
Managing the Broker Persistent Store
The persistent store is used for storing unit-of-work messages and publish-and-subscribe data to disk. This
means message and status information can be recovered after a hardware or software failure to the
previous commit point issued by each application component. Under BS2000/OSD, the broker persistent
store can be implemented with the Adabas database of Software AG. This chapter covers the following
topics:

Implementing an Adabas Database as Persistent Store

Migrating the Persistent Store

See also Concepts of Persistent Messaging.

Implementing an Adabas Database as Persistent Store
Introduction

Adabas Persistent Store Parameters

Configuring and Operating the Adabas Persistent Store

Adabas DBA Considerations

Introduction

EntireX provides an Adabas persistent driver. This enables Broker unit of work (UOW) messages and
their status to be stored in an Adabas file. It is designed to work with Adabas databases under z/OS,
UNIX, Windows, BS2000/OSD and z/VSE, and can be used where the database resides on a different
machine to Broker kernel. For performance reasons, we recommend using EntireX Broker on the same
machine as the Adabas database.

Adabas Persistent Store Parameters

Parameters are supplied using the Adabas-specific Attributes. See excerpt from the broker attribute file:

DEFAULTS=BROKER
 STORE = BROKER
 PSTORE-TYPE = ADABAS
 PSTORE = COLD

DEFAULTS=ADABAS
 DBID = dbid
 FNR = fnr

Configuring and Operating the Adabas Persistent Store

1

Managing the Broker Persistent StoreManaging the Broker Persistent Store

Selecting the Adabas Persistent Store Driver

Restrictions

If a HOT start is performed, the Broker kernel must be executed on the same platform on which also the
previous Broker executed. This is because some portions of the persistent data are stored in the native
character set and format of the Broker kernel. It is also necessary to start Broker with the same Broker ID
as the previous Broker executed.

If a COLD start is executed, a check is made to ensure the Broker ID and platform information found in
the persistent store file is consistent with the Broker being started (provided the persistent store file is not
empty). This is done to prevent accidental deletion of data in the persistent store by a different Broker ID.
If you intend to COLD start Broker and to utilize a persistent store file which has been used previously by
a different Broker ID, you must supply the additional PSTORE-TYPE parameter FORCE-COLD=Y.

Recommendations

Perform regular backup operations on your Adabas database. The persistent store driver writes C1
checkpoint records at each start up and shut down of Broker.

For performance reasons, execute Broker on the same machine as Adabas.

Broker Checkpoints in Adabas

During startup, Broker writes the following C1 checkpoint records to the Adabas database. The time, date
and job name are recorded in the Adabas checkpoint log. This enables Adabas protection logs to be
coordinated with Broker executions. This information can be read from Adabas, using the ADAREP utility
with option CPLIST:

Broker Execution Name Broker Execution Type Adabas

ETBC Broker Cold Start Normal Cold Start

ETBH Broker Hot Start Normal Hot Start

ETBT Broker Termination Normal Termination

2

Configuring and Operating the Adabas Persistent StoreManaging the Broker Persistent Store

Adabas DBA Considerations

BLKSIZE : Adabas Persistent Store Parameter for Broker

Caution should be exercised when defining the block size (BLKSIZE) parameter for the Adabas persistent
store. This determines how much UOW message data can be stored within a single Adabas record.
Therefore, do not define a much larger block size than the size of the maximum unit of work being
processed by Broker. (Remember to add 41 bytes for each message in the unit of work.) The advantage of
having a good fit between the unit of work and the block size is that fewer records are required for each
I/O operation.

It is necessary to consider the following Adabas parameters and settings when using Adabas for the
persistent store file:

Table of Adabas Parameter Settings

Topic Description

Allowing Sufficient Adabas UQ
Elements

Allow sufficient Adabas user queue (UQ) elements each time you
start Broker. The Broker utilizes a number of user queue elements
equal to the number of worker tasks (NUM-WORKER), plus two.
Adabas timeout parameter (TNAE) determines how long the user
queue elements will remain. This can be important if Broker is
restarted after an abnormal termination, and provision must be
made for sufficient user queue elements in the event of restarting
Broker.

Setting Size of Hold Queue
Parameters

Consideration must be given to the Adabas hold queue parameters
NISNHQ and NH. These must be sufficiently large to allow Adabas
to add/update/delete the actual number of records within a single
unit of work.

Example: where there are 100 message within a unit of work and
the average message size is 10,000 bytes, the total unit of work size
is 1 MB. If, for example, a 2 KB block size (default
BLKSIZE=2000) is utilized by the Adabas persistent store driver,
there will be 500 distinct records within a single Adabas commit
(ET) operation, and provision must be made for this to occur
successfully.

Setting Adabas TT Parameter Consideration must be given to the Adabas transaction time (TT)
parameter for cases where a large number of records is being
updated within a single unit of work.

Defining LWP Size Sufficient logical work pool (LWP) size must be defined so that the
Adabas persistent store can update and commit the units of work.
Adabas must be able to accommodate this in addition to any other
processing for which it is used.

3

Managing the Broker Persistent StoreAdabas DBA Considerations

Topic Description

Executing Broker Kernel and
Adabas Nucleus on Separate
Machines

If Broker kernel is executed on a separate machine to the Adabas
nucleus, with a different architecture and codepage, then we
recommend running the Adabas nucleus with the UEC (universal
conversion) option in order to ensure that Adabas C1 checkpoints
are legible within the Adabas checkpoint log.

Setting
INDEXCOMPRESSION=YES

This Adabas option can be applied to the Adabas file to reduce by
approximately 50% the amount of space consumed in the indexes.

4-byte ISNs If you anticipate having more than 16 million records within the
persistent store file, you must use 4-byte ISNs when defining the
Adabas file for EntireX.

Specification of Adabas LP
Parameter

Warning:
This parameter must be specified
large enough to allow the largest
UOW to be stored in Adabas.

If this is not large enough, Broker will detect an error (response
9; subresponse - 4 bytes - X’0003’,C’LP’) and Broker will not
be able to write any further UOWs.

See the description of the LP parameter under ADARUN
Parameters in theDBA Reference Summary of the Adabas
documentation.

Estimating the Number of Records to be Stored

To calculate the Adabas file size it is necessary to estimate the number of records being stored. As an
approximate guide, there will be one Adabas record (500 bytes) for each unprocessed unit of work, plus
also n records containing the actual message data, which depends on the logical block size and the size of
the unit of work. In addition, there will be one single record (500 bytes) for each unit of work having a
persisted status.

Always allow ample space for the Adabas persistent store file since the continuous operation of Broker
relies of the availability of this file to store and retrieve information.

Estimating the Number of Records to be Stored

In this example there are 100,000 Active UOW records at any one time. Each of these is associated with
two message records containing the message data. UOW records are 500 bytes in length. Each message
record contains 2,000 bytes. In addition, there are 500,000 UOW status records residing in the persistent
store, for which the UOW has already been completely processed. These are 500 bytes long.

Note:
The actual size of the data stored within the UOW message records is the sum of all the messages within
the UOW, plus a 41-byte header for each message. Therefore, if the average message length is 59 bytes,
the two 2,000 bytes, messages records, could contain n = 4,000 / (59+41), or 40 messages. Adabas is
assumed to compress the message data by 50% in the example (this can vary according to the nature of the

4

Adabas DBA ConsiderationsManaging the Broker Persistent Store

message data).

3-byte ISNs and RABNs are assumed in this example. A device type of 8393 is used; therefore, the ASSO
block size is 4,096, and DATA block size is 27,644. Padding factor of 10% is specified.

The following example calculates the space needed for Normal Index (NI), Upper Index (UI), Address
Converter (AC) and Data Storage (DS).

Calculation Factors Required Space

Number entries for descriptor WK

(21-byte unique key)

= number UOW records: 0.1 + 0.5 million

+ number message records: 0.2 million

NI Space for descriptor WK

(3-byte ISN)

(4,092 ASSO block 10% padding)

= 800,000 * (3 + 21 + 2)

= 20,800,000 bytes

= 5,648 blocks

UI Space for descriptor WK

(3-byte ISN + 3-byte RABN)

(4,092 ASSO block 10% padding)

= 5,648 * (21 + 3 + 3 + 1)

= 158,140 bytes

= 43 blocks

Number entries for descriptor WI

(8-byte unique key)

= number processed UOW records: 0.5 million

NI Space for descriptor WI

(3-byte ISN)

(4,092 ASSO block 10% padding)

= 500,000 * (3 + 8 + 2)

= 6,500,000 bytes

= 1,765 blocks

UI Space for descriptor WI

(3-byte ISN and 3 byte RABN)

(4,092 ASSO block 10% padding)

= 17,649 * (8 + 3 + 3 + 1)

= 26,475 bytes

= 8 blocks

Number entries for descriptor WL

(96 byte key)

= number UOW records 0.1 + 0.5 million

NI Space for descriptor WL

(3-byte ISN)

(4,092 ASSO block 10% padding)

= 600,000 * (3 + 96 + 2)

= 60,600,000 bytes

= 16,455 blocks

UI Space for descriptor WL

(3-byte ISN and 3 byte RABN)

(4,092 ASSO block 10% padding)

= 164,548 * (96 + 3 + 3 + 1)

= 16,948,517 bytes

= 461 blocks

5

Managing the Broker Persistent StoreAdabas DBA Considerations

Calculation Factors Required Space

Address Converter space

(4,092 ASSO block)

= (800,000 + 1) * 3 / 4092

= 587 blocks

Data storage for message data

(2,000-byte records compressed by 50%)

= 0.2 million * 2000 * 0.5 = 200,000,000 bytes

Data storage for UOW data

(2,000-byte records compressed by 50%)

= 0.6 million * 500 * 0.5 = 150,000,000 byte

Combined space required for data

(27,644 DATA block 10% padding)

= 14,068 blocks

Entity Requiring Space Total Required Space

Normal Index (NI) = 23,868 blocks

Upper Index (UI) = 512 blocks

Data Storage (DS) = 14,068 blocks

Address Converter (AC) = 587 blocks

Tips on Transports, Platforms and Versions

Entire Net-Work
If you intend to use Adabas persistent store through Entire Net-Work, see the Entire Net-Work
documentation for installation and configuration details.

Adabas Versions
Adabas persistent store can be used on all Adabas versions currently released and supported by
Software AG.

Prerequisite Versions of Entire Net-Work with Adabas
See the Adabas and Entire Net-Work documentation to determine prerequisite versions of Entire
Net-Work to use with Adabas at your site.

6

Adabas DBA ConsiderationsManaging the Broker Persistent Store

Migrating the Persistent Store
The contents of EntireX Broker’s persistent store can be migrated to a new persistent store in order to
change the PSTORE type or to use the same type of PSTORE with increased capacity.

The migration procedure outlined here requires two Broker instances started with a special RUN-MODE
parameter. One Broker unloads the contents of the persistent store and transmits the data to the other
Broker, which loads data into the new PSTORE. Therefore, for the purposes of this discussion, we will
refer to an unload Broker and a load Broker.

This procedure is based on Broker-to-Broker communication to establish a communication link between
two Broker instances. It does not use any conversion facilities, since the migration procedure is supported
for homogeneous platforms only.

Configuration

Migration Procedure

Configuration

The migration procedure requires two Broker instances started with the RUN-MODE parameter. The
unload Broker should be started with the following attribute:

RUN-MODE=PSTORE-UNLOAD

The load Broker should be started with the following attribute:

RUN-MODE=PSTORE-LOAD

These commands instruct the Broker instances to perform the PSTORE migration.

Note:
The attribute PARTNER-CLUSTER-ADDRESS must be defined in both Broker instances to specify the
transport address of the load Broker. The unload Broker must know the address of the load broker, and the
load Broker must in turn know the address of the unload Broker.

Example:

Broker ETB001 performs the unload on host HOST1, and Broker ETB002 performs the load on host
HOST2. The transmission is based on TCP/IP. Therefore, Broker ETB001 starts the TCP/IP
communicator to establish port 1971, and Broker ETB002 starts the TCP/IP communicator to establish
port 1972.

For ETB001, attribute PARTNER-CLUSTER-ADDRESS=HOST2:1972:TCP is set, and for ETB002,
attribute PARTNER-CLUSTER-ADDRESS=HOST1:1971:TCP is set to establish the Broker-to-Broker
communication between the two Broker instances.

In addition to attributes RUN-MODE and PARTNER-CLUSTER-ADDRESS, a fully functioning Broker
configuration is required when starting the two Broker instances. To access an existing PSTORE on the
unloader side, you must set the attribute PSTORE=HOT. To load the data into the new PSTORE on the
loader side, you must set the attribute PSTORE=COLD. The load process requires an empty PSTORE at
the beginning of the load process.

7

Managing the Broker Persistent StoreMigrating the Persistent Store

Note:
Use caution not to assign PSTORE=COLD to your unload Broker instance, as this startup process will
erase all data currently in the PSTORE.

For the migration process, the unload Broker and the load Broker must be assigned different persistent
stores.

A report can be generated to detail all of the contents of the existing persistent store. At the end of the
migration process, a second report can be run on the resulting new persistent store. These two reports can
be compared to ensure that all contents were migrated properly. To run these reports, set the attribute
PSTORE-REPORT=YES. See PSTORE for detailed description, especially for the file assignment.

Migration Procedure

The migration procedure is made up of three steps.

Step 1

The unload Broker and the load Broker instances can be started independently of each other. Each
instance will wait for the other to become available before starting the unload/load procedure.

The unload Broker instance sends a handshake request to the load Broker instance in order to perform an
initial compatibility check. This validation is performed by Broker according to platform architecture type
and Broker version number. The handshake ensures a correctly configured partner cluster address and
ensures that the user did not assign the same PSTORE to both Broker instances. If a problem is detected,
an error message will be issued and both Broker instances will stop.

Step 2

The unload Broker instance reads all PSTORE data in a special non-destructive raw mode and transmits
the data to the load Broker instance. The load Broker instance writes the unchanged raw data to the new
PSTORE. A report is created if PSTORE-REPORT=YES is specified, and a valid output file for the report
is specified.

Step 3

The unload Broker instance requests a summary report from the load Broker instance to compare the
amount of migrated data. The result of this check is reported by the unload Broker instance and the load
Broker instance before they shut down.

When a Broker instances is started in RUN-MODE=PSTORE-LOAD or RUN-MODE=PSTORE-UNLOAD,
the Broker instances only allow Administration requests. All other user requests are prohibited.

Notes:

1. The contents of the persistent store are copied to the new persistent store as an exact replica. No
filtering of unnecessary information will be performed, for example, UOWs in received state. The
master records will not be updated.

2. Before restarting your Broker with the new persistent store, be sure to change your PSTORE attribute
to PSTORE=HOT. Do not start your broker with the new persistence store using PSTORE=COLD;
this startup process will erase all of the data in your persistent store.

3. After completing the migration process and restarting your broker in a normal run-mode, it is
important not to bring both the new PSTORE and the old PSTORE back online using separate Broker

8

Migration ProcedureManaging the Broker Persistent Store

instances; otherwise, applications would receive the same data twice. Once the migration process is
completed satisfactorily, and is validated, the old PSTORE contents should be discarded.

9

Managing the Broker Persistent StoreMigration Procedure

	Managing the Broker Persistent Store
	Implementing an Adabas Database as Persistent Store
	Introduction
	Adabas Persistent Store Parameters
	Configuring and Operating the Adabas Persistent Store
	Selecting the Adabas Persistent Store Driver
	Restrictions
	Recommendations
	Broker Checkpoints in Adabas

	Adabas DBA Considerations
	BLKSIZE : Adabas Persistent Store Parameter for Broker
	Table of Adabas Parameter Settings
	Estimating the Number of Records to be Stored
	Estimating the Number of Records to be Stored
	Tips on Transports, Platforms and Versions

	Migrating the Persistent Store
	Configuration
	Example:

	Migration Procedure
	Step 1
	Step 2
	Step 3

