
Broker ActiveX Control with Visual Basic
Visual Basic is used here as an example of a development environment in which applications using Broker
ActiveX Control can work. Broker ActiveX Control can be used by any programming language or
programming environment that can act as a container for ActiveX controls.

Note:
If you edit a Visual Basic application that uses Broker ActiveX Control and save these changes with the
new version of Broker ActiveX Control, you will not be able to use this application with Broker ActiveX
Control version 1.2.1.

This chapter covers the following topics:

Step 1: Instantiate EntireX Broker ActiveX Control

Step 2: Instantiate the Transaction Object

Step 3: Call Methods

Step 4: Access the Returned Data

Step 5: Cleanup Resources

Step 6: Error Handling in Transaction Object Methods

Examples: Writing an ACI Client and Server with Broker ActiveX Control

Step 1: Instantiate EntireX Broker ActiveX Control
 To use Broker ActiveX Control as a control

1. From the Project, Components, Controls menu choose EntireX Broker ActiveX Control.

2. Drop it into your dialog.

1

Broker ActiveX Control with Visual BasicBroker ActiveX Control with Visual Basic

In this example, Name is set to "BOX" in the Properties dialog:

Using Broker ActiveX Control as an Automation Server:

If you want to

see the interface description of Broker ActiveX Control in the object browser or

use the early bind feature,

2

Step 1: Instantiate EntireX Broker ActiveX ControlBroker ActiveX Control with Visual Basic

from the Project > References menu choose Browse and then select Broker ActiveX Control in
<drive>:\SoftwareAG\EntireX\bin\ebx.dll.

To use Broker ActiveX Control as an automation server, you can define the following in your code:

Dim BOX as Object

or

Dim BOX as Broker
Set BOX=CreateObject("EntireX.Broker.ACI")

If you use Broker ActiveX Control as an automation server, you will not be able to:

call the methods DefineTOMethods and AboutBox

use the property pages.

Step 2: Instantiate the Transaction Object
If a Transaction Object Repository (TOR) file is used, it is not necessary to set the other properties. If you
want to use a transaction object, instantiate the transaction object with the command:

Dim TransObject As Object
Set TransObject = BOX.CreateTransObject("c:\\path\\to\\trans\\object\\object.tor")

BOX is the name set previously.

See the list of methods available for supporting transaction objects.

Step 3: Call Methods
Once a transaction object has been instantiated, the methods defined in that transaction object can be
called. If the transaction object method being called has one or more return values, transaction object
methods always return these values wrapped in a return object.

Dim ReturnObject As Object
Set ReturnObject = TransObject.MyMethod("Param1", 50, "Param3")

A return object is always used, as TO methods usually return multiple scalar data items, or arrays,
structures or records. These in fact define the possible return values in a return object. They will be either
scalars:

2-byte INT

4-byte INT

etc., basically all scalar types handled through the automation VARIANT structure

or objects:

structure objects

3

Broker ActiveX Control with Visual BasicStep 2: Instantiate the Transaction Object

collection objects

arrays

records

Alias custom types are mapped internally to the data type they alias, either scalars or objects.

Step 4: Access the Returned Data
You then access the returned data by interpreting the return object. The code required depends on whether
you are accessing scalars, structures, or arrays and records.

Note:
Care must be taken to avoid recursive complex type definitions. For example, a structure should not be
defined that contains an instance of itself, or less directly, an array of structures should not be defined that
contains an instance of the same array type. These and other permutations of recursive definitions cannot
be resolved, and thus cannot be used.

Scalars

Scalars can be accessed through the return object with code like this:

Dim Str As String
Dim Int As Integer
Str = ReturnObject.MyString
Int = ReturnObject.MyInt

Structures

Structures can be accessed from the return object like this:

Dim Struct As Object
Dim Str As String
Set Struct = ReturnObject.MyStruct
Str = Struct.MyString

Arrays and Records Exposed as Collections

Arrays and records are exposed by Broker ActiveX Control as automation collections when the method
CreateTransObject is used. As collections, they support the Count property, as well as the Item
property that acts as the default value when subscripting is performed without the Item name. Thus, an
array in the return object can be accessed like this:

Dim Array_Value As Object
Dim I As Integer
Dim MyInt As Integer
Set Array_Value = ReturnObject.MyArray
For I = 0 To Array_Value.Count - 1
 MyInt = Array_Value(I)
Next I

4

Step 4: Access the Returned DataBroker ActiveX Control with Visual Basic

The elements of a record can be accessed with the following method:

Dim Array_Value,Struct As Object
Dim I As Integer
Set Array_Value = ReturnObject.MyArray
For I = 0 To Array_Value.Count - 1
 Set Struct = Array_Value(I)
 Str = Struct.Str
Next

or also:

Dim Array_Value,Struct As Object
Dim I As Integer
Set Array_Value = ReturnObject.MyArray
For Each Struct in Array_Value
 Str = Struct.str
Next

Arrays and Records Exposed as Safe Arrays

Arrays and Records are exposed as safe arrays when the method
CreateTransObjectSA(torfilename) is used. Instead of the Count property, the LBound and
UBound functions are supported.

An array in the return object can be accessed like this:

Dim Array_Value as Variant
Dim I as Integer
Dim Str as String

Array_Value = ReturnObject.MyArray
For I = LBound(Array_Value) To UBound(Array_Value)
 Str = Array_Value[I]
Next

The elements on a record can be accessed with the following method:

Dim Array_Value as Variant
Dim Struct as Variant
Dim I as Integer
Dim Str as String

Array_Value = ReturnObject.MyArray
For I = LBound(Array_Value) To UBound(Array_Value)
 Set Struct = Array_Value[I]
 Str = Struct.Str
Next

Another possible For statement:

For Each Struct in Array_Value
 Str = Struct.Str
Next

There are no limitations to the number of complex types or their relationship to each object in a
transaction object. Arrays can exist within structures, and conversely, structures and arrays can exist
within records, etc. Thus, multidimensional arrays can easily be simulated if the given Broker service that
the method maps to provides data in such a format.

5

Broker ActiveX Control with Visual BasicArrays and Records Exposed as Safe Arrays

Step 5: Cleanup Resources
When objects in your automation code are no longer used, be sure to call:

Set ObjectName = Nothing

This decrements the reference count of the object, thus allowing cleanup of object resources. While the
above information pertains specifically to Visual Basic, the concepts are also relevant to other automation
controllers, such as Delphi and FoxPro.

Step 6: Error Handling in Transaction Object Methods
TO methods do not return an error flag; they raise a standard ActiveX exception instead. In Visual Basic,
this exception can be caught with an ’On error’ clause. The most likely reason for the failure of a TO
method is that the Broker call that was issued returned an error. In Visual Basic, use the standard Err
object to retrieve the error number and message (Err.Number and Err.Description).

If the error is a Broker error, Err.Description shows a generic error message "Automation Error". For a
detailed error description use the ErrorCode and ErrorMsg properties.

Examples: Writing an ACI Client and Server with Broker
ActiveX Control

Writing an ACI Client with Broker ActiveX Control

Writing an ACI Server with Broker ActiveX Control

Writing an ACI Client with Broker ActiveX Control
On Error Resume Next
Dim ebx As Object
Dim senddata As String
Dim loopcount As Integer

 loopcount = 0
’ simple data to send
senddata = "Hello"

 Set ebx = CreateObject("EntireX.Broker.ACI")
ebx.BrokerID = "localhost"
ebx.ServerClass = "ACLASS"
ebx.ServerName = "ASERVER"
ebx.Service = "ASERVICE"
ebx.UserId = "EBX-USER"

ebx.function = 9 ’ Logon
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
Exit Sub
End If

Do
ebx.function = 1 ’ Send

6

Step 5: Cleanup ResourcesBroker ActiveX Control with Visual Basic

ebx.ConvID = "NONE"
’ SetSendData data, length of data
ebx.SetSendData senddata, Len(senddata)
ebx.wait = "10s" ’ wait 10 seconds for a response from server
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMsg
Else
MsgBox "Received " + Str(ebx.ReturnDataLength) + " bytes (" + ebx.GetReceiveData + ")"
End If
loopcount = loopcount + 1
If loopcount = 2 Then
senddata = " shutdown"
End If

Loop Until loopcount > 2

ebx.function = 10 ’ Logoff
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

Writing an ACI Server with Broker ActiveX Control
On Error Resume Next

Dim ebx As Object
Dim senddata As String
Dim receivedata As String

’ simple data to send
senddata = "Hello"

Set ebx = CreateObject("EntireX.Broker.ACI")
ebx.BrokerID = "localhost"
ebx.ServerClass = "ACLASS"
ebx.ServerName = "ASERVER"
ebx.Service = "ASERVICE"
ebx.UserId = "EBX-USER"

ebx.function = 9 ’ Logon
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
Exit Sub
End If

ebx.function = 6 ’ Register
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

Do
ebx.function = 2 ’ Receive
ebx.wait = "yes" ’ wait until data is received
ebx.ConvID = "NEW"
ebx.SetReceiveBufferLength = 1024 ’ we are now able to receive messages up to 1024 bytes
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMsg

7

Broker ActiveX Control with Visual BasicWriting an ACI Server with Broker ActiveX Control

Else

’ save received data
receivedata = ebx.GetReceiveData
’ send response
ebx.function = 1 ’ Send
’ SetSendData data, length of data
ebx.SetSendData senddata, Len(senddata)
ebx.wait = "no" ’ don’t wait for a response
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMsg
Else
MsgBox "Received data: " + receivedata
End If
End If
’ loop until the received data has the string "shutdown" from the position 20
receivedata = Mid(receivedata, 20, 8)
Loop Until receivedata = "shutdown"

ebx.function = 7 ’ DeRegister
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

ebx.function = 10 ’ Logoff
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

8

Writing an ACI Server with Broker ActiveX ControlBroker ActiveX Control with Visual Basic

	Broker ActiveX Control with Visual Basic
	Step 1: Instantiate EntireX Broker ActiveX Control
	Step 2: Instantiate the Transaction Object
	Step 3: Call Methods
	Step 4: Access the Returned Data
	Scalars
	Structures
	Arrays and Records Exposed as Collections
	Arrays and Records Exposed as Safe Arrays

	Step 5: Cleanup Resources
	Step 6: Error Handling in Transaction Object Methods
	Examples: Writing an ACI Client and Server with Broker ActiveX Control
	Writing an ACI Client with Broker ActiveX Control
	Writing an ACI Server with Broker ActiveX Control

