
Writing JMS Applications with the EntireX
Broker
Java Message Service (JMS) is a standard API for enterprise messaging services. This chapter describes
how to write JMS-based applications with the EntireX Broker. It covers the following topics:

EntireX Broker and JMS

Writing JMS Applications

Writing Advanced Applications

Connecting JMS Applications and non-JMS Applications

JMS Error Handling

EntireX Broker and JMS
The EntireX Broker is enabled for Java Message Service (JMS). JMS is supported with components on
top of Java ACI. JMS in general uses two message models: point-to-point messaging and
publish-and-subscribe messaging. The EntireX Broker supports both messaging models. JMS connections
are mapped to Broker. JMS queues are mapped to services of the Broker. JMS topics are mapped to topics
of the Broker.

1

Writing JMS Applications with the EntireX BrokerWriting JMS Applications with the EntireX Broker

The Broker must have EntireX version 7.1.1 or higher for point-to-point messaging. For
publish-and-subscribe messaging, the Broker must have EntireX version 7.2.1 or higher. For point to
point, the implementation uses units of work to communicate with the Broker. The configuration of the
Broker for JMS includes enabling units of work and configuration of the persistent store for persistent
JMS messages. Publish and subscribe uses publications and topics of the Broker. For the administration of
the objects in the JNDI directory, use the Message Service Agent of the System Management Hub. See
Message Service Administration using System Management Hub. The files entirex.jar and exxjms.jar are
required to run JMS applications with the Broker.

Writing JMS Applications
Writing JMS applications with the EntireX Broker requires the following steps:

Configure the Broker

Configure the JNDI Provider

Create the Administered Objects with the JMS Agent of the System Management Hub

Coding and Compiling Your Application

Running Your Application

Examples

Configure the Broker

 To enable the Broker for JMS Publish and Subscribe

Edit the Broker attribute file. The following examples show the attributes needed for JMS publish and
subscribe. Adapt the numerical values to your needs. The values are examples.

1. Enable the Broker for publish and subscribe.

PUBLISH-AND-SUBSCRIBE = YES
PUBLICATION-DEFAULT = UNLIM
SUBSCRIBER-DEFAULT = UNLIM
TOPIC-UPDATES = YES
AUTO-COMMIT-FOR-SUBSCRIBER = NO

Note:
Attribute AUTO-COMMIT-FOR-SUBSCRIBER is required because committing messages is
controlled by JMS.

2. Configure the subscriber store for durable subscribers.

Use PSTORE as subscriber store. For more details of the PSTORE configuration, see the Broker
Attributes.

SUBSCRIBER-STORE = PSTORE
NUM-SUBSCRIBER-TOTAL = 1000
NUM-TOPIC-TOTAL = 1000

2

Writing JMS ApplicationsWriting JMS Applications with the EntireX Broker

3. Define the topics.

The following example lists the attributes connected to topics. For a detailed description see the
Broker Attributes. At least one topic definition with topic "*" is needed to enable the temporary
topics of JMS. The names of the topics are restricted to 96 bytes. The lifetime of the messages is
controlled by JMS.

DEFAULTS = TOPIC
ALLOW-DURABLE = YES
UNSECURE-SUBSCRIBE = YES
AUTO-COMMIT-FOR-SUBSCRIBER = NO
CONVERSION = SAGTCHA
LONG-BUFFER-LIMIT = UNLIM
MAX-PUBLICATION-MESSAGE-LENGTH = 31647
MAX-MESSAGES-IN-PUBLICATION = 5
PUBLICATION-LIMIT = UNLIM
PUBLISHER-NONACT = 5M
SHORT-BUFFER-LIMIT = UNLIM
SUBSCRIBER-LIMIT = UNLIM
SUBSCRIBER-NONACT = 3M
TRANSLATION = SAGTCHA
SUBSCRIPTION-EXPIRATION = 90D
TOPIC = *

 To enable the Broker for JMS point to point

Edit the Broker attribute file as described below:

1. Set MAX-UOW to some appropriate value greater than 0.

2. Define the services for JMS.

JMS queues are mapped to the service class JMS and the service QUEUE (or TMPQUEUE for
temporary queues). The name of the queue is used as the server name. The default Broker attribute
file that is installed contains the definitions for JMS. This enables the installed default Broker for
JMS with non-persistent messages.

* ------------- ENTIREX/JMS example services -------------------------
DEFAULTS = SERVICE
 CONV-LIMIT = UNLIM
 CONV-NONACT = 4M
 LONG-BUFFER-LIMIT = UNLIM
 NOTIFY-EOC = NO
 SERVER-NONACT = 5M
 SHORT-BUFFER-LIMIT = UNLIM
 CLASS = JMS, SERVER = *, SERVICE = QUEUE, DEFERRED = yes
 CLASS = JMS, SERVER = *, SERVICE = TMPQUEUE, DEFERRED = yes
* --

3. Configure the persistent store of the Broker (optional).

Use the Broker attributes STORE, PSTORE, PSTORE-TYPE to configure the persistent store.

The value STORE=OFF corresponds to DeliveryMode.NON_PERSISTENT and the value
STORE=BROKER corresponds to DeliveryMode.PERSISTENT .

3

Writing JMS Applications with the EntireX BrokerConfigure the Broker

The defaults set for the Broker are overwritten by the STORE attribute of the service and this is
overwritten by the value JMS sets.

If you use DeliveryMode.PERSISTENT in JMS, you have to use PSTORE to define the status of
the persistent store and PSTORE-TYPE to define the type of persistent store. See Broker Attributes
for details.

Configure the JNDI Provider

To use administered objects of JMS with a JNDI service provider, configure the JNDI service provider as
described below:

 To configure the JNDI Service Provider

1. Get the JAR files of the service provider and follow the service provider’s documentation to deploy
these JAR files.

2. Create or change the file jndi.properties. Add the path of this file to the Java classpath.

With the installation of EntireX, the JNDI file system service provider is configured. The JAR files
fscontext.jar and providerutil.jar reside in the subfolder classes of the EntireX installation folder. The
JNDI configuration jndi.properties is placed in the subfolder etc.

Create the Administered Objects with the JMS Agent of the System
Management Hub

See Message Service Administration using System Management Hub.

Coding and Compiling Your Application

Compile your application with the gf.javax.jms.jar. The JAR files from EntireX are not needed. This
ensures that the JMS application is portable between JMS providers.

Running Your Application

The following JAR files are required to run your application, in addition to the gf.javax.jms.jar and the
JAR files for the JNDI provider.

entirex.jar

exxjms.jar

Jcup.jar

Jakarta-regexp-1.2.jar

Examples

Examples for JMS are in the subfolder jms of the examples folder. For a detailed description see the
README.TXT in this folder. To compile and run the examples use build.bat or the build.xml script with
Ant.

4

Configure the JNDI ProviderWriting JMS Applications with the EntireX Broker

Basic Examples

SenderToQueue.java and SynchQueueReceiver.java can be used to send and synchronously receive a
single text message using a queue. SynchTopicExample.java uses a publisher class and a subscriber class
to publish and synchronously receive a single text message using a topic.

Intermediate Examples

The intermediate examples show listeners, conversion and types of messages:

SenderToQueue.java and AsynchQueueReceiver.java send a specified number of text messages to a queue
and asynchronously receive them using a message listener (TextListener), which is in the file
TextListener.java.

AsynchTopicExample.java uses a publisher class and a subscriber class to publish five text messages to a
topic and asynchronously get them using a message listener (TextListener).

MessageFormats.java writes and reads messages in the five supported message formats. The messages are
not sent, so you do not need to specify a queue or topic argument when you run the program.

MessageConversion.java shows that for some message formats, you can write a message using one data
type and read it using another.

ObjectMessages.java shows that objects are copied into messages, not passed by reference: once you
create a message from a given object, you can change the original object, but the contents of the message
do not change.

BytesMessages.java shows how to write, then read a BytesMessage of indeterminate length. It reads the
message content from a file.

Advanced Examples

The advanced examples show header fields, selectors, durable subscriptions, acknowledge modes,
transacted sessions, and request/reply:

MessageHeadersQueue.java and MessageHeadersTopic.java illustrate the use of the JMS message header
fields.

TopicSelectors.java shows how to use message header fields as message selectors. The program consists
of one publisher and several subscribers. Each subscriber uses a message selector to receive a subset of the
messages sent by the publisher.

DurableSubscriberExample.java shows how you can create a durable subscriber that retains messages
published to a topic while the subscriber is inactive.

AckEquivExample.java shows that to ensure that a message will not be acknowledged until processing is
complete. Use a receiver with AUTO_ACKNOWLEDGE or CLIENT_ACKNOWLEDGE.

TransactedExample.java demonstrates the use of transactions in a simulated e-commerce application.

RequestReplyQueue.java uses the JMS request/reply facility, which supports situations in which every
message sent requires a response.

5

Writing JMS Applications with the EntireX BrokerExamples

SampleJMSClient.java and SampleJMSServer.java demonstrate sending requests and replies. The server
uses a message listener and an exception listener.

Writing Advanced Applications
This section describes the features of JMS and how they are mapped to an EntireX Broker configuration
and functions.

Persistent and Non-persistent Messages

For persistent messages, the persistent store of the Broker has to be configured. See Configure the Broker
and Broker Attributes for more information. If the persistent store is disabled, only
DeliveryMode.NON_PERSISTENT is supported. Sending messages with
DeliveryMode.PERSISTENT to a Broker without persistent store results in exception "0078 0388:
PSI: UOWs canNOT be persisted".

Acknowledge Modes

The acknowledge modes DUPS_OK_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, and
CLIENT_ACKNOWLEDGE are supported for non-transacted sessions. In the mode
CLIENT_ACKNOWLEDGE, the method acknowledge() for a message sends a SYNCPOINT with
option EOC to the Broker. For the other modes, the same is done automatically.

Transacted Sessions

For transacted sessions, commit() sends a SYNCPOINT with option EOC to the Broker. This sets the
status of the UOW to "accepted" for the sender and "delivered" for the receiver. The rollback()
method sends a SYNCPOINT with option BACKOUT to the Broker. This sets the status of the UOW to
"backed out" for the sender and "accepted" for the receiver.

Security

EntireX security is supported with the method
ConnectionFactory.createConnection(userName, password) . This uses a logon to the
Broker with user and password.

Receiving Messages with a MessageListener

To receive messages with a MessageListener, implement the onMessage method of the interface
MessageListener . Since this method does not throw JMSExceptions, it is appropriate to set up an
ExceptionListener for the connection. This listener gets all the exceptions thrown by the
MessageListener . If the Broker returns a shutdown to the receiver (BrokerExceptions with
class and code 0010 0050 or 0010 0051), the ExceptionListener can handle this exception and stop
the connection.

Restrictions

The property JMSXDeliveryCount is not supported.

6

Writing Advanced ApplicationsWriting JMS Applications with the EntireX Broker

Transactions with XAConnectionFactory , XAConnection , XASession are not supported.

setDisableMessageID is ignored. The message ID is always set.

setDisableMessageTimestamp is ignored. The message timestamp is always set.

Maximum length of subscription name is 32 bytes.

Maximum length of connection ID is 32 bytes.

Maximum length of topic names is 96 bytes.

Maximum length of queue names is 32 bytes.

Maximum of 1000 receivers and senders in one connection

Administrative Settings of user ID for connection factories are not supported

7

Writing JMS Applications with the EntireX BrokerRestrictions

Connecting JMS Applications and non-JMS Applications
To connect JMS applications with non-JMS applications you need to modify the format of the messages.
This is done by a message formatting RRoutine. The Message formatting routine formats the JMS
messages sent by the JMS application in such a way that a non-JMS application can receive them. The
routine converts messages from the non-JMS application into JMS messages. The message formatting
routine is a user-written class which implements the interface
com.softwareag.entirex.jms.JMSFormatter . We deliver examples for message formatting
routines in the examples folder. These examples can be used as prototypes for your own routines.

The image below illustrates the general concept of JMS-to-non-JMS connections:

To connect JMS applications with non-JMS applications, consider the following aspects:

Message Format

Message Encoding

Transaction Handling

Configuration

8

Connecting JMS Applications and non-JMS ApplicationsWriting JMS Applications with the EntireX Broker

Message Format

Implement your own format with a class that implements JMSFormatter. This format may include the text
(for TextMessage) or other data (for BytesMessage, StreamMessage, MapMessage, and ObjectMessage)
and properties of JMS.

Message Encoding

Format all data in the message as strings in the default encoding of the JVM. This ensures that translation
inside the Broker works. Obey that the Broker translation may change the number of bytes for a field. A
second approach is to use the encoding that the non-JMS application needs in the formatter and disable
translation or conversion for the queue in the Broker.

Transaction Handling

The non-JMS application has to send the messages in conversations containing one unit of work. The unit
of work may contain one or more messages. The JMS application is not able to receive more than one unit
of work in a conversation. Do not use the USTATUS field of the unit of work. This is reserved for the
receiving JMS application.

A receiving non-JMS application receives the messages in units of work. Each unit of work has its own
conversation. The unit of work contains one or more messages.

Configuration

For the JMS queues or topics that should connect to non-JMS applications, set the formatter to the name
of the class implementing com.softwareag.entirex.jms.JMSFormatter . This enables
customer-specific formatting of the message for the JMS application. The formatter is set for each queue
or each topic individually. Queues and topics connecting only JMS applications do not need a formatter.
JMS and non-JMS applications can be mixed in a queue with a formatter. The same applies to topics.

The examples show formatting of text messages with a Natural example application and a Java example
application. For detailed instructions on how to run these examples, see the examples folder.

Assume the following scenario: a JMS application sends a message and expects the reply in a special
queue. The ACI application has to get the name of the queue from the message and send the reply to this
queue. This is achieved in the following manner:

The JMS application creates a temporary queue for the current session and sets this queue as a
JMSReplyTo queue in the message. If a message producer sends a message to a destination with a
formatter and the JMSReplyTo property is used, the same formatter is used for messages received
at this JMSReplyTo destination.

The formatter gets the JMSReplyTo queue from the JMS message and puts the name and the type
of the queue into the ACI message.

The ACI application reads the name and the type of the queue. If the type is a temporary queue, it
uses JMS/<name of queue>/TMPQUEUE as CLASS/SERVER/SERVICE. If the type is not a
temporary queue, it uses JMS/<name of queue>/QUEUE as CLASS/SERVER/SERVICE.

9

Writing JMS Applications with the EntireX BrokerMessage Format

The same applies to topics, except that the name of the JMS topic can be used "as is" for the Broker topic.

JMS Error Handling
For each JMS API interface, the methods which throw a BrokerException wrapped as a
JMSException are listed.

If a JMS exception wraps a BrokerException , JMSException.getErrorCode returns the error
class and error code from the Broker as ccccnnnn, where cccc is the class and nnnn the code.
JMSException.getMessage returns BrokerException.toString . This is Broker Error
cccc nnnn: <detailed message> . JMSException.getLinkedException returns the
BrokerException . Using references to a BrokerException forces the JMS application to be
compiled with the EntireX Java ACI and the application is not provider independent.

A BrokerException with error class 0008 (Security or Encryption errors) is thrown as
JMSSecurityException , a subclass of JMSException .

A BrokerException with error class 0021 and error code 0043 is thrown as
InvalidDestinationException , a subclass of JMSException .

A JMSException may wrap other JVM exceptions. Then the JMSException.getErrorCode
returns "EntireX JMS". JMSException.getMessage returns Exception.toString for the
wrapped exception, which is set as a linked exception.

JMS Class Connection

Method stop

Every BrokerException is thrown, except Broker error 0002 0002. The Broker returns this when the
Broker user is already gone due to a timeout. This error is ignored. If a session of this connection has a
message listener, this listener forwards these exceptions to the exception listener.

JMS Class Session

Method close

Every BrokerException is thrown, except Broker error 0002 0002. The Broker returns this when the
Broker user is already gone due to a timeout. This error is ignored. If the session has a message listener,
this listener forwards these exceptions to the exception listener of the connection.

Method commit

The error codes 0002 0002, 0003 0003, 0003 0005, 0010 0050, 0010 0051, and 0020 0134 are handled in
this method. Every other BrokerException is thrown. If the session has a message listener, this
listener forwards these exceptions to the exception listener of the connection.

Method createConsumer

Every BrokerException is thrown.

10

JMS Error HandlingWriting JMS Applications with the EntireX Broker

Method createProducer

Every BrokerException is thrown.

Method createTemporaryQueue

Every BrokerException is thrown.

Method createTemporaryTopic

Every BrokerException is thrown.

Method rollback

Every BrokerException is thrown. If the session has a message listener, this listener forwards these
exceptions to the exception listener of the connection.

JMS Class QueueSession

Method createReceiver

Every BrokerException is thrown.

Method createSender

Every BrokerException is thrown.

Method createTemporaryQueue

Every BrokerException is thrown.

JMS Class MessageConsumer

Method close

Every BrokerException is thrown, except Broker error 0002 0002. The Broker returns this when the
Broker user is already gone due to a timeout. This error is ignored.

Method receive

This method returns null, which indicates "no message received" on the error codes 0003 0003, 0010
0050, 0010 0051, and 0074 0074. The error codes 0002 0002, 0003 0005, 0020 0134, and 0074 0301 are
handled in this method. All other error codes throw a BrokerException wrapped in a
JMSException .

Method setMessageListener

Every BrokerException is thrown.

11

Writing JMS Applications with the EntireX BrokerJMS Class QueueSession

JMS Class MessageProducer

Method send

The error codes 0002 0002, 0007 0493, and 0020 0134 are handled in this method. Every other
BrokerException is thrown.

JMS Class QueueSender

Method send

See JMS class MessageProducer , method send .

JMS Class TopicPublisher

Method publish

See class MessageProducer , method send .

JMS Class QueueBrowser

Method getEnumeration

Any error code can occur with the BrokerException that is thrown. The error codes 0003 0003, 0010
0050, 0010 0051, 0074 0074 while the messages are being received signal that no more messages are
available. The method returns the messages received so far.

Message Listener

The methods Connection.stop , Session.commit and Session.rollback affect the message
listener. If these methods throw exceptions, the message listener will forward those exceptions to the
exception listener of the connection.

While the message listener is receiving messages, it handles errors as follows. On error codes 0002 0002
and 0020 0134 the listener retries to receive messages. Error codes 0003 0003, 0003 0005, 0074 0074, and
0074 0301 are ignored. A JMSException is thrown to the exception listener on error codes 0010 0050
and 0010 0051. Any other error codes is forwarded as a JMSException to the exception listener.

12

JMS Class MessageProducerWriting JMS Applications with the EntireX Broker

	Writing JMS Applications with the EntireX Broker
	EntireX Broker and JMS
	Writing JMS Applications
	Configure the Broker
	Configure the JNDI Provider
	Create the Administered Objects with the JMS Agent of the System Management Hub
	Coding and Compiling Your Application
	Running Your Application
	Examples
	Basic Examples
	Intermediate Examples
	Advanced Examples

	Writing Advanced Applications
	Persistent and Non-persistent Messages
	Acknowledge Modes
	Transacted Sessions
	Security
	Receiving Messages with a MessageListener
	Restrictions

	Connecting JMS Applications and non-JMS Applications
	Message Format
	Message Encoding
	Transaction Handling
	Configuration

	JMS Error Handling
	JMS Class Connection
	Method stop

	JMS Class Session
	Method close
	Method commit
	Method createConsumer
	Method createProducer
	Method createTemporaryQueue
	Method createTemporaryTopic
	Method rollback

	JMS Class QueueSession
	Method createReceiver
	Method createSender
	Method createTemporaryQueue

	JMS Class MessageConsumer
	Method close
	Method receive
	Method setMessageListener

	JMS Class MessageProducer
	Method send

	JMS Class QueueSender
	Method send

	JMS Class TopicPublisher
	Method publish

	JMS Class QueueBrowser
	Method getEnumeration

	Message Listener

