Broker ActiveX Control with Visual Basic Broker ActiveX Control with Visual Basic

Broker ActiveX Control with Visual Basic

Visual Basic is used here as an example of a development environment in which applications using Broker
ActiveX Control can work. Broker ActiveX Control can be used by any programming language or
programming environment that can act as a container for ActiveX controls.

Note:

If you edit a Visual Basic application that uses Broker ActiveX Control and save these changes with the
new version of Broker ActiveX Control, you will not be able to use this application with Broker ActiveX
Control version 1.2.1.

This chapter covers the following topics:
® Step 1: Instantiate EntireX Broker ActiveX Control
® Step 2: Instantiate the Transaction Object
® Step 3: Call Methods
® Step 4: Access the Returned Data
e Step 5: Cleanup Resources
® Step 6: Error Handling in Transaction Object Methods

® Examples: Writing an ACI Client and Server with Broker ActiveX Control

Step 1. Instantiate EntireX Broker ActiveX Control
TouseBroker ActiveX Control asa control
1. From theProject, Components, Controls menu choos&ntireX Broker ActiveX Control.

2. Drop it into your dialog.

Broker ActiveX Control with Visual Basic Step 1: Instantiate EntireX Broker ActiveX Control

Properties =

AxBrokerl AxBrokerlib. AxBroker - AxBrokerl AxBrokerlib. AxBroker -
('hpplicationSettings“) - MaxirmumSize: o0 ~
(DataBindings) Messageld
(Mame) AxBrokerl MessageType
AccessibleDescription MinirmurnSize ;o
AccessibleMame Modifiers Friend
AccessibleRole Default MewPassword
AdapterErrar Cpkion 1]
AdiCount 1] Padding 0,000
AllowDrop False PartrerBrokerID
Anchaor Top, Left Password Password
APTversion g FublicationID
BrokerID localhost:1971 ReceiveBufferLength 65536
BrokerSecurity ReceiveBufferSize o
Causesyalidation True ReturnDatalength 1]
ClignkID (1] ReturnLength 0
Clientiserid Security Token
CommandLog SendBuffersize 0
Commit Tirme Serverlass
CompressLevel ServerMame
ContextMenustrip {none) Service
ConwID MOME Size 100; 50
ConvStatus 1} Skare 1
CredentialsType TabIndex 1
Dock: Mone TahsStop True
EncryptionLevel 1} Tag
Enwironment Token
ErrarCode Topic
EtrorMsg LI IO
ErrarTextState True LIi'Stakus L]
Forcelogaon False LSk abusLife
Funtion 1 LSt akusPersist 0
GenerateMember True LG Tirne:
Localestring LOCAL UserData
Location 96; 103 UserID Userld
Locked False UserStatus
LogicalBrokerID UseSameBufferstate False
Logical5ervice Llsetb aitCursor False
LogicalSettame Wisible True
IMargin e e e A it aik: =
fctiver -Edit; Ackivey -Properkies,..; Ackivied - Activer -Edit; Active -Properties. . ; Activel -
about, About. .,
{DataBindings) {DataBindings)
The data bindings For the contral, The data bindings for the contral,

In this example, Name is set to "BOX" in tReoperties dialog:

Using Broker ActiveX Control as an Automation Server:

If you want to

® see the interface description of Broker ActiveX Control in the object browser or

® use the early bind feature,

Step 2: Instantiate the Transaction Object Broker ActiveX Control with Visual Basic

from thePr oject > References menu choos8rowse and then select Broker ActiveX Control in
<drive>:\SoftwareAG\EntireX\bin\ebx.dll

To use Broker ActiveX Control as an automation server, you can define the following in your code:

Dim BOX as Object

or

Dim BOX as Broker
Set BOX=CreateObject("EntireX.Broker.ACI")

If you use Broker ActiveX Control as an automation server, you will not be able to:
e call the method®efineTOMethods andAboutBox

e use the property pages.

Step 2: Instantiate the Transaction Object

If a Transaction Object Repository (TOR) file is used, it is hot necessary to set the other properties. If you
want to use a transaction object, instantiate the transaction object with the command:

Dim TransObject As Object
Set TransObject = BOX.CreateTransObject("c:\\path\\to\\trans\\object\\object.tor")

BOX is the name set previously.

See thdist of methodsavailable for supporting transaction objects.

Step 3. Call Methods

Once a transaction object has been instantiated, the methods defined in that transaction object can be
called. If the transaction object method being called has one or more return values, transaction object
methodsalwaysreturn these values wrapped in a return object.

Dim ReturnObject As Object
Set ReturnObject = TransObject.MyMethod("Param1”, 50, "Param3")

A return object is always used, as TO methods usually return multiple scalar data items, or arrays,
structures or records. These in fact define the possible return values in a return object. They will be either
scalars:

® 2-byte INT

e 4-byte INT

® etc., basically all scalar types handled through the automation VARIANT structure
or objects:

® structure objects

Broker ActiveX Control with Visual Basic Step 4: Access the Returned Data

e collection objects
® arrays
® records

Alias custom types are mapped internally to the data type they alias, either scalars or objects.

Step 4. Accessthe Returned Data

You then access the returned data by interpreting the return object. The code required depends on whether
you are accessing scalars, structures, or arrays and records.

Note:

Care must be taken to avoid recursive complex type definitions. For example, a structure should not be
defined that contains an instance of itself, or less directly, an array of structures should not be defined that
contains an instance of the same array type. These and other permutations of recursive definitions cannot
be resolved, and thus cannot be used.

Scalars

Scalars can be accessed through the return object with code like this:

Dim Str As String

Dim Int As Integer

Str = ReturnObject.MyString
Int = ReturnObject.MyInt

Structures

Structures can be accessed from the return object like this:

Dim Struct As Object

Dim Str As String

Set Struct = ReturnObject.MyStruct
Str = Struct.MyString

Arrays and Recor ds Exposed as Collections

Arrays and records are exposed by Broker ActiveX Control as automation collections when the method
CreateTransObject is used. As collections, they support @aunt property, as well as tHeem

property that acts as the default value when subscripting is performed withtiatrih@ame. Thus, an

array in the return object can be accessed like this:

Dim Array_Value As Object
Dim | As Integer
Dim Myint As Integer
Set Array_Value = ReturnObject.MyArray
For | =0 To Array_Value.Count - 1
Mylnt = Array_Value(l)
Next |

Arrays and Records Exposed as Safe Arrays Broker ActiveX Control with Visual Basic

The elements of a record can be accessed with the following method:

Dim Array_Value,Struct As Object
Dim | As Integer
Set Array_Value = ReturnObject.MyArray
For | =0 To Array_Value.Count - 1
Set Struct = Array_Value(l)
Str = Struct.Str
Next

or also:

Dim Array_Value,Struct As Object
Dim | As Integer
Set Array_Value = ReturnObject.MyArray
For Each Struct in Array_Value
Str = Struct.str
Next

Arrays and Records Exposed as Safe Arrays

Arrays and Records are exposed as safe arrays when the method
CreateTransObjectSA(torfil enane) is used. Instead of tleount property, the.Bound and
UBound functions are supported.

An array in the return object can be accessed like this:

Dim Array_Value as Variant
Dim | as Integer
Dim Str as String

Array_Value = ReturnObject.MyArray

For | = LBound(Array_Value) To UBound(Array_Value)
Str = Array_Value[l]

Next

The elements on a record can be accessed with the following method:

Dim Array_Value as Variant
Dim Struct as Variant

Dim | as Integer

Dim Str as String

Array_Value = ReturnObject.MyArray

For | = LBound(Array_Value) To UBound(Array_Value)
Set Struct = Array_Value[l]
Str = Struct.Str

Next

Another possiblé-or statement:

For Each Struct in Array_Value
Str = Struct.Str
Next

There are no limitations to the number of complex types or their relationship to each object in a
transaction object. Arrays can exist within structures, and conversely, structures and arrays can exist
within records, etc. Thus, multidimensional arrays can easily be simulated if the given Broker service that
the method maps to provides data in such a format.

Broker ActiveX Control with Visual Basic Step 5: Cleanup Resources

Step 5: Cleanup Resour ces

When objects in your automation code are no longer used, be sure to call:

Set ObjectName = Nothing

This decrements the reference count of the object, thus allowing cleanup of object resources. While the
above information pertains specifically to Visual Basic, the concepts are also relevant to other automation
controllers, such as Delphi and FoxPro.

Step 6: Error Handling in Transaction Object M ethods

TO methods do not return an error flag; they raise a standard ActiveX exception instead. In Visual Basic,
this exception can be caught with an 'On error’ clause. The most likely reason for the failure of a TO
method is that the Broker call that was issued returned an error. In Visual Basic, use the standard Err
object to retrieve the error number and message (Err.Number and Err.Description).

If the error is a Broker error, Err.Description shows a generic error message "Automation Error". For a
detailed error description use therorCode andErrorMsg properties.

Examples: Writing an ACI Client and Server with Broker
ActiveX Control

® Writing an ACI Client with Broker ActiveX Control

e \Writing an ACI Server with Broker ActiveX Control

Writing an ACI Client with Broker ActiveX Control

On Error Resume Next
Dim ebx As Object

Dim senddata As String
Dim loopcount As Integer

loopcount = 0
' simple data to send
senddata = "Hello"

Set ebx = CreateObject("EntireX.Broker.ACI")
ebx.BrokerID = "localhost"

ebx.ServerClass = "ACLASS"
ebx.ServerName = "ASERVER"

ebx.Service = "ASERVICE"

ebx.Userld = "EBX-USER"

ebx.function =9’ Logon
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
Exit Sub

End If

Do
ebx.function =1’ Send

Writing an ACI Server with Broker ActiveX Control Broker ActiveX Control with Visual Basic

ebx.ConvID = "NONE"

' SetSendData data, length of data

ebx.SetSendData senddata, Len(senddata)

ebx.wait = "10s" ’ wait 10 seconds for a response from server
ebx.InvokeBrokerFunction

If ebx.ErrorCode <> 0 Then

MsgBox ebx.ErrorMsg

Else

MsgBox "Received " + Str(ebx.ReturnDatalLength) + " bytes (" + ebx.GetReceiveData +)"
End If

loopcount = loopcount + 1

If loopcount = 2 Then

senddata = " shutdown"

End If

Loop Until loopcount > 2

ebx.function = 10’ Logoff
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

Writing an ACI Server with Broker ActiveX Control

On Error Resume Next

Dim ebx As Object
Dim senddata As String
Dim receivedata As String

' simple data to send
senddata = "Hello"

Set ebx = CreateObject("EntireX.Broker.ACI")
ebx.BrokerID = "localhost"

ebx.ServerClass = "ACLASS"
ebx.ServerName = "ASERVER"

ebx.Service = "ASERVICE"

ebx.Userld = "EBX-USER"

ebx.function =9’ Logon
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
Exit Sub

End If

ebx.function = 6 ' Register
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

Do

ebx.function = 2’ Receive

ebx.wait = "yes" ' wait until data is received

ebx.ConvID = "NEW"

ebx.SetReceiveBufferLength = 1024 * we are now able to receive messages up to 1024 bytes
ebx.InvokeBrokerFunction

If ebx.ErrorCode <> 0 Then

MsgBox ebx.ErrorMsg

Broker ActiveX Control with Visual Basic

Else

' save received data

receivedata = ebx.GetReceiveData

' send response

ebx.function = 1’ Send

' SetSendData data, length of data
ebx.SetSendData senddata, Len(senddata)
ebx.wait = "no" ' don’t wait for a response
ebx.InvokeBrokerFunction

If ebx.ErrorCode <> 0 Then

MsgBox ebx.ErrorMsg

Else

MsgBox "Received data: " + receivedata
End If

End If

Writing an ACI Server with Broker ActiveX Control

" loop until the received data has the string "shutdown" from the position 20

receivedata = Mid(receivedata, 20, 8)
Loop Until receivedata = "shutdown"

ebx.function = 7’ DeRegister
ebx.InvokeBrokerFunction

If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

ebx.function = 10’ Logoff
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

	Broker ActiveX Control with Visual Basic
	Step 1: Instantiate EntireX Broker ActiveX Control
	Step 2: Instantiate the Transaction Object
	Step 3: Call Methods
	Step 4: Access the Returned Data
	Scalars
	Structures
	Arrays and Records Exposed as Collections
	Arrays and Records Exposed as Safe Arrays

	Step 5: Cleanup Resources
	Step 6: Error Handling in Transaction Object Methods
	Examples: Writing an ACI Client and Server with Broker ActiveX Control
	Writing an ACI Client with Broker ActiveX Control
	Writing an ACI Server with Broker ActiveX Control

