
Using Persistence and Units of Work
This chapter describes implementation issues and how to use persistence and units of work in EntireX
Broker. It assumes you are familiar with EntireX Broker from both an administrative and an application
perspective, and with the ACI programming in particular. See also EntireX Broker and EntireX Broker
ACI Programming. This chapter covers the following topics:

Implementation Issues

Using Units of Work

Using Persistence

Using Persistent Status

Recovery Processing

Implementation Issues
Table of Persistent Store Drivers

Changes are Required

Attributes used for Units of Work

ACI Fields used for Units of Work

ACI Function SYNCPOINT used for Units of Work

Options used for UOW Operations

CID Implementation: Numeric Digits, Characters 0-9 and A-Z

Table of Persistent Store Drivers

A persistent store driver is an executable, or a load module that implements access to the physical
persistent store. There is one persistent store driver for each persistent store type. The following table
shows the persistent store options:

1

Using Persistence and Units of WorkUsing Persistence and Units of Work

Persistent
Store Type Description

Operating
System Notes

Adabas Uses Adabas database. UNIX,
Windows,
z/OS, z/VSE

Adabas, Software AG’s ADAptable
dataBASe, is a high-performance,
multithreaded, database management
system.

DIV Uses IBM Data In Virtual
facility on z/OS.

z/OS This persistent store option is
implemented as a VSAM linear data set.

CTREE c-tree© is an embedded
local database that can be
used as your persistent
store.

UNIX and
Windows

c-tree© is the fast and reliable embedded
database of FairCom Corporation®.

Changes are Required

It is important to note that some level of both application and system changes are necessary to utilize
UOWs. Existing message-based Broker applications will continue to operate as before.

Attributes used for Units of Work

The following table represents the keyword parameters that can be used in the Broker attribute file for
UOWs. A short form of the keyword is given if applicable. Default values are underlined.

Keyword Value Description

STORE OFF |
BROKER

Broker: sets default STORE attribute for all units of
work.

Service: sets default STORE attribute for units of work
sent to the service.

MAX-UOWS or
MUOW

0 | n Broker: maximum number of active UOWs. If 0 is
specified, then the Broker will not support any UOW
operations.

Service: maximum number of active UOWs for a
service.

MAX-MESSAGES-IN-UOW or
UMSG

16 | n Broker: maximum number of messages in a UOW.

Service: maximum number of messages in a UOW for
the service.

2

Changes are RequiredUsing Persistence and Units of Work

Keyword Value Description

PSTORE NO | HOT |
COLD |
WARM

Broker only. Startup value for persistent store.

NO No persistent store.

HOT Persistent UOWs are restored to prior state
during initialization.

COLD Persistent UOWs are not restored during
initialization, and the persistent store is
considered empty.

WARM (Internal Use Only) persistent UOWs are not
restored during initialization, but the persistent
store remains intact.

UWSTATP 0 - 254 Broker: persistent status is maintained either for
persistent or non-persistent UOWs.

Service: persistent status is maintained either for
persistent or non-persistent UOWs for a service.

UWTIME 1D | nS |
nM | nH |
nD

Broker: defines the lifetime of a UOW in seconds,
minutes, hours or days. This value is the time that it can
remain in the system without being completed. If the
UOW is not completed within this time, it is deleted
with a status of TIMEOUT

Service: defines the lifetime of a UOW for a service.

MAX-UOW-MESSAGE-LENGTHn | 31647 Broker: defines the default maximum message size that
can be sent.

Service: defines the maximum message size that can be
sent to a service.

DEFERRED NO | YES Broker: sets the default DEFERRED attribute for all
services. UOWs can be sent to a deferred service even
if the service is not registered.

Service: sets the DEFERRED attribute for a service.

ACI Fields used for Units of Work

The following fields have been added to the broker ACI control block. Note that the actual field names
may differ slightly depending on the programming language being used.

3

Using Persistence and Units of WorkACI Fields used for Units of Work

Keyword Description

STORE Indicates whether the specified UOW is persistent or not:

OFF The sender accepts the persistence option specified by the service or Broker
(this is the default value).

BROKER The sender wants persistence.

NO The sender does not want persistence, even if the service or Broker default is
persistence.

Also returned with RECEIVE to indicate if the UOW being received is persistent or not.

UWTIME The amount of time that the UOW can remain incomplete without being timed out. This is
also referred to as the UOW lifetime.

STATUS The current status of a UOW. The status is returned on SEND, RECEIVE, and
SYNCPOINT operations. Applicable values are as follows:

RECEIVED One or more messages have been sent as part of a UOW but the UOW
is not yet committed.

ACCEPTED The UOW has been committed by the sender.

DELIVERED The UOW is currently being received.

BACKEDOUT * The UOW was backed out prior to being committed by the sender.

PROCESSED * the receiver of the UOW has committed it.

CANCELLED * the receiver of the UOW has cancelled it.

TIMEOUT * the UOW was not processed within the specified time.

DISCARDED * The UOW was not persistent and its data was discarded over a restart.

* The status values marked with an asterisk are persistent, and will only exist for UOWs
with persistent status.

In addition, the following status values are returned on a RECEIVE operation to indicate
if the message being received is part of a UOW or not, and if so, which part:

RECV_NONE The message is not part of a UOW.

RECV_FIRST The message is the first message in a UOW.

RECV_MIDDLE The message is not the first or last message in a UOW.

RECV_LAST The message is the last message in a UOW.

RECV_ONLY The message is the only message in a UOW.

All RECV_ values except RECV_NONE reflect an actual UOW status of DELIVERED.

USTATUSA user-defined status associated with a UOW. It can be specified as part of a SEND,
RECEIVE, or SYNCPOINT operation and will be returned whenever the status of a UOW
is queried. See Using User Status below for more information.

4

ACI Fields used for Units of WorkUsing Persistence and Units of Work

Keyword Description

UOWID A unique identifier for a unit of work. This value is returned on SEND and RECEIVE
operations and may be provided on SYNCPOINT operations that are querying status of
UOWs.

UWSTATPA numeric value indicating the lifetime value for persistent status. This value is a
multiplier against the UWTIME value. Applicable values are:

0 Use the default specified for the service or broker.

1-254 Use 1 to 254 times the UWTIME value as the status lifetime.

255 The sender does not want persistent status, even if the service or broker default
is persistent status.

ACI Function SYNCPOINT used for Units of Work

The SYNCPOINT function deals exclusively with UOWs. The following table lists the OPTION values
that can be used with the SYNCPOINT function, and the associated behavior and restrictions of each one.

Note:
In many cases, the behavior will be different depending on whether the issuer is the sender or the receiver
of the UOW.

5

Using Persistence and Units of WorkACI Function SYNCPOINT used for Units of Work

Option Caller Behavior and Restrictions

BACKOUT Sender If the specified UOW is in RECEIVED status, it will be put into
BACKEDOUT status. If persistent status is not specified, no trace of the
UOW will remain.

Receiver If the specified UOW is in DELIVERED status, it will be put back into
ACCEPTED status and its attempted delivery count will be incremented.

CANCEL Sender If the specified UOW is in ACCEPTED status, it will be put into
CANCELLED status. If persistent status is not specified, no trace of the
UOW will remain.

Receiver If the specified UOW is in DELIVERED status, it will be put into
CANCELLED status. If persistent status is not specified, no trace of the
UOW will remain.

COMMIT Sender If the specified UOW is in RECEIVED status, it will be put into
ACCEPTED status. It is now available to be received by the other partner.

Receiver If the specified UOW is in DELIVERED status, it will be put into
PROCESSED status. If persistent status is not specified, no trace of the
UOW will remain.

Both This is a special case of the COMMIT option, where the caller specifies
UOWID=BOTH in the request. This allows the caller to commit two UOWs,
one being received and one being sent, in a single atomic operation.

DELETE Sender Deletes the persistent status of the specified UOW. The UOW must be
complete and must have been created by the caller. After this request, no
trace of the UOW will remain.

EOC Sender Commits the UOW and sets an EOC indication on the associated
conversation. See COMMIT for additional information and restrictions.

EOCCANCELSender Commits the UOW and sets an EOC-CANCEL indication on the associated
conversation. See COMMIT for additional information and restrictions.

LAST Sender Returns the status of the last UOW sent by the caller. In addition,
CLASS/SERVER/SERVICE details of the associated server are also
returned. The CONV-ID can be included to qualify the request.

QUERY Sender With UOWID=n, returns the status of the specified UOW. In addition,
CLASS/SERVER/SERVICE details of the associated server are also
returned.

SETUSTATUSBoth Updates the user status field of the specified UOW. The UOW must be in
RECEIVED, ACCEPTED, or DELIVERED status.

Options used for UOW Operations

This table lists option values used to support UOW operations:

6

Options used for UOW OperationsUsing Persistence and Units of Work

Option Function Behavior and Restrictions

SYNC SEND This option indicates that the data being sent is part of a UOW. The UOW is
created on the first send, and subsequent sends will add messages to the UOW.

SYNC RECEIVE This option indicates that the RECEIVE can be satisfied only with a message in
a UOW.

MSG RECEIVE This option indicates that the RECEIVE can be satisfied only with non-UOW
messages.

ANY RECEIVE This option indicates that the RECEIVE can be satisfied by either a non-UOW
or a UOW message. It is up to the receiver to determine which, based on the
UOWSTATUS field that is returned.

COMMITSEND This option combines a SEND and a SYNCPOINT, OPTION=COMMIT into a
single operation. It allows the sender to create and commit a UOW in a single
operation.

CID Implementation: Numeric Digits, Characters 0-9 and A-Z

In order to support unique conversation identifiers at Broker restart, there is an implementation of the CID
which is alphanumeric and an internal identifier.

Note:
The CID is a Broker-generated identifier for the conversation, and the application should not make any
assumptions about either the content or format of all or any part of the CID field, or about any relationship
between CIDs.

If any of the following three conditions exist, the all-numeric implementation of the CID field will be used
in order to ensure compatibility:

the Broker does not support any UOW processing;

the application program is using API_VERSION 1 or 2 in its request;

or

the target service does not support UOWs.

Note:
This level of compatibility may be removed at some point in the future.

Using Units of Work
UOW vs non-UOW Conversations

Use of LOGON and TOKEN

User Identification for Units of Work

Which Applications should use UOWs?

7

Using Persistence and Units of WorkUsing Units of Work

Understanding UOW Status

UOW Status on RECEIVE

Using User Status

Resource and Performance Considerations

UOW vs non-UOW Conversations

A Broker conversation will support either UOWs or messages, but not both. At the time the conversation
is created, the Broker will determine which is to be supported.

Sequencing of Messages across Conversations

The order of delivery of new conversations to receivers is determined by the COMMIT time of the first
UOW within its conversation. The conversation delivered to the receiver first is the one containing the
first UOW for which the sender issues a SEND,OPTION=COMMIT or SYNCPOINT,OPTION=COMMIT.

If there is more than one UOW in a conversation, the COMMIT time of the first UOW determines the age
of that conversation. Also, multiple UOWs within a conversation are picked up by the receiver, in the
same sequence as they were committed by the sender.

Scenario: A server starts to receive UOWs (CONVID=NEW) and receives UOW T1 first, since this UOW
is committed first. If the server issues another receive (CONVID=NEW), it receives UOW T3. If, however,
the UOWs are not combined in conversations (i.e., every UOW is in a separate conversation), the server
receives (CONVID=NEW) UOW T1 first, then UOW T2, UOW T3, etc.

The COMMITTIME field in the Broker control block shows COMMITTIME of the first UOW in a
conversation.

Use of LOGON and TOKEN

An explicit LOGON function must be used before a program can use any of the UOW functions. In order to
enable client and server programs to recover the status of their UOWs in the event of a failure (Broker,
system, or application), these programs must specify a TOKEN value at the time of logon.

8

UOW vs non-UOW ConversationsUsing Persistence and Units of Work

User Identification for Units of Work

EntireX Broker identifies participants by ACI fields USER-ID and TOKEN if TOKEN is supplied or by
USER-ID and internal ID (so-called physical user ID) if TOKEN is not supplied. However, the
implementation of persistent units of work is based on the user identification USER-ID and TOKEN.

Warning:
In order to avoid unpredictable inconsistencies, all applications using
persistent units of work must use this user identification to run
correctly. The ACI verification routines do not restrict usage of
UOWs to USER-ID and TOKEN yet. Modify your application
accordingly.

Which Applications should use UOWs?

Applications that should consider using UOWs fit into a couple of different categories.

Applications that currently use multiple messages to communicate a single request are good
candidates for UOWs. Grouping these messages within a UOW can give the application additional
control over how its data is processed.

Applications that intend to utilize deferred services, persistence, or persistent status must use UOWs,
since these facilities are not available to message-based applications.

Understanding UOW Status

In order to use UOWs effectively, you need to understand

the meaning of the various UOW status values;

how they change based on events within the system;

and

how these changes are influenced by both persistence and persistent status.

The diagram below represents the normal status values as a UOW progresses through the system. These
statuses and the transitions between them are not affected by either persistence or persistent status. The
status values are indicated in ovals.

9

Using Persistence and Units of WorkUser Identification for Units of Work

Normal Status Values as a UOW progresses through System

Note:
The UOW is available to be received when it is first committed. The status values BACKEDOUT,
CANCELLED and PROCESSED are valid only if there is persistent status.

UOW Status on RECEIVE

When a RECEIVE is issued for a message within a UOW, you might expect that the UOW status returned
would be DELIVERED, since this is the actual status of the UOW. This is not the case, however. On a
RECEIVE, the Broker returns a special UOW status that reflects additional information about the message
and the UOW. These statuses are:

RECV_FIRST= the message is the first message in a UOW.

RECV_MIDDLE= the message is not the first or last message in a UOW.

RECV_LAST= the message is the last message in a UOW.

RECV_ONLY= the message is the only message in a UOW.

RECV_NONE= the message is not part of a UOW. This status is particularly useful if the application
is receiving both messages and UOWs.

If you receive a status of either RECV_LAST or RECV_ONLY and then issue another RECEIVE for the
same UOW, you will get an error 00740301 Conversation found: end of unit of work
indicating the end of the UOW.

10

UOW Status on RECEIVEUsing Persistence and Units of Work

Using User Status

The user status field of the UOW allows additional, application-specific information to be carried with the
UOW. It can be used to maintain status or indicate error information. It can also provide a form of
"out-of-band" data communication between the sender and the receiver of a UOW.

For example, if a server is processing a long-running UOW, it can periodically update the user status of
the UOW (using SYNCPOINT, OPTION=SETUSTATUS) to indicate its progress. The client can
periodically get the user status (using SYNCPOINT, OPTION=QUERY) and report the progress back to
the end-user.

As another example, the sender of a long-running UOW can update the user status to indicate that
processing of the UOW should be abandoned by the server. The server can periodically get the user status
while processing and react accordingly.

Resource and Performance Considerations

Each active UOW consumes memory resources (approximately 140 bytes per UOW) in a preallocated
pool, not including the size of the message itself.

Also, additional memory resources such as the conversation and participant control blocks for the UOW,
together with messages associated with them, will remain in memory for a deferred service when
persistence is used. This can become significant when UOWs are being sent to a deferred service.
However, the message itself does not remain in memory if sent to a service which is not currently
registered - the whole purpose of deferred services. If the service is currently registered, the message
remains in memory.

Messages that are sent to any (registered or unregistered) service can be "paged out" by Broker if storage
is required. This feature considerably eases memory consumption when using persistence.

Using Persistence
When do Persistent UOWs make Sense?

Adding Persistence to a UOW

Resource and Performance Considerations

Which Information is saved with the UOW?

What happens when Broker restarts?

UOWs and Replicated Servers

When do Persistent UOWs make Sense?

A UOW should be made persistent if the sender wants the Broker to assure that the UOW will be
deliverable, even if there is a system or Broker failure. Assured delivery assumes that the intended
receiver of the UOW is active, or becomes active within the specified lifetime of the UOW.

11

Using Persistence and Units of WorkUsing Persistence

Since most existing Broker applications are interactive, they are probably not good candidates for
persistent UOWs. New application models can now be implemented, using persistent UOWs. For
example, a service that collects information from other services, such as accounting, inventory, logging,
etc., would be a good fit for persistent UOWs. Another example could be a client sending a long-running
request to a service (one that may be inactive or busy), disconnecting, and coming back some time later to
retrieve the results. The reliability of assured delivery makes this model practical.

Persistent UOWs do not require persistent status.

Adding Persistence to a UOW

A UOW can be made persistent:

by specifying STORE=BROKER in the ACI request that creates the UOW;

by specifying STORE=BROKER in service definition or service defaults portion of the Broker
attribute file, making all UOWs for that service persistent; or

by specifying STORE=BROKER in the Broker defaults section of the Broker attribute files, making
all UOWs in the system persistent.

In addition, specifying STORE=NO in the ACI request that creates the UOW will explicitly make the
UOW non-persistent, overriding any Broker or service default.

Resource and Performance Considerations

A persistent UOW consumes resources in two areas.

When the UOW is committed by the sender, all of the messages are written to the persistent store.
This will generate multiple I/O operations, depending on the number and size of the messages.

Space used to store the UOW and its messages will be allocated in the persistent store and will
remain until the UOW is completed.

Performance of certain specific functions (e.g. SYNCPOINT OPTION=COMMIT by the sender of a UOW)
will be affected by the additional time required to perform the I/O operations associated with writing the
UOW and message(s) to the persistent store. These operations are performed synchronously because the
Broker must ensure that the UOW, once committed, can be recovered in the event of a system or Broker
failure.

Which Information is saved with the UOW?

When the UOW is initially created in the persistent store, the following information is written:

Unit-of-work ID

Conversation ID

UOW Sender information, including:

User ID

12

Adding Persistence to a UOWUsing Persistence and Units of Work

Token

Server/service/class *

UOW receiver information, including:

User ID **

Token **

Server/service/class *

Creation timestamp

UOW lifetime value

Persistence and persistent status values

The following pieces of information will be included when the UOW is initially written to the persistent
store and will be updated, as needed, during the life of the UOW:

UOW status

UOW user status

Attempted delivery count

Number of messages in UOW

Total message size in UOW

Persistent status lifetime value

Conversation state and EOC reason code

* Server/service/class information is only saved if the sender or receiver is a registered service.

** The receiver’s user ID and token are only saved if the receiver is a service that has already acquired the
conversation associated with this UOW. When there are multiple instances of a service, this means that a
new conversation can be restarted by any instance of the service, but an existing conversation is bound to
a specific instance of the service.

What happens when Broker restarts?

Restart Behavior of UOW
Re-creation of Internal Control Blocks
Behavior of Conversation at Broker Restart

Note:
"Restored" is an active UOW which has been returned to ACCEPTED status; "Discarded" is a UOW which
has not been returned to ACCEPTED status. "Discarded" does not imply the status of DISCARDED.

13

Using Persistence and Units of WorkWhat happens when Broker restarts?

Warning:
The persistent store must be available before you attempt to restart
your Broker; otherwise your Broker will not restart.

Restart Behavior of UOW

Restart Table 1
The behavior during restart of the following states depends on the previous settings of the options
Persistent UOW and Persistent Status.

UOW Status
before Restart

Persistent
UOW:
YES | NO

Persistent
Status:
YES | NO

Behavior of
UOW
and Status

UOW Status
after
Restart *

RECEIVED YES YES UOW not
restored;
Status is restored

BACKEDOUT

RECEIVED YES NO UOW not
restored;
Status not
restored

RECEIVED NO YES UOW not
restored;
Status is restored

DISCARDED

RECEIVED NO NO UOW not
restored;
Status not
restored

ACCEPTED YES YES UOW is restored;
Status is restored

ACCEPTED

ACCEPTED YES NO UOW is restored;
Status is restored

ACCEPTED

ACCEPTED NO YES UOW not
restored;
Status is restored

DISCARDED

ACCEPTED NO NO UOW not
restored;
Status not
restored

DELIVERED YES YES UOW is restored;
Status is restored

ACCEPTED

DELIVERED YES NO UOW is restored;
Status is restored

ACCEPTED

14

What happens when Broker restarts?Using Persistence and Units of Work

UOW Status
before Restart

Persistent
UOW:
YES | NO

Persistent
Status:
YES | NO

Behavior of
UOW
and Status

UOW Status
after
Restart *

DELIVERED NO YES UOW not
restored;
Status is restored

DISCARDED

DELIVERED NO NO UOW not
restored;
Status not
restored

PROCESSED ** YES YES Status is restoredPROCESSED

PROCESSED ** YES NO Status is not
restored

PROCESSED ** NO YES Status is restoredPROCESSED

PROCESSED ** NO NO Status not
restored

* If either UOW or its status is restored.

** In this state, the UOW information has already been deleted upon reaching PROCESSED status.

Restart Table 2
The behavior during restart of the following states does not depend on the settings of Persistent
UOW; in these cases only the Persistent Status exists and does not change after a restart. There is no
UOW to be restored.

UOW Status before Restart Behavior of Status UOW Status after Restart

CANCELLED Status is restored CANCELLED

DISCARDED Status is restored DISCARDED

BACKEDOUT Status is restored BACKEDOUT

TIMEDOUT Status is restored TIMEDOUT

Re-creation of Internal Control Blocks

To restore a UOW, the Broker re-creates all internal control blocks necessary to represent the UOW when
it was accepted. The table displays the targets of each control block type:

15

Using Persistence and Units of WorkWhat happens when Broker restarts?

Control Block Type Association: Sender | Receiver Notes

PCB Sender; Receiver (optional) PCB = Participant CB

SCB Sender; Receiver SCB = Service CB

CCB Sender; Receiver CCB = Conversation CB

Two CCBs represent the conversation.

UWCB Receiver UWCB = unit of work CB

The UWCB represents the UOW.

Note:
The messages associated with the UOW are not re-created in memory until a RECEIVE is actually issued
for the UOW.

Behavior of Conversation at Broker Restart

Broker sets any units of work (UOWs) that are in DELIVERED status to ACCEPTED status during restart
processing. If this is the first unit of work within a conversation sent by a client to a server, the assignment
of the conversation to a particular server is dropped and the conversation is again available for all servers
offering the same service.

If there is more than one unit of work in a single conversation and the first UOW is already received and
committed by the server, the link to the server will kept even after this (non-first) UOW has reverted from
DELIVERED to ACCEPTED status during restart processing. The server can retrieve units of work after
restart with function RECEIVE OPTION=SYNC,CONVID=ANY and will get all old conversations
containing UOWs first and then new conversations containing UOWs.

Servers performing a RECEIVE OPTION=SYNC, CONVID=NEW will retrieve only conversations not
already assigned to this server. We strongly recommend that you implement
RECEIVE OPTION=SYNC,CONVID=ANY or CONVID=OLD to retrieve already assigned conversations.

UOWs and Replicated Servers

Special consideration must be given when restarts occur, and there are persistent UOWs that are being
sent to replicated servers, e.g. when more than one copy of a server is active. This is because a UOW is
not associated with a server instance until the UOW’s conversation is actually received by a server. From
an application perspective, this means that a conversation that has not yet been received by its target
server will be restored so that any instance of the server can process it. However, once the conversation
has been received, any subsequent UOWs sent on the conversation will be restored so that only the
specific instance, based on USER-ID and TOKEN, can receive them. The reasoning behind this is that a
broker restart can occur without the servers being restarted, and the servers could be maintaining context
information based on the conversation.

It is important to note that this can cause problems if the server instances are started as a result of load and
the same load conditions are not present after the restart. For example, a UOW could be bound to the fifth
instance of a server, but after a restart there is only enough load to start three instances. For this reason, we
recommend that replicated servers using persistent UOWs not maintain any conversations with multiple
UOWs.

16

UOWs and Replicated ServersUsing Persistence and Units of Work

Using Persistent Status
When does Persistent Status make Sense?

Adding Persistent Status to a UOW

Resource and Performance Considerations

When does Persistent Status make Sense?

Persistent status should be considered for applications in which the sender needs to know if UOWs were
actually processed successfully. In cases where the data associated with a UOW can be easily re-created in
the event of a failure, persistent status may be a more desirable and lower-overhead alternative to a
persistent UOW.

Persistent status does not require a persistent UOW.

Adding Persistent Status to a UOW

A UOW’s status can be made persistent:

by specifying a UWSTATP value between 1 and 254 in the ACI request that creates the UOW;

by specifying a UWSTATP value between 1 and 254 in service definition or service defaults portion
of the Broker attribute file, making the status of all UOWs for that service persistent; or

by specifying a UWSTATP value between 1 and 254 in the Broker defaults section of the Broker
attribute files, making the status of all UOWs in the system persistent.

Specifying UWSTATP=255 in the ACI request that creates the UOW will explicitly make the UOW status
non-persistent, overriding any broker or service default.

Resource and Performance Considerations

Using persistent status consumes resources in two areas.

The persistent store is updated each time the UOW is modified, by either the sender or the receiver.
These modifications occur whenever a SEND or RECEIVE function is issued for the UOW, or
whenever its status is changed, such as by SYNCPOINT OPTION=COMMIT. Depending on the
implementation, this will generate one or more I/O operations.

The space used for the UOW (but not its messages) in the persistent store remains allocated for some
period of time after the UOW has been completed.

The performance of individual requests will generally be affected by the additional time required to
perform the I/O operations associated with maintaining persistent status. At this time, all operations are
performed synchronously, although that may change in future releases.

17

Using Persistence and Units of WorkUsing Persistent Status

Recovery Processing
Introduction

Determining the Status of a UOW

A Real-world Example: Chess-by-Mail

Introduction

UOWs and persistence provide functionality for the application program (either client or server) to
recover from failures: i.e., system, broker or application. In addition, this functionality allow new types of
applications to be built, including ones not requiring concurrent execution of the client and server.

There are no standard rules for recovery, because each application model will use this functionality
differently and will have different requirements for recovery. But the considerations in the following
section should be kept in mind.

Determining the Status of a UOW

The most useful function for recovery is the SYNCPOINT, OPTION=LAST. This function will return the
UOWID, CID, and status of the last UOW created by the caller, based on the USER-ID and TOKEN. This
function can be used when an application starts or when it detects a failure to determine how much
processing has been completed on a UOW. This information can then be used to decide how to recover
from the failure.

18

Recovery ProcessingUsing Persistence and Units of Work

A "Real-world" Example: Chess-by-Mail

Chess-by-mail is a sample of an application that takes advantage of UOWs, persistence, and persistent
status. In generic terms, this application involves a client and a server exchanging messages on a single
conversation. The conversation is long-running, and there is no requirement that the client and the server
be active at the same time.

Although chess-by-mail was conceived as a single application, it is perhaps easier to describe its operation
separately for the client and the server side. By convention, the white player is the client and the black
player is the server. For simplicity, any user interaction has been left out of the description. Also for
simplicity, only one chess-by-mail game is assumed to be running at any one time.

Client Behavior
Server Behavior

Client Behavior

The behavior of the chess-by-mail client is as follows:

1. Logon, specifying a USER-ID and TOKEN, which allow recovery of prior UOWs.

2. Issue SYNCPOINT, OPTION=LAST to determine the status of the last UOW created.

3. If the return code is 00780305 - UOW not found , then there is no game in progress. So send
the first white move to the server with: SEND OPTION=COMMIT,CID=NEW. If the send is
successful, logoff and exit.

4. If the return code from SYNCPOINT is 0, then there is a last UOW and therefore a game is in
progress. The UOW status value is examined to decide how to proceed.

5. If the status is ACCEPTED, then the server has not yet received the last move, so logoff and exit.

6. If the status is DELIVERED, then the server is currently processing the last move, so logoff and exit.

7. If the status is TIMEOUT, then the server did not receive the last move before its lifetime expired, so
logoff and exit.

8. If the status is PROCESSED, then the server has received the last move and committed the UOW.
Our application model has the client sending a move in response and committing both UOWs at the
same time. So we need to receive the new move and send a reply to it.

9. Get the server’s move with RECEIVE,OPTION=SYNC,CID=n, where n is the CID returned from
SYNCPOINT OPTION=LAST.

10. Send the response move back using SEND OPTION=SYNC,CID=n.

11. Commit both the received and sent UOWs with a single call
SYNCPOINT OPTION=COMMIT,UOWID=BOTH.

12. Logoff and exit.

19

Using Persistence and Units of WorkA "Real-world" Example: Chess-by-Mail

Server Behavior

The behavior of the chess-by-mail server is as follows:

1. Logon, specifying a Userid and Token, which allow recovery of prior UOWs.

2. Register as the chess-by-mail server.

3. Issue SYNCPOINT OPTION=LAST to determine the status of the last UOW created.

4. If the return code is 00780305 - UOW not found , then there is no game in progress. So we
receive first white move from the client with: RECEIVE OPTION=SYNC,CID=NEW. When the
RECEIVE has been completed, continue at step 11.

5. If the return code from SYNCPOINT is 0, then there is a last UOW and therefore a game is in
progress. The UOW status value is examined to decide how to proceed.

6. If the status is ACCEPTED, then the client has not yet received the last move, so deregister, logoff
and exit.

7. If the status is DELIVERED, then the client is currently processing the last move, so deregister,
logoff and exit.

8. If the status is TIMEOUT, then the client did not receive the last move before its lifetime expired, so
deregister, logoff and exit.

9. If the status is PROCESSED, then the client has received the last move and committed the UOW. Our
application model has the server sending a move in response and committing both UOWs at the same
time. So we need to receive the new move and send a reply to it.

10. Get the client’s move with RECEIVE,OPTION=SYNC,CID=n, where n is the CID returned from

SYNCPOINT,OPTION=LAST.

11. Send the response move back using SEND,OPTION=SYNC,CID=n.

12. Commit both the received and sent UOWs with a single call:

SYNCPOINT,OPTION=COMMIT,UOWID=BOTH.

13. Deregister, logoff and exit.

20

A "Real-world" Example: Chess-by-MailUsing Persistence and Units of Work

	Using Persistence and Units of Work
	Implementation Issues
	Table of Persistent Store Drivers
	Changes are Required
	Attributes used for Units of Work
	ACI Fields used for Units of Work
	ACI Function SYNCPOINT used for Units of Work
	Options used for UOW Operations
	CID Implementation: Numeric Digits, Characters 0-9 and A-Z

	Using Units of Work
	UOW vs non-UOW Conversations
	Sequencing of Messages across Conversations

	Use of LOGON and TOKEN
	User Identification for Units of Work
	Which Applications should use UOWs?
	Understanding UOW Status
	UOW Status on RECEIVE
	Using User Status
	Resource and Performance Considerations

	Using Persistence
	When do Persistent UOWs make Sense?
	Adding Persistence to a UOW
	Resource and Performance Considerations
	Which Information is saved with the UOW?
	What happens when Broker restarts?
	Restart Behavior of UOW
	Re-creation of Internal Control Blocks
	Behavior of Conversation at Broker Restart

	UOWs and Replicated Servers

	Using Persistent Status
	When does Persistent Status make Sense?
	Adding Persistent Status to a UOW
	Resource and Performance Considerations

	Recovery Processing
	Introduction
	Determining the Status of a UOW
	A "Real-world" Example: Chess-by-Mail
	Client Behavior
	Server Behavior

