Identification
The application identification is sent from the RPC server to the Broker. It is visible with Broker
Command and Info Services.

The identification consists of four parts: name, node, type, and version. These four parts are sent with each
Broker call and are visible in the trace information.

For the Java RPC Server these values are:

Identification Part Value

Application name: ANAME=Java RPC Server

Node name: ANODE=<host name>

Application type: ATYPE=Java

Version: AVERS=8.2.0.0

5

Administration of the EntireX Java RPC ServerStarting the Java RPC Server

	Administration of the EntireX Java RPC Server
	Customizing the Java RPC Server
	Introduction
	The Properties File
	Example
	Properties and Command-line Options

	Using Package Names with the Java RPC Server
	Using Internationalization with Java RPC Server
	Starting the Java RPC Server
	Stopping the Java RPC Server
	Application Identification

