
Concepts of Persistent Messaging
This chapter provides a brief introduction to the concepts of the persistent store and its role in EntireX for
providing persistent messaging within the client/server model and also for publish-and-subscribe
functionality. It covers the following topics:

Client Server Model: Persistent Messaging

Publish-and-Subscribe Model: Persistent Behavior

Definitions of Persistent Messaging Terms

Availability of Persistent Store

Migrating the Persistent Store

Persistent Store Report

Swapping out New Units of Work

The table Persistent Store Drivers lists the implementation choices available to each operating system for
accessing the physical persistent store. See also Using Persistence and Units of Work, Broker UOW Status
Transition and Managing the Broker Persistent Store under z/OS | UNIX | Windows | BS2000/OSD |
z/VSE.

Client Server Model: Persistent Messaging
EntireX provides persistent messaging within the client/server model. This is achieved by storing all
persistent messages on disk so that if a system failure occurs, messages will automatically be recovered
allowing applications to be restarted without any loss of data. The section Using Persistence and Units of
Work describes implementation issues and how to use persistence and units of work in EntireX Broker.
Units of work can also be used without persistence; units of work which are the vehicle for persistent
messaging.

The following figure illustrates the concept of persistent messages.

1

Concepts of Persistent MessagingConcepts of Persistent Messaging

Persistence in an EntireX Broker’s unit of work (a group of logically related messages) has the following
four variations:

Both the unit of work and its status have persistence.

The unit of work does not have persistence, but its status does.

The unit of work has persistence, but its status does not.

Neither the unit of work nor its status has persistence.

The status of a message is information about the message rather than the actual message data itself. This
enables the sender to determine the progress of the message and determine if it has been received by the
partner and whether processing was successfully completed. This gives applications the option of having
the Broker kernel store only the message status and not the message itself, provided the application has
been written to resend data from a known point in the event of system failure. This option can afford
significant performance benefits over storing the whole message data.

To support transaction control in a coordinated operation of distributed systems, EntireX can group
logically related messages into "units of work" that are committed to the EntireX Broker for further
transmission when complete. In case of failure on the server side, the receiving program can backout the
whole unit of work; this makes it available for processing later or by another server.

Publish-and-Subscribe Model: Persistent Behavior
EntireX provides persistent publish-and-subscribe behavior by writing information to disk in order to
protect against system failures. This allows applications to be restarted without any loss of the following
types of data:

Durable Subscription Information
This comprises a list of subscribers and the topics to which they have durably subscribed. This
ensures that users only have to subscribe once to a topic; their persistent status remains after Broker

2

Publish-and-Subscribe Model: Persistent BehaviorConcepts of Persistent Messaging

is restarted. If the persistent store is used to maintain subscription status, you must define the
SUBSCRIPTION-EXPIRATION options.

Publication Data
This data is also persisted if the administrator has defined this characteristic for the topic.

The diagram below shows the two types of publish-and-subscribe information which is written to the
persistent store.

3

Concepts of Persistent MessagingPublish-and-Subscribe Model: Persistent Behavior

Definitions of Persistent Messaging Terms
UOW

Persistent Store

Persistent Store Drivers

UOW Lifetime

Persistent UOW

Persistent Status

Publication

Durable Subscription

Publication Lifetime

Subscription Expiration

UOW

A unit of work (UOW) is a set of one or more messages that are processed as a single unit. The sender of a
UOW adds messages to the UOW and then indicates that the UOW is complete (COMMIT). The UOW
and its messages are not visible to the receiver until the sender has committed the UOW. Once the UOW
is committed, the receiver can receive the messages, and can indicate when the UOW is complete
(COMMIT).

Persistent Store

The persistent store is used for storing unit-of-work messages and publish-and-subscribe data to disk. This
means message and status information can be recovered after a hardware or software failure to the
previous commit point issued by each application component.

Persistent Store Drivers

A persistent store driver is an executable, or a load module, that implements access to the physical
persistent store. There is one persistent store driver for each persistent store type. The following table
shows the persistent store options:

4

Definitions of Persistent Messaging TermsConcepts of Persistent Messaging

Persistent
Store Type Description

Operating
System Notes

Adabas Uses Adabas database. UNIX,
Windows,
z/OS, z/VSE

Adabas, Software AG’s ADAptable
dataBASe, is a high-performance,
multithreaded, database management
system.

DIV Uses IBM Data In Virtual
facility on z/OS.

z/OS This persistent store option is
implemented as a VSAM linear data set.

CTREE c-tree© is an embedded
local database that can be
used as your persistent
store.

UNIX and
Windows

c-tree© is the fast and reliable embedded
database of FairCom Corporation®.

See also Managing the Broker Persistent Store under z/OS | UNIX | Windows | BS2000/OSD | z/VSE and
also PSTORE-TYPE under Broker Attributes.

UOW Lifetime

Each UOW has a lifetime value associated with it. This is the period of time that the UOW is allowed to
exist without being completed. This time starts when the UOW is initially created and runs until the UOW
is completed. A UOW is completed when it is successfully:

cancelled or backed out by its sender, or

cancelled or committed by its receiver.

If the UOW is in ACCEPTED status when this lifetime expires, the UOW is placed into a TIMEOUT
status. Lifetime timeouts will not occur when the UOW is in either RECEIVED or DELIVERED status.

A special "pseudo-clock" is maintained for UOW lifetimes. This clock is implemented in such a way that
it only runs when the Broker is active. This prevents a UOW lifetime from expiring while the Broker is
down or otherwise unavailable.

Persistent UOW

Persistence is an attribute of a UOW (unit of work). If a UOW is persistent, its messages are saved in the
persistent store when the sender COMMITs the UOW and they are retained until the receiver COMMITs or
CANCELs the UOW, or until its lifetime expires. If the Broker or system should fail after the UOW is
committed by the sender, the UOW (and its conversation) will be restored to their last, stable status when
the Broker restarts.

Persistent Status

Persistent status is an attribute of a UOW (unit of work). If a UOW has persistent status, the status of the
UOW is maintained in the persistent store, and is updated whenever the status changes. The persistent
status remains in the persistent store after the UOW is completed, until its status lifetime has expired.

A persistent status value represents a multiple of the UOW lifetime value. Thus if a UOW has a lifetime of
5M (whereby M stands for minutes) and a persistent status value of 4, the status of the UOW would be
deleted 20M (5M*4) after the UOW was completed.

5

Concepts of Persistent MessagingUOW Lifetime

Publication

A publication is one or more messages forming an atomic unit and sent by a publisher to a topic.
Subscribers are then able to receive publications committed after the time at which a subscriber first
subscribes.

Durable Subscription

Subscribers inform EntireX of their intent to receive publications by issuing a SUBSCRIBE command and
specifying the topic of interest. If the administrator has specified this topic to the Broker attribute file with
a characteristic of DURABLE, users will be able to subscribe to the topic durably. This means that the
user’s subscription status remains after EntireX is restarted.

Publication Lifetime

A characteristic of the topic is the lifetime which publications will live and be available to subscribers.
Once a publication has been received by all eligible subscribers, it will be removed automatically, even
before its lifetime has been reached.

Subscription Expiration

Subscribers inform EntireX of their intent to receive publications by issuing a SUBSCRIBE command and
specifying the topic of interest. If the administrator has specified this topic to the Broker attribute file with
a characteristic of DURABLE, all user subscriptions to that topic will be durable. This means that the user’s
subscription status remains after EntireX is restarted.

Availability of Persistent Store

Warning:
The persistent store must be available before you attempt to start or
restart the Broker; otherwise your Broker will not initialize.

Introduction

Disconnect the Persistent Store

Connect the Persistent Store

Introduction

The PSTORE must be available for the Broker to start. Subsequently, Broker will continue to function
even if the PSTORE becomes unavailable and applications issuing non-persistent commands will continue
without interruption. However, Broker will not be able to process commands relating to persistence until
the PSTORE becomes available again.

Users issuing commands involving persistence - for example units of work with persistence and durable
publish and subscribe - are notified of the unavailability of the PSTORE through an ACI return code. In
addition, persistent commands being processed at the point of unavailability are backed out, and details of
the PSTORE problem are written to the Broker log file.

6

Availability of Persistent StoreConcepts of Persistent Messaging

There are several reasons for the PSTORE becoming unavailable. Examples:

unavailability of the PSTORE file(s)

capacity of PSTORE file being exceeded

in the case of Adabas, termination of the database

Disconnect the Persistent Store

You can remove the state "No new Units of Work" - that is, no new persistent data - using CIS. If the
PSTORE capacity is exceeded, an error message is written to the Broker log file. You must use Command
and Information Services (CIS) to ensure that users cannot issue further commands creating new units of
work or publications.

During the time the PSTORE is unavailable, there is no timeout processing for unit-of-work and
publication records kept in the PSTORE. In addition, some in-memory resources relating to persistent
items, such as conversation control blocks, are also retained until the PSTORE becomes available again
and normal processing is resumed for all commands.

See executable command request DISCONNECT-PSTORE under ETBCMD: Executable Command
Requests.

Connect the Persistent Store

Subsequently, you can use CIS to make the PSTORE available again, allowing users only to issue
commands consuming records from the PSTORE rather than producing new ones. After a period of
operation in this state, the contents of the PSTORE will be reduced sufficiently, and you can remove the
state "No new Units of Work" through CIS.

See executable command request CONNECT-PSTORE under ETBCMD: Executable Command Requests.

Migrating the Persistent Store
Introduction

Configuration

Migration Procedure

Introduction

The contents of EntireX Broker’s persistent store can be migrated to a new persistent store in order to
change the PSTORE type or to use the same type of PSTORE with increased capacity.

The migration procedure outlined here requires two Broker instances started with a special RUN-MODE
parameter. One Broker unloads the contents of the persistent store and transmits the data to the other
Broker, which loads data into the new PSTORE. Therefore, for the purposes of this discussion, we shall
refer to an unload Broker and a load Broker.

7

Concepts of Persistent MessagingMigrating the Persistent Store

This procedure is based on Broker-to-Broker communication to establish a communication link between
two Broker instances. It does not use any conversion facilities, since the migration procedure is supported
for homogeneous platforms only.

Configuration

The migration procedure requires two Broker instances, each started with the RUN-MODE attribute. The
unload Broker should be started with the following attribute:

RUN-MODE=PSTORE-UNLOAD

The load Broker should be started with the following attribute:

RUN-MODE=PSTORE-LOAD

These commands instruct the Broker instances to perform the PSTORE migration.

Note:
The attribute PARTNER-CLUSTER-ADDRESS must be defined in both Broker instances to specify the
transport address of the load Broker. The unload Broker must know the address of the load broker, and the
load Broker must in turn know the address of the unload Broker.

Example:

Broker ETB001 performs the unload on host HOST1, and Broker ETB002 performs the load on host
HOST2. The transmission is based on TCP/IP. Therefore, Broker ETB001 starts the TCP/IP
communicator to establish port 1971, and Broker ETB002 starts the TCP/IP communicator to establish
port 1972.

For ETB001, attribute PARTNER-CLUSTER-ADDRESS = HOST2:1972:TCP is set, and for ETB002,
attribute PARTNER-CLUSTER-ADDRESS = HOST1:1971:TCP is set to establish the Broker-to-Broker
communication between the two Broker instances.

8

ConfigurationConcepts of Persistent Messaging

In addition to attributes RUN-MODE and PARTNER-CLUSTER-ADDRESS, a fully functioning Broker
configuration is required when starting the two Broker instances. To access an existing PSTORE on the
unloader side, you must set the attribute PSTORE = HOT. To load the data into the new PSTORE on the
loader side, you must set the attribute PSTORE = COLD. The load process requires an empty PSTORE at
the beginning of the load process.

Note:
Use caution not to assign PSTORE = COLD to your unload Broker instance, as this startup process will
erase all data currently in the PSTORE.

For the migration process, the unload Broker and the load Broker must be assigned different persistent
stores.

A report can be generated to detail all of the contents of the existing persistent store. At the end of the
migration process, a second report can be run on the resulting new persistent store. These two reports can
be compared to ensure that all contents were migrated properly. To run these reports, set the attribute
PSTORE-REPORT = YES. See PSTORE under Broker Attributes for a detailed description, especially for
the file assignment.

Migration Procedure

The migration procedure is made up of three steps.

Step 1

The unload Broker and the load Broker instances can be started independently of each other. Each
instance will wait for the other to become available before starting the unload/load procedure.

The unload Broker instance sends a handshake request to the load Broker instance in order to perform an
initial compatibility check. This validation is performed by Broker according to platform architecture type
and Broker version number. The handshake ensures a correctly configured partner cluster address and
ensures that the user did not assign the same PSTORE to both Broker instances. If a problem is detected,
an error message will be issued and both Broker instances will stop.

Step 2

The unload Broker instance reads all PSTORE data in a special non-destructive raw mode and transmits
the data to the load Broker instance. The load Broker instance writes the unchanged raw data to the new
PSTORE. A report is created if PSTORE-REPORT = YES is specified, and a valid output file for the
report is specified.

Step 3

The unload Broker instance requests a summary report from the load Broker instance to compare the
amount of migrated data. The result of this check is reported by the unload Broker instance and the load
Broker instance before they shut down.

When a Broker instances is started in RUN-MODE = PSTORE-LOAD or RUN-MODE =
PSTORE-UNLOAD, the Broker instances only allow administration requests. All other user requests are
prohibited.

9

Concepts of Persistent MessagingMigration Procedure

Notes:

1. The contents of the persistent store are copied to the new persistent store as an exact replica. No
filtering of unnecessary information will be performed - for example, UOWs in received state. The
master records will not be updated.

2. Before restarting your Broker with the new persistent store, be sure to change your PSTORE attribute
to PSTORE = HOT. Do not start your broker with the new persistent store using PSTORE = COLD;
this startup process will erase all of the data in your persistent store.

3. After completing the migration process and restarting your Broker in a normal RUN-MODE, it is
important not to bring both the new PSTORE and the old PSTORE back online using separate Broker
instances; otherwise, applications would receive the same data twice. Once the migration process is
completed satisfactorily, and is validated, the old PSTORE contents should be discarded.

Persistent Store Report
You can create an optional report file that provides details about all records added to or deleted from the
persistent store. This section details how to create the report and provides a sample report.

Configuration

Sample Report

Configuration

To create a persistent store report, use Broker’s global attribute PSTORE-REPORT with the value YES.

When the attribute value YES is supplied, all created or deleted persistent records will be reported if the
output mechanism is available.

If the value NO is specified, no report will be created.

The report file is created using the following rules:

BS2000/OSD

LINK-NAME ETBPREP assigns the report file. Format REC-FORM=V, REC-SIZE=0, FILE-TYPE
ISAM is used by default.

UNIX

Broker creates a file with the name PSTORE.REPORT in the current working directory. The file name
PSTORE.REPORT.LOAD will be used if Broker is started with RUN-MODE = PSTORE-LOAD.

The file name PSTORE.LOAD.UNLOAD will be used if Broker is started with RUN-MODE =
PSTORE-UNLOAD.

If the environment variable ETB_PSTORE_REPORT is supplied, the file name specified in the
environment variable will be used.

If Broker receives the command-line argument -p, the token following argument -p will be used as the
file name.

10

Persistent Store ReportConcepts of Persistent Messaging

Windows

Same as UNIX.

z/OS

DDNAME ETBPREP assigns the report file. Format RECFM=FB, LRECL=121 is used.

z/VSE

Logical unit SYS003 and logical file name ETBPREP are used. Format RECORD-FORMAT = FB,
RECORD-LENGTH = 121 is used.

Sample Report

The following is an excerpt from a sample PSTORE report.

EntireX 8.0.0.00 PSTORE Report 2008-02-21 17:18:38 Page 1

Identifier Elements Total length Record Type Date Time Action
100000000D000016 5 1148 Conversation 2008-02-21 17:18:57.190 Created
100000000D000017 5 1148 Conversation 2008-02-21 17:18:57.654 Created
100000000D000018 5 1148 Conversation 2008-02-21 17:18:58.122 Created
100000000D000019 5 1148 Conversation 2008-02-21 17:18:58.590 Created
100000000D00001A 5 1148 Conversation 2008-02-21 17:18:59.054 Created
100000000D00001B 5 1148 Conversation 2008-02-21 17:18:59.518 Created
100000000D00001C 5 1148 Conversation 2008-02-21 17:18:59.982 Created
100000000D00001D 5 1148 Conversation 2008-02-21 17:19:00.538 Created
100000000D00001E 5 1148 Conversation 2008-02-21 17:19:01.002 Created
100000000C000001 0 0 Conversation 2008-02-21 17:19:30.676 Deleted
100000000C000002 0 0 Conversation 2008-02-21 17:19:31.675 Deleted
100000000C000003 0 0 Conversation 2008-02-21 17:19:32.675 Deleted
100000000C000004 0 0 Conversation 2008-02-21 17:19:33.675 Deleted
100000000C000005 0 0 Conversation 2008-02-21 17:19:34.675 Deleted
100000000C000006 0 0 Conversation 2008-02-21 17:19:35.675 Deleted

The following fields are provided in the report:

Identifier provides the UOWID (record ID).

Elements gives the number of messages per UOW when creating or loading records.

Total Length gives the size of the raw record when creating or loading records.

Record Type describes the type of the data. Following types are currently supported:

Cluster: a special record for synchronization purposes

Conversation: a unit of work as part of a conversation

Master: a special record to manage the persistent store

Publication: a record containing a publication for a durable topic

11

Concepts of Persistent MessagingSample Report

Subscription: a record containing subscriber data (if SUBSCRIBER-STORE = PSTORE) is
defined

Date and time of the action

Action describes the action of Broker. The following actions are currently supported:

Created: record is created

Deleted: record is deleted

Loaded: record is loaded (Broker instance with RUN-MODE = PSTORE-LOAD)

Unloaded: record is unloaded (Broker instance with RUN-MODE = PSTORE-UNLOAD)

Swapping out New Units of Work
The broker processes UOWs in memory. However, if a client produces a large number of UOWs and no
server is available, or the server cannot handle all data, the number of UOWs in memory may increase and
reach a critical limit.

To avoid an overload of UOWs in memory, EntireX Broker can swap out new conversations that
containing UOWs (STORE=BROKER) and that have been accomplished by the client with an EOC. The
data is persisted on PSTORE and there is no need to keep the data in memory unless a server wants to
receive the data.

Activate the swap-out feature with the broker-specific attribute SWAP-OUT-NEW-UOWS. It is not
activated by default. However, the swap-out feature can be configured per service to define a minimum
portion of UOWs kept in memory. Use the service-specific attribute
MIN-UOW-CONVERSATIONS-IN-MEMORY to define this portion.

12

Swapping out New Units of WorkConcepts of Persistent Messaging

	Concepts of Persistent Messaging
	Client Server Model: Persistent Messaging
	Publish-and-Subscribe Model: Persistent Behavior
	Definitions of Persistent Messaging Terms
	UOW
	Persistent Store
	Persistent Store Drivers
	UOW Lifetime
	Persistent UOW
	Persistent Status
	Publication
	Durable Subscription
	Publication Lifetime
	Subscription Expiration

	Availability of Persistent Store
	Introduction
	Disconnect the Persistent Store
	Connect the Persistent Store

	Migrating the Persistent Store
	Introduction
	Configuration
	Example:

	Migration Procedure
	Step 1
	Step 2
	Step 3

	Persistent Store Report
	Configuration
	BS2000/OSD
	UNIX
	Windows
	z/OS
	z/VSE

	Sample Report

	Swapping out New Units of Work

